Preliminary data
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
April 2011 Doc ID 018771 Rev 1 1/42
42
LSM303DLHC
Ultra compact high performance e-compass
3D accelerometer and 3D magnetometer module
Features
3 magnetic field channels and 3 acceleration
channels
From ±1.3 to ±8.1 gauss magnetic field full-
scale
±2g/±4g/±8g/±16g selectable full-scale
16 bit data output
I2C serial interface
Analog supply voltage 2.16 V to 3.6 V
Power-down mode/ low-power mode
2 independent programmable interrupt
generators for free-fall and motion detection
Embedded temperature sensor
Embedded FIFO
6D/4D orientation detection
ECOPACK® RoHS and “Green” compliant
Applications
Compensated compass
Map rotation
Position detection
Motion-activated functions
Free-fall detection
Click/double click recognition
Pedometer
Intelligent power-saving for handheld devices
Display orientation
Gaming and virtual reality input devices
Impact recognition and logging
Vibration monitoring and compensation
Description
The LSM303DLHC is a system-in-package
featuring a 3D digital linear acceleration sensor
and a 3D digital magnetic sensor.
LSM303DLHC has linear acceleration full-scales
of ±2g / ±4g / ±8g / ±16g and a magnetic field full-
scale of ±1.3 / ±1.9 / ±2.5 / ±4.0 / ±4.7 / ±5.6 /
±8.1 gauss. All full-scales available are fully
selectable by the user.
LSM303DLHC includes an I2C serial bus interface
that supports standard and fast mode 100 kHz
and 400kHz. The system can be configured to
generate interrupt signals by inertial wake-
up/free-fall events as well as by the position of the
device itself. Thresholds and timing of interrupt
generators are programmable by the end user on
the fly. Magnetic and accelerometer parts can be
enabled or put into power-down mode separately.
The LSM303DLHC is available in a plastic land
grid array package (LGA) and is guaranteed to
operate over an extended temperature range from
-40 °C to +85 °C.
LGA-14
(3x5x1mm)
Table 1. Device summary
Part number Temperature range [°C] Package Packing
LSM303DLHC -40 to +85 LGA-14 Tray
LSM303DLHCTR -40 to +85 LGA-14 Tape and reel
www.st.com
Contents LSM303DLHC
2/42 Doc ID 018771 Rev 1
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Sensor I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Linear acceleration sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Pull-up resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Digital interface power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 High current wiring effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.2 Linear acceleration digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.3 Magnetic field digital interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
LSM303DLHC Contents
Doc ID 018771 Rev 1 3/42
7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1 Linear acceleration register description . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1.1 CTRL_REG1_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1.2 CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1.3 CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1.4 CTRL_REG4_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.5 CTRL_REG5_A (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.6 CTRL_REG6_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1.7 REFERENCE/DATACAPTURE_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1.8 STATUS_REG_A (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.1.9 OUT_X_L_A (28h), OUT_X_H_A (29h) . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.1.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . 28
7.1.11 OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . 28
7.1.12 FIFO_CTRL_REG_A (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.13 FIFO_SRC_REG_A (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.14 INT1_CFG_A (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.15 INT1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.16 INT1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.17 INT1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.18 INT2_CFG_A (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.19 INT2_SRC_A (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.1.20 INT2_THS_A (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.21 INT2_DURATION_A (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.22 CLICK_CFG_A (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.23 CLICK_SRC_A (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.24 CLICK_THS_A (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.25 TIME_LIMIT_A (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.26 TIME_LATENCY_A (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.27 TIME WINDOW_A (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Magnetic field sensing register description . . . . . . . . . . . . . . . . . . . . . . . 36
7.2.1 CRA_REG_M (00h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2.2 CRB_REG_M (01h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2.3 MR_REG_M (02h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2.4 OUT_X_H_M (03), OUT_X_LH_M (04h) . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2.5 OUT_Z_H_M (05), OUT_Z_L_M (06h) . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2.6 OUT_Y_H_M (07), OUT_Y_L_M (08h) . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2.7 SR_REG_M (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Contents LSM303DLHC
4/42 Doc ID 018771 Rev 1
7.2.8 IR_REG_M (0Ah/0Bh/0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2.9 TEMP_OUT_H_M (31h), TEMP_OUT_L_M (32h) . . . . . . . . . . . . . . . . 39
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
LSM303DLHC List of tables
Doc ID 018771 Rev 1 5/42
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 7. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 8. Accelerometer operating mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 9. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 10. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 11. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 12. Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 13. Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 19
Table 14. SAD+read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 20
Table 16. SAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 17. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 18. CTRL_REG1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 19. CTRL_REG1_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 20. Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 21. CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 22. CTRL_REG2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 23. High pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 24. CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 25. CTRL_REG3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 26. CTRL_REG4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 27. CTRL_REG4_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 28. CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 29. CTRL_REG5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 30. CTRL_REG6_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 31. CTRL_REG6_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 32. REFERENCE_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 33. REFERENCE_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 34. STATUS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 35. STATUS_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 36. REFERENCE_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 37. REFERENCE_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 38. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 39. FIFO_SRC_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 40. INT1_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 41. INT1_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 42. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 43. INT1_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 44. INT1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 45. INT1_THS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 46. INT1_THS_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 47. INT1_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 48. INT1_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
List of tables LSM303DLHC
6/42 Doc ID 018771 Rev 1
Table 49. INT2_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 50. INT2_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 51. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 52. INT2_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 53. INT2_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 54. INT2_THS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 55. INT2_THS_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 56. INT2_DURATION_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 57. INT2_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 58. CLICK_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 59. CLICK_CFG_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 60. CLICK_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 61. CLICK_SRC_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 62. CLICK_THS_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 63. CLICK_SRC_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 64. TIME_LIMIT_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 65. TIME_LIMIT_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 66. TIME_LATENCY_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 67. TIME_LATENCY_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 68. TIME_WINDOW_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 69. TIME_WINDOW_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 70. CRA_REG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 71. CRA_REG_M description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 72. Data rate configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 73. CRA_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 74. CRA_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 75. Gain setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 76. MR_REG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 77. MR_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 79. SR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 80. SR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 81. IRA_REG_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 82. IRB_REG_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 83. IRC_REG_M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 84. TEMP_OUT_H_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 85. TEMP_OUT_L_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 86. TEMP_OUT resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 87. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
LSM303DLHC Block diagram and pin description
Doc ID 018771 Rev 1 7/42
1 Block diagram and pin description
1.1 Block diagram
Figure 1. Block diagram
Y+
Z+
Y-
Z-
X+
X-
MUX
SDA
SCL
I (a)
+
-
CHARGE
AMPLIFIER
Sensing Block
Sensing Interface
A/D Control
Logic
converter
DI
I2C
INT1
INT2
MUX
I (M)
