IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
1
Rev. 2.3 17.09.2014
Low Loss DuoPack : IGBT in TRENCHSTOPTM and Fieldstop technology with soft,
fast recovery anti-parallel Emitter Controlled HE diode
Features:
Automotive AEC Q101 qualified
Designed for DC/AC converters for Automotive Application
Very low VCE(sat) 1.5 V (typ.)
Maximum Junction Temperature 175 °C
Short circuit withstand time 5 µs
TRENCHSTOPTM and Fieldstop technology for 600 V
applications offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- very high switching speed
Positive temperature coefficient in VCE(sat)
Low EMI
Low Gate Charge
Green Package
Very soft, fast recovery anti-parallel Emitter Controlled HE diode
Applications:
Main inverter
Air Con compressor
PTC heater
Motor drives
Type
IC
VCE(sat),Tj=25°C
Tj,max
Marking
Package
IKW50N60TA
50A
1.5V
175C
K50T60A
PG-TO247-3
G
C
E
PG-TO247-3
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
2
Rev. 2.3 17.09.2014
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage, Tj 25C
VCE
600
V
DC collector current, limited by Tjmax
TC = 25C
IC
801)
50
A
TC = 110C
Pulsed collector current, tp limited by Tjmax2)
ICpuls
150
Turn off safe operating area, VCE 600V, Tj 175C, tp s2)
-
150
Diode forward current, limited by Tjmax
TC = 25C
IF
80
50
TC = 100C
Diode pulsed current, tp limited by Tjmax2)
IFpuls
150
Gate-emitter voltage
VGE
20
V
Short circuit withstand time3)
VGE = 15V, VCC 400V, Tj 150C
tSC
5
s
Power dissipation TC = 25C
Ptot
333
W
Operating junction temperature
Tj
-40...+175
C
Storage temperature
Tstg
-55...+150
Soldering temperature (wavesoldering only allowed at leads,
1.6mm (0.063 in.) from case for 10s)4)
Tsold
260
1) Value limited by bond wire
2) Defined by design. Not subject to production test.
3) Allowed number of short circuits: <1000; time between short circuits: >1s.
4) Package not recommended for surface mount application.
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
3
Rev. 2.3 17.09.2014
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
Characteristic
IGBT thermal resistance,
junction case
RthJC
0.45
K/W
Diode thermal resistance,
junction case
RthJCD
0.8
Thermal resistance,
junction ambient
RthJA
40
Electrical Characteristic, at Tj = 25 C, unless otherwise specified
Parameter
Symbol
Conditions
Value
Unit
min.
Typ.
max.
Static Characteristic
Collector-emitter breakdown voltage
V(BR)CES
VGE=0V, IC=0.2mA
600
-
-
V
Collector-emitter saturation voltage
VCE(sat)
VGE = 15V, IC=50A
Tj=25C
Tj=175C
-
-
1.5
1.9
2
-
Diode forward voltage
VF
VGE=0V, IF=50A
Tj=25C
Tj=175C
-
-
1.65
1.6
2.05
-
Gate-emitter threshold voltage
VGE(th)
IC=0.8mA,VCE=VGE
4.1
4.9
5.7
Zero gate voltage collector current
ICES
VCE=600V,
VGE=0V
Tj=25C
Tj=175C
-
-
-
-
40
3500
µA
Gate-emitter leakage current
IGES
VCE=0V,VGE=20V
-
-
100
nA
Transconductance
gfs
VCE=20V, IC=50A
-
31
-
S
Integrated gate resistor
RGint
-
Ω
Dynamic Characteristic
Input capacitance
Cies
VCE=25V,
VGE=0V,
f=1MHz
-
3140
-
pF
Output capacitance
Coes
-
200
-
Reverse transfer capacitance
Cres
-
93
-
Gate charge
QGate
VCC=480V, IC=50A
VGE=15V
-
310
-
nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
LE
-
13
-
nH
Short circuit collector current
Allowed number of short circuits: <1000; time
between short circuits: >1s.
