This is information on a product in full production.
October 2017 DocID12943 Rev 14 1/47
M24M01-R M24M01-DF
1-Mbit serial I²C bus EEPROM
Datasheet - production data
Features
Compatible with all I2C bus modes:
–1 MHz
400 kHz
100 kHz
Memory array:
1 Mbit (128 Kbyte) of EEPROM
Page size: 256 byte
Additional Write lockable page (M24M01-D
order codes)
Single supply voltage and high speed:
1 MHz clock from 1.7 V to 5.5 V
Write:
Byte Write within 5 ms
Page Write within 5 ms
Operating temperature range:
from -40 °C up to +85 °C
Random and sequential Read modes
Write protect of the whole memory array
Enhanced ESD/Latch-Up protection
More than 4 million Write cycles
More than 200-years data retention
Packages
SO8 ECOPACK2®
TSSOP8 ECOPACK2®
WLCSP ECOPACK2®
Unsawn wafer (each die is tested)
SO8 (MN)
150 mil width
TSSOP8 (DW)
169 mil width
WLCSP (CS, CX)
Unsawn wafer
www.st.com
Contents M24M01-R M24M01-DF
2/47 DocID12943 Rev 14
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Chip Enable (E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.1 Operating supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.2 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.3 Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.4 Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.1 Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.3 Write Identification Page (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . 17
5.1.4 Lock Identification Page (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . 17
5.1.5 ECC (Error Correction Code) and Write cycling . . . . . . . . . . . . . . . . . . 17
5.1.6 Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.1 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DocID12943 Rev 14 3/47
M24M01-R M24M01-DF Contents
3
5.2.2 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.3 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Read Identification Page (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 Read the lock status (M24M01-D only) . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.1 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.2 SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.3 WLCSP8 ultra thin package information . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.4 WLCSP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
List of tables M24M01-R M24M01-DF
4/47 DocID12943 Rev 14
List of tables
Table 1. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Most significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 6. Operating conditions (voltage range R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 7. Operating conditions (voltage range F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8. AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 9. Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 10. Cycling performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 11. Memory cell data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 12. DC characteristics (M24M01-R, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 13. DC characteristics (M24M01-DF, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 14. 400 kHz AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 15. 1 MHz AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 16. TSSOP8 – 3 x 4.4 mm, 0.65 mm pitch, 8-lead thin shrink small outline,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 17. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 18. WLCSP - 8 balls, 2.578x1.716 mm, 0.5 mm pitch, wafer level chip scale
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 19. WLCSP- 8-bump, without BSC, 2.578 x 1.716 mm, wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 20. WLCSP- 8-bump, with BSC, 2.578 x 1.716 mm, wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 21. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 22. Ordering information scheme (unsawn wafer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 23. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DocID12943 Rev 14 5/47
M24M01-R M24M01-DF List of figures
5
List of figures
Figure 1. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. 8-pin package connections, top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. WLCSP connections (top view, marking side,
with balls on the underside) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. Chip enable inputs connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 5. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 7. Write mode sequences with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 8. Write mode sequences with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 10. Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 11. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 12. Maximum Rbus value versus bus parasitic capacitance (Cbus) for
an I2C bus at maximum frequency fC = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 13. Maximum Rbus value versus bus parasitic capacitance Cbus) for
an I2C bus at maximum frequency fC = 1MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 14. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 15. TSSOP8 – 3x4.4 mm, 0.65 mm pitch, 8-lead thin shrink small outline,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 16. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width, package outline . 34
Figure 17. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width,
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 18. WLCSP - 8 balls, 2.578x1.716 mm, 0.5 mm pitch, wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 19. WLCSP - 8 balls, 2.578x1.716 mm, 0.5 mm pitch, wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 20. WLCSP- 8-bump, without BSC, 2.578 x 1.716 mm, wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 21. WLCSP- 8-bump, with BSC, 2.578 x 1.716 mm, wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 22. WLCSP- 8-bump, 2.578 x 1.716 mm, wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Description M24M01-R M24M01-DF
6/47 DocID12943 Rev 14
1 Description
The M24M01 is a 1 Mbit I2C-compatible EEPROM (Electrically Erasable PROgrammable
Memory) organized as 128 K × 8 bits.
The M24M01-R can operate with a supply voltage from 1.8 V to 5.5 V, and the M24M01-DF
can operate with a supply voltage from 1.7 V to 5.5 V, over an ambient temperature range of
–40 °C / +85 °C.
The M24M01-D offers an additional page, named the Identification Page (256 byte). The
Identification Page can be used to store sensitive application parameters which can be
(later) permanently locked in Read-only mode.
Figure 1. Logic diagram
Table 1. Signal names
Signal name Function Direction
E1, E2 Chip Enable Input
SDA Serial Data I/O
SCL Serial Clock Input
WC Write Control Input
VCC Supply voltage -
VSS Ground -
3$!
6##
7#
3#,
633
%%
-XXX
.47
DocID12943 Rev 14 7/47
M24M01-R M24M01-DF Description
46
Figure 2. 8-pin package connections, top view
1. DU: Don’t use (no signal should be applied on this pin; if connected, must be connected to VSS)
2. See Section 9: Package information for package dimensions, and how to identify pin 1
Figure 3. WLCSP connections (top view, marking side,
with balls on the underside)
1. DU: Don't Use (if connected, must be connected to VSS)
2. See Section 9: Package mechanical data for package dimensions, and how to identify pin 1.
069
6'$
966
6&/
(
'8 9&&
(
:&
9&&
6'$
966
:&
6&/
'8
(
(
$%&
069
Signal description M24M01-R M24M01-DF
8/47 DocID12943 Rev 14
2 Signal description
2.1 Serial Clock (SCL)
The signal applied on the SCL input is used to strobe the data available on SDA(in) and to
output the data on SDA(out).
2.2 Serial Data (SDA)
SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an
open drain output that may be wire-OR’ed with other open drain or open collector signals on
the bus. A pull-up resistor must be connected (Figure 12 indicates how to calculate the
value of the pull-up resistor).
2.3 Chip Enable (E1, E2)
These input signals are used to set the value that is to be looked for on the two bits (b3, b2)
of the 7-bit device select code. These inputs must be tied to VCC or VSS, to establish the
device select code as shown in Figure 4. When not connected (left floating), These inputs
are read as low (0,0).
