©2001 Semiconductor Components Industries, LLC.
October-2017, Rev. 3
Publication Order Number:
HUF75639S3S/D
HUF75639G3, HUF75639P3, HUF75639S3S,
HUF75639S3
N-Channel UltraFET Power MOSFET
100 V, 56 A, 25 mΩ
These N-Channel power MOSFETs are manufactured
using the innovative UltraFET process. This advanced
process technology achieves the lowest possible on-
resistance per silicon area, resulting in outstanding
performance. This device is capable of withstanding high
energy in the avalanche mode and the diode exhibits very
low reverse recovery time and stored charge. It was
designed for use in applications where power efficiency is
important, such as switching regulators, switching
converters, motor drivers, relay drivers, low-voltage bus
switches, and power management in portable and battery-
operated products.
Formerly developmental type TA75639.
Features
56A, 100V
Simulation Models
-Temperature Compensated PSPICE® and SABER™
Electrical Models
-Spice and Saber Thermal Impedance Models
-www.onsemi.com
Peak Current vs Pulse Width Curve
UIS Rating Curve
Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Ordering Information
PART NUMBER PACKAGE BRAND
HUF75639G3 TO-247 75639G
HUF75639P3 TO-220AB 75639P
HUF75639S3STTO-263AB 75639S
HUF75639S3 TO-262AA 75639S
D
G
S
Packaging
JEDEC STYLE TO-247 JEDEC TO-220AB
JEDEC TO-263AB TO-262AA
SOURCE
DRAIN
GATE
DRAIN
(TAB)
DRAIN
SOURCE
GATE
DRAIN
(FLANGE)
GATE
SOURCE
DRAIN
(FLANGE)
DRAIN
SOURCE
GATE
DRAIN
(TAB)
Data Sheet October 2013
Symbol
www.onsemi.com
2
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 100 V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V DGR 100 V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 56
Figure 4 A
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figures 6, 14, 15
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
1.35 W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 t o 175 oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300
260
oC
oC
CAUTION : Stresses ab ove those listed in “ Absolute M aximum Rati ngs” may cause p ermanen t damage to the device. This is a stress on ly rating and operatio n of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications TC = 25oC, Unless Otherwise Spec ified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source B reakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) 100 - - V
Zero Gate Vo ltage Drain C urrent IDSS VDS = 95V, VGS = 0V - - 1 µA
VDS = 90V, VGS = 0V, TC = 150oC--250µA
Gate to Source Leakage Current IGSS VGS = ±20V - - ±100 nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V
Drain to Source On Resist ance rDS(ON) ID = 56A, VGS = 10V (Figure 9) - 0.021 0.025
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case RθJC (Figure 3) - - 0.74 oC/W
Thermal Resistance Junction to Ambient RθJA TO-247 - - 30 oC/W
TO-220, TO-263, TO-262 - - 62 oC/W
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time tON VDD = 50V, ID 56A,
RL = 0.89, VGS = 10V,
RGS = 5.1
--110ns
Turn-On De lay Time td(ON) -15- ns
Rise Time tr-60- ns
Turn-Off De lay Time td(OFF) -20- ns
Fall Time tf-25- ns
Turn-Off T ime tOFF - - 70 ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge Qg(TOT) VGS = 0V to 20V VDD = 50V,
ID 56A,
RL = 0.89
Ig(REF) = 1.0mA
(Figure 13)
- 110 130 nC
Gate Charge at 10V Qg(10) VGS = 0V to 10V - 57 75 nC
Threshold Gate Charge Qg(TH) VGS = 0V to 2V - 3.7 4.5 nC
Gate to Source Gate C harge Qgs -9.8- nC
Gate to Drain “Miller” Charge Qgd -24-nC
HUF75639G3, HUF75639P3, HUF75639S3S, HUF75639S3
www.onsemi.com
3
CAPACITANCE SPECIFICATIONS
Input Capacitance CISS VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
- 2000 - pF
Output Capacitance COSS - 500 - pF
Reverse Transfer Capacitance CRSS -65-pF
Electrical Specifications TC = 25oC, Unless Otherwise Spec ified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNI TS
Source to D rain Diode Voltage VSD ISD = 56A - - 1.25 V
Reverse Recovery Time trr ISD = 56A, dISD/dt = 100A/µs - - 110 ns
Reverse Recovered Charge QRR ISD = 56A, dISD/dt = 100A/µs - - 320 nC
Typical Performance Curves
FIGURE 1. NORMALIZED PO WER DISSIPATION vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00 25 50 75 100 150
0.2
0.4
0.6
0.8
1.0
1.2
125 17
5
TC, CASE TEMPERATURE (oC)
ID, DRAIN CURRENT (A)
0
10
20
30
40
50
60
25 50 75 100 125 150 17
5
0.01
0.1
1
10-5 10-4 10-3 10-2 10-1 100101
SINGLE PULSE
ZθJC, NORMALIZED
THERMAL IMPED ANCE
t, RECTANGULAR PULSE DURATION (s)
2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
HUF75639G3, HUF75639P3, HUF75639S3S, HUF75639S3
FIGURE 4. PEAK CURRENT CAPAB ILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
FIGURE 7. SATURATION CHARACTERISTI CS FIGURE 8. TRANSFER CHARACTERIS TICS
Typical Performance Curves (Continued)
1000
101
100
10-1
10-2
10-3
10-4
10-5
10
100
TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 10V
IDM, PEAK CURRENT (A)
t, PULSE WIDTH (s)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
1
10
100
1000
1 10 100 20
0
TJ = MAX RATED
TC = 25oC
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VDSS(MAX) = 100V 10ms
1ms
100µs
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
10
100
0.001 0.01 0.1
1
STARTING TJ = 25oC
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to ON Semiconductor Application Notes AN9321 and
AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
tAV = (L)(IAS)/(1. 3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
STARTING TJ = 150oC
300
VDS, DRAIN TO SOURCE VOLTAGE (V)
ID, DRAIN CURRENT (A)
0
20
40
60
80
100
0123456
7
PULSE DURATION = 80µs
TC = 25oC
VGS = 5V
VGS = 10V
VGS = 20V
VGS = 7V
VGS = 6V
DUTY CYCLE = 0.5% MAX
0
20
40
60
80
100
0 1.5 3.0 4.5 6.0 7.
5
-55oC
25oC
VGS, GATE TO SOURCE VOL TAGE (V)
ID, DRAIN CURRENT (A)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
175oC
HUF75639G3, HUF75639P3, HUF75639S3S, HUF75639S3
www.onsemi.com
4
FIGURE 9. NORMALIZED DRAIN T O SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE FIGURE 10. NORMALIZED GATE THRESHOLD V OLTA GE vs
JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED DRAIN T O SOURCE BREAKDO WN
VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN T O SOURCE VOLTAGE
NOTE: Refer to ON Semiconductor Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Typical Performance Curves (Continued)
0
0.5
1.0
1.5
2.0
2.5
3.0
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
PULSE DURATION = 80µs
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
VGS = 10V, ID = 56A
DUTY CYCLE = 0.5% MAX
0.6
0.8
1.0
1.2
-80 -40 0 40 80 120 160 200
THRESHOLD VO LTAGE
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
0.9
1.2
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
1.0
1.1
-80 -40 0 40 80 120 160 200
ID = 250µA
0
500
1000
1500
2000
2500
3000
0 102030405060
CISS
CRSS
COSS
C, CAPACITANCE (pF)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGD
0
2
4
6
8
10
0 10203040506
0
Qg, GATE CHARGE (nC)
VGS, GATE TO SOURCE VOLTAGE (V)
ID = 56A
ID = 37A
ID = 18A
WAVEFORMS IN
DESCENDING ORDER:
VDD = 50V
HUF75639G3, HUF75639P3, HUF75639S3S, HUF75639S3
www.onsemi.com
5
Test Circuits and Waveforms
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
RL
VGS +
-
VDS
VDD
DUT
IG(REF)
VDD
Qg(TH)
VGS = 2V
Qg(10)
VGS = 10V
Qg(TOT)
VGS = 20
V
VDS
VGS
I
g(REF)
0
0
Qgs Qgd
VGS
RL
RGS DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
HUF75639G3, HUF75639P3, HUF75639S3S, HUF75639S3
www.onsemi.com
6
PSPICE Ele ctrical Model
SUBCKT HUF75639 2 1 3 ; rev Oct. 98
CA 12 8 2.8e-9
CB 15 14 2.65e-9
CIN 6 8 1.9e-9
DBODY 7 5 DBODYMOD
DBRE AK 5 11 D B REAK MOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 110
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTH R ES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRA IN 2 5 2e- 9
LGATE 1 9 1e-9
LSOURCE 3 7 0.47e-9
RLGATE 1 9 10
RLDRAIN 2 5 20
RLSOURCE 3 7 4.69
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.3e-2
RGATE 9 20 0.7
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 4.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTE M P 18 19 RVTEMPM O D 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BM OD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMO D
VBAT 22 1 9 DC 1
ESLC 51 50 VALUE = {(V(5, 51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*115),4))}
.MODEL DBODYMOD D (IS = 1.4e-12 RS = 3.3e-3 XTI = 4.7 TRS1 = 2e-3 TRS2 = 0.1e-5 CJO = 3.3e-9 TT = 6.1e-8 M = 0.7)
.MODEL DBREAKMOD D (RS = 3.5e- 1TRS1 = 1e- 3TRS2 = 1e-6)
.MODEL DPLCAPMOD D (CJO = 2.2e- 9IS = 1e-3 0N = 10 M = 0.95 vj = 1.0)
.MODEL MMEDMOD NMOS (VTO = 3.5 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u Rg = 0.7)
.MODEL MSTROMOD NMOS (VTO = 3.97 KP = 56.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO =3.1 1 KP = 0.085 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 7 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 0.8e- 3TC2 = 1e-6)
.MODEL RDRAINMOD RES (TC1 = 1e-2 TC2 = 1.75e-5)
.MODEL RSLCMOD RES (TC1 = 2.8e-3 TC2 = 14e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -2.0e-3 TC2 = -1.75e-5)
.MODEL RVTEMPMO D RE S (TC1 = -2.75e- 3TC2 = 0.05e-9)
.MODEL S1AMOD VSWITCH (RON = 1 e-5 ROFF = 0.1 VON = -6.0 VOFF = -3 .5)
.MODEL S1BMOD VSWITCH (RON = 1 e-5 ROFF = 0.1 VON = -3.5 VOFF = -6 .0)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF = 4.95)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 4.95 VOFF = -2.5)
.ENDS
NOTE: For further discussion of the P SPICE model, consult A New PS PICE Sub-Circuit for th e Powe r MOSFET Featuri ng Global
Temperature Options; IEEE Power Electronics Specia list Conference Records, 1991, wr itten by William J. Hepp and C. Frank Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
HUF75639G3, HUF75639P3, HUF75639S3S, HUF75639S3
www.onsemi.com
7
SABER Electrical Model
nom tem p=25 deg c 100v Ult rafet
REV O c t. 98
templ ate huf75639 n2, n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is=1.4e-12, xti=4.7, cjo=33e-10,tt=6.1e-8, m=0.7)
d..model dbreakmod = ()
d..model dplcapmod = (cjo=22e-10,is=1e-30,n=10, m=0.95, vj=1. 0)
m..mo del mmedm od = (ty pe=_n,vto=3.5,kp= 4.8,is=1e- 30, tox= 1)
m..model mstrongmod = (type=_n,vto=3.97,kp=56.5,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=3.11,kp=0.085,is =1e-30, tox=1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-6.0,voff=-3.5)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-6.0)
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2.5,voff=4.95)
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=4.95,voff=-2.5)
c.ca n12 n8 = 28.5e-10
c.cb n15 n14 = 26.5e-10
c.cin n6 n8 = 19e-10
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n 11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 2.0e-9
l.lgate n1 n9 = 1e-9
l.lsourc e n3 n7 = 4.69e-10
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=0.8e-3,tc2=-1e-6
res.rdbody n71 n5 = 3.3e-3, tc1=2.0e-3, tc2=0.1e-5
res.rdbreak n72 n5 = 3.5e-1, tc1=1e-3, tc2=1e-6
res. rdrai n n50 n16 = 13e-3, tc1=1e-2,tc2=1.75e-5
res.rgate n9 n20 = 0.7
res.r ldrain n2 n5 = 20
res. rl g ate n1 n9 = 10
res.rlsource n3 n7 = 4.69
res.rslc1 n5 n51 = 1e-6, tc1=2.8e-3,tc2=14e-6
res.r slc2 n5 n50 = 1e3
res.rsource n8 n7 = 4.5e-3, tc1=0,tc2=0
res.rvtemp n18 n19 = 1, tc1=-2.75e-3,tc2=0.05e-9
res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-1.75e-5
spe.ebreak n11 n7 n17 n18 = 110
spe.e ds n14 n8 n5 n8 = 1
spe.e gs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v (n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e 6/115))** 4))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
HUF75639G3, HUF75639P3, HUF75639S3S, HUF75639S3
www.onsemi.com
8
Spice Thermal Model
REV APRIL 1998
HUF75639
CTHERM1 TH 6 2.8e-3
CTHERM2 6 5 4 .6e-3
CTHERM3 5 4 5 .5e-3
CTHERM4 4 3 9 .2e-3
CTHERM5 3 2 1 .7e-2
CTHERM6 2 TL 4.3e-2
RTHERM1 TH 6 5.0e-4
RTHERM2 6 5 1 .5e-3
RTHERM3 5 4 2 .0e-2
RTHERM4 4 3 9 .0e-2
RTHERM5 3 2 1 .9e-1
RTHERM6 2 TL 2.9e-1
Saber Thermal Model
Saber thermal model HUF75639
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm 1 t h 6 = 2.8e-3
ctherm.ctherm 2 6 5 = 4.6e- 3
ctherm.ctherm 3 5 4 = 5.5e- 3
ctherm.ctherm 4 4 3 = 9.2e- 3
ctherm.ctherm 5 3 2 = 1.7e- 2
ctherm.ctherm6 2 tl = 4.3e-2
rtherm.rtherm1 th 6 = 5.0e-4
rtherm.rtherm2 6 5 = 1.5e-3
rtherm.rtherm3 5 4 = 2.0e-2
rtherm.rtherm4 4 3 = 9.0e-2
rtherm.rtherm5 3 2 = 1.9e-1
rtherm.rtherm6 2 t l = 2.9e- 1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
TL
2
3
4
5
6
TH JUNCTION
CASE
HUF75639G3, HUF75639P3, HUF75639S3S, HUF75639S3
www.onsemi.com
9
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
www.onsemi.com
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
© Semiconductor Components Industries, LLC