+
-
CHARGE
AMPLIFIER
Y+
Z+
Y-
Z-
X+
X-
INTERRUPT GEN. CLOCK
TRIMMING
CIRCUITS
REFERENCE
OFFSET
CIRCUITS
BUILT-IN
CIRCUITS
SET/RESET TEMPERATURE
FIFO SENSOR
AM09236V1
Block diagram and pin description LSM303DLHC
8/42 Doc ID 018771 Rev 1
1.2 Pin description
Figure 2. Pin connection
Table 2. Pin description
Pin# Name Function
1 Vdd_IO Power supply for I/O pins
2 SCL Signal interface I2C serial clock (SCL)
3 SDA Signal interface I2C serial data (SDA)
4 INT2 Inertial Interrupt 2
5 INT1 Inertial Interrupt 1
6 C1 Reserved capacitor connection (C1)
7 GND 0 V supply
8 Reserved Leave unconnected
9 DRDY Data ready
10 Reserved Connect to GND
11 Reserved Connect to GND
12 SETP S/R capacitor connection (C2)
13 SETC S/R capacitor connection (C2)
14 Vdd Power supply
DIRECTION OF
DETECTABLE
MAGNETIC FIELDS
DIRECTION OF
DETECTABLE
ACCELERATIONS
1
138
6
1
BOTTOM VIEW
13
8
6
TOP VIEW
X
Z
Y
1
13
8
6
TOP VIEW
X
Z
Y
AM09237V1
LSM303DLHC Module specifications
Doc ID 018771 Rev 1 9/42
2 Module specifications
2.1 Sensor characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(a).
a. The product is factory calibrated at 2.5 V. The operational power supply range is from 2.16 V to 3.6 V.
Table 3. Sensor characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
LA_FS Linear acceleration
measurement range(2)
FS bit set to 00 ±2
g
FS bit set to 01 ±4
FS bit set to 10 ±8
FS bit set to 11 ±16
M_FS Magnetic measurement range
GN bits set to 001 ±1.3
gauss
GN bits set to 010 ±1.9
GN bits set to 011 ±2.5
GN bits set to 100 ±4.0
GN bits set to 101 ±4.7
GN bits set to 110 ±5.6
GN bits set to 111 ±8.1
LA_So Linear acceleration sensitivity
FS bit set to 00 1
mg/LSB
FS bit set to 01 2
FS bit set to 10 4
FS bit set to 11 12
M_GN Magnetic gain setting
GN bits set to 001 (X,Y) 1100
LSB/
gauss
GN bits set to 001 (Z) 980
GN bits set to 010 (X,Y) 855
GN bits set to 010 (Z) 760
GN bits set to 011 (X,Y) 670
GN bits set to 011 (Z) 600
GN bits set to 100 (X,Y) 450
GN bits set to 100 (Z) 400
GN bits set to 101 (X,Y) 400
GN bits set to 101 (Z) 355
GN bits set to 110 (X,Y) 330
GN bits set to 110 (Z) 295
GN bits set to 111(2) (X,Y) 230
GN bits set to 111(2) (Z) 205
Module specifications LSM303DLHC
10/42 Doc ID 018771 Rev 1
2.2 Temperature sensor characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted (b).
LA_TCSo Linear acceleration sensitivity
change vs. temperature FS bit set to 00 ±0.01 %/°C
LA_TyOff
Linear acceleration typical
Zero-g level offset
accuracy(3),(4)
FS bit set to 00 ±60 mg
LA_TCOff Linear acceleration Zero-g
level change vs. temperature Max. delta from 25 °C ±0.5 mg/°C
LA_An Acceleration noise density
FS bit set to 00, normal
mode(Table 8.), ODR bit
set to 1001
220 ug/
sqrt(Hz)
M_R Magnetic resolution 2 mgauss
M_CAS Magnetic cross-axis sensitivity Cross field =.0.5 gauss
H applied = ±3 gauss ±1 %FS/
gauss
M_EF Maximum exposed field No permitting effect on
zero reading 10000 gauss
M_DF Disturbing field
Sensitivity starts to
degrade. Use S/R pulse to
restore sensitivity
20 gauss
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical Zero-g level offset value after MSL3 preconditioning.
4. Offset can be eliminated by enabling the built-in high pass filter.
Table 3. Sensor characteristics (continued)
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
b. The product is factory calibrated at 2.5 V.
Table 4. Temperature sensor characteristics
Symbol Parameter Test condition Min. Typ.(1) Max. Unit
TSDr Temperature sensor output
change vs. temperature
-
8LSB/°C
(2)
TODR Temperature refresh rate ODR(3) Hz
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. 12-bit resolution.
3. For ODR configuration refer to Table 72.
LSM303DLHC Module specifications
Doc ID 018771 Rev 1 11/42
2.3 Electrical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted.
Table 5. Electrical characteristics
Symbol Parameter Test
conditions Min. Typ.(1) Max. Unit
Vdd Supply voltage
-
2.16 3.6 V
Vdd_IO Module power supply for I/O 1.71 1.8 Vdd+0.1
Idd Current consumption in normal
mode(2) 110 µA
IddSL Current consumption in
sleep-mode(3) A
Top Operating temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Magnetic sensor setting ODR = 7.5 Hz, Accelerometer sensor ODR = 50 Hz.
3. Linear accelerometer in sleep-mode and magnetic sensor in power-down mode.
Module specifications LSM303DLHC
12/42 Doc ID 018771 Rev 1
2.4 Communication interfaces characteristics
External pull-up resistors are required to support I2C standard and fast speed modes.
2.4.1 Sensor I2C - inter IC control interface
Subject to general operating conditions for Vdd and Top.
