PD - 96296 AUTOMOTIVE GRADE AUIRF1324S-7P HEXFET(R) Power MOSFET Features l l l l l l l Advanced Process Technology Ultra Low On-Resistance 175C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * V(BR)DSS D 24V RDS(on) typ. G 0.8m max. S S (Pin 2, 3, 5, 6, 7) G (Pin 1) 1.0m ID (Silicon Limited) 429A c ID (Package Limited) 240A Description Specifically designed for Automotive applications, this HEXFET(R) Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. Absolute Maximum Ratings D S G S S S S D 2Pak 7 Pin G D S Gate Drain Source Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25C, unless otherwise specified. Parameter ID @ TC = 25C ID @ TC = 100C ID @ TC = 25C IDM PD @TC = 25C VGS EAS (Thermally limited) IAR EAR dv/dt TJ TSTG Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) d Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy d f e d Units c c 429 303 240 1640 300 2.0 20 230 See Fig. 14, 15, 22a, 22b, 1.6 -55 to + 175 Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds A W W/C V mJ A mJ V/ns C 300 (1.6mm from case) Thermal Resistance Parameter RJC RJA Junction-to-Case k Junction-to-Ambient (PCB Mount) , D2Pak j Typ. Max. Units --- --- 0.50 40 C/W HEXFET(R) is a registered trademark of International Rectifier. *Qualification standards can be found at http://www.irf.com/ www.irf.com 1 03/25/10 AUIRF1324S-7P Static Characteristics @ TJ = 25C (unless otherwise stated) Parameter V(BR)DSS V(BR)DSS/TJ RDS(on) VGS(th) gfs RG IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Internal Gate Resistance Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 24 --- --- 2.0 270 --- --- --- --- --- --- --- 0.023 --- 0.80 1.0 --- 4.0 --- --- 3.0 --- --- 20 --- 250 --- 200 --- -200 Conditions V VGS = 0V, ID = 250A V/C Reference to 25C, ID = 5mA m VGS = 10V, ID = 160A V VDS = VGS, ID = 250A S VDS = 50V, ID = 160A VDS = 24V, VGS = 0V A VDS = 19V, VGS = 0V, TJ = 125C VGS = 20V nA VGS = -20V g g Dynamic Characteristics @ TJ = 25C (unless otherwise stated) Parameter Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Min. Typ. Max. Units Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance --- --- --- --- --- --- --- --- --- --- --- Effective Output Capacitance (Energy Related) --- --- Effective Output Capacitance (Time Related) 180 47 58 122 19 240 86 93 7700 3380 1930 4780 4970 252 --- --- --- --- --- --- --- --- --- --- --- --- nC ns Conditions ID = 75A VDS =12V VGS = 10V ID = 75A, VDS =0V, VGS = 10V VDD = 16V ID = 160A RG =2.7 VGS = 10V VGS = 0V VDS = 19V = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to 19V , See Fig.11 VGS = 0V, VDS = 0V to 19V g g g pF i h Diode Characteristics Parameter IS VSD trr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM d Min. Typ. Max. Units --- --- 429 --- --- c 1636 A Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 160A, VGS = 0V VR = 20V, TJ = 25C --- 71 107 ns IF = 160A TJ = 125C --- 74 110 di/dt = 100A/s TJ = 25C --- 83 120 nC TJ = 125C --- 92 140 --- 2.0 --- A TJ = 25C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g S g Notes: Calculated continuous current based on maximum allowable junction ISD 160A, di/dt 600A/s, VDD V(BR)DSS, TJ 175C. temperature. Package limitation current is 240A. Note that current Pulse width 400s; duty cycle 2%. limitations arising from heating of the device leads may occur with Coss eff. (TR) is a fixed capacitance that gives the same charging time some lead mounting arrangements.(Refer to AN-1140 as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as http://www.irf.com/technical-info/appnotes/an-1140.pdf Coss while VDS is rising from 0 to 80% VDSS. Repetitive rating; pulse width limited by max. junction When mounted on 1" square PCB (FR-4 or G-10 Material). For recom temperature. mended footprint and soldering techniques refer to application note #AN-994. Limited by TJmax, starting TJ = 25C, L = 0.018mH R is measured at T J approximately 90C RG = 25, IAS = 160A, VGS =10V. Part not recommended for use above this value. 2 www.irf.com AUIRF1324S-7P Qualification Information Automotive (per AEC-Q101) Qualification Level Moisture Sensitivity Level Machine Model Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level. D2 PAK 7 Pin MSL1 Class M4 AEC-Q101-002 ESD Human Body Model Class H3A AEC-Q101-001 Charged Device Model Class C5 AEC-Q101-005 RoHS Compliant Yes Qualification standards can be found at International Rectifiers web site: http//www.irf.com/ Exceptions to AEC-Q101 requirements are noted in the qualification report. www.irf.com 3 AUIRF1324S-7P 1000 1000 VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 100 BOTTOM 100 4.5V 10 0.1 60s PULSE WIDTH Tj = 175C 60s PULSE WIDTH Tj = 25C 1 10 4.5V 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 1.8 100 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 2. Typical Output Characteristics 1000 T J = 175C 10 TJ = 25C 1 VDS = 15V 60s PULSE WIDTH 0.1 ID = 160A VGS = 10V 1.6 1.4 1.2 1.0 0.8 0.6 2 3 4 5 6 7 8 9 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (C) VGS, Gate-to-Source Voltage (V) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 75A C oss = C ds + C gd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Ciss Coss 10000 Crss 1000 10.0 VDS= 19V VDS= 12V 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 0 50 100 150 200 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com AUIRF1324S-7P 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175C OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100 1msec 100 T J = 25C 10 10msec 10 Tc = 25C Tj = 175C Single Pulse VGS = 0V 1.0 0.5 1.0 1.5 2.0 2.5 0 VSD, Source-to-Drain Voltage (V) 300 250 200 150 100 50 0 50 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) Limited By Package 350 25 10 100 Fig 8. Maximum Safe Operating Area 450 400 1 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage ID, Drain Current (A) DC 1 0.0 32 Id = 5mA 31 30 29 28 27 26 25 24 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( C ) T C , Case Temperature (C) Fig 10. Drain-to-Source Breakdown Voltage Fig 9. Maximum Drain Current vs. Case Temperature 1000 EAS , Single Pulse Avalanche Energy (mJ) 1.4 1.2 1.0 Energy (J) 100sec 0.8 0.6 0.4 0.2 ID TOP 45A 80A BOTTOM 160A 900 800 700 600 500 400 300 200 100 0 0.0 -5 0 5 10 15 20 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy www.irf.com 25 25 50 75 100 125 150 175 Starting T J , Junction Temperature (C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent 5 AUIRF1324S-7P Thermal Response ( Z thJC ) C/W 1 D = 0.50 0.1 0.20 0.10 0.05 J 0.02 0.01 0.01 R1 R1 J 1 R2 R2 R3 R3 C 2 1 2 3 3 4 4 Ci= i/Ri Ci i/Ri 1E-005 i (sec) 0.02070 0.000010 0.08624 0.000070 0.24491 0.001406 0.15005 0.009080 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 Ri (C/W) R4 R4 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150C and Tstart =25C (Single Pulse) 0.01 100 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25C and Tstart = 150C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 6 www.irf.com AUIRF1324S-7P EAR , Avalanche Energy (mJ) 250 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figure 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav ) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 160A 200 150 100 50 0 25 50 75 100 125 150 PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav 175 Starting T J , Junction Temperature (C) Fig 15. Maximum Avalanche Energy vs. Temperature VGS(th) , Gate threshold Voltage (V) 4.5 4.0 3.5 3.0 2.5 ID = 250A ID = 1.0mA ID = 1.0A 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( C ) Fig 16. Threshold Voltage Vs. Temperature www.irf.com 7 AUIRF1324S-7P Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A 0.01 tp I AS Fig 22a. Unclamped Inductive Test Circuit LD Fig 22b. Unclamped Inductive Waveforms VGS VDS 90% + VDD D.U.T 10% VGS VDS Second Pulse Width < 1s Duty Factor < 0.1% td(off) Fig 23a. Switching Time Test Circuit tf td(on) tr Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 1K 20K VCC Vgs(th) S Qgodr 8 Fig 24a. Gate Charge Test Circuit Qgd Qgs2 Qgs1 Fig 24b. Gate Charge Waveform www.irf.com AUIRF1324S-7P D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches) D2Pak - 7 Pin Part Marking Information Part Number AUIRF1324S-7 YWWA IR Logo XX or Date Code Y= Year WW= Work Week A= Automotive, Lead Free XX Lot Code Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 AUIRF1324S-7P D2Pak - 7 Pin Tape and Reel 10 www.irf.com AUIRF1324S-7P Ordering Information Base part number AUIRF1324S-7P www.irf.com Package Type D2Pak Standard Pack Form Tube Tape and Reel Left Tape and Reel Right Complete Part Number Quantity 50 800 800 AUIRF1324S-7P AUIRF1324S-7PTRL AUIRF1324S-7PTRR 11 AUIRF1324S-7P IMPORTANT NOTICE Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/ WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 12 www.irf.com