Rev 2
June 2005 1/16
16
LM124W-LM224W-LM324W
Low Power Quad Operational Amplifiers
Wide gain bandwidth: 1.3MHz
Input common-mode voltage range includes
ground
Large voltage gain: 100dB
Very low supply current/ampli: 375µA
Low input bias current: 20nA
Low input offset voltage: 3mV max.
Low input offset current: 2nA
Wide power supply range:
Single supply: +3V to +30V
Dual supplies: ±1.5V to ±15V
Description
These circuits consist of four independent, high
gain, internally frequency compensated
operational amplifiers. They operate from a single
power supply over a wide range of voltages.
Operation from split power supplies is also
possible and the low power supply current drain is
independent of the magnitude of the power supply
voltage.
All the pins are protected against electrostatic
discharges up to 2000V (as a consequence, the
input voltages must not exceed the magnitude of
VCC+ or VCC-.)
Order Codes
N
DIP14
(Plastic Package)
D
SO-14
(Plastic Micropackage)
P
TSSOP-14
(Thin Shrink Small Outline Package)
Part Number Temperature Range Package Packaging
LM124WN -55°C, +125°C DIP Tube
LM124WD/WDT SO Tube or Tape & Reel
LM224WN
-40°C, +105°C
DIP Tube
LM224WD/WDT SO Tube or Tape & Reel
LM224WPT TSSOP
(Thin Shrink Outline Package) Tape & Reel
LM324WN
0°C, +70°C
DIP Tube
LM324WD/WDT SO Tube or Tape & Reel
LM324WPT TSSOP
(Thin Shrink Outline Package) Tape & Reel
www.st.com
Absolute Maximum Ratings LM124W-LM224W-LM324W
2/16
1 Absolute Maximum Ratings
Table 1. 15Key parameters and their absolute maximum ratings
Symbol Parameter LM124W LM224W LM324W Unit
VCC Supply voltage ±16 or 32 V
Vi Input Voltage -0.3 to Vcc + 0.3 V
Vid Differential Input Voltage (1)
1. Either or both input voltages must not exceed the magnitude of VCC+ or VCC-.
-0.3 to Vcc + 0.3 V
Ptot
Power Dissipation
N Suffix
D Suffix
500 500
400
500
400
mW
Output Short-circuit Duration (2)
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current
is approximately 40mA independent of the magnitude of VCC. Destructive dissipation can result from
simultaneous short-circuit on all amplifiers.
Infinite
Iin Input Current (3)
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes
clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action
can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground for a large overdrive)
for the time duration than an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3V.
50 mA
Toper Operating Free-air Temperature Range -55 to +125 -40 to +105 0 to +70 °C
Tstg Storage Temperature Range -65 to +150 °C
Rthja
Thermal Resistance Junction to Ambient
SO14
TSSOP14
DIP14
103
100
66
°C/W
ESD
HBM: Human Body Model(4)
4. Human body model, 100pF discharged through a 1.5kresistor into pin of device.
700 V
MM: Machine Model(5)
5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with
no external series resistor (internal resistor < 5), into pin to pin of device.
100 V
CDM: Charged Device Model 1.5 kV
LM124W-LM224W-LM324W Pin & Schematic Diagram
3/16
2 Pin & Schematic Diagram
Figure 1. Pin connections (top view)
Figure 2. Schematic diagram (1/4 LM124W)
Inverting Input 2
Non-inverting Input 2
Non-inverting Input 1
CC
V
-
CC
V
1
2
3
4
8
5
6
7
9
10
11
12
13
14
+
Output 3
Output 4
Non-inverting Input 4
Inverting Input 4
Non-inverting Input 3
Inverting Input 3
-
+
-
+
-
+
-
+
Output 1
Inverting Input 1
Output 2
Electrical Characteristics LM124W-LM224W-LM324W
4/16
3 Electrical Characteristics
Table 2. VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
Vio
Input Offset Voltage - note (1)
Tamb = +25°C
Tmin Tamb Tmax
23
5
mV
Iio
Input Offset Current
Tamb = +25°C
Tmin Tamb Tmax
220
40
nA
Iib
Input Bias Current - note (2)
Tamb = +25°C
Tmin Tamb Tmax
20 100
200
nA
Avd
Large Signal Voltage Gain
VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V
Tamb = +25°C
Tmin Tamb Tmax
50
25
100 V/mV
SVR
Supply Voltage Rejection Ratio (Rs 10k)
VCC+ = 5V to 30V
Tamb = +25°C
Tmin Tamb Tmax
65
65
110 dB
ICC
Supply Current, all Amp, no load
Tamb = +25°C VCC = +5V
VCC = +30V
Tmin Tamb Tmax VCC = +5V
VCC = +30V
0.7
1.5
0.8
1.5
1.2
3
1.2
3
mA
Vicm
Input Common Mode Voltage Range
VCC = +30V - note (3)
Tamb = +25°C
Tmin Tamb Tmax
0
0
VCC -
1.5
VCC -
2
V
CMR
Common Mode Rejection Ratio (Rs 10k)
Tamb = +25°C
Tmin Tamb Tmax
70
60
80 dB
Isource Output Current Source (Vid = +1V)
VCC = +15V, Vo = +2V 20 40 70 mA
Isink
Output Sink Current (Vid = -1V)
VCC = +15V, Vo = +2V
VCC = +15V, Vo = +0.2V
10
12
20
50
mA
µA
LM124W-LM224W-LM324W Electrical Characteristics
5/16
VOH
High Level Output Voltage
VCC = +30V
Tamb = +25°C RL = 2k
Tmin Tamb Tmax
Tamb = +25°C RL = 10k
Tmin Tamb Tmax
VCC = +5V, RL = 2k
Tamb = +25°C
Tmin Tamb Tmax
26
26
27
27
3.5
3
27
28 V
VOL
Low Level Output Voltage (RL = 10k)
Tamb = +25°C
Tmin Tamb Tmax
520
20
mV
SR Slew Rate
VCC = 15V, Vi = 0.5 to 3V, RL = 2k, CL = 100pF, unity Gain 0.4 V/µs
GBP Gain Bandwidth Product
VCC = 30V, f =100kHz,Vin = 10mV, RL = 2k, CL = 100pF 1.3 MHz
THD Total Harmonic Distortion: f = 1kHz, Av = 20dB, RL = 2kΩ, Vo =
2Vpp, CL = 100pF, VCC = 30V 0.015 %
enEquivalent Input Noise Voltage
f = 1kHz, Rs = 100Ω, VCC = 30V 40
DVio Input Offset Voltage Drift 7 30 µV/
°C
DIIio Input Offset Current Drift 10 200 pA/
°C
Vo1/Vo2 Channel Separation - note (4) 1kHz f 20kHZ 120 dB
1. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of
the output so no loading change exists on the input lines.
2. Vo = 1.4V, Rs = 0, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more
than 0.3V. The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to
+32V without damage.
4. Due to the proximity of external components insure that coupling is not originating via stray capacitance
between these external parts. This typically can be detected as this type of capacitance increases at higher
frequences.
Table 3. Vcc+ = +15V, Vcc- = 0V, Tamb = 25°C (unless otherwise specified)
Symbol Conditions Value Unit
Vio 0mV
Avd RL = 2k100 V/mV
Icc No load, per amplifier 350 µA
Vicm -15 to +13.5 V
VOH RL = 2k(VCC+=15V) +13.5 V
VOL RL = 10k5mV
Ios Vo = +2V, VCC = +15V +40 mA
GBP RL = 2kΩ, CL = 100pF 1.3 MHz
SR RL = 2kΩ, CL = 100pF 0.4 V/µs
Table 2. VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
nV
Hz
------------
Electrical Characteristics LM124W-LM224W-LM324W
6/16
Figure 3. Input bias current vs. ambient
temperature
Figure 4. Current limiting
Figure 5. Input voltage range Figure 6. Supply current
Figure 7. Gain bandwidth product Figure 8. Common mode rejection ratio
-55-35-15 5 25 45 65 85 105 125
AMBIENT TEMPERATURE (°C)
24
21
18
15
9
12
6
3
0
INPUT BIAS CURRENT
versus AMBIENT TEMPERATURE
IB (nA)
SUPPLY CURRENT (mA)
SUPPLY CURRENT
0102030
Tamb = -55°C
VCC
mA ID
-
+
Tamb = 0°C to +125°C
POSITIVE SUPPLY VOLTAGE (V)
4
3
2
1
LM124W-LM224W-LM324W Electrical Characteristics
7/16
Figure 9. Electrical curves
Electrical Characteristics LM124W-LM224W-LM324W
8/16
Figure 10. Input current Figure 11. Large signal voltage gain
Figure 12. Power supply & common mode
rejection ratio
Figure 13. Voltage gain
LM124W-LM224W-LM324W Typical Single - Supply Applications
9/16
4 Typical Single - Supply Applications
Figure 14. AC coupled inverting amplifier Figure 15. High input Z adjustable gaind DC
instrumentation amplifier
Figure 16. AC coupled non inverting amplifier Figure 17. DC summing amplifier
Figure 18. Non-inverting DC gain Figure 19. Low drift peak detector
1/4
LM124W
~
0
2V
PP
R
10kW
L
C
o
e
o
R
6.2k
W
B
R
100k
W
f
R1
10kW
C
I
e
I
V
CC
R2
100k
W
C1
10
m
F
R3
100k
W
A=-
R
R1
V
f
(as shown A = -10)
V
1/4
LM124W
R3
100k
W
eO
1/4
LM124W
R1
100k
W
e1
1/4
LM124W
R7
100k
W
R6
100k
W
R5
100k
W
e2
R2
2k
W
Gain adjust
R4
100k
W
if R1 = R5 and R3 = R4 = R6 = R7
e0 = (e2 -e1)
As shown e0 = 101 (e2 - e1).
12R1
R2
-----------+
1/4
LM124W
~
0
2V
PP
R
10kW
L
C
o
e
o
R
6.2k
W
B
C1
0.1mF
e
I
V
CC
(as shown A = 11)
V
A=1+
R2
R1
V
R1
100k
W
R2
1M
W
C
I
R3
1M
W
R4
100k
W
R5
100k
W
C2
10
m
F
1/4
LM124W
eO
e4
e3
e2
e1100k
W
100k
W
100k
W
100k
W
100k
W
100k
W
e0 = e1 +e2 -e3 -e4
Where (e1 +e2)
(e3 +e4)
to keep e0
0V
R1
10k
W
R2
1M
W
1/4
LM124W
10k
W
eI
eO+5V
e
O
(V)
(mV)
0
AV=1+ R2
R1
(As shown = 101)
AV
I
B
2N 929
0.001
m
F
I
B
3R
3M
W
I
B
Input current
compensation
e
o
I
B
e
I
1/4
LM124W
Z
o
Z
I
C
1mF
2I
B
R
1M
W
2I
B
* Polycarbonate or polyethylene
*
1/4
LM124W
1/4
LM124W
Typical Single - Supply Applications LM124W-LM224W-LM324W
10/16
Figure 20. Activer bandpass filter Figure 21. High input Z, DC differential
amplifier
Figure 22. Using symmetrical amplifiers to
reduce input current (general
concept)
1/4
LM124W
1/4
LM124W
R3
10k
W
1/4
LM124W
e1
eO
R8
100k
W
R7
100k
W
C3
10
m
F
VCC
R5
470kW
C2
330pF
R4
10M
W
R6
470kW
R1
100k
W
C1
330pF
Fo = 1kHz
Q = 50
Av = 100 (40dB)
1/4
LM124W
R1
100k
W
R2
100k
W
R4
100k
W
R3
100k
W
+V2
+V1
V
o
1/4
LM124W
For
(CMRR depends on this resistor ratio match)
R1
R2
------- R4
R3
-------=
e0 (e2 - e1)
As shown e0 = (e2 - e1)
1R4
R3
-------+
⎝⎠
⎛⎞
1/4
LM124W
I
B
2N 929
0.001
m
F
I
B
3M
W
I
B
e
o
I
I
e
I
I
B
I
B
Aux. amplifier for input
current compensation
1.5M
W
1/4
LM124W
LM124W-LM224W-LM324W Macromodels
11/16
5 Macromodels
Note: Note: Please consider following remarks before using this macromodel:
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design
approach and help to select surrounding component values.
A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED
OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is
often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the
product.
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.)
or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in
any way.
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM124 1 3 2 4 5 (analog)
*******************************************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 3.600000E+02
Macromodels LM124W-LM224W-LM324W
12/16
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
.ENDS
LM124W-LM224W-LM324W Package Mechanical Data
13/16
6 Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com.
6.1 DIP14 Package
DIM. mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 1.39 1.65 0.055 0.065
b 0.5 0.020
b1 0.25 0.010
D 20 0.787
E 8.5 0.335
e 2.54 0.100
e3 15.24 0.600
F 7.1 0.280
I 5.1 0.201
L 3.3 0.130
Z 1.27 2.54 0.050 0.100
Plastic DIP-14 MECHANICAL DATA
P001A
Package Mechanical Data LM124W-LM224W-LM324W
14/16
6.2 SO-14 Package
DIM. mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 1.75 0.068
a1 0.1 0.2 0.003 0.007
a2 1.65 0.064
b 0.35 0.46 0.013 0.018
b1 0.19 0.25 0.007 0.010
C 0.5 0.019
c1 45˚ (typ.)
D 8.55 8.75 0.336 0.344
E 5.8 6.2 0.228 0.244
e 1.27 0.050
e3 7.62 0.300
F 3.8 4.0 0.149 0.157
G 4.6 5.3 0.181 0.208
L 0.5 1.27 0.019 0.050
M 0.68 0.026
(max.)
SO-14 MECHANICAL DATA
PO13G
8
LM124W-LM224W-LM324W Package Mechanical Data
15/16
6.3 TSSOP14 Package
DIM.
mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 1.2 0.047
A1 0.05 0.15 0.002 0.004 0.006
A2 0.8 1 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.0089
D 4.9 5 5.1 0.193 0.197 0.201
E 6.2 6.4 6.6 0.244 0.252 0.260
E1 4.3 4.4 4.48 0.169 0.173 0.176
e 0.65 BSC 0.0256 BSC
K0˚ 8˚0˚ 8˚
L 0.45 0.60 0.75 0.018 0.024 0.030
TSSOP14 MECHANICAL DATA
cE
b
A2
A
E1
D
1
PIN 1 IDENTIFICATION
A1 L
K
e
0080337D
Revision History LM124W-LM224W-LM324W
16/16
7 Revision History
Date Revision Changes
Sept. 2003 1 First Release
June 2005 3 ESD protection inserted in
Table 1 on page 2
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com