Si86xx 1 Mbps Data Sheet
1 Mbps, 2.5 kVRMS Digital Isolators
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering sub-
stantial data rate, propagation delay, power, size, reliability, and external BOM advan-
tages over legacy isolation technologies. The operating parameters of these products
remain stable across wide temperature ranges and throughout device service life for
ease of design and highly uniform performance. All device versions have Schmitt trigger
inputs for high noise immunity and only require VDD bypass capacitors.
All products support Data rates up to 1 Mbps and Enable inputs which provide a single
point control for enabling and disabling output drive. All products are safety certified by
UL, CSA, VDE, and CQC and support withstand ratings up to 2.5 kVRMS.
Automotive Grade is available for certain part numbers. These products are built using
automotive-specific flows at all steps in the manufacturing process to ensure the robust-
ness and low defectivity required for automotive applications.
KEY FEATURES
High-speed operation
DC to 1 Mbps
No start-up initialization required
Wide Operating Supply Voltage
2.5 to 5.5 V
Up to 2500 VRMS isolation
60-year life at rated working voltage
High electromagnetic immunity
Ultra low power (typical)
5 V Operation: 1.6 mA per channel at 1
Mbps
2.5 V Operation: 1.5 mA per channel at
1 Mbps
Tri-state outputs with ENABLE
Schmitt trigger inputs
Transient Immunity 50 kV/µs
AEC-Q100 qualification
Wide temperature range
–40 to 125 °C
RoHS-compliant packages
SOIC-16 wide body
SOIC-16 narrow body
SOIC-8 narrow body
Automotive-grade OPNs available
AIAG compliant PPAP documentation
support
IMDS and CAMDS listing support
Industrial Applications
Industrial automation systems
Medical electronics
Isolated switch mode supplies
Isolated ADC, DAC
Motor control
Power inverters
Communication systems
Safety Regulatory Approvals
UL 1577 recognized
Up to 5000 VRMS for 1 minute
CSA component notice 5A approval
IEC 60950-1, 61010-1
VDE certification conformity
IEC 60747-5-2 (VDE0884 Part 2)
CQC certification approval
GB4943.1
Automotive Applications
On-board chargers
Battery management systems
Charging stations
Traction inverters
Hybrid Electric Vehicles
Battery Electric Vehicles
silabs.com | Building a more connected world. Rev. 1.02
1. Ordering Guide
Table 1.1. Ordering Guide for Valid OPNs1,2
Ordering Part
Number (OPN)
Number of
Inputs
VDD1 Side
Number of
Inputs
VDD2 Side
Max Data
Rate (Mbps)
Default Out-
put State
Isolation
Rating (kV)
Temp (°C) Package
Si8610AB-B-IS 1 0 1 Low 2.5 –40 to 125 °C SOIC-8
Si8620AB-B-IS 2 0 1 Low 2.5 –40 to 125 °C SOIC-8
Si8621AB-B-IS 1 1 1 Low 2.5 –40 to 125 °C SOIC-8
Si8630AB-B-IS 3 0 1 Low 2.5 –40 to 125 °C WB SOIC-16
Si8630AB-B-IS1 3 0 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8631AB-B-IS 2 1 1 Low 2.5 –40 to 125 °C WB SOIC-16
Si8631AB-B-IS1 2 1 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8640AB-B-IS1 4 0 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8640AB-B-IS 4 0 1 Low 2.5 –40 to 125 °C WB SOIC-16
Si8641AB-B-IS1 3 1 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8641AB-B-IS 3 1 1 Low 2.5 –40 to 125 °C WB SOIC-16
Si8642AB-B-IS1 2 2 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8642AB-B-IS 2 2 1 Low 2.5 –40 to 125 °C WB SOIC-16
Si8650AB-B-IS1 5 0 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8651AB-B-IS1 4 1 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8652AB-B-IS1 3 2 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8660AB-B-IS1 6 0 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8661AB-B-IS1 5 1 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8662AB-B-IS1 4 2 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8663AB-B-IS1 3 3 1 Low 2.5 –40 to 125 °C NB SOIC-16
Notes:
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-
tions and peak solder temperatures.
2. “Si” and “SI” are used interchangeably.
Si86xx Data Sheet
Ordering Guide
silabs.com | Building a more connected world. Rev. 1.02 | 2
Automotive Grade OPNs
Automotive-grade devices are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and
low defectivity. These devices are supported with AIAG-compliant Production Part Approval Process (PPAP) documentation, and fea-
ture International Material Data System (IMDS) and China Automotive Material Data System (CAMDS) listing. Qualifications are compli-
ant with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass pro-
duction steps.
Table 1.2. Ordering Guide for Automotive Grade OPNs1, 2, 4, 5
Ordering Part Number
(OPN)
Number of
Inputs
VDD1 Side
Number of
Inputs
VDD2 Side
Max Data
Rate
(Mbps)
Default
Output
State
Isolation
Rating (kV)
Temp (°C) Package
Si8621AB-AS 1 1 1 Low 2.5 –40 to 125 °C SOIC-8
SI8641AB-AS1 3 1 1 Low 2.5 –40 to 125 °C NB SOIC-16
SI8642AB-AS1 2 2 1 Low 2.5 –40 to 125 °C NB SOIC-16
Si8663AB-AS1 3 3 1 Low 2.5 –40 to 125 °C SOIC-16
Note:
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-
tions.
2. “Si” and “SI” are used interchangeably.
3. An "R" at the end of the part number denotes tape and reel packaging option.
4. Automotive-Grade devices (with an "–A" suffix) are identical in construction materials, topside marking, and electrical parameters
to their Industrial-Grade (with a "–I" suffix) version counterparts. Automotive-Grade products are produced utilizing full automotive
process flows and additional statistical process controls throughout the manufacturing flow. The Automotive-Grade part number is
included on shipping labels.
5. Additional Ordering Part Numbers may be available in Automotive-Grade. Please contact your local Silicon Labs sales represen-
tative for further information.
Si86xx Data Sheet
Ordering Guide
silabs.com | Building a more connected world. Rev. 1.02 | 3
Table of Contents
1. Ordering Guide ..............................2
2. Functional Description............................5
2.1 Theory of Operation ............................5
3. Device Operation ..............................6
3.1 Device Startup ..............................8
3.2 Undervoltage Lockout ...........................8
3.3 Layout Recommendations ..........................8
3.3.1 Supply Bypass ............................8
3.3.2 Output Pin Termination..........................8
4. Electrical Specifications ...........................9
5. Pin Descriptions .............................30
5.1 Pin Descriptions (Si861x/2x Narrow Body SOIC-8) ..................30
5.2 Pin Descriptions (Si863x) ..........................31
5.3 Pin Descriptions (Si864x) ..........................32
5.4 Pin Descriptions (Si8650/51/52) ........................33
5.5 Pin Descriptions (Si866x) ..........................34
6. Package Outlines .............................35
6.1 Package Outline (16-Pin Wide Body SOIC) ....................35
6.2 Package Outline (16-Pin Narrow Body SOIC)....................37
6.3 Package Outline (8-Pin Narrow Body SOIC) ....................39
7. Land Patterns ..............................40
7.1 Land Pattern (16-Pin Wide-Body SOIC) .....................40
7.2 Land Pattern (16-Pin Narrow Body SOIC) .....................41
7.3 Land Pattern (8-Pin Narrow Body SOIC) .....................42
8. Top Markings ..............................43
8.1 Top Marking (16-Pin Wide Body SOIC) ......................43
8.2 Top Marking (16-Pin Narrow Body SOIC) .....................44
8.3 Top Marking (8-Pin Narrow Body SOIC) .....................45
9. Revision History .............................46
silabs.com | Building a more connected world. Rev. 1.02 | 4
2. Functional Description
2.1 Theory of Operation
The operation of an Si86xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This
simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified
block diagram for a single Si86xx channel is shown in the figure below.
RF
OSCILLATOR
MODULATOR DEMODULATOR
A B
Semiconductor-
Based Isolation
Barrier
Transmitter Receiver
Figure 2.1. Simplified Channel Diagram
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the
Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that
decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to
magnetic fields. See the figure below for more details.
Input Signal
Output Signal
Modulation Signal
Figure 2.2. Modulation Scheme
Si86xx Data Sheet
Functional Description
silabs.com | Building a more connected world. Rev. 1.02 | 5
3. Device Operation
Device behavior during start-up, normal operation, and shutdown is shown in Figure 3.1 Device Behavior during Normal Operation on
page 8, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Refer to the table below to
determine outputs when power supply (VDD) is not present. Additionally, refer to Table 3.2 Enable Input Truth1 on page 7 for logic
conditions when enable pins are used.
Table 3.1. Si86xx Logic Operation
VI
Input1,2
EN
Input1,2,3,4
VDDI
State1,5,6
VDDO
State1,5,6
VO Output1,2 Comments
H H or NC P P H Enabled, normal operation.
L H or NC P P L
X7L P P Hi-Z8Disabled.
X7H or NC UP P L Upon transition of VDDI from unpowered to powered, VO re-
turns to the same state as VI in less than 1 µs.
X7L UP P Hi-Z8Disabled.
X7X7P UP Undetermined Upon transition of VDDO from unpowered to powered, VO re-
turns to the same state as VI within 1 µs, if EN is in either the
H or NC state. Upon transition of VDDO from unpowered to
powered, VO returns to Hi-Z within 1 µs if EN is L.
Notes:
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN is the
enable control input located on the same output side.
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si86xx is operating in noisy
environments.
4. No Connect (NC) replaces EN1 on some devices. No Connects are not internally connected and can be left floating, tied to VDD,
or tied to GND.
5. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V.
6. “Unpowered” state (UP) is defined as VDD = 0 V.
7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.
8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled
(EN = 0).
Si86xx Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 1.02 | 6
Table 3.2. Enable Input Truth1
P/N EN11,2 EN21,2 Operation
Si861x/2x Outputs are enabled and follow input state.
Si8630 H Outputs B1, B2, B3 are enabled and follow input state.
L Outputs B1, B2, B3 are disabled and in high impedance state.3
Si8631 H X Output A3 enabled and follows input state.
L X Output A3 disabled and in high impedance state.3
X H Outputs B1, B2 are enabled and follow input state.
X L Outputs B1, B2 are disabled and in high impedance state.3
Si8640 H Outputs B1, B2, B3, B4 are enabled and follow the input state.
L Outputs B1, B2, B3, B4 are disabled and in high impedance state.3
Si8641 H X Output A4 enabled and follows the input state.
L X Output A4 disabled and in high impedance state.3
X H Outputs B1, B2, B3 are enabled and follow the input state.
X L Outputs B1, B2, B3 are disabled and in high impedance state.3
Si8642 H X Outputs A3 and A4 are enabled and follow the input state.
L X Outputs A3 and A4 are disabled and in high impedance state.3
X H Outputs B1 and B2 are enabled and follow the input state.
X L Outputs B1 and B2 are disabled and in high impedance state.3
Si8650 H Outputs B1, B2, B3, B4, B5 are enabled and follow input state.
L Outputs B1, B2, B3, B4, B5 are disabled and Logic Low or in high impedance state.3
Si8651 H X Output A5 enabled and follow input state.
L X Output A5 disabled and in high impedance state.3
X H Outputs B1, B2, B3, B4 are enabled and follow input state.
X L Outputs B1, B2, B3, B4 are disabled and in high impedance state.3
Si8652 H X Outputs A4 and A5 are enabled and follow input state.
L X Outputs A4 and A5 are disabled and in high impedance state.3
X H Outputs B1, B2, B3 are enabled and follow input state.
X L Outputs B1, B2, B3 are disabled and in high impedance state.3
Si866x Outputs are enabled and follow input state.
Notes:
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are internally
pulled-up to local VDD by a 2 µA current source allowing them to be connected to an external logic level (high or low) or left
floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are unused,
it is recommended they be connected to an external logic level, especially if the Si86xx is operating in a noisy environment.
2. X = not applicable; H = Logic High; L = Logic Low.
3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled
(EN = 0).
Si86xx Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 1.02 | 7
3.1 Device Startup
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow
the states of inputs.
3.2 Undervoltage Lockout
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its
specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or
exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when
VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply.
INPUT
VDD1
UVLO-
VDD2
UVLO+
UVLO-
UVLO+
OUTPUT
tSTART tSTART tSTART tPHL tPLH
tSD
Figure 3.1. Device Behavior during Normal Operation
3.3 Layout Recommendations
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the
safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a
digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large
high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 4.5 Regulatory Information1 on
page 25 and Table 4.6 Insulation and Safety-Related Specifications on page 25 detail the working voltage and creepage/clearance
capabilities of the Si86xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted
by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1,
60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator.
3.3.1 Supply Bypass
The Si86xx family requires a 0.1 µF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be placed
as close as possible to the package. To enhance the robustness of a design, the user may also include resistors (50–300 Ω ) in series
with the inputs and outputs if the system is excessively noisy.
3.3.2 Output Pin Termination
The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-
chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will
be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
Si86xx Data Sheet
Device Operation
silabs.com | Building a more connected world. Rev. 1.02 | 8
4. Electrical Specifications
Table 4.1. Recommended Operating Conditions
Parameter Symbol Min Typ Max Unit
Ambient Operating Temperature1TA–40 25 125 ºC
Supply Voltage
VDD1 2.5 5.5 V
VDD2 2.5 5.5 V
Note:
1. The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply
voltage.
Table 4.2. Electrical Characteristics
(VDD1 = 5 V±10%, VDD2 = 5 V±10%, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Undervoltage
Hysteresis
VDDHYS 50 70 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going
Input Threshold
VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteresis VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 V
Low Level input voltage VIL 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2
0.4
4.8 V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL ±10 µA
Output Impedance1ZO 50 Ω
Enable Input High Current ΙENH VENx = VIH 2.0 µA
Enable Input Low Current IENL VENx = VIL 2.0 µA
DC Supply Current (All inputs 0 V or at Supply)
Si8610Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.6
0.8
1.8
0.8
1.2
1.5
2.9
1.5
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 9
Parameter Symbol Test Condition Min Typ Max Unit
Si8620Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.8
1.4
3.3
1.4
1.4
2.2
5.3
2.2
mA
Si8621Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.2
1.2
2.4
2.4
1.9
1.9
3.8
3.8
mA
Si8630Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.9
1.9
4.6
1.9
1.6
3.0
7.4
3.0
mA
Si8631Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.3
1.7
3.9
3.0
2.1
2.7
5.9
4.5
mA
Si8640Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.0
2.4
6.1
2.5
1.6
3.8
9.2
4.0
mA
Si8641Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.4
2.3
5.2
3.6
2.2
3.7
7.8
5.4
mA
Si8642Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.8
1.8
4.4
4.4
2.9
2.9
6.6
6.6
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 10
Parameter Symbol Test Condition Min Typ Max Unit
Si8650Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.1
3.1
7.0
3.3
1.8
4.7
9.8
5.0
mA
Si8651Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.5
2.7
6.6
4.0
2.4
4.1
9.2
6.0
mA
Si8652Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.0
2.4
5.6
5.0
3.0
3.6
7.8
7.5
mA
Si8660Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.2
3.5
8.8
3.7
1.9
5.3
12.3
5.6
mA
Si8661Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.7
3.4
7.9
4.8
2.7
5.1
11.1
7.2
mA
Si8662Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.2
3.0
7.5
5.6
3.3
4.5
10.5
8.4
mA
Si8663Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
2.6
2.6
6.5
6.5
3.9
3.9
9.1
9.1
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 11
Parameter Symbol Test Condition Min Typ Max Unit
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all Outputs)
Si8610Ax
VDD1
VDD2
1.2
0.9
2.0
1.5
mA
Si8620Ax
VDD1
VDD2
2.1
1.6
3.1
2.4
mA
Si8621Ax
VDD1
VDD2
1.9
1.9
2.9
2.9
mA
Si8630Ax
VDD1
VDD2
2.8
2.2
3.9
3.1
mA
Si8631Ax
VDD1
VDD2
2.7
2.6
3.8
3.6
mA
Si8640Ax
VDD1
VDD2
3.6
2.9
5.0
4.0
mA
Si8641Ax
VDD1
VDD2
3.4
3.3
4.8
4.6
mA
Si8642Ax
VDD1
VDD2
3.3
3.3
4.6
4.6
mA
Si8650Ax
VDD1
VDD2
4.1
3.7
5.7
5.2
mA
Si8651Ax
VDD1
VDD2
4.2
3.8
5.8
5.3
mA
Si8652Ax
VDD1
VDD2
4.0
4.0
5.6
5.6
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 12
Parameter Symbol Test Condition Min Typ Max Unit
Si8660Ax
VDD1
VDD2
5.0
4.2
7.0
5.9
mA
Si8661Ax
VDD1
VDD2
4.9
4.6
6.9
6.4
mA
Si8662Ax
VDD1
VDD2
5.1
4.7
7.1
6.6
mA
Si8663Ax
VDD1
VDD2
4.9
4.9
6.8
6.8
mA
Timing Characteristics
All Models
Maximum Data Rate 0 1 Mbps
Minimum Pulse Width 250 ns
Propagation Delay tPHL, tPLH See Figure 4.2 Propagation
Delay Timing on page 14
35 ns
Pulse Width Distortion
|tPLH – tPHL|
PWD See Figure 4.2 Propagation
Delay Timing on page 14
25 ns
Propagation Delay Skew2tPSK(P-P) 40 ns
Channel-Channel Skew tPSK 35 ns
Output Rise Time trCL = 15 pF
See Figure 4.2 Propagation
Delay Timing on page 14
2.5 4.0 ns
Output Fall Time tfCL = 15 pF
See Figure 4.2 Propagation
Delay Timing on page 14
2.5 4.0 ns
Peak eye diagram jitter tJIT(PK) See Figure 2.2 Modulation
Scheme on page 5
350 ps
Common Mode
Transient Immunity
CMTI VI = VDD or 0 V
VCM = 1500 V (See Figure
4.3 Common-Mode Transient
Immunity Test Circuit on page
15)
35 50 kV/µs
Enable to Data Valid ten1 See Figure 4.1 ENABLE Tim-
ing Diagram on page 14
6.0 11 ns
Enable to Data Tri-State ten2 See Figure 4.1 ENABLE Tim-
ing Diagram on page 14
8.0 12 ns
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 13
Parameter Symbol Test Condition Min Typ Max Unit
Start-up Time3tSU 15 40 µs
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same
supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
ENABLE
OUTPUTS
ten1 ten2
Figure 4.1. ENABLE Timing Diagram
Typical
Input
tPLH tPHL
Typical
Output
trtf
90%
10%
90%
10%
1.4 V
1.4 V
Figure 4.2. Propagation Delay Timing
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 14
Oscilloscope
3 to 5 V
Isolated
Supply
Si86xx
VDD2
OUTPUT
3 to 5 V
Supply
High Voltage
Surge Generator
Vcm Surge
Output
High Voltage
Differential
Probe
GND2GND1
VDD1
INPUT
Input
Signal
Switch
Input
Output
Isolated
Ground
Figure 4.3. Common-Mode Transient Immunity Test Circuit
Table 4.3. Electrical Characteristics
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA = –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Undervoltage
Hysteresis
VDDHYS 50 70 95 mV
Positive-Going Input
Threshold
VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going Input
Threshold
VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteresis VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 V
Low Level Input Voltage VIL 0.8 V
High Level Output Voltage VOH loh = –4 mA VDD1, VDD2 – 0.4 3.1 V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 15
Parameter Symbol Test Condition Min Typ Max Unit
Input Leakage Current IL ±10 µA
Output Impedance1ZO 50 Ω
Enable Input High Current IENH VENx = VIH 2.0 µA
Enable Input Low Current IENL VENx = VIL 2.0 µA
DC Supply Current (All inputs 0 V or at supply)
Si8610Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.6
0.8
1.8
0.8
1.2
1.5
2.9
1.5
mA
Si8620Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.8
1.4
3.3
1.4
1.4
2.2
5.3
2.2
mA
Si8621Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.2
1.2
2.4
2.4
1.9
1.9
3.8
3.8
mA
Si8630Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
0.9
1.9
4.6
1.9
1.6
3.0
7.4
3.0
mA
Si8631Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.3
1.7
3.9
3.0
2.1
2.7
5.9
4.5
mA
Si8640Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.0
2.4
6.1
2.5
1.6
3.8
9.2
4.0
mA
Si86xx Data Sheet
Electrical Specifications
silabs.com | Building a more connected world. Rev. 1.02 | 16
Parameter Symbol Test Condition Min Typ Max Unit
Si8641Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.4
2.3
5.2
3.6
2.2
3.7
7.8
5.4
mA
Si8642Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.8
1.8
4.4
4.4
2.9
2.9
6.6
6.6
mA
Si8650Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.1
3.1
7.0
3.3
1.8
4.7
9.8
5.0
mA
Si8651Ax
VDD1
VDD2
VDD1
VDD2
VI = 0(Ax)
VI = 0(Ax)
VI = 1(Ax)
VI = 1(Ax)
1.5
2.7
6.6
4.0
2.4
4.1
9.2