IC(SC)
VGE=15V,tSC5s
VCC = 400V,
Tj 150C
-
458.3
-
A
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
4
Rev. 2.3 17.09.2014
Switching Characteristic, Inductive Load, at Tj=25 C
Parameter
Symbol
Conditions
Value
Unit
min.
Typ.
max.
IGBT Characteristic
Turn-on delay time
td(on)
Tj=25C,
VCC=400V,IC=50A,
VGE=0/15V,
RG= 7 , L
=103nH
C
=39pF
L
, C
from Fig. E
Energy losses include
“tail” and diode reverse
recovery.
-
26
-
ns
Rise time
tr
-
29
-
Turn-off delay time
td(off)
-
299
-
Fall time
tf
-
29
-
Turn-on energy
Eon
-
1.2
-
mJ
Turn-off energy
Eoff
-
1.4
-
Total switching energy
Ets
-
2.6
-
Anti-Parallel Diode Characteristic
Diode reverse recovery time
trr
Tj=25C,
VR=400V, IF=50A,
diF/dt=1280A/s
-
143
-
ns
Diode reverse recovery charge
Qrr
-
1.8
-
µC
Diode peak reverse recovery current
Irrm
-
27.7
-
A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt
-
-671
-
A/s
Switching Characteristic, Inductive Load, at Tj=175 C
Parameter
Symbol
Conditions
Value
Unit
min.
Typ.
max.
IGBT Characteristic
Turn-on delay time
td(on)
Tj=175C,
VCC=400V,IC=50A,
VGE=0/15V,
RG= 7 , L
=103nH
C
=39pF
L
, C
from Fig. E
Energy losses include
“tail” and diode reverse
recovery.
-
27
-
ns
Rise time
tr
-
33
-
Turn-off delay time
td(off)
-
341
-
Fall time
tf
-
55
-
Turn-on energy
Eon
-
1.8
-
mJ
Turn-off energy
Eoff
-
1.85
-
Total switching energy
Ets
-
3.65
-
Anti-Parallel Diode Characteristic
Diode reverse recovery time
trr
Tj=175C
VR=400V, IF=50A,
diF/dt=1280A/s
-
205
-
ns
Diode reverse recovery charge
Qrr
-
4.3
-
µC
Diode peak reverse recovery current
Irrm
-
40.7
-
A
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt
-
-449
-
A/s
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
5
Rev. 2.3 17.09.2014
IC, COLLECTOR CURRENT
100Hz 1kHz 10kHz 100kHz
0A
20A
40A
60A
80A
100A
120A
140A
TC=110°C
TC=80°C
IC, COLLECTOR CURRENT
1V 10V 100V 1000V
1A
10A
100A
10µs
1ms
DC
tp=2µs
50µs
10ms
f, SWITCHING FREQUENCY
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(Tj 175C, D = 0.5, VCE = 400V,
VGE = 0/15V, RG = 7)
Figure 2. Safe operating area
(D = 0, TC = 25C, Tj 175C;
VGE=0/15V)
Ptot, POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C 150°C
0W
50W
100W
150W
200W
250W
300W
IC, COLLECTOR CURRENT
25°C 75°C 125°C
0A
20A
40A
60A
80A
TC, CASE TEMPERATURE
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj 175C)
Figure 4. Collector current as a function of
case temperature
(VGE 15V, Tj 175C)
Ic
Ic
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
6
Rev. 2.3 17.09.2014
IC, COLLECTOR CURRENT
0V 1V 2V 3V
0A
20A
40A
60A
80A
100A
120A
15V
7V
9V
11V
13V
VGE=20V
IC, COLLECTOR CURRENT
0V 1V 2V 3V 4V
0A
20A
40A
60A
80A
100A
120A
15V
13V
7V
9V
11V
VGE=20V
VCE, COLLECTOR-EMITTER VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
Figure 6. Typical output characteristic
(Tj = 175°C)
IC, COLLECTOR CURRENT
0V 2V 4V 6V 8V
0A
20A
40A
60A
80A
25°C
TJ=175°C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
C 50°C 100°C 150°C
0.0V
0.5V
1.0V
1.5V
2.0V
2.5V
IC=50A
IC=100A
IC=25A
VGE, GATE-EMITTER VOLTAGE
TJ, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristic
(VCE=10V)
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
7
Rev. 2.3 17.09.2014
t, SWITCHING TIMES
0A 20A 40A 60A 80A
10ns
100ns tr
td(on)
tf
td(off)
t, SWITCHING TIMES
     
10ns
100ns
tr
td(on)
tf
td(off)
IC, COLLECTOR CURRENT
RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=175°C,
VCE = 400V, VGE = 0/15V, RG = 7Ω,
Dynamic test circuit in Figure E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ = 175°C,
VCE= 400V, VGE = 0/15V, IC = 50A,
Dynamic test circuit in Figure E)
t, SWITCHING TIMES
25°C 50°C 75°C 100°C 125°C 150°C
10ns
100ns
tr
td(on)
tf
td(off)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
0V
1V
2V
3V
4V
5V
6V
7V
min.
typ. max.
TJ, JUNCTION TEMPERATURE
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 50A, RG=7Ω,
Dynamic test circuit in Figure E)
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.8mA)
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
8
Rev. 2.3 17.09.2014
E, SWITCHING ENERGY LOSSES
0A 20A 40A 60A 80A
0.0mJ
2.0mJ
4.0mJ
6.0mJ
8.0mJ
Ets*
Eoff
*) Eon and Ets include losses
due to diode recovery
Eon*
E, SWITCHING ENERGY LOSSES
  
0.0mJ
1.0mJ
2.0mJ
3.0mJ
4.0mJ
5.0mJ
6.0mJ Ets*
Eoff
*) Eon and Ets include losses
due to diode recovery
Eon*
IC, COLLECTOR CURRENT
RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ = 175°C,
VCE = 400V, VGE = 0/15V, RG = 7,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ = 175°C,
VCE = 400V, VGE = 0/15V, IC = 50A,
Dynamic test circuit in Figure E)
E, SWITCHING ENERGY LOSSES
25°C 50°C 75°C 100°C 125°C 150°C
0.0mJ
1.0mJ
2.0mJ
3.0mJ
Ets*
Eoff
*) Eon and Ets include losses
due to diode recovery
Eon*
E, SWITCHING ENERGY LOSSES
TJ, JUNCTION TEMPERATURE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE = 400V,
VGE = 0/15V, IC = 50A, RG = 7Ω,
Dynamic test circuit in Figure E)
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ = 175°C,
VGE = 0/15V, IC = 50A, RG = 7Ω,
Dynamic test circuit in Figure E)
0 mJ
1 mJ
2 mJ
3 mJ
4 mJ
5 mJ
6 mJ
*) Eon and Ets include losses
due to diode recovery
Ets*
Eoff*
Eon*
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
9
Rev. 2.3 17.09.2014
VGE, GATE-EMITTER VOLTAGE
0nC 100nC 200nC 300nC
0V
5V
10V
15V
480V
120V
c, CAPACITANCE
0V 10V 20V 30V 40V
100pF
1nF
Crss
Coss
Ciss
QGE, GATE CHARGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 17. Typical gate charge
(IC=50 A)
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
12V 14V 16V 18V
0A
100A
200A
300A
400A
500A
600A
700A
800A
tSC, SHORT CIRCUIT WITHSTAND TIME
10V 11V 12V 13V 14V
0µs
2µs
4µs
6µs
8µs
10µs
12µs
VGE, GATE-EMITTER VOLTAGE
VGE, GATE-EMITTER VOLTAGE
Figure 19. Typical short circuit collector
current as a function of gate-
emitter voltage
(VCE 400V, Tj 150C)
Figure 20. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=400V, start at TJ=25°C,
TJmax<150°C)
Cies
Coes
Cres
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
10
Rev. 2.3 17.09.2014
ZthJC, TRANSIENT THERMAL IMPEDANCE
1µs 10µs 100µs 1ms 10ms 100ms
10-2K/W
10-1K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
ZthJC, TRANSIENT THERMAL IMPEDANCE
1µs 10µs 100µs 1ms 10ms 100ms
10-2K/W
10-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
tP, PULSE WIDTH
tP, PULSE WIDTH
Figure 21. IGBT transