DS90C402
www.ti.com
SNLS001C JUNE 1998REVISED APRIL 2013
DS90C402 Dual Low Voltage Differential Signaling (LVDS) Receiver
Check for Samples: DS90C402
1FEATURES DESCRIPTION
The DS90C402 is a dual receiver device optimized
2 Ultra Low Power Dissipation for high data rate and low power applications. This
Operates above 155.5 Mbps device along with the DS90C401 provides a pair chip
Standard TIA/EIA-644 solution for a dual high speed point-to-point interface.
The device is in a PCB space saving 8 lead small
8 Lead SOIC Package saves PCB space outline package. The receiver offers ±100 mV
VCM ±1V center around 1.2V threshold sensitivity, in addition to common-mode
±100 mV Receiver Sensitivity noise protection.
Connection Diagram
See Package Number D (SOIC)
Functional Diagram
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 1998–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
DS90C402
SNLS001C JUNE 1998REVISED APRIL 2013
www.ti.com
Absolute Maximum Ratings(1)(2)
Supply Voltage (VCC)0.3V to +6V
Input Voltage (RIN+, RIN)0.3V to (VCC + 0.3V)
Output Voltage (ROUT)0.3V to (VCC + 0.3V)
D Package 1025 mW
Maximum Package Power Dissipation @ +25°C Derate D Package 8.2 mW/°C above +25°C
Storage Temperature Range 65°C to +150°C
Lead Temperature Range
Soldering (4 sec.) +260°C
Maximum Junction Temperature +150°C
ESD Rating(3) (HBM, 1.5 kΩ, 100 pF) 3,500V
(EIAJ, 0 Ω, 200 pF) 250V
(1) “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be ensured. They are not meant to imply
that the devices should be operated at these limits. Electrical Characteristics specifies conditions of device operation.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and
specifications.
(3) ESD Rating: HBM (1.5 kΩ, 100 pF) 3,500V EIAJ (0Ω, 200 pF) 250V
Recommended Operating Conditions Min Typ Max Units
Supply Voltage (VCC) +4.5 +5.0 +5.5 V
Receiver Input Voltage GND 2.4 V
Operating Free Air Temperature (TA)40 +25 +85 °C
Electrical Characteristics
Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.(1)(2)
Symbol Parameter Conditions Pin Min Typ Max Units
VTH Differential Input High Threshold VCM = + 1.2V RIN+, +100 mV
RIN
VTL Differential Input Low Threshold 100 mV
IIN Input Current VIN = +2.4V VCC = 5.5V 10 ±1 +10 μA
VIN = 0V 10 ± 1 +10 µA
VOH Output High Voltage IOH =0.4 mA, VID = +200 mV ROUT 3.8 4.9 V
IOH =0.4mA, Inputs terminated 3.8 4.9 V
IOH =0.4mA, Inputs Open 3.8 4.9 V
IOH =0.4mA, Inputs Shorted 4.9 V
VOL Output Low Voltage IOL = 2 mA, VID =200 mV 0.07 0.3 V
IOS Output Short Circuit Current VOUT = 0V(3) 15 60 100 mA
ICC No Load Supply Current Inputs Open VCC 3.5 10 mA
(1) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground
unless otherwise specified.
(2) All typicals are given for: VCC = +5.0V, TA= +25°C.
(3) Output short circuit current (IOS) is specified as magnitude only, minus sign indicates direction only. Only one output should be shorted
at a time, do not exceed maximum junction temperature specification.
2Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated
Product Folder Links: DS90C402
DS90C402
www.ti.com
SNLS001C JUNE 1998REVISED APRIL 2013
Switching Characteristics
VCC = +5.0V ± 10%, TA=40°C to +85°C(1)(2)(3)(4)(5)
Symbol Parameter Conditions Min Typ Max Units
tPHLD Differential Propagation Delay High to Low CL= 5 pF, 1.0 3.40 6.0 ns
VID = 200 mV
tPLHD Differential Propagation Delay Low to High 1.0 3.48 6.0 ns
(Figure 1 and Figure 2)
tSKD Differential Skew |tPHLD tPLHD| 0 0.08 1.2 ns
tSK1 Channel-to-Channel Skew(3) 0 0.6 1.5 ns
tSK2 Chip to Chip Skew(4) 5.0 ns
tTLH Rise Time 0.5 2.5 ns
tTHL Fall Time 0.5 2.5 ns
(1) All typicals are given for: VCC = +5.0V, TA= +25°C.
(2) Generator waveform for all tests unless otherwise specified: f = 1 MHz, ZO = 50Ω, trand tf(0%–100%) 1 ns for RIN.
(3) Channel-to-Channel Skew is defined as the difference between the propagation delay of one channel and that of the others on the same
chip with an event on the inputs.
(4) Chip to Chip Skew is defined as the difference between the minimum and maximum specified differential propagation delays.
(5) CLincludes probe and jig capacitance.
Parameter Measurement Information
Figure 1. Receiver Propagation Delay and Transition Time Test Circuit
Figure 2. Receiver Propagation Delay and Transition Time Waveforms
Copyright © 1998–2013, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: DS90C402
DS90C402
SNLS001C JUNE 1998REVISED APRIL 2013
www.ti.com
TYPICAL APPLICATION
Figure 3. Point-to-Point Application
Applications Information
LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as
is shown in Figure 3. This configuration provides a clean signaling environment for the quick edge rates of the
drivers. The receiver is connected to the driver through a balanced media which may be a standard twisted pair
cable, a parallel pair cable, or simply PCB traces. Typically the characteristic impedance of the media is in the
range of 100Ω. A termination resistor of 100Ωshould be selected to match the media, and is located as close to
the receiver input pins as possible. The termination resistor converts the current sourced by the driver into a
voltage that is detected by the receiver. Other configurations are possible such as a multi-receiver configuration,
but the effects of a mid-stream connector(s), cable stub(s), and other impedance discontinuities as well as
ground shifting, noise margin limits, and total termination loading must be taken into account.
The DS90C402 differential line receiver is capable of detecting signals as low as 100 mV, over a ±1V common-
mode range centered around +1.2V. This is related to the driver offset voltage which is typically +1.2V. The
driven signal is centered around this voltage and may shift ±1V around this center point. The ±1V shifting may be
the result of a ground potential difference between the driver's ground reference and the receiver's ground
reference, the common-mode effects of coupled noise, or a combination of the two. Both receiver input pins
should honor their specified operating input voltage range of 0V to +2.4V (measured from each pin to ground),
exceeding these limits may turn on the ESD protection circuitry which will clamp the bus voltages.
Fail-Safe Feature:
The LVDS receiver is a high gain, high speed device that amplifies a small differential signal (20mV) to CMOS
logic levels. Due to the high gain and tight threshold of the receiver, care should be taken to prevent noise from
appearing as a valid signal.
The receiver's internal fail-safe circuitry is designed to source/sink a small amount of current, providing fail-safe
protection (a stable known state HIGH output voltage) for floating, terminated or shorted receiver inputs.
1. Open Input Pins. The DS90C402 is a dual receiver device, and if an application requires only one receiver,
the unused channel(s) inputs should be left OPEN. Do not tie unused receiver inputs to ground or any other
voltages. The input is biased by internal high value pull up and pull down resistors to set the output to a
HIGH state. This internal circuitry will ensure a HIGH, stable output state for open inputs.
2. Terminated Input. If the driver is disconnected (cable unplugged), or if the driver is in a power-off condition,
the receiver output will again be in a HIGH state, even with the end of cable 100Ωtermination resistor across
the input pins. The unplugged cable can become a floating antenna which can pick up noise. If the cable
picks up more than 10mV of differential noise, the receiver may see the noise as a valid signal and switch.
To insure that any noise is seen as common-mode and not differential, a balanced interconnect should be
used. Twisted pair cable will offer better balance than flat ribbon cable
3. Shorted Inputs. If a fault condition occurs that shorts the receiver inputs together, thus resulting in a 0V
differential input voltage, the receiver output will remain in a HIGH state. Shorted input fail-safe is not
supported across the common-mode range of the device (GND to 2.4V). It is only supported with inputs
shorted and no external common-mode voltage applied.
4Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated
Product Folder Links: DS90C402
DS90C402
www.ti.com
SNLS001C JUNE 1998REVISED APRIL 2013
PIN DESCRIPTIONS
Pin No. Name Description
2, 6 ROUT Receiver output pin
3, 7 RIN+ Positive receiver input pin
4, 8 RIN- Negative receiver input pin
5 GND Ground pin
1 VCC Positive power supply pin, +5V ± 10%
Copyright © 1998–2013, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: DS90C402
DS90C402
SNLS001C JUNE 1998REVISED APRIL 2013
www.ti.com
Typical Performance Characteristics
Output High Voltage vs Output High Voltage vs
Power Supply Voltage Ambient Temperature
Figure 4. Figure 5.
