The RF MOSFET Line
  
 
  
Designed for wideband large–signal amplifier and oscillator applications up to
400 MHz range, in single ended configuration.
Guaranteed 28 Volt, 150 MHz Performance
Output Power = 15 Watts
Narrowband Gain = 16 dB (Typ)
Efficiency = 60% (Typical)
Small–Signal and Large–Signal
Characterization
100% Tested For Load
Mismatch At All Phase
Angles With 30:1 VSWR
Excellent Thermal Stability,
Ideally Suited For Class A
Operation
Facilitates Manual Gain
Control, ALC and
Modulation Techniques
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Rating
Symbol
Value
Unit
Drain–Source Voltage VDSS 65 Vdc
Drain–Gate Voltage (RGS = 1.0 M) VDGR 65 Vdc
Gate–Source Voltage VGS ±40 Vdc
Drain Current — Continuous ID2.5 Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°CPD55
0.314 Watts
W/°C
Storage Temperature Range Tstg 65 to +150 °C
Operating Junction Temperature TJ200 °C
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case RθJC 3.2 °C/W
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.

15 W, to 400 MHz
N–CHANNEL
MOS BROADBAND
RF POWER FET
CASE 211–07, STYLE 2
D
G
S
Order this document
by MRF136/D
SEMICONDUCTOR TECHNICAL DATA
1
REV 7
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS (1)
Drain–Source Breakdown Voltage
(VGS = 0, ID = 5.0 mA) V(BR)DSS 65 Vdc
Zero–Gate Voltage Drain Current
(VDS = 28 V, VGS = 0) IDSS 2.0 mAdc
Gate–Source Leakage Current
(VGS = 40 V, VDS = 0) IGSS 1.0 µAdc
ON CHARACTERISTICS (1)
Gate Threshold Voltage
(VDS = 10 V, ID = 25 mA) VGS(th) 1.0 3.0 6.0 Vdc
Forward T ransconductance
(VDS = 10 V, ID = 250 mA) gfs 250 400 mmhos
DYNAMIC CHARACTERISTICS (1)
Input Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss 24 pF
Output Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz) Coss 27 pF
Reverse T ransfer Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz) Crss 5.5 pF
FUNCTIONAL CHARACTERISTICS
Noise Figure
(VDS = 28 Vdc, ID = 500 mA, f = 150 MHz) NF 1.0 dB
Common Source Power Gain (Figure 1)
(VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) Gps 13 16 dB
Drain Efficiency (Figure 1)
(VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) η50 60 %
Electrical Ruggedness (Figure 1)
(VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA,
VSWR 30:1 at all Phase Angles)
ψNo Degradation in Output Power
NOTES:
1. Each side measured separately.
2
REV 7
Figure 1. 150 MHz Test Circuit
C1, C2 — Arco 406, 15115 pF or Equivalent
C3 — Arco 404, 860 pF or Equivalent
C4 — 43 pF Mini–Unelco or Equivalent
C5 — 24 pF Mini–Unelco or Equivalent
C6 — 680 pF, 100 Mils Chip
C7 — 0.01 µF Ceramic
C8 — 100 µF, 40 V
C9 — 0.1 µF Ceramic
C10, C11 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
L1 — 2 T urns, 0.29 ID, #18 AWG, 0.10 Long
L2 — 2 T urns, 0.23 ID, #18 AWG, 0.10 Long
L3 — 2–1/4 T urns, 0.29 ID, #18 AWG, 0.125 Long
RFC1 — 20 T urns, 0.30 ID, #20 AWG Enamel Closewound
RFC2 — Ferroxcube VK–200 — 19/4B
R1 — 27 , 1 W Thin Film
R2 — 10 k, 1/4 W
R3 — 10 T urns, 10 k
R4 — 1.8 k, 1/2 W
Board Material — 0.062 G10, 1 oz. Cu Clad, Double Sided
R4 C10
D1 C8 +
RFC1
C7
C1 L1
R2
R1
C9
C4 C3
C2
RF INPUT
L2
RFC2
L3
DUT
RF OUTPUT
C6
C5
C11 VDD = +28 V
R3
BIAS
ADJUST
3
REV 7
TYPICAL CHARACTERISTICS
400
Figure 2. Output Power versus Input Power Figure 3. Output Power versus Input Power
Figure 4. Output Power versus Input Power Figure 5. Output Power versus Supply Voltage
Figure 6. Output Power versus Supply Voltage Figure 7. Output Power versus Supply Voltage
2020
18
16
14
12
10
8
6
4
2
00 200 600 800 1000
f = 100 MHz
f = 400 MHz
IDQ = 25 mA
150 MHz 200 MHz f = 100 MHz
VDD = 13.5 V
IDQ = 25 mA
Pin, INPUT POWER (MILLWATTS)
Pout, OUTPUT POWER (W ATTS)
20
18
16
14
12
10
8
6
4
2
001234
P
in, INPUT POWER (W ATTS)
Pout, OUTPUT POWER (W ATTS)
10
9
8
7
6
5
4
3
2
1
00 200 400 600 800 1000
Pin, INPUT POWER (MILLWATTS)
Pout, OUTPUT POWER (W ATTS)
200 MHz
150 MHz
24
21
18
15
12
9
6
3
012 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
Pout, OUTPUT POWER (W ATTS)
14 18 22 26
400 mW
200 mW
0.7 W
VDD = 28 V
VDD = 13.5 V
IDQ = 25 mA
f = 100 MHz
Pin = 600 mW
12 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS)
14 18 22 26
600 mW
300 mW
IDQ = 25 mA
f = 150 MHz
Pin = 900 mW
24
21
18
15
12
9
6
3
012 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS)
14 18 22 26
0.4 W
Pin = 1 W
IDQ = 25 mA
f = 200 MHz
VDD = 28 V
IDQ = 25 mA
24
21
18
15
12
9
6
3
0
4
REV 7
TYPICAL CHARACTERISTICS
VGS, GATE–SOURCE VOLTAGE (VOLTS)
Figure 8. Output Power versus Supply Voltage Figure 9. Output Power versus Gate Voltage
Figure 10. Drain Current versus Gate Voltage
(Transfer Characteristics) Figure 11. Gate–Source Voltage versus
Case Temperature
Figure 12. Capacitance versus Drain–Source Voltage Figure 13. DC Safe Operating Area
12 16 20 24 28
VDD, SUPPLY VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS)
14 18 22 26
2 W
IDQ = 25 mA
f = 400 MHz Pin = 3 W
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
20
18
16
14
12
10
8
6
4
2
0
016202428
V
DS, DRAIN–SOURCE VOLT AGE (VOLTS)
25 25 75 125 175
TC, CASE TEMPERATURE (
°
C)
0 50 100 150
0.94
–7
P
out, OUTPUT POWER (W ATTS)
16
14
12
10
8
6
4
2
0
4812
1.04
1.03
1.02
1.01
1
0.99
0.98
0.97
0.96
0.95
04567
V
DS, GATE–SOURCE VOLTAGE (VOLTS)
123
0
100
180
60
40
20
–6 –5 –4 –3 –2 1 0 1 2 3
1 W
VDS = 28 V ID = 750 mA
25 mA
500 mA
250 mA
13020 50 100
VDS, DRAIN–SOURCE VOLT AGE (VOLTS)
23 5
0.1 10 70
10
5
3
2
1
0.3
0.2
VDS = 10 V
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
VDD = 28 V
IDQ = 25 mA
Pin = CONSTANT
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
VGS = 0 V
f = 1 MHz
Coss
Ciss
Crss
TC = 25
°
C
400 MHz
400 MHz150 MHz
ID, DRAIN CURRENT (MILLAMPS)
ID, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
VGS, GATE-SOURCE VOLTAGE (NORMALIZED)
5
REV 7
TYPICAL CHARACTERISTICS
Figure 14. Output Power versus Input Power Figure 15. Output Power versus Gate Voltage
TYPICAL 400 MHz PERFORMANCE
VDD = 28 V
IDQ = 100 mA
f = 400 MHz
VDD = 28 V
IDQ = 100 mA
Pin = CONSTANT
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
40
35
30
25
20
15
10
5
0–4 –2 0 2 4
VGS, GATE–SOURCE VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS)
–3 1 1 3
40
35
30
25
20
15
10
5
00 1 2.5 3.5
Pin, INPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
0.5 1.5 2 3
f = 400 MHz
6
REV 7
Figure 16. Large–Signal Series Equivalent
Input Impedance, ZinFigure 17. Large–Signal Series Equivalent
Output Impedance, ZOL*
Figure 18. Input and Outut Impedance
400
200
150
f = 100 MHz
Zin
{
VDD = 28 V, IDQ = 25 mA,
Pout = 15 W
{
27
Shunt Resistor Gate–to–Ground
f
MHz Zin
{
OHMS
100
150
200
400
7.5 – j9.73
4.11 – j7.56
2.66 – j6.39
2.39 – j2.18
400
200
150
f = 100 MHz
ZOL*
VDD = 28 V, IDQ = 25 mA,
Pout = 15 W
ZOL* = Conjugate of the
optimum load impedance into
which the device operates at
a given output power , voltage
and frequency.
f
MHz ZOL*
OHMS
100
150
200
400
13.7 – j16.8
9.08 – j15.38
4.74 – j8.92
4.28 – j4.17
400
225
150
f = 30 MHz
ZOL*
100
50
Zin
f = 30 MHz
50
100
150
225
400
Feedback loops: 560 ohms in series with 0.1
µ
F
Drain to gate, each side of push–pull FET
ZOL* = Conjugate of the optimum load imped-
ance into which the device operates at a given
output power, voltage and frequency.
VDD = 28 V, IDQ = 100 mA,
Pout = 30 W
f
MHz Zin
{
Ohms ZOL*
Ohms
30
50
100
150
225
400
59.3 – j24
48 – j33.5
20.5 – j34.2
4.77 – j25.4
3 – j9.5
2.34 – j3.31
40.1 – j8.52
37 – j11.9
29 – j16.5
20.6 – j19
13 – j16.7
10.2 – j14.3
Zin & ZOL* are given
from drain–to–drain and
gate–to–gate respectively .
7
REV 7
fS11 S21 S12 S22
f
(MHz) |S11|φ|S21|φ|S12|φ|S22|φ
2.0 0.988 –11 41.19 173 0.006 67 0.729 –12
5.0 0.970 –27 40.07 164 0.014 62 0.720 –31
10 0.923 –52 35.94 149 0.026 54 0.714 –58
20 0.837 –88 27.23 129 0.040 36 0.690 –96
30 0.784 111 20.75 117 0.046 27 0.684 –118
40 0.751 125 16.49 108 0.048 22 0.680 131
50 0.733 135 13.41 103 0.050 19 0.679 139
60 0.720 –142 11.43 99 0.050 16 0.678 145
70 0.709 147 9.871 96 0.050 14 0.679 149
80 0.707 152 8.663 93 0.051 13 0.683 153
90 0.706 155 7.784 91 0.051 13 0.682 155
100 0.708 157 7.008 88 0.051 13 0.680 157
110 0.711 159 6.435 86 0.051 14 0.681 158
120 0.714 161 5.899 85 0.051 15 0.682 159
130 0.717 163 5.439 82 0.052 16 0.684 160
140 0.720 164 5.068 80 0.052 17 0.684 161
150 0.723 165 4.709 80 0.052 18 0.686 161
160 0.727 166 4.455 78 0.052 18 0.690 161
170 0.732 167 4.200 77 0.052 18 0.694 162
180 0.735 168 3.967 75 0.052 19 0.699 162
190 0.738 169 3.756 74 0.052 19 0.703 163
200 0.740 170 3.545 73 0.052 20 0.706 163
225 0.746 171 3.140 69 0.053 22 0.717 163
250 0.742 172 2.783 67 0.053 25 0.724 163
275 0.744 173 2.540 64 0.054 27 0.724 163
300 0.751 174 2.323 60 0.055 29 0.736 163
325 0.757 175 2.140 58 0.058 32 0.749 163
350 0.760 176 1.963 54 0.059 35 0.758 163
375 0.762 177 1.838 52 0.062 38 0.768 163
400 0.774 179 1.696 50 0.065 41 0.783 163
425 0.775 179 1.590 48 0.068 43 0.793 163
450 0.781 +179 1.493 46 0.071 46 0.805 163
475 0.787 +177 1.415 43 0.074 47 0.813 164
500 0.792 +176 1.332 40 0.079 48 0.825 164
525 0.797 +175 1.259 38 0.083 50 0.831 164
550 0.801 +175 1.185 37 0.088 51 0.843 164
575 0.810 +174 1.145 36 0.094 52 0.855 164
600 0.816 +173 1.091 34 0.101 52 0.869 165
625 0.818 +171 1.041 32 0.106 53 0.871 165
650 0.825 +170 0.994 30 0.112 53 0.884 165
675 0.834 +169 0.962 29 0.119 53 0.890 165
700 0.837 +168 0.922 27 0.127 53 0.906 166
725 0.836 +167 0.879 25 0.133 52 0.909 167
750 0.841 +166 0.838 25 0.140 53 0.917 167
775 0.844 +165 0.824 24 0.148 52 0.933 167
800 0.846 +163 0.785 21 0.154 50 0.941 168
Table 1. Common Source Scattering Parameters
VDS = 28 V, ID = 0.5 A
8
REV 7
S11
+90
°
+120
°
+150
°
0
°
–150
°
–120
°
–60
°
–30
°
+30
°
+60
°
S12
70
10 25 50 100 150 250 500
+j50
+j100
+j150
+j250
+j500
j500
j250
j150
j100
j50
j25
j10
0
+j10
+j25
400 70
S22
150
Figure 19. S11, Input Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
Figure 20. S12, Reverse Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
Figure 21. S21, Forward Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
Figure 22. S22, Output Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
10 25 50 100 150 250 500
+j50
+j100
+j150
+j250
+j500
j500
j250
j150
j100
j50
j25
j10
0
+j10
+j25
+90
°
+120
°
+150
°
180
°
0
°
–150
°
–120
°
–90
°
–60
°
–30
°
+30
°
+60
°
f = 800 MHz
842
6400
100
150
70
–90
°
0.16 0.12 0.08 0.04
0.06
600
0.020.18
180
°
0.14 0.10
400
f = 800 MHz
400
150
70
S21
f = 800 MHz
f = 800 MHz
9
REV 7
DESIGN CONSIDERATIONS
The MRF136 is an RF power N–Channel enhancement
mode field–ef fect transistor (FET) designed especially for HF
and VHF power amplifier applications. M/A-COM RF MOS
FETs feature planar design for optimum manufacturability.
M/A-COM Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power FETs include high gain,
low noise, simple bias systems, relative immunity from ther-
mal runaway, and the ability to withstand severely mis-
matched loads without suffering damage. Power output can
be varied over a wide range with a low power dc control signal,
thus facilitating manual gain control, ALC and modulation.
DC BIAS
The MRF136 is an enhancement mode FET and, therefore,
does not conduct when drain voltage is applied without gate
bias. A positive gate voltage causes drain current to flow (see
Figure 10). RF power FETs require forward bias for optimum
gain and power output. A Class AB condition with quiescent
drain current (IDQ) in the 25–100 mA range is sufficient for
many applications. For special requirements such as linear
amplification, IDQ may have to be adjusted to optimize the
critical parameters.
The MOS gate is a dc open circuit. Since the gate bias circuit
does not have to deliver any current to the FET, a simple
resistive divider arrangement may sometimes suffice for this
function. Special applications may require more elaborate
gate bias systems.
GAIN CONTROL
Power output of the MRF136 may be controlled from rated
values down to the milliwatt region (>20 dB reduction in power
output with constant input power) by varying the dc gate
voltage. This feature, not available in bipolar RF power
devices, facilitates the incorporation of manual gain control,
AGC/ALC and modulation schemes into system designs. A
full range of power output control may require dc gate voltage
excursions into the negative region.
AMPLIFIER DESIGN
Impedance matching networks similar to those used with
bipolar transistors are suitable for MRF136. See M/A-COM
Application Note AN721, Impedance Matching Networks
Applied to RF Power T ransistors. Both small signal scattering
parameters and large signal impedance parameters are
provided. Large signal impedances should be used for
network designs wherever possible. While the s parameters
will not produce an exact design solution for high power
operation, they do yield a good first approximation. This is
particularly useful at frequencies outside those presented in
the large signal impedance plots.
RF power FETs are triode devices and are therefore not
unilateral. This, coupled with the very high gain, yields a
device capable of self oscillation. Stability may be achieved
using techniques such as drain loading, input shunt resistive
loading, or feedback. S parameter stability analysis can
provide useful information in the selection of loading and/or
feedback to insure stable operation. The MRF136 was
characterized with a 27 ohm input shunt loading resistor.
For further discussion of RF amplifier stability and the use
of two port parameters in RF amplifier design, see M/A-COM
Application Note AN215A.
LOW NOISE OPERATION
Input resistive loading will degrade noise performance, and
noise figure may vary significantly with gate driving imped-
ance. A low loss input matching network with its gate
impedance optimized for lowest noise is recommended.
10
REV 7
PACKAGE DIMENSIONS
CASE 211–07
ISSUE N
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
A
UM
M
Q
RB
1
4
32
D
K
E
SEATING
PLANE
C
J
H
S
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.960 0.990 24.39 25.14
B0.370 0.390 9.40 9.90
C0.229 0.281 5.82 7.13
D0.215 0.235 5.47 5.96
E0.085 0.105 2.16 2.66
H0.150 0.108 3.81 4.57
J0.004 0.006 0.11 0.15
K0.395 0.405 10.04 10.28
M40 50 40 50
Q0.113 0.130 2.88 3.30
R0.245 0.255 6.23 6.47
S0.790 0.810 20.07 20.57
U0.720 0.730 18.29 18.54
____
STYLE 2:
PIN 1. SOURCE
2. GATE
3. SOURCE
4. DRAIN
11
Specifications subject to change without notice.
n North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 7