Figure 4. Chip enable inputs connection
2.4 Write Control (WC)
This input signal is useful for protecting the entire contents of the memory from inadvertent
write operations. Write operations are disabled to the entire memory array when Write
Control (WC) is driven high. Write operations are enabled when Write Control (WC) is either
driven low or left floating.
When Write Control (WC) is driven high, device select and address bytes are
acknowledged, Data bytes are not acknowledged.
2.5 VSS (ground)
VSS is the reference for the VCC supply voltage.
$L
9&&
0[[[
966
(L
9&&
0[[[
966
(L
DocID12943 Rev 14 9/47
M24M01-R M24M01-DF Signal description
46
2.6 Supply voltage (VCC)
2.6.1 Operating supply voltage (VCC)
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage
within the specified [VCC(min), VCC(max)] range must be applied (see Operating conditions
in Section 8: DC and AC parameters). In order to secure a stable DC supply voltage, it is
recommended to decouple the VCC line with a suitable capacitor (usually of the order of
10 nF to 100 nF) close to the VCC/VSS package pins.
This voltage must remain stable and valid until the end of the transmission of the instruction
and, for a write instruction, until the completion of the internal write cycle (tW).
2.6.2 Power-up conditions
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage
(see Operating conditions in Section 8: DC and AC parameters).
2.6.3 Device reset
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)
circuit is included.
At power-up, the device does not respond to any instruction until VCC has reached the
internal reset threshold voltage. This threshold is lower than the minimum VCC operating
voltage (see Operating conditions in Section 8: DC and AC parameters). When VCC passes
over the POR threshold, the device is reset and enters the Standby Power mode; however,
the device must not be accessed until VCC reaches a valid and stable DC voltage within the
specified [VCC(min), VCC(max)] range (see Operating conditions in Section 8: DC and AC
parameters).
In a similar way, during power-down (continuous decrease in VCC), the device must not be
accessed when VCC drops below VCC(min). When VCC drops below the internal reset
threshold voltage, the device stops responding to any instruction sent to it.
2.6.4 Power-down conditions
During power-down (continuous decrease in VCC), the device must be in the Standby Power
mode (mode reached after decoding a Stop condition, assuming that there is no internal
write cycle in progress).
Memory organization M24M01-R M24M01-DF
10/47 DocID12943 Rev 14
3 Memory organization
The memory is organized as shown below.
Figure 5. Block diagram
-36
7#
#ONTROLLOGIC (IGHVOLTAGE
GENERATOR
)/SHIFTREGISTER
!DDRESSREGISTER
ANDCOUNTER
$ATA
REGISTER
PAGE
8DECODER
9DECODER
)DENTIFICATIONPAGE
%
%
3#,
3$!
DocID12943 Rev 14 11/47
M24M01-R M24M01-DF Device operation
46
4 Device operation
The device supports the I2C protocol. This is summarized in Figure 6. Any device that sends
data on to the bus is defined to be a transmitter, and any device that reads the data to be a
receiver. The device that controls the data transfer is known as the bus master, and the
other as the slave device. A data transfer can only be initiated by the bus master, which will
also provide the serial clock for synchronization. The device is always a slave in all
communications.
Figure 6. I2C bus protocol
Device operation M24M01-R M24M01-DF
12/47 DocID12943 Rev 14
4.1 Start condition
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in
the high state. A Start condition must precede any data transfer instruction. The device
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock
(SCL) for a Start condition.
4.2 Stop condition
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and
driven high. A Stop condition terminates communication between the device and the bus
master. A Read instruction that is followed by NoAck can be followed by a Stop condition to
force the device into the Standby mode.
A Stop condition at the end of a Write instruction triggers the internal Write cycle.
4.3 Data input
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock
(SCL) is driven low.
4.4 Acknowledge bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits
of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) low to
acknowledge the receipt of the eight data bits.
DocID12943 Rev 14 13/47
M24M01-R M24M01-DF Device operation
46
4.5 Device addressing
To start communication between the bus master and the slave device, the bus master must
initiate a Start condition. Following this, the bus master sends the device select code, shown
in Table 2 (most significant bit first).
When the device select code is received, the device only responds if the Chip Enable
address is the same as the value on its Chip Enable E2,E1 inputs.
The 8th bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.
If a match occurs on the device select code, the corresponding device gives an
acknowledgment on Serial Data (SDA) during the 9th bit time. If the device does not match
the device select code, the device deselects itself from the bus, and goes into Standby
mode.
Table 2. Device select code
Device type identifier(1)
1. The most significant bit, b7, is sent first.
Chip Enable
address(2)
2. E2,E1 are compared against the external pin on the memory device.
Address
bit RW
When accessing
the memory
b7 b6 b5 b4 b3 b2 b1 b0
1 0 1 0 E2 E1 A16 RW
When accessing
the Identification
page
1011E2E1X
(3)
3. X = don’t care.
RW
Instructions M24M01-R M24M01-DF
14/47 DocID12943 Rev 14
5 Instructions
5.1 Write operations
Following a Start condition the bus master sends a device select code with the R/W bit (RW)
reset to 0. The device acknowledges this, as shown in Figure 7, and waits for two address
bytes. The device responds to each address byte with an acknowledge bit, and then waits
for the data byte.
The 128 Kbytes (1 Mb) are addressed with 17 address bits, the 16 lower address bits being
defined by the two address bytes and the most significant address bit (A16) being included
in the Device Select code (see Table 2).
When the bus master generates a Stop condition immediately after a data byte Ack bit (in
the “10th bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write
cycle tW is triggered. A Stop condition at any other time slot does not trigger the internal
Write cycle.
After the Stop condition and the successful completion of an internal Write cycle (tW), the
device internal address counter is automatically incremented to point to the next byte after
the last modified byte.
During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does
not respond to any requests.
If the Write Control input (WC) is driven High, the Write instruction is not executed and the
accompanying data bytes are not acknowledged, as shown in Figure 8.
Table 3. Most significant address byte
A15 A14 A13 A12 A11 A10 A9 A8
Table 4. Least significant address byte
A7 A6 A5 A4 A3 A2 A1 A0
DocID12943 Rev 14 15/47
M24M01-R M24M01-DF Instructions
46
5.1.1 Byte Write
After the device select code and the address bytes, the bus master sends one data byte. If
the addressed location is Write-protected, by Write Control (WC) being driven high, the
device replies with NoAck, and the location is not modified. If, instead, the addressed
location is not Write-protected, the device replies with Ack. The bus master terminates the
transfer by generating a Stop condition, as shown in Figure 7.