Output Low Voltage vs Output Low Voltage vs
Power Supply Voltage Ambient Temperature
Figure 6. Figure 7.
Output Short Circuit Current Output Short Circuit Current
vs Power Supply Voltage vs Ambient Temperature
Figure 8. Figure 9.
6Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated
Product Folder Links: DS90C402
DS90C402
www.ti.com
SNLS001C JUNE 1998REVISED APRIL 2013
Typical Performance Characteristics (continued)
Differential Propagation Delay
vs Differential Propagation Delay
Power Supply Voltage vs Ambient Temperature
Figure 10. Figure 11.
Differential Skew vs Differential Skew vs
Power Supply Voltage Ambient Temperature
Figure 12. Figure 13.
Transition Time vs Transition Time vs
Power Supply Voltage Ambient Temperature
Figure 14. Figure 15.
Copyright © 1998–2013, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: DS90C402
DS90C402
SNLS001C JUNE 1998REVISED APRIL 2013
www.ti.com
REVISION HISTORY
Changes from Revision B (April 2013) to Revision C Page
Changed layout of National Data Sheet to TI format ............................................................................................................ 7
8Submit Documentation Feedback Copyright © 1998–2013, Texas Instruments Incorporated
Product Folder Links: DS90C402
PACKAGE OPTION ADDENDUM
www.ti.com 11-Jan-2021
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead finish/
Ball material
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
DS90C402M NRND SOIC D 8 95 Non-RoHS
& Green Call TI Call TI -40 to 85 DS90C
402M
DS90C402M/NOPB ACTIVE SOIC D 8 95 RoHS & Green SN Level-1-260C-UNLIM -40 to 85 DS90C
402M
DS90C402MX/NOPB ACTIVE SOIC D 8 2500 RoHS & Green SN Level-1-260C-UNLIM -40 to 85 DS90C
402M
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based
flame retardants must also meet the <=1000ppm threshold requirement.
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two
lines if the finish value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
PACKAGE OPTION ADDENDUM
www.ti.com 11-Jan-2021
Addendum-Page 2
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
DS90C402MX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
DS90C402MX/NOPB SOIC D 8 2500 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 24-Aug-2017
Pack Materials-Page 2
www.ti.com
PACKAGE OUTLINE
C
.228-.244 TYP
[5.80-6.19]
.069 MAX
[1.75]
6X .050
[1.27]
8X .012-.020
[0.31-0.51]
2X
.150
[3.81]
.005-.010 TYP
[0.13-0.25]
0 - 8 .004-.010
[0.11-0.25]
.010
[0.25]
.016-.050
[0.41-1.27]
4X (0 -15 )
A
.189-.197
[4.81-5.00]
NOTE 3
B .150-.157
[3.81-3.98]
NOTE 4
4X (0 -15 )
(.041)
[1.04]
SOIC - 1.75 mm max heightD0008A
SMALL OUTLINE INTEGRATED CIRCUIT
4214825/C 02/2019
NOTES:
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.
Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
18
.010 [0.25] C A B
5
4
PIN 1 ID AREA
SEATING PLANE
.004 [0.1] C
SEE DETAIL A
DETAIL A
TYPICAL
SCALE 2.800
www.ti.com
EXAMPLE BOARD LAYOUT
.0028 MAX
[0.07]
ALL AROUND
.0028 MIN
[0.07]
ALL AROUND
(.213)
[5.4]
6X (.050 )
[1.27]
8X (.061 )
[1.55]
8X (.024)
[0.6]
(R.002 ) TYP
[0.05]
SOIC - 1.75 mm max heightD0008A
SMALL OUTLINE INTEGRATED CIRCUIT
4214825/C 02/2019
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
METAL SOLDER MASK
OPENING
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
EXPOSED
METAL
OPENING
SOLDER MASK METAL UNDER
SOLDER MASK
SOLDER MASK
DEFINED
EXPOSED
METAL
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:8X
SYMM
1
45
8
SEE
DETAILS
SYMM
www.ti.com
EXAMPLE STENCIL DESIGN
8X (.061 )
[1.55]
8X (.024)
[0.6]
6X (.050 )
[1.27] (.213)
[5.4]
(R.002 ) TYP
[0.05]
SOIC - 1.75 mm max heightD0008A
SMALL OUTLINE INTEGRATED CIRCUIT
4214825/C 02/2019
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
SOLDER PASTE EXAMPLE
BASED ON .005 INCH [0.125 MM] THICK STENCIL
SCALE:8X
SYMM
SYMM
1
45
8
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,
costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated