- 0 Ay iitpotusrontes BU806/FI BU807/Fl FAST SWITCHING DARLINGTON TRANSISTORS DESCRIPTION The BU806/807 and BU806FI/807FI are silicon epitaxial planar NPN power transistors in Dar- lington configuration with integrated base-emitter speed-up diode, mounted respectively in TO-220 plastic package and ISOWATT220 fully isolated package. They are high voltage, high current de- vices for fast switching applications. In particular they can be used in horizontal output stages of 110CRT video displays. The BU806/FI are prima- rily intended for large screen, while the BU807/Fl are for medium and smail screens. ABSOLUTE MAXIMUM RATINGS TO-220 ISOWATT220 INTERNAL SCHEMATIC DIAGRAM Symbol Parameter BUS806/FI BU807/FI Unit Veso Collector-base Voltage (l_ = 0) 400 330 Vv Veev Collector-emitter Voltage (Vee = 6V) 400 330 Vv Vceo | Collector-emitter Voltage (lp = 0) 200 150 Vv Vepo | Emitter-base Voltage (Ic = 0) 6 Vv le Collector Current 8 A lom Collector Peak Current 15 A lpm Damper Diode Peak Forward Current 10 A 1g -| Base Current 2 A TO-220 |ISOWATT220 Prot Total Power Dissipation at T, < 25C 60 30 WwW Tstg Storage Temperature ~ 65 to 150 C Tj Max. Operating Junction Temperature 150 C December 1988 146 269BU806/F1-BU807/FI THERMAL DATA TO-220 |ISOWATT220 Rihj-case | Thermal Resistance Junction-case Max 2.08 4.16 C/W Rinj-amp | Thermal Resistance Junction-ambient Max 70 C/W ELECTRICAL CHARACTERISTICS (T.ase = 25C unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit Ices Collector Cutoff Current | for BU807/FI Vee =330V 100 pA (Vee = 0) for BU806/FI Vce = 400V 100 HA lcev Collector Cutoff Current | for BU807/FI Voce = 330V 100 HA (Vee = 6V) for BU806/F1 Voce =400V 100 pA leBo Emitter Cutoff Current Ves =6V 35 mA (le = 0) Vceo(sus)"| Collector-emitter lo = 100mA for BU807/FI 150 Vv Sustaining Voltage for BU806/F1 200 Vv (Ig = 0) Vee(sat) | Collector-emitter _ _ Saturation Voltage Ic = 5A Is = 50mA 15 V Vee(sat) | Base-emitter Saturation lo = 5A lg = 50mA 24 Vv Voltage VeE* Damper Diode Forward _ Voltage lp = 4A 2 v to+t** Turn-off Time Ic =5A Ip, =50mA 0.4 1 ps ton Turn-on Time RESISTIVE LOAD 0.35 us : lo =5A Ip; =50mA t Storage Time c Bt 0.55 s s ge Ise =-500MA Voc = 100V a tr Fall Time - 0.2 bs * Pulsed : pulse duration = 300 us, duty cycle = 1.5 %. ** See Test Circuit. Safe Operating Areas. DC Current Gain. IclAl , bE, a 2} Ic MAX rd Sn poe 0 OPERATION a * ot t 1 2 yor? 0 Tes cet es . wo" 10 10 10 Vel VI wo! 1 Tet) 2/6 {a7 SGS-THOMSON Jf iaicRomscToncs 270Callector-emitter Saturation Voltage. Voeisails w 0! vw? 107 \ te) Base-emitter Saturation Voltage. eEue), Wy 4 a eee 7 4 68 > 4 68 w? 0" y ig Saturated Switching Characteristics (resistive load). ' Ic $GS-THOMSON MICROELECTRONICS ro] BU806/FI-BU807/FI Collectoremitter Saturation Voltage. Ww 0 2 + 66 z * 6 8 1 10 Ig {ma} Damper Diode. VF wm! 4 ? oe 48 1 . 68 10" 1 Ic (A) Saturated Switching Characteristics (inductive load). G24? 1 (os? 6 fott) 2-4 = 2009 2500 pH o 41 203 6 KtA) 3/6 271BU806/FI-BU807/Fl HORIZONTAL DEFLECTION TURN-OFF TIME TEST CIRCUIT 6BnF 126n dk v7 Vv 3.3kO san O1F 10nF - L1 = Horizontal yoke = 200 LH. Trt = EHT Transformer SAREAtype 90091 4 or equivalent. 11 = Horizontal oscillator linear |. C. TDA 1180P. TURN-OFF TIME WAVEFORM a av tott 417, turn-off time is the time for the collector current Ie to decrease to OMA after the collector to emitter voltage Voge has risen 3V into its flyback excursion 100mA 35-0857 416 {7 SGS-THOMSON Jf iwicromectRomes 272BU806/Fi-BU807/FI APPLICATION INFORMATION Horizontal deflection circuit using the darlington BU806 directly driven by the TDA1180 (B & W TV set: large screen solution). Li = Linearity inductance 19 + 39 UH. Horizontal deflection circuit using the darlington BU807 directly driven by the TDA1180 (B & W TV set : small screen solution). Li= Linearity inductance 37 +67 WH. ky SGS-THOMSON 5/6 7 sucromecrronics 273BU806/FI-BU807/FI ISOWATT220 PACKAGE CHARACTERISTICS AND APPLICATION ISOWATT220 is fully isolated to 2000V dc. Its ther- mal impedance, given in the data sheet, is optimi- sed to give efficient thermal conduction together with excellent electrical isolation. The structure of the case ensures optimum di- stances between the pins and heatsink. The ISO- WATT220 package eliminates the need for external isolation so reducing fixing hardware. Accurate moulding techniques used in manufacture assures consistent heat spreader-to-heatsink capa- citance. ISOWATT220 thermal performance is equivalent to that of the standard part, mounted with a 0.1mm mi- ca washer. The thermaily conductive plastic has a higher break- down rating and is less fragile than mica or plastic sheets. Power derating for ISOWATT220 packages is determined by : Tj _- Te Po = Rth THERMAL IMPEDANCE OF ISOWATT220 PACKAGE Figure 1 illustrates the elements contributing to the thermal resistance of a transistor heatsink assem- bly, using ISOWATT220 package. The total thermal resistance Rth(tot) is the sum of each of these elements. The transient-thermal impedance, Zth for different pulse durations can be estimated as follows : 1-for a short duration power pulse less than ims : Zth < RihJ-c 2-for an intermediate power pulse of 5ms to 50ms : Zth = Rihu-c 6/6 &57 S&S-THOMSON 3-for long power pulses of the order of 500ms or greater : Zth = Rthu-c + Rthc-Hs + RthHs-amb It is often possible to discern these areas on tran- sient thermal impedance curves. Figure 1. Rthu-c Pinc-Hs RthHs-amb MICROELECTRONICS 274