Figure 7. Write mode sequences with WC = 0 (data write enabled)
Instructions M24M01-R M24M01-DF
16/47 DocID12943 Rev 14
5.1.2 Page Write
The Page Write mode allows up to 256 byte to be written in a single Write cycle, provided
that they are all located in the same page in the memory: that is, the most significant
memory address bits, b16-b8, are the same. If more bytes are sent than will fit up to the end
of the page, a “roll-over” occurs, i.e. the bytes exceeding the page end are written on the
same page, from location 0.
The bus master sends from 1 to 256 byte of data, each of which is acknowledged by the
device if Write Control (WC) is low. If Write Control (WC) is high, the contents of the
addressed memory location are not modified, and each data byte is followed by a NoAck, as
shown in Figure 8. After each transferred byte, the internal page address counter is
incremented.
The transfer is terminated by the bus master generating a Stop condition.
Figure 8. Write mode sequences with WC = 1 (data write inhibited)
DocID12943 Rev 14 17/47
M24M01-R M24M01-DF Instructions
46
5.1.3 Write Identification Page (M24M01-D only)
The Identification Page (256 byte) is an additional page which can be written and (later)
permanently locked in Read-only mode. It is written by issuing the Write Identification Page
instruction. This instruction uses the same protocol and format as Page Write (into memory
array), except for the following differences:
Device type identifier = 1011b
MSB address bits A16/A8 are don't care except for address bit A10 which must be ‘0’.
LSB address bits A7/A0 define the byte address inside the Identification page.
If the Identification page is locked, the data bytes transferred during the Write Identification
Page instruction are not acknowledged (NoAck).
5.1.4 Lock Identification Page (M24M01-D only)
The Lock Identification Page instruction (Lock ID) permanently locks the Identification page
in Read-only mode. The Lock ID instruction is similar to Byte Write (into memory array) with
the following specific conditions:
Device type identifier = 1011b
Address bit A10 must be ‘1’; all other address bits are don't care
The data byte must be equal to the binary value xxxx xx1x, where x is don't care
5.1.5 ECC (Error Correction Code) and Write cycling(1)
The Error Correction Code (ECC) is an internal logic function which is transparent for the
I2C communication protocol.
The ECC logic is implemented on each group of four EEPROM bytes(2). Inside a group, if a
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC
detects this bit and replaces it with the correct value. The read reliability is therefore much
improved.
Even if the ECC function is performed on groups of four bytes, a single byte can be
written/cycled independently. In this case, the ECC function also writes/cycles the three
other bytes located in the same group(2). As a consequence, the maximum cycling budget is
defined at group level and the cycling can be distributed over the 4 bytes of the group: the
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain
below the maximum value defined Table 10: Cycling performance.
1. Only for devices identified with process letter K
2.A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer.
Instructions M24M01-R M24M01-DF
18/47 DocID12943 Rev 14
5.1.6 Minimizing Write delays by polling on ACK
The maximum Write time (tw) is shown in AC characteristics tables in Section 8: DC and AC
parameters, but the typical time is shorter. To make use of this, a polling sequence can be
used by the bus master.
The sequence, as shown in Figure 9, is:
Initial condition: a Write cycle is in progress.
Step 1: the bus master issues a Start condition followed by a device select code (the
first byte of the new instruction).
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and
the bus master goes back to Step 1. If the device has terminated the internal Write
cycle, it responds with an Ack, indicating that the device is ready to receive the second
part of the instruction (the first byte of this instruction having been sent during Step 1).
Figure 9. Write cycle polling flowchart using ACK
1. The seven most significant bits of the Device Select code of a Random Read (bottom right box in the figure) must be
identical to the seven most significant bits of the Device Select code of the Write (polling instruction in the figure).
:ULWHF\FOH
LQSURJUHVV
$,H
1H[W
2SHUDWLRQLV
DGGUHVVLQJWKH
PHPRU\
6WDUWFRQGLWLRQ
$&.
UHWXUQHG
<(6
12
<(612
5H6WDUW
6WRS
'DWDIRUWKH
:ULWHRSHUDWLRQ
6HQG$GGUHVV
DQG5HFHLYH$&.
<(612
&RQWLQXHWKH
:ULWHRSHUDWLRQ
&RQWLQXHWKH
5DQGRP5HDGRSHUDWLRQ
'HYLFHVHOHFW
ZLWK5: 
)LUVWE\WHRILQVWUXFWLRQ
ZLWK5: DOUHDG\
GHFRGHGE\WKHGHYLFH
'HYLFHVHOHFW
ZLWK5: 
6WDUW&RQGLWLRQ
DocID12943 Rev 14 19/47
M24M01-R M24M01-DF Instructions
46
5.2 Read operations
Read operations are performed independently of the state of the Write Control (WC) signal.
After the successful completion of a Read operation, the device internal address counter is
incremented by one, to point to the next byte address.
For the Read instructions, after each byte read (data out), the device waits for an
acknowledgment (data in) during the 9th bit time. If the bus master does not acknowledge
during this 9th time, the device terminates the data transfer and switches to its Standby
mode.
Figure 10. Read mode sequences
6WDUW
'HYVHO %\WHDGGU %\WHDGGU
6WDUW
'HYVHO 'DWDRXW
$,G
'DWDRXW1
6WRS
6WDUW
&XUUHQW
$GGUHVV
5HDG
'HYVHO 'DWDRXW
5DQGRP
$GGUHVV
5HDG
6WRS
6WDUW
'HYVHO 'DWDRXW
6HTXHQWLDO
&XUUHQW
5HDG
6WRS
'DWDRXW1
6WDUW
'HYVHO %\WHDGGU %\WHDGGU
6HTXHQWLDO
5DQGRP
5HDG
6WDUW
'HYVHO 'DWDRXW
6WRS
$&.
5:
12$&.
$&.
5:
$&. $&. $&.
5:
$&. $&. $&. 12$&.
5:
12$&.
$&. $&. $&.
5:
$&. $&.
5:
$&. 12$&.
Instructions M24M01-R M24M01-DF
20/47 DocID12943 Rev 14
5.2.1 Random Address Read
A dummy Write is first performed to load the address into this address counter (as shown in
Figure 10) but without sending a Stop condition. Then, the bus master sends another Start
condition, and repeats the device select code, with the RW bit set to 1. The device
acknowledges this, and outputs the contents of the addressed byte. The bus master must
not acknowledge the byte, and terminates the transfer with a Stop condition.