Figure 3. I2C slave timing diagram (c)
Table 6. I2C slave timing values
Symbol Parameter
I2C standard mode (1) I2C fast mode (1)
Unit
Min. Max. Min. Max.
f(SCL) SCL clock frequency 0 100 0 400 KHz
tw(SCLL) SCL clock low time 4.7 1.3
µs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100 ns
th(SDA) SDA data hold time 0.01 3.45 0.01 0.9 µs
tr(SDA) tr(SCL) SDA and SCL rise time 1000 20 + 0.1Cb(2) 300
ns
tf(SDA) tf(SCL) SDA and SCL fall time 300 20 + 0.1Cb(2) 300
th(ST) START condition hold time 4 0.6
µs
tsu(SR) Repeated START condition
setup time 4.7 0.6
tsu(SP) STOP condition setup time 4 0.6
tw(SP:SR) Bus free time between STOP
and START condition 4.7 1.3
1. Data based on standard I2C protocol requirement, not tested in production.
2. Cb = total capacitance of one bus line, in pF.
SDA
SCL
t
f(SDA)
t
su(SP)
t
w(SCLL)
t
su(SDA)
t
r(SDA)
t
su(SR)
t
h(ST)
t
w(SCLH)
t
h(SDA)
t
r(SCL)
t
f(SCL)
t
w(SP:SR)
START
REPEATED
START
STOP
START
AM09238V1
LSM303DLHC Module specifications
Doc ID 018771 Rev 1 13/42
2.5 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
c. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
Table 7. Absolute maximum ratings
Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
Vdd_IO I/O pins supply voltage -0.3 to 4.8 V
Vin Input voltage on any control pin (SCL, SDA) -0.3 to Vdd_IO +0.3 V
APOW Acceleration (any axis, powered, Vdd = 2.5 V) 3,000 for 0.5 ms g
10,000 for 0.1 ms g
AUNP Acceleration (any axis, unpowered) 3,000 for 0.5 ms g
10,000 for 0.1 ms g
TOP Operating temperature range -40 to +85 °C
TSTG Storage temperature range -40 to +125 °C
This is a mechanical shock sensitive device, improper handling can cause permanent
damage to the part.
This is an ESD sensitive device, improper handling can cause permanent damage to
the part.
Module specifications LSM303DLHC
14/42 Doc ID 018771 Rev 1
2.6 Terminology
2.6.1 Linear acceleration sensitivity
Linear acceleration sensitivity describes the gain of the accelerometer sensor and can be
determined by applying 1 g acceleration to it. As the sensor can measure DC accelerations,
this can be done easily by pointing the axis of interest towards the center of the Earth,
noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting
the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting
the larger output value from the smaller one, and dividing the result by 2, leads to the actual
sensitivity of the sensor. This value changes very little over temperature and also very little
over time. The sensitivity tolerance describes the range of sensitivities of a large population
of sensors.
2.6.2 Zero-g level
Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal
output signal if no acceleration is present. A sensor in a steady-state on a horizontal surface
measures 0 g in the X axis and 0 g in the Y axis whereas the Z axis measures 1 g. The
output is ideally in the middle of the dynamic range of the sensor (content of OUT registers
00h, data expressed as 2’s complement number). A deviation from the ideal value in this
case is called Zero-g offset. Offset is, to some extent, a result of stress to the MEMS sensor
and therefore the offset can slightly change after mounting the sensor onto a printed circuit
board or exposing it to extensive mechanical stress. Offset changes little over temperature,
see “Zero-g level change vs. temperature”. The Zero-g level tolerance (TyOff) describes the
standard deviation of the range of Zero-g levels of a population of sensors.
LSM303DLHC Functionality
Doc ID 018771 Rev 1 15/42
3 Functionality
The LSM303DLHC is a system-in-package featuring a 3D digital linear acceleration and 3D
digital magnetic field detection sensor.
The system includes specific sensing elements and an IC interface capable of measuring
both the linear acceleration and magnetic field applied on it and to provide a signal to the
external world through an I2C serial interface with separated digital output.
The sensing system is manufactured using specialized micromachining processes, while
the IC interfaces are realized using a CMOS technology that allows to design a dedicated
circuit which is trimmed to better match the sensing element characteristics.
The LSM303DLHC features two data-ready signals (RDY) which indicate when a new set of
measured acceleration data and magnetic data are available, therefore simplifying data
synchronization in the digital system that uses the device.
The LSM303DLHC may also be configured to generate a free-fall interrupt signal according
to a programmed acceleration event along the enabled axes.
Linear acceleration operating mode
LSM303DLHC provides two different acceleration operating modes, respectively reported
as “normal mode” and “low-power mode”. While normal mode guarantees high resolution,
low-power mode reduces further the current consumption.
Table 8 summarizes how to select the operating mode.
3.1 Factory calibration
The IC interface is factory calibrated for linear acceleration sensitivity (LA_So), and linear
acceleration Zero-g level (LA_TyOff).
The trimming values are stored inside the device by a non-volatile memory. Any time the
device is turned on, the trimming parameters are downloaded into the registers to be used
during the normal operation. This allows the user to use the device without further
calibration.
Table 8. Accelerometer operating mode selection
Operating mode CTRL_REG1[3]
(LPen bit)
CTRL_REG4[3]
(HR bit)
BW
[Hz]
Turn-on time
[ms]
Low-power mode 1 0 ODR/2 1
Normal mode 0 1 ODR/9 7/ODR
Application hints LSM303DLHC
16/42 Doc ID 018771 Rev 1
4 Application hints
Figure 4. LSM303DLHC electrical connection
4.1 capacitors
The C1 and C2 external capacitors should be low SR value ceramic type constructions (typ.
suggested value 200 mOhm). Reservoir capacitor C1 is nominally 4.7 µF in capacitance,
with the set/reset capacitor C2 nominally 0.22 µF in capacitance.
The device core is supplied through the Vdd line. Power supply decoupling capacitors
(C4=100 nF ceramic, C3=10 µF Al) should be placed as near as possible to the supply pin
of the device (common design practice). All the voltage and ground supplies must be
present at the same time to have proper behavior of the IC (refer to Figure 4).
The functionality of the device and the measured acceleration/magnetic field data is
selectable and accessible through the I2C interface.
The functions, the threshold, and the timing of the two interrupt pins (INT 1 and INT 2) can
be completely programmed by the user through the I2C interface.
4.2 Pull-up resistors
Pull-up resistors (suggested value 10 kOhm) are placed on the two I2C bus lines.
TOP VIEW
Vdd_IO
INT2
INT1
61
SCL
SDA
C1
C1=4.7uF
GND
813
C2=0.22uF
Vdd
C4 = 100nF
C3 = 10uF
Digital signal from/to signal controller.Signals levels are defined by proper selection of Vdd
Vdd I2C bus
Rpu
Rpu
10kOhm10kOhm
1
13
8
6
TOP VIEW
X
Z
Y
1
13
8
6
TOP VIEW
X
Z
Y
DRDY
AM09239V1
LSM303DLHC Application hints
Doc ID 018771 Rev 1 17/42
4.3 Digital interface power supply
This digital interface, dedicated to the linear acceleration and to the magnetic field signal, is
capable of operating with a standard power supply (Vdd) or using a dedicated power supply
(Vdd_IO).
4.4 Soldering information
The LGA package is compliant with the ECOPACK®, RoHS, and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems.
4.5 High current wiring effects
High current in the wiring and printed circuit trace can be culprits in causing errors in
magnetic field measurements for compassing.
Conductor generated magnetic fields add to the Earth’s magnetic field, causing errors in
compass heading computation.
Keep currents higher than 10 mA a few millimeters further away from the sensor IC.
Digital interfaces LSM303DLHC
18/42 Doc ID 018771 Rev 1
5 Digital interfaces
The registers embedded inside the LSM303DLHC are accessible through two separate I2C
serial interfaces, one for the accelerometer core and one for the magnetometer core.
5.1 I2C serial interface
The LSM303DLHC I2C is a bus slave. The I2C is employed to write the data into the
registers whon also be read back.
The relevant I2C terminology is given in the table below.
There are two signals associated with the I2C bus, the serial clock line (SCL) and the serial
data line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface.
Table 9. Serial interface pin description
PIN Name PIN Description
SCL I2C serial clock (SCL)
SDA I2C serial data (SDA)
Table 10. Serial interface pin description
Term Description
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master The device which initiates a transfer, generates clock signals, and terminates a
transfer
Slave The device addressed by the master
LSM303DLHC Digital interfaces
Doc ID 018771 Rev 1 19/42
5.1.1 I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and bit
8 tells whether the master is receiving data from the slave or transmitting data to the slave.
When an address is sent, each device in the system compares the first seven bits after a
start condition with its address. If they match, the device considers itself addressed by the
master.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LSM303DLHC behaves like a slave device and the following
protocol must be adhered to. After the start condition (ST) a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted; the
7 LSBs represent the actual register address while the MSB enables address auto-
increment. If the MSB of the SUB field is ‘1’, the SUB (register address) is automatically
increased to allow multiple data Read/Write.
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the most significant bit
(MSB) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
Table 11. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Table 12. Transfer when master is writing multiple bytes to slave:
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 13. Transfer when master is receiving (reading) one byte of data from slave:
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Digital interfaces LSM303DLHC
20/42 Doc ID 018771 Rev 1
5.1.2 Linear acceleration digital interface
For linear acceleration the default (factory) 7-bit slave address is 0011001b.
The slave address is completed with a Read/Write bit. If the bit is ‘1’ (read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write)
the master transmits to the slave with the direction unchanged. Table 14 explains how the
ead/write bit pattern is composed, listing all the possible configurations.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-
address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of the first register to be read.
In the presented communication format, MAK is master acknowledge and NMAK is no
master acknowledge.
Table 14. SAD+Read/Write patterns
Command SAD[7:1] R/W SAD+R/W
Read 0011001 1 00110011 (33h)
Write 0011001 0 00110010 (32h)
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD
+W SUB SR SAD
+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
LSM303DLHC Digital interfaces
Doc ID 018771 Rev 1 21/42
5.1.3 Magnetic field digital interface
For magnetic sensors the default (factory) 7-bit slave address is 0011110xb.
The slave address is completed with a Read/Write bit. If the bit is ‘1’ (read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (write)
the master transmits to the slave with the direction unchanged. Table 16 explains how the
SAD is composed.
Magnetic signal interface reading/writing
The interface uses an address pointer to indicate which register location is to be read from
or written to. These pointer locations are sent from the master to this slave device and
succeed the 7-bit address plus 1 bit Read/Write identifier.
To minimize the communication between the master and magnetic digital interface of
LSM303DLHC, the address pointer updates automatically without master intervention.
This automatic address pointer update has two additional features. First, when address 12
or higher is accessed, the pointer updates to address 00, and secondly, when address 08 is
reached, the pointer rolls back to address 03. Logically, the address pointer operation
functions as shown below.
If (address pointer = 08) then the address pointer = 03
Or else, if (address pointer >= 12) then the address pointer = 0
Or else, (address pointer) = (address pointer) + 1
The address pointer value itself cannot be read via the I2C bus.
Any attempt to read an invalid address location returns 0, and any write to an invalid
address location, or an undefined bit within a valid address location, is ignored by this
device.
Table 16. SAD
Command SAD[6:0] R/W SAD+R/W
Read 0011110 1 00111101 (3Dh)
Write 0011110 0 00111100 (3Ch)
Register mapping LSM303DLHC
22/42 Doc ID 018771 Rev 1
6 Register mapping
Table 17 provides a listing of the 8-bit registers embedded in the device and the related
addresses:
Table 17. Register address map
Name Slave
address Type
Register address
Default Comment
Hex Binary
Reserved (do not modify) Table 14 00 - 1F -- -- Reserved
CTRL_REG1_A Table 14 rw 20 010 0000 00000111
CTRL_REG2_A Table 14 rw 21 010 0001 00000000
CTRL_REG3_A Table 14 rw 22 010 0010 00000000
CTRL_REG4_A Table 14 rw 23 010 0011 00000000
CTRL_REG5_A Table 14 rw 24 010 0100 00000000
CTRL_REG6_A Table 14 rw 25 010 0101 00000000
REFERENCE_A Table 14 rw 26 010 0110 00000000
STATUS_REG_A Table 14 r 27 010 0111 00000000
OUT_X_L_A Table 14 r 28 010 1000 output
OUT_X_H_A Table 14 r 29 010 1001 output
OUT_Y_L_A Table 14 r 2A 010 1010 output
OUT_Y_H_A Table 14 r 2B 010 1011 output
OUT_Z_L_A Table 14 r 2C 010 1100 output
OUT_Z_H_A Table 14 r 2D 010 1101 output
FIFO_CTRL_REG_A Table 14 rw 2E 010 1110 00000000
FIFO_SRC_REG_A Table 14 r 2F 010 1111
INT1_CFG_A Table 14 rw 30 011 0000 00000000
INT1_SOURCE_A Table 14 r 31 011 0001 00000000
INT1_THS_A Table 14 rw 32 011 0010 00000000
INT1_DURATION_A Table 14 rw 33 011 0011 00000000
INT2_CFG_A Table 14 rw 34 011 0100 00000000
INT2_SOURCE_A Table 14 r 35 011 0101 00000000
INT2_THS_A Table 14 rw 36 011 0110 00000000
INT2_DURATION_A Table 14 rw 37 011 0111 00000000
CLICK_CFG_A Table 14 rw 38 011 1000 00000000
CLICK_SRC_A Table 14 rw 39 011 1001 00000000
CLICK_THS_A Table 14 rw 3A 011 1010 00000000
TIME_LIMIT_A Table 14 rw 3B 011 1011 00000000
LSM303DLHC Register mapping
Doc ID 018771 Rev 1 23/42
Registers marked as “reserved” must not be changed. The writing to these registers may
cause permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibrated values. Their content is automatically restored when the device is powered
up.
TIME_LATENCY_A Table 14 rw 3C 011 1100 00000000
TIME_WINDOW_A Table 14 rw 3D 011 1101 00000000
Reserved (do not modify) Table 14 3E-3F -- -- Reserved
CRA_REG_M Table 16 rw 00 00000000 0001000
CRB_REG_M Table 16 rw 01 00000001 0010000
MR_REG_M Table 16 rw 02 00000010 00000011
OUT_X_H_M Table 16 r 03 00000011 output
OUT_X_L_M Table 16 r 04 00000100 output
OUT_Z_H_M Table 16 r 05 00000101 output
OUT_Z_L_M Table 16 r 06 00000110 output
OUT_Y_H_M Table 16 r 07 00000111 output
OUT_Y_L_M Table 16 r 08 00001000 output
SR_REG_Mg Table 16 r 09 00001001 00000000
IRA_REG_M Table 16 r 0A 00001010 01001000
IRB_REG_M Table 16 r 0B 00001011 00110100
IRC_REG_M Table 16 r 0C 00001100 00110011
Reserved (do not modify) Table 16 0D-30 -- -- Reserved
TEMP_OUT_H_M Table 16 31 00000000 output
TEMP_OUT_L_M Table 16 32 00000000 output
Reserved (do not modify) Table 16 33-3A -- -- Reserved
Table 17. Register address map (continued)
Name Slave
address Type
Register address
Default Comment
Hex Binary
Register description LSM303DLHC
24/42 Doc ID 018771 Rev 1
7 Register description
The device contains a set of registers which are used to control its behavior and to retrieve
acceleration data. The register address, made up of 7 bits, is used to identify them and to
write the data through the serial interface.
7.1 Linear acceleration register description
7.1.1 CTRL_REG1_A (20h)
ODR<3:0> is used to set the power mode and ODR selection. In Table 20 all frequencies
resulting in a combination of ODR<3:0> are listed.
Table 18. CTRL_REG1_A register
ODR3 ODR2 ODR1 ODR0 LPen Zen Yen Xen
Table 19. CTRL_REG1_A description
ODR3-0 Data rate selection. Default value: 0
(0000: power-down, others: refer to Table 20.)
LPen Low-power mode enable. Default value: 0
(0: normal mode, 1: low-power mode)
Zen Z axis enable. Default value: 1
(0: Z axis disabled, 1: Z axis enabled)
Ye n Y axis enable. Default value: 1
(0: Y axis disabled, 1: Y axis enabled)
Xen X axis enable. Default value: 1
(0: X axis disabled, 1: X axis enabled)
Table 20. Data rate configuration
ODR3 ODR2 ODR1 ODR0 Power mode selection
0000Power-down mode
0 0 0 1 Normal / low-power mode (1 Hz)
0 0 1 0 Normal / low-power mode (10 Hz)
0 0 1 1 Normal / low-power mode (25 Hz)
0 1 0 0 Normal / low-power mode (50 Hz)
0 1 0 1 Normal / low-power mode (100 Hz)
0 1 1 0 Normal / low-power mode (200 Hz)
0 1 1 1 Normal / low-power mode (400 Hz)
LSM303DLHC Register description
Doc ID 018771 Rev 1 25/42
7.1.2 CTRL_REG2_A (21h)
7.1.3 CTRL_REG3_A (22h)
1000Low-power mode (1.620 KHz)
1 0 0 1 Normal (1.344 kHz) / low-power mode (5.376 KHz)
Table 20. Data rate configuration (continued)
ODR3 ODR2 ODR1 ODR0 Power mode selection
Table 21. CTRL_REG2_A register
HPM1 HPM0 HPCF2 HPCF1 FDS HPCLICK HPIS2 HPIS1
Table 22. CTRL_REG2_A description
HPM1 -HPM0 High pass filter mode selection. Default value: 00
(refer to Table 23)
HPCF2 -
HPCF1 High pass filter cut-off frequency selection
FDS
Filtered data selection. Default value: 0
(0: internal filter bypassed, 1: data from internal filter sent to output register and
FIFO)
HPCLICK High pass filter enabled for CLICK function.
(0: filter bypassed, 1: filter enabled)
HPIS2 High pass filter enabled for AOI function on Interrupt 2,
(0: filter bypassed, 1: filter enabled)
HPIS1 High pass filter enabled for AOI function on Interrupt 1,
(0: filter bypassed, 1: filter enabled)
Table 23. High pass filter mode configuration
HPM1 HPM0 High pass filter mode
0 0 Normal mode (reset reading HP_RESET_FILTER)
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Autoreset on interrupt event
Table 24. CTRL_REG3_A register
I1_CLICK I1_AOI1 I1_AOI2 I1_DRDY1 I1_DRDY2 I1_WTM I1_OVERRUN --
Register description LSM303DLHC
26/42 Doc ID 018771 Rev 1
7.1.4 CTRL_REG4_A (23h)
7.1.5 CTRL_REG5_A (24h)
Table 25. CTRL_REG3_A description
I1_CLICK CLICK interrupt on INT1. Default value 0.
(0: disable, 1: enable)
I1_AOI1 AOI1 interrupt on INT1. Default value 0.
(0: disable, 1: enable)
I1_AOI2 AOI2 interrupt on INT1. Default value 0.
(0: disable, 1: enable)
I1_DRDY1 DRDY1 interrupt on INT1. Default value 0.
(0: disable, 1: enable)
I1_DRDY2 DRDY2 interrupt on INT1. Default value 0.
(0: disable, 1: enable)
I1_WTM FIFO watermark interrupt on INT1. Default value 0.
(0: disable, 1: enable)
I1_OVERRUN FIFO overrun interrupt on INT1. Default value 0.
(0: disable, 1: enable)
Table 26. CTRL_REG4_A register
BDU BLE FS1 FS0 HR 0(1)
1. This bit must be set to ‘0’ for correct working of the device.
0(1) SIM
Table 27. CTRL_REG4_A description
BDU Block data update. Default value: 0
(0: continuos update, 1: output registers not updated until MSB and LSB
reading
BLE Big/little endian data selection. Default value 0.
(0: data LSB @ lower address, 1: data MSB @ lower address)
FS1-FS0 Full-scale selection. Default value: 00
(00: +/- 2G, 01: +/- 4G, 10: +/- 8G, 11: +/- 16G)
HR High resolution output mode: Default value: 0
(0: high resolution disable, 1: high resolution enable)
SIM SPI serial interface mode selection. Default value: 0
(0: 4-wire interface, 1: 3-wire interface).
Table 28. CTRL_REG5_A register
BOOT FIFO_EN -- -- LIR_INT1 D4D_INT1 LIR_INT2 D4D_INT2
LSM303DLHC Register description
Doc ID 018771 Rev 1 27/42
7.1.6 CTRL_REG6_A (25h)
7.1.7 REFERENCE/DATACAPTURE_A (26h)
Table 29. CTRL_REG5_A description
BOOT Reboot memory content. Default value: 0
(0: normal mode, 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disable, 1: FIFO enable)
LIR_INT1 Latch interrupt request on INT1_SRC register, with INT1_SRC register
cleared by reading INT1_SRC itself. Default value: 0.
(0: interrupt request not latched, 1: interrupt request latched)
D4D_INT1 4D enable: 4D detection is enabled on INT1 when 6D bit on INT1_CFG is set
to 1.
LIR_INT2 Latch interrupt request on INT2_SRC register, with INT2_SRC register
cleared by reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched, 1: interrupt request latched)
D4D_INT2 4D enable: 4D detection is enabled on INT2 when 6D bit on INT2_CFG is set
to 1.
Table 30. CTRL_REG6_A register
I2_CLICKen I2_INT1 I2_INT2 BOOT_I1 P2_ACT - - H_LACTIVE --
Table 31. CTRL_REG6_A description
I2_CLICKen CLICK interrupt on PAD2. Default value 0.
(0: disable, 1: enable)
I2_INT1 Interrupt 1 on PAD2. Default value 0.
(0: disable, 1: enable)
I2_INT2 Interrupt 2 on PAD2. Default value 0.
(0: disable, 1: enable)
BOOT_I1 Reboot memory content on PAD2. Default value: 0
(0: disable, 1: enable)
P2_ACT Active function status on PAD2. Default value 0.
(0: disable, 1: enable)
H_LACTIVE Interrupt active high, low. Default value 0.
(0: active high, 1: active low)
Table 32. REFERENCE_A register
Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
Register description LSM303DLHC
28/42 Doc ID 018771 Rev 1
7.1.8 STATUS_REG_A (27h)
7.1.9 OUT_X_L_A (28h), OUT_X_H_A (29h)
X-axis acceleration data. The value is expressed in 2’s complement.
7.1.10 OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh)
Y-axis acceleration data. The value is expressed in 2’s complement.
7.1.11 OUT_Z_L_A (2Ch), OUT_Z_H_A (2Dh)
Z-axis acceleration data. The value is expressed in 2’s complement.
Table 33. REFERENCE_A register description
Ref 7-Ref0 Reference value for interrupt generation. Default value: 0
Table 34. STATUS_A register
ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA
Table 35. STATUS_A register description
ZYXOR X, Y, and Z axis data overrun. Default value: 0
(0: no overrun has occurred, 1: a new set of data has overwritten the previous ones)
ZOR Z axis data overrun. Default value: 0
(0: no overrun has occurred, 1: a new data for the Z-axis has overwritten the previous
one)
YOR Y axis data overrun. Default value: 0
(0: no overrun has occurred,
1: a new data for the Y-axis has overwritten the previous one)
XOR X axis data overrun. Default value: 0
(0: no overrun has occurred,
1: a new data for the X-axis has overwritten the previous one)
ZYXDA X, Y, and Z axis new data available. Default value: 0
(0: a new set of data is not yet available, 1: a new set of data is available)
ZDA Z axis new data available. Default value: 0
(0: a new data for the Z-axis is not yet available,
1: a new data for the Z-axis is available)
YDA Y axis new data available. Default value: 0
(0: a new data for the Y-axis is not yet available,
1: a new data for the Y-axis is available)
XDA X axis new data available. Default value: 0
(0: a new data for the X-axis is not yet available,
1: a new data for the X-axis is available)
LSM303DLHC Register description
Doc ID 018771 Rev 1 29/42
7.1.12 FIFO_CTRL_REG_A (2Eh)
7.1.13 FIFO_SRC_REG_A (2Fh)
7.1.14 INT1_CFG_A (30h)
Table 36. REFERENCE_A register
FM1 FM0 TR FTH4 FTH3 FTH2 FTH1 FTH0
Table 37. REFERENCE_A register description
FM1-FM0 FIFO mode selection. Default value: 00 (see Table 38)
TR Trigger selection. Default value: 0
0: trigger event linked to trigger signal on INT1
1: trigger event linked to trigger signal on INT2
FTH4:0 Default value: 0
Table 38. FIFO mode configuration
FM1 FM0 FIFO mode configuration
0 0 Bypass mode
0 1 FIFO mode
1 0 Stream mode
1 1 Trigger mode
Table 39. FIFO_SRC_A register
WTM OVRN_FIFO EMPTY FSS4 FSS3 FSS2 FSS1 FSS0
Table 40. INT1_CFG_A register
AOI 6D ZHIE/
ZUPE
ZLIE/
ZDOWNE
YHIE/
YUPE
YLIE/
YDOWNE
XHIE/
XUPE
XLIE/
XDOWNE
Table 41. INT1_CFG_A description
AOI AND/OR combination of interrupt events. Default value: 0 (refer to Table 42)
6D 6-direction detection function enabled. Default value: 0 (refer to Table 42)
ZHIE/
ZUPE
Enable interrupt generation on Z high event or on direction recognition. Default
value: 0 (0: disable interrupt request, 1: enable interrupt request)
ZLIE/
ZDOWNE
Enable interrupt generation on Z low event or on direction recognition. Default
value: 0 (0: disable interrupt request, 1: enable interrupt request)
Register description LSM303DLHC
30/42 Doc ID 018771 Rev 1
Content of this register is loaded at boot. Write operation at this address is possible only
after system boot.
Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when orientation moves
from unknown zone to known zone. The interrupt signal stays for a duration ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when orientation is inside a
known zone. The interrupt signal stays until orientation is inside the zone.
7.1.15 INT1_SRC_A (31h)
YHIE/
YUPE
Enable interrupt generation on Y high event or on direction recognition. Default
value: 0 (0: disable interrupt request, 1: enable interrupt request.)
YLIE/
YDOWNE
Enable interrupt generation on Y low event or on direction recognition. Default
value: 0 (0: disable interrupt request, 1: enable interrupt request.)
XHIE/
XUPE
Enable interrupt generation on X high event or on direction recognition. Default
value: 0 (0: disable interrupt request, 1: enable interrupt request.)
XLIE/XDOWNE Enable interrupt generation on X low event or on direction recognition. Default
value: 0 (0: disable interrupt request, 1: enable interrupt request.)
Table 42. Interrupt mode
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Table 41. INT1_CFG_A description (continued)
Table 43. INT1_SRC_A register
0(1)
1. This bit must be set to ‘0’ for correct working of the device.
IA ZH ZL YH YL XH XL
Table 44. INT1_SRC_A description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated, 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt, 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
LSM303DLHC Register description
Doc ID 018771 Rev 1 31/42
Interrupt 1 source register. Read only register.
Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1
pin) and allows the refreshing of data in the INT1_SRC register if the latched option was
chosen.
7.1.16 INT1_THS_A (32h)
7.1.17 INT1_DURATION_A (33h)
D6 - D0 bits set the minimum duration of the Interrupt 1 event to be recognized. Duration
steps and maximum values depend on the ODR chosen.
7.1.18 INT2_CFG_A (34h)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Table 44. INT1_SRC_A description (continued)
Table 45. INT1_THS_A register
0(1)
1. This bit must be set to ‘0’ for correct working of the device.
THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 46. INT1_THS_A description
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000
Table 47. INT1_DURATION_A register
0(1)
1. This bit must be set to ‘0’ for correct working of the device.
D6 D5 D4 D3 D2 D1 D0
Table 48. INT1_DURATION_A description
D6 - D0 Duration value. Default value: 000 0000
Table 49. INT2_CFG_A register
AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE
Register description LSM303DLHC
32/42 Doc ID 018771 Rev 1
Difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when orientation moves
from unknown zone to known zone. The interrupt signal stays for a duration ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when orientation is inside a
known zone. The interrupt signal stays until orientation is inside the zone.
7.1.19 INT2_SRC_A (35h)
Table 50. INT2_CFG_A description
AOI AND/OR combination of interrupt events. Default value: 0
(see Table 51)
6D 6-direction detection function enabled. Default value: 0 (refer to Table 51)
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request,
1: enable interrupt request on measured accel. value lower than preset threshold)
Table 51. Interrupt mode
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Table 52. INT2_SRC_A register
0(1)
1. This bit must be set to ‘0’ for correct working of the device.
IA ZH ZL YH YL XH XL
LSM303DLHC Register description
Doc ID 018771 Rev 1 33/42
Interrupt 2 source register. Read only register.
Reading at this address clears INT2_SRC IA bit (and the interrupt signal on the INT 2 pin)
and allows the refreshing of data in the INT2_SRC register if the latched option was chosen.
7.1.20 INT2_THS_A (36h)
7.1.21 INT2_DURATION_A (37h)
Table 53. INT2_SRC_A description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated, 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt, 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X Low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Table 54. INT2_THS_A register
0(1)
1. This bit must be set to ‘0’ for correct working of the device
THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 55. INT2_THS_A description
THS6 - THS0 Interrupt 1 threshold. Default value: 000 0000
Table 56. INT2_DURATION_A register
0(1)
1. This bit must be set to ‘0’ for correct working of the device
D6 D5 D4 D3 D2 D1 D0
Table 57. INT2_DURATION_A description
D6-D0 Duration value. Default value: 000 0000
Register description LSM303DLHC
34/42 Doc ID 018771 Rev 1
D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration
time steps and maximum values depend on the ODR chosen.
7.1.22 CLICK_CFG_A (38h)
7.1.23 CLICK_SRC_A (39h)
Table 58. CLICK_CFG_A register
-- -- ZD ZS YD YS XD XS
Table 59. CLICK_CFG_A description
ZD Enable interrupt double CLICK on Z axis. Default value: 0
(0: disable interrupt request, 1: enable interrupt request on measured accel. value
higher than preset threshold)
ZS Enable interrupt single CLICK on Z axis. Default value: 0
(0: disable interrupt request, 1: enable interrupt request on measured accel. value
higher than preset threshold)
YD Enable interrupt double CLICK on Y axis. Default value: 0
(0: disable interrupt request, 1: enable interrupt request on measured accel. value
higher than preset threshold)
YS Enable interrupt single CLICK on Y axis. Default value: 0
(0: disable interrupt request, 1: enable interrupt request on measured accel. value
higher than preset threshold)
XD Enable interrupt double CLICK on X axis. Default value: 0
(0: disable interrupt request, 1: enable interrupt request on measured accel. value
higher than preset threshold)
XS Enable interrupt single CLICK on X axis. Default value: 0
(0: disable interrupt request, 1: enable interrupt request on measured accel. value
higher than preset threshold)
Table 60. CLICK_SRC_A register
-- IA DCLICK SCLICK Sign Z Y X
Table 61. CLICK_SRC_A description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated, 1: one or more interrupts have been generated)
DCLICK Double CLICK-CLICK enable. Default value: 0 (0:double CLICK-CLICK detection dis-
able, 1: double CLICK-CLICK detection enable)
SCLICK Single CLICK-CLICK enable. Default value: 0 (0:Single CLICK-CLICK detection dis-
able, 1: single CLICK-CLICK detection enable)
Sign CLICK-CLICK Sign. 0: positive detection, 1: negative detection
LSM303DLHC Register description
Doc ID 018771 Rev 1 35/42
7.1.24 CLICK_THS_A (3Ah)
1 LSB = full-scale / 128. THS6 through THS0 define the threshold which is used by the
system to start the click detection procedure. The threshold value is expressed over 7 bits
as an unsigned number.
7.1.25 TIME_LIMIT_A (3Bh)
1 LSB = 1/ODR. TLI7 through TLI0 define the maximum time interval that can elapse
between the start of the click detection procedure (the acceleration on the selected channel
exceeds the programmed threshold) and when the acceleration goes back below the
threshold.
7.1.26 TIME_LATENCY_A (3Ch)
Z Z CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
Y Y CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
X X CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: X high event has occurred)
Table 61. CLICK_SRC_A description (continued)
Table 62. CLICK_THS_A register
-- Ths6 Ths5 Ths4 Ths3 Ths2 Ths1 Ths0
Table 63. CLICK_SRC_A description
Ths6-Ths0 CLICK-CLICK threshold. Default value: 000 0000
Table 64. TIME_LIMIT_A register
-- TLI6 TLI5 TLI4 TLI3 TLI2 TLI1 TLI0
Table 65. TIME_LIMIT_A description
TLI7-TLI0 CLICK-CLICK time limit. Default value: 000 0000
Table 66. TIME_LATENCY_A register
TLA7 TLA6 TLA5 TLA4 TLA3 TLA2 TLA1 TLA0
Table 67. TIME_LATENCY_A description
TLA7-TLA0 CLICK-CLICK time latency. Default value: 000 0000
Register description LSM303DLHC
36/42 Doc ID 018771 Rev 1
1 LSB = 1/ODR. TLA7 through TLA0 define the time interval that starts after the first click
detection where the click detection procedure is disabled, in cases where the device is
configured for double click detection.
7.1.27 TIME WINDOW_A (3Dh)
1 LSB = 1/ODR. TW7 through TW0 define the maximum interval of time that can elapse
after the end of the latency interval in which the click detection procedure can start, in cases
where the device is configured for double click detection.
7.2 Magnetic field sensing register description
7.2.1 CRA_REG_M (00h)
Table 68. TIME_WINDOW_A register
TW7 TW6 TW5 TW4 TW3 TW2 TW1 TW0
Table 69. TIME_WINDOW_A description
TW7-TW0 CLICK-CLICK time window
Table 70. CRA_REG_M register
TEMP_EN 0(1)
1. This bit must be set to ‘0’ for correct working of the device
0(1) DO2 DO1 DO0 0(1) 0(1)
Table 71. CRA_REG_M description
TEMP _EN Temperature sensor enable.
0: temperature sensor disabled (default), 1: temperature sensor enabled
DO2 to DO0 Data output rate bits. These bits set the rate at which data is written to all three data
output registers (refer to Table 72). Default value: 100
Table 72. Data rate configurations
DO2 DO1 DO0 Minimum data output rate (Hz)
00 0 0.75
00 1 1.5
01 0 3.0
01 1 7.5
1 0 0 15
10 1 30
LSM303DLHC Register description
Doc ID 018771 Rev 1 37/42
7.2.2 CRB_REG_M (01h)
7.2.3 MR_REG_M (02h)
11 0 75
11 1 220
Table 72. Data rate configurations (continued)
DO2 DO1 DO0 Minimum data output rate (Hz)
Table 73. CRA_REG register
GN2 GN1 GN0 0(1)
1. This bit must be set to ‘0’ for correct working of the device.
0(1) 0(1) 0(1) 0(1)
Table 74. CRA_REG description
GN1-0 Gain configuration bits. The gain configuration is common for all channels (refer to
Table 75)
Table 75. Gain setting
GN2 GN1 GN0
Sensor input
field range
[Gauss]
Gain X, Y, and
Z
[LSB/Gauss]
Gain Z
[LSB/Gauss] Output range
001 ±1.3 1100 980
0xF800–0x07FF
(-2048–2047)
0 1 0 ±1.9 855 760
0 1 1 ±2.5 670 600
1 0 0 ±4.0 450 400
1 0 1 ±4.7 400 355
1 1 0 ±5.6 330 295
1 1 1 ±8.1 230 205
Table 76. MR_REG
0(1)
1. This bit must be set to ‘0’ for correct working of the device.
0(1) 0(1) 0(1) 0(1) 0(1) MD1 MD0
Table 77. MR_REG description
MD1-0 Mode select bits. These bits select the operation mode of this device (refer to
Table 78)
Register description LSM303DLHC
38/42 Doc ID 018771 Rev 1
7.2.4 OUT_X_H_M (03), OUT_X_LH_M (04h)
X-axis magnetic field data. The value is expressed as 2’s complement.
7.2.5 OUT_Z_H_M (05), OUT_Z_L_M (06h)
Z-axis magnetic field data. The value is expressed as 2’s complement.
7.2.6 OUT_Y_H_M (07), OUT_Y_L_M (08h)
Y-axis magnetic field data. The value is expressed as 2’s complement.
7.2.7 SR_REG_M (09h)
7.2.8 IR_REG_M (0Ah/0Bh/0Ch)
Table 78. Magnetic sensor operating mode
MD1 MD0 Mode
0 0 Continuous-conversion mode
0 1 Single-conversion mode
1 0 Sleep-mode. Device is placed in sleep-mode
1 1 Sleep-mode. Device is placed in sleep-mode
Table 79. SR register
-- -- -- -- -- -- LOCK DRDY
Table 80. SR register description
LOCK Data output register lock. Once a new set of measurements is available, this bit is
set when the first magnetic file data register has been read.
DRDY Data ready bit. This bit is when a new set of measurements are available.
Table 81. IRA_REG_M
01001000
Table 82. IRB_REG_M
00110100
Table 83. IRC_REG_M
00110011
LSM303DLHC Register description
Doc ID 018771 Rev 1 39/42
7.2.9 TEMP_OUT_H_M (31h), TEMP_OUT_L_M (32h)
Table 84. TEMP_OUT_H_M register
TEMP11 TEMP10 TEMP9 TEMP8 TEMP7 TEMP6 TEMP5 TEMP4
Table 85. TEMP_OUT_L_M register
TEMP3 TEMP2 TEMP1 TEMP0 -- -- -- --
Table 86. TEMP_OUT resolution
TEMP11-0 Temperature data (8LSB/deg - 12-bit resolution). The value is expressed as
2’s complement.
Package information LSM303DLHC
40/42 Doc ID 018771 Rev 1
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions, and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Figure 5. LGA-14: mechanical data and package dimensions
Dimensions
Ref. mm
Min. Typ. Max.
A1 1
A2 0.785
A3 0.16 0.2 0.24
D1 2.8533.15
E1 4.8555.15
N1 0.8
L1 4
T1 0.8
T2 0.5
M 0.1
k 0.05
LGA 3x5x1 14L
Land Grid Array Package
Outline and
8265271_A
mechanical data
LSM303DLHC Revision history
Doc ID 018771 Rev 1 41/42
9 Revision history
Table 87. Document revision history
Date Revision Changes
21-Apr-2011 1 Initial release.
LSM303DLHC
42/42 Doc ID 018771 Rev 1
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com