5.2.2 Current Address Read
For the Current Address Read operation, following a Start condition, the bus master only
sends a device select code with the R/W bit set to 1. The device acknowledges this, and
outputs the byte addressed by the internal address counter. The counter is then
incremented. The bus master terminates the transfer with a Stop condition, as shown in
Figure 10, without acknowledging the byte.
Note that the address counter value is defined by instructions accessing either the memory
or the Identification page. When accessing the Identification page, the address counter
value is loaded with the byte location in the Identification page, therefore the next Current
Address Read in the memory uses this new address counter value. When accessing the
memory, it is safer to always use the Random Address Read instruction (this instruction
loads the address counter with the byte location to read in the memory, see Section 5.2.1)
instead of the Current Address Read instruction.
5.2.3 Sequential Read
This operation can be used after a Current Address Read or a Random Address Read. The
bus master does acknowledge the data byte output, and sends additional clock pulses so
that the device continues to output the next byte in sequence. To terminate the stream of
bytes, the bus master must not acknowledge the last byte, and must generate a Stop
condition, as shown in Figure 10.
The output data comes from consecutive addresses, with the internal address counter
automatically incremented after each byte output. After the last memory address, the
address counter “rolls-over”, and the device continues to output data from memory address
00h.
5.3 Read Identification Page (M24M01-D only)
The Identification Page (256 bytes) is an additional page which can be written and (later)
permanently locked in Read-only mode.
The Identification Page can be read by issuing an Read Identification Page instruction. This
instruction uses the same protocol and format as the Random Address Read (from memory
array) with device type identifier defined as 1011b. The MSB address bits A16/A8 are don't
care, the LSB address bits A7/A0 define the byte address inside the Identification Page. The
number of bytes to read in the ID page must not exceed the page boundary (e.g.: when
reading the Identification Page from location 100d, the number of bytes should be less than
or equal to 156, as the ID page boundary is 256 bytes).
DocID12943 Rev 14 21/47
M24M01-R M24M01-DF Instructions
46
5.4 Read the lock status (M24M01-D only)
The locked/unlocked status of the Identification page can be checked by transmitting a
specific truncated command [Identification Page Write instruction + one data byte] to the
device. The device returns an acknowledge bit if the Identification page is unlocked,
otherwise a NoAck bit if the Identification page is locked.
Right after this, it is recommended to transmit to the device a Start condition followed by a
Stop condition, so that:
Start: the truncated command is not executed because the Start condition resets the
device internal logic,
Stop: the device is then set back into Standby mode by the Stop condition.
Initial delivery state M24M01-R M24M01-DF
22/47 DocID12943 Rev 14
6 Initial delivery state
The device is delivered with all the memory array bits and Identification page bits set to 1
(each byte contains FFh).
DocID12943 Rev 14 23/47
M24M01-R M24M01-DF Maximum rating
46
7 Maximum rating
Stressing the device outside the ratings listed in Table 5 may cause permanent damage to
the device. These are stress ratings only, and operation of the device at these, or any other
conditions outside those indicated in the operating sections of this specification, is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 5. Absolute maximum ratings
Symbol Parameter Min. Max. Unit
Ambient operating temperature -40 130 °C
TSTG Storage temperature –65 150 °C
TLEAD Lead temperature during soldering see note (1)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions of Hazardous Substances (RoHS
directive 2011/65/EU of July 2011).
°C
IOL DC output current (SDA = 0) - 5 mA
VIO Input or output range –0.50 6.5 V
VCC Supply voltage –0.50 6.5 V
VESD Electrostatic pulse (Human Body model)(2)
2. Positive and negative pulses applied on different combinations of pin connections, according to AEC-
Q100-002 (compliant with ANSI/ESDA/JEDEC JS-001-2012 standard, C1=100 pF, R1=1500 Ω).
- 4000(3)
3. 3000 V for previous devices (process letter A or B).
V
DC and AC parameters M24M01-R M24M01-DF
24/47 DocID12943 Rev 14
8 DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device.
Figure 11. AC measurement I/O waveform
Table 6. Operating conditions (voltage range R)
Symbol Parameter Min. Max. Unit
VCC Supply voltage 1.8 5.5 V
TAAmbient operating temperature –40 85 °C
fCOperating clock frequency - 1 MHz
Table 7. Operating conditions (voltage range F)
Symbol Parameter Min. Max. Unit
VCC Supply voltage 1.7 5.5 V
TAAmbient operating temperature –40 85 °C
fCOperating clock frequency - 1 MHz
Table 8. AC measurement conditions
Symbol Parameter Min. Max. Unit
Cbus Load capacitance 0 100 pF
-SCL input rise/fall time, SDA input fall time - 50 ns
-Input levels 0.2 VCC to 0.8 VCC V
-Input and output timing reference levels 0.3 VCC to 0.7 VCC V
Table 9. Input parameters
Symbol Parameter(1)
1. Sampled only, not 100% tested.
Test condition Min. Max. Unit
CIN Input capacitance (SDA) - - 8 pF
CIN Input capacitance (other pins) - - 6 pF
ZLInput impedance (WC)
VIN < 0.3 VCC 30 - kΩ
ZHVIN > 0.7 VCC 400 - kΩ
-36
6##
6##
6##
6##
)NPUTANDOUTPUT
4IMINGREFERENCELEVELS
)NPUTVOLTAGELEVELS
DocID12943 Rev 14 25/47
M24M01-R M24M01-DF DC and AC parameters
46
Table 10. Cycling performance
Symbol Parameter Test condition(1)
1. Cycling performance for products identified by process letter K
Max. Unit
Ncycle Write cycle
endurance(2)
2. The write cycle endurance is defined for group of four bytes located at addresses [4*N, 4*N+1, 4*N+2,
4*N+3] where N is an integer. The Write cycle endurance is defined by characterization and qualification.
TA 25 °C, VCC(min) < VCC < VCC(max) 4,000,000 Write cycle(3)
3. A Write cycle is executed when either a Page Write, a Byte write, a Write Identification Page or a Lock
Identification Page instruction is decoded. When using the Byte Write, the Page Write or the Write
Identification Page, refer also to Section 5.1.5: ECC (Error Correction Code) and Write cycling
TA = 85 °C, VCC(min) < VCC < VCC(max) 1,200,000
Table 11. Memory cell data retention
Parameter Test condition Min. Unit
Data retention(1)
1. For products identified by process letter . The data retention behavior is checked in production, while the
200-year limit is defined from characterization and qualification results.
TA = 55 °C 200 Year
DC and AC parameters M24M01-R M24M01-DF
26/47 DocID12943 Rev 14
Table 12. DC characteristics (M24M01-R, device grade 6)
Symbol Parameter Test conditions (in addition to
those in Table 6)Min. Max. Unit
ILI
Input leakage current
(E1, E2, SCL, SDA)
VIN = VSS or VCC
device in Standby mode 2µA
ILO Output leakage current SDA in Hi-Z, external voltage
applied on SDA: VSS or VCC
2µA
ICC Supply current (Read)
VCC = 1.8 V, fc= 400 kHz - 1(1)
1. Devices identified by process letter A or B offer ICC = 0.8 mA
mA
VCC = 2.5 V, fc =400 kHz - 1
VCC = 5.5 V, fc =400 kHz - 1.5(2)
2. The previous product identified by process letter A or B was specified with Icc(max) = 2 mA.
fc= 1 MHz - 1.5(3)
3. Devices identified by process letter A or B offer ICC = 2.5 mA.
ICC0 Supply current (Write) During tW-2
(4)(5)
4. Characterized only, not tested in production.
5. The previous product identified by process letter A or B was characterized with Icc0(max) = 5 mA.
mA
ICC1 Standby supply current
Device not selected,
VIN = VSS or VCC, VCC = 1.8 V -3
(6)
6. Devices identified by process letter A or B offer ICC1 = 1 µA.
µA
Device not selected,
VIN = VSS or VCC, VCC = 2.5 V -3
(7)
7. Devices identified by process letter A or B offer ICC1 = 2 µA.
Device not selected,
VIN = VSS or VCC, VCC = 5.5 V -5
(8)
8. Devices identified by process letter A or B offer ICC1 = 3 µA.
VIL
Input low voltage
(Ei, SCL, SDA, WC)(9)
9. Ei inputs should be tied to VSS (see Section 2.3).
1.8 V VCC < 2.5 V –0.45 0.25 VCC V
2.5 V VCC < 5.5 V –0.45 0.30 VCC
VIH
Input high voltage
(Ei, SCL; SDA, WC)(10)
10. Ei inputs should be tied to VCC (see Section 2.3).
1.8 V VCC < 2.5 V 0.75 VCC VCC+1
V
2.5 V VCC < 5.5 V 0.70 VCC VCC+1
VOL Output low voltage
IOL = 1.0 mA, VCC = 1.8 V - 0.2
VIOL = 2.1 mA, VCC = 2.5 V - 0.4
IOL = 3.0 mA, VCC = 5.5 V - 0.4
DocID12943 Rev 14 27/47
M24M01-R M24M01-DF DC and AC parameters
46
Table 13. DC characteristics (M24M01-DF, device grade 6)
Symbol Parameter Test conditions (in addition to
those in Table 6)Min. Max. Unit
ILI
Input leakage current
(E1, E2, SCL, SDA)
VIN = VSS or VCC
device in Standby mode 2µA
ILO Output leakage current SDA in Hi-Z, external voltage
applied on SDA: VSS or VCC
2µA
ICC Supply current (Read)
VCC = 1.7 V, fc= 400 kHz - 1 mA
VCC = 2.5 V, fc =400 kHz - 1 mA
VCC = 5.5 V, fc =400 kHz - 1.5 mA
fc= 1 MHz - 1.5 mA
ICC0 Supply current (Write) During tW-2
(1)
1. Characterized only, not tested in production.
mA
ICC1 Standby supply current
Device not selected,
VIN = VSS or VCC, VCC = 1.7 V -3µA
Device not selected,
VIN = VSS or VCC, VCC = 2.5 V -3µA
Device not selected,
VIN = VSS or VCC, VCC = 5.5 V -5µA
VIL
Input low voltage
(Ei, SCL, SDA, WC)(2)
2. Ei inputs should be tied to VSS (seeSection 2.3).
1.7 V VCC < 2.5 V –0.45 0.25 VCC V
2.5 V VCC < 5.5 V –0.45 0.30 VCC V
VIH
Input high voltage
(Ei, SCL, SDA, WC)(3)
3. Ei inputs should be tied to Vcc (see Section 2.3).
1.7 V VCC < 2.5 V 0.75 VCC VCC+1 v
2.5 V VCC < 5.5 V 0.70 VCC VCC+1 v
VOL Output low voltage
IOL = 1.0 mA, VCC = 1.7 V - 0.2 V
IOL = 2.1 mA, VCC = 2.5 V - 0.4 V
IOL = 3.0 mA, VCC = 5.5 V - 0.4 V
DC and AC parameters M24M01-R M24M01-DF
28/47 DocID12943 Rev 14
Table 14. 400 kHz AC characteristics
Symbol Alt. Parameter Min. Max. Unit
fCfSCL Clock frequency - 400 kHz
tCHCL tHIGH Clock pulse width high 600 - ns
tCLCH tLOW Clock pulse width low 1300 - ns
tQL1QL2(1)
1. Characterized only, not tested in production.
tFSDA (out) fall time 20(2)
2. With CL = 10 pF.
300 ns
tXH1XH2 tRInput signal rise time (3)
3. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the
I²C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when
fC < 400 kHz.
(3) ns
tXL1XL2 tFInput signal fall time (3) (3) ns
tDXCH tSU:DAT Data in set up time 100 - ns
tCLDX tHD:DAT Data in hold time 0 - ns
tCLQX(4)
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or
rising edge of SDA.
tDH Data out hold time 100 - ns
tCLQV(5)
5. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or
0.7VCC, assuming that Rbus × Cbus time constant is within the values specified in Figure 12.
tAA Clock low to next data valid (access time) - 900 ns
tCHDL tSU:STA Start condition setup time 600 - ns
tDLCL tHD:STA Start condition hold time 600 - ns
tCHDH tSU:STO Stop condition set up time 600 - ns
tDHDL tBUF
Time between Stop condition and next Start
condition 1300 - ns
tWLDL(6)(1)
6. WC=0 set up time condition to enable the execution of a WRITE command.
tSU:WC WC set up time (before the Start condition) 0 - µs
tDHWH(7)(1)
7. WC=0 hold time condition to enable the execution of a WRITE command.
tHD:WC WC hold time (after the Stop condition) 1 - µs
tWtWR Internal Write cycle duration - 5 ms
tNS(1) -Pulse width ignored (input filter on SCL and
SDA) - single glitch -50
(8)
8. The previous products were specified with a tNS(max) longer than 50 ns, it should be noted that
tNS(max)=50ns is the value defined by the I²C-bus specification.
ns
DocID12943 Rev 14 29/47
M24M01-R M24M01-DF DC and AC parameters
46
Table 15. 1 MHz AC characteristics
Symbol Alt. Parameter Min. Max. Unit
fCfSCL Clock frequency 0 1 MHz
tCHCL tHIGH Clock pulse width high 300 - ns
tCLCH tLOW Clock pulse width low 400 - ns
tXH1XH2 tRInput signal rise time (1)
1. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the
I²C specification that the input signal rise and fall times be more than 20 ns and less than 120 ns when
fC < 1 MHz.
(1) ns
tXL1XL2 tFInput signal fall time (1) (1) ns
tQL1QL2(8) tFSDA (out) fall time - 120 ns
tDXCX tSU:DAT Data in setup time 80 - ns
tCLDX tHD:DAT Data in hold time 0 - ns
tCLQX(2)
2. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or
rising edge of SDA.
tDH Data out hold time 50 - ns
tCLQV(3)
3. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or
0.7 VCC, assuming that the Rbus × Cbus time constant is within the values specified in Figure 13.
tAA Clock low to next data valid (access time) - 500 ns
tCHDL tSU:STA Start condition setup time 250 - ns
tDLCL tHD:STA Start condition hold time 250 - ns
tCHDH tSU:STO Stop condition setup time 250 - ns
tDHDL tBUF
Time between Stop condition and next Start
condition 500 - ns
tWLDL(4)(8)
4. WC=0 set up time condition to enable the execution of a WRITE command.
tSU:WC WC set up time (before the Start condition) 0 - µs
tDHWH(5)(8)
5. WC=0 hold time condition to enable the execution of a WRITE command.
tHD:WC WC hold time (after the Stop condition) 1 - µs
tWtWR Write time - 5 ms
tNS(6)
6. Characterized only, not tested in production.
-Pulse width ignored (input filter on SCL and
SDA) -50
(7)
7. The previous products were specified with a tNS(max) longer than 50 ns, it should be noted that
tNS(max)=50ns is the value defined by the I²C-bus specification.
ns
DC and AC parameters M24M01-R M24M01-DF
30/47 DocID12943 Rev 14
Figure 12. Maximum Rbus value versus bus parasitic capacitance (Cbus) for
an I2C bus at maximum frequency fC = 400 kHz
Figure 13. Maximum Rbus value versus bus parasitic capacitance Cbus) for
an I2C bus at maximum frequency fC = 1MHz
AIB


  
"USLINECAPACITORP&
"USLINEPULLUPRESISTOR
K

)£#BUS
MASTER -XXX
2BUS
6##
#BUS
3#,
3$!
2BUS§#BUSNS
(ERE2BUS§#BUSNS
K½
P&
4HE2X#TIMECONSTANT
MUSTBEBELOWTHENS
TIMECONSTANTLINEREPRESENTED
ONTHELEFT
BUS BUS
DocID12943 Rev 14 31/47
M24M01-R M24M01-DF DC and AC parameters
46
Figure 14. AC waveforms
^>
^KƵƚ
^>
^/Ŷ
ĂƚĂǀĂůŝĚ
ƚ>Ys ƚ>Yy
ƚ,,
^ƚŽƉ
ĐŽŶĚŝƚŝŽŶ
ƚ,>
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
tƌŝƚĞĐLJĐůĞ
ƚt
/ϬϬϳϵϱŝ
ĂƚĂǀĂůŝĚ
ƚY>ϭY>Ϯ
^/Ŷ
ƚ,>
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
ƚy,
ƚ>y
^
/ŶƉƵƚ ^
ŚĂŶŐĞ
ƚ,, ƚ,>
^ƚŽƉ
ĐŽŶĚŝƚŝŽŶ
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
ƚy,ϭy,Ϯ
^>
ƚ,>
ƚ>>
ƚ>,ƚy,ϭy,Ϯ
ƚy>ϭy>Ϯ
ƚy>ϭy>Ϯ
t
ƚt>> ƚ,t,
ƚ,>
Package information M24M01-R M24M01-DF
32/47 DocID12943 Rev 14
9 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
For die information concerning the M24M01 delivered in unsawn wafer, please contact your
nearest ST Sales Office.
9.1 TSSOP8 package information
Figure 15.TSSOP8 – 3x4.4 mm, 0.65 mm pitch, 8-lead thin shrink small outline,
package outline
1. Drawing is not to scale.
Table 16. TSSOP8 – 3 x 4.4 mm, 0.65 mm pitch, 8-lead thin shrink small outline,
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.200 - - 0.0472
A1 0.050 - 0.150 0.0020 - 0.0059
A2 0.800 1.000 1.050 0.0315 0.0394 0.0413
b 0.190 - 0.300 0.0075 - 0.0118
c 0.090 - 0.200 0.0035 - 0.0079
CP - - 0.100 - - 0.0039
D 2.900 3.000 3.100 0.1142 0.1181 0.1220
e - 0.650 - - 0.0256 -
76623$0B9
ϭ
W
Đ
>
ɲ
Ğ
ϰ
ϭ
Ϯ
ď
ϴϱ
ϭ
DocID12943 Rev 14 33/47
M24M01-R M24M01-DF Package information
46
E 6.200 6.400 6.600 0.2441 0.2520 0.2598
E1 4.300 4.400 4.500 0.1693 0.1732 0.1772
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
α - -
1. Values in inches are converted from mm and rounded to four decimal digits.
Table 16. TSSOP8 – 3 x 4.4 mm, 0.65 mm pitch, 8-lead thin shrink small outline,
package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
Package information M24M01-R M24M01-DF
34/47 DocID12943 Rev 14
9.2 SO8N package information
Figure 16. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width,
package outline
1. Drawing is not to scale.
Table 17. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width,
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to four decimal digits.
Min. Typ. Max. Min. Typ. Max.
A - - 1.750 - - 0.0689
A1 0.100 - 0.250 0.0039 - 0.0098
A2 1.250 - - 0.0492 - -
b 0.280 - 0.480 0.0110 - 0.0189
c 0.170 - 0.230 0.0067 - 0.0091
D 4.800 4.900 5.000 0.1890 0.1929 0.1969
E 5.800 6.000 6.200 0.2283 0.2362 0.2441
E1 3.800 3.900 4.000 0.1496 0.1535 0.1575
e - 1.270 - - 0.0500 -
h 0.250 - 0.500 0.0098 - 0.0197
k - -
L 0.400 - 1.270 0.0157 - 0.0500
L1 - 1.040 - - 0.0409 -
ccc - - 0.100 - - 0.0039
62$B9
%
CCC
B
$
C
%
HX
!
K
PP
,
!
*$8*(3/$1(
E
!
,
DocID12943 Rev 14 35/47
M24M01-R M24M01-DF Package information
46
Figure 17. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width,
package recommended footprint
1. Dimensions are expressed in millimeters.
2B621B)3B9

[


Package information M24M01-R M24M01-DF
36/47 DocID12943 Rev 14
9.3 WLCSP8 ultra thin package information
Figure 18. WLCSP - 8 balls, 2.578x1.716 mm, 0.5 mm pitch, wafer level chip scale
package outline
1. Drawing is not to scale.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
4. Bump position designation per JESD 95-1, SPP-010.
Table 18. WLCSP - 8 balls, 2.578x1.716 mm, 0.5 mm pitch, wafer level chip scale
mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.425 0.465 0.505 0.0167 0.0183 0.0199
A1 - 0.190 - - 0.0075 -
A2 - 0.275 - - 0.0108 -
b - 0.270 - - 0.0106 -
D - 2.578 2.598 - 0.1015 0.1023
E - 1.716 1.736 - 0.0676 0.0683
e - 1.000 - - 0.0394 -
e1 - 0.866 - - 0.0341 -
e2 - 0.500 - - 0.0197 -
e3 - 0.500 - - 0.0197 -
F - 0.425 - - 0.0167 -
%5B:/&63B0(B9
';
<
(
DDD
[
7239,(:
$
$
'(7$,/$
EEE =
6,'(9,(: %277209,(:
*
)
H
H
H
)
H
H
*
3LQFRUQHU
3LQFRUQHU
HHH
%803
=
FFF =
0
0
GGG =
;<
E[
'(7$,/$
527$7('
=
$
6($7,1*3/$1(
DocID12943 Rev 14 37/47
M24M01-R M24M01-DF Package information
46
Figure 19. WLCSP - 8 balls, 2.578x1.716 mm, 0.5 mm pitch, wafer level chip scale
recommended footprint
1. Dimensions are expressed in millimeters.
G - 0.789 - - 0.0311 -
aaa - 0.11 - - 0.0043 -
bbb - 0.11 - - 0.0043 -
ccc - 0.11 - - 0.0043 -
ddd - 0.06 - - 0.0024 -
eee - 0.06 - - 0.0024 -
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 18. WLCSP - 8 balls, 2.578x1.716 mm, 0.5 mm pitch, wafer level chip scale
mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
%5B:/&63B)3B9






Package information M24M01-R M24M01-DF
38/47 DocID12943 Rev 14
9.4 WLCSP8 package information
Figure 20. WLCSP- 8-bump, without BSC, 2.578 x 1.716 mm, wafer level chip scale
package outline
1. Drawing is not to scale.
2. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
Table 19. WLCSP- 8-bump, without BSC, 2.578 x 1.716 mm, wafer level chip scale
package outline
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.500 0.540 0.580 0.0197 0.0213 0.0228
A1 - 0.190 - - 0.0075 -
A2 - 0.350 - - 0.0138 -
b(2) - 0.270 - - 0.0106 -
D - 2.578 2.598 - 0.1015 0.1023
E - 1.716 1.736 - 0.0676 0.0683
e - 1.000 - - 0.0394 -
e1 - 0.866 - - 0.0341 -
7239,(: %277209,(:6,'(9,(:
;<
DDD
EEE =
;
HHH ]
FFF
GGG
=
=
0
0
<;
E;
=
%803
3,1
&251(5
'(7$,/$
'(7$,/$
527$7('
6($7,1*3/$1(
$
)
**
H
H
H
H
H)
(B:/&635B0BQR%6&B0(B9
$
$
(
'
DocID12943 Rev 14 39/47
M24M01-R M24M01-DF Package information
46
e2 - 0.500 - - 0.0197 -
e3 - 0.500 - - 0.0197 -
F - 0.425 - - 0.0167 -
G - 0.789 - - 0.0311 -
aaa - 0.110 - - 0.0043 -
bbb - 0.110 - - 0.0043 -
ccc - 0.110 - - 0.0043 -
ddd - 0.060 - - 0.0024 -
eee - 0.060 - - 0.0024 -
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Table 19. WLCSP- 8-bump, without BSC, 2.578 x 1.716 mm, wafer level chip scale
package outline (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
Package information M24M01-R M24M01-DF
40/47 DocID12943 Rev 14
Figure 21. WLCSP- 8-bump, with BSC, 2.578 x 1.716 mm, wafer level chip scale
package outline
1. Drawing is not to scale.
2. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
Table 20. WLCSP- 8-bump, with BSC, 2.578 x 1.716 mm, wafer level chip scale
package outline
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.525 0.565 0.605 0.0207 0.0222 0.0238
A1 - 0.190 - - 0.0075 -
A2 - 0.350 - - 0.0138 -
A3 - 0.025 - - 0.0010 -
b(2) - 0.270 - - 0.0106 -
D - 2.578 2.598 - 0.1015 0.1023
E - 1.716 1.736 - 0.0676 0.0683
e - 1.000 - - 0.0394 -
e1 - 0.866 - - 0.0341 -
e2 - 0.500 - - 0.0197 -
7239,(: %277209,(:6,'(9,(:
;<
DDD
EEE =
;
HHH ]
FFF
GGG
=
=
0
0
<;
E;
=
%803
3,1
&251(5
'(7$,/$
'(7$,/$
527$7('
6($7,1*3/$1(
$
)
**
H
H
H
H
H)
(B:/&635B0B%6&B0(B9
$
$
(
'
$
DocID12943 Rev 14 41/47
M24M01-R M24M01-DF Package information
46
Figure 22. WLCSP- 8-bump, 2.578 x 1.716 mm, wafer level chip scale
package recommended footprint
1. Dimensions are expressed in millimeters.
e3 - 0.500 - - 0.0197 -
F - 0.425 - - 0.0167 -
G - 0.789 - - 0.0311 -
aaa - 0.110 - - 0.0043 -
bbb - 0.110 - - 0.0043 -
ccc - 0.110 - - 0.0043 -
ddd - 0.060 - - 0.0024 -
eee - 0.060 - - 0.0024 -
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Table 20. WLCSP- 8-bump, with BSC, 2.578 x 1.716 mm, wafer level chip scale
package outline (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
(B:/&635B0B)3B9





Ordering information M24M01-R M24M01-DF
42/47 DocID12943 Rev 14
10 Ordering information
Table 21. Ordering information scheme
Example: M24M01 -D R MN 6 T P /K
Device type
M24 = I2C serial access EEPROM
Device function
M01 = 1 Mbit (128 K x 8 bit)
Device family
Blank = Without Identification page
D = With Identification page
Operating voltage
R = VCC = 1.8 V to 5.5 V
F = VCC = 1.7 V to 5.5 V
Package(1)
1. All packages are ECOPACK2® (RoHS compliant and free of brominated, chlorinated and antimony-oxide
flame retardants)
MN = SO8 (150 mil width)
DW = TSSOP8 (169 mil width)
CS = WLCSP
CX = WLCSP ultra thin
Device grade
6 = Industrial: device tested with standard test flow over –40 to 85 °C
Option
T = Tape and reel packing
blank = tube packing
Plating technology
P = ECOPACK2® (RoHS compliant)
Process(2)
2. The process letters apply to WLCSP device only. These process letters appear on the device package
(marking) and on the shipment box. Please contact your nearest ST Sales Office for further information.
/K = Manufacturing technology code
DocID12943 Rev 14 43/47
M24M01-R M24M01-DF Ordering information
46
Table 22. Ordering information scheme (unsawn wafer)(1)
Example: M24M01 - D F K W 20 I / 90
Device type
M24 = I2C serial access EEPROM
Device function
M01 = 1Mbit (128 K x 8 bit)
Device family
D = With Identification page
Operating voltage
F = VCC = 1.7 V to 5.5 V
Process
K = F8H
Delivery form
W = Unsawn wafer
Wafer thickness
20 = Non-backlapped wafer
Wafer testing
I = Inkless test
Device grade
90 = -40°C to 85°C
1. For all information concerning the M24M01 delivered in unsawn wafer, please contact your nearest ST
Sales Office.
Ordering information M24M01-R M24M01-DF
44/47 DocID12943 Rev 14
Engineering samples
Parts marked as ES or E are not yet qualified and therefore not approved for use in
production. ST is not responsible for any consequences deriving from such use. In no event,
will ST be liable for the customer using of these engineering samples in production. ST’s
quality department must be contacted prior to any decision to use these engineering
samples to run qualification activity.
DocID12943 Rev 14 45/47
M24M01-R M24M01-DF Revision history
46
11 Revision history
Table 23. Document revision history
Date Revision Changes
02-May-2011 8
Updated Features on page 1.
Updated Figure 3: WLCSP8 connections (bumps side view), Figure 5:
Maximum Rbus value versus bus parasitic capacitance (Cbus) for an
I2C bus at maximum frequency fC = 400 kHz and Figure 6: Maximum
Rbus value versus bus parasitic capacitance (Cbus) for an I2C bus at
maximum frequency fC = 1MHz.
Updated Table 10: DC characteristics (M24M01-R and M24M01-HR).
Updated footnote 5 of Table 14: AC characteristics at 1 MHz
(M24M01-HR).
Modified description of Write Control in Section 3.6: Write operations.
Replaced CL with Cbus in Table 7: AC measurement conditions.
Changed note 4 about tCLQV in Table 13: AC characteristics at
400 kHz (M24M01-R and M24M01-W).
23-Apr-2012 9
Datasheet split into:
M24M01-R, M24M01-DF (this datasheet) for standard products
(range 6),
M24M01-125 datasheet for automotive products (range 3).
26-Sep-2012 10
Updated:
Section 5.2.2: Current Address Read
Table 2: Device select code
WLCSP package
Changed layout of Features.
Rephrased some parts of Section 5.1.2: Page Write, Section 5.2:
Read operations, Table 10: Cycling performance and Table 11:
Memory cell data retention.
Revision history M24M01-R M24M01-DF
46/47 DocID12943 Rev 14
13-May-2015 11
Added:
Unsawn wafer reference on cover page and Table 21: Ordering
information scheme (unsawn wafer)
Figure 3
Notes 1 and 2 on Table 5
title of Table 10
note 1 on Ta ble 11
–V
IL parameter on Table 12 and Table 13
–t
NS max value on Table 14 and Table 15
note 9 on Table 13
Table 20
Added:
Notes 9 and 10 on Table 12
Notes 2and 3 on Table 13
Figure 19: WLCSP 8-bump wafer-length chip-scale package
recommended land pattern
Table 21
Engineering samples reference
Removed:
note 5 on Min value of tCLQX Table 13
10-June-2015 12
Updated:
Note 1 on Figure 2
Table 20
note 1 on Table 20
04-Jul-2016 13
Updated:
Table 12: DC characteristics (M24M01-R, device grade 6),
Table 13: DC characteristics (M24M01-DF, device grade 6),
Table 18: WLCSP- 8-bump, without BSC, 2.578 x 1.716 mm, wafer
level chip scale package outline, Figure 18: WLCSP- 8-bump,
without BSC, 2.578 x 1.716 mm, wafer level chip scale package
outline, Figure 20: WLCSP- 8-bump, 2.578 x 1.716 mm, wafer level
chip scale package recommended footprint
Added:
Table 19: WLCSP- 8-bump, with BSC, 2.578 x 1.716 mm, wafer
level chip scale package outline, Figure 19: WLCSP- 8-bump, with
BSC, 2.578 x 1.716 mm, wafer level chip scale package outline
23-Oct-2017 14
Added CX reference in WLCSP package in cover page, Section 9.3:
WLCSP8 ultra thin package information.
Updated title in Figure 3: WLCSP connections (top view, marking
side, with balls on the underside), Table 5: Absolute maximum
ratings, Table 21: Ordering information scheme
Table 23. Document revision history (continued)
Date Revision Changes
DocID12943 Rev 14 47/47
M24M01-R M24M01-DF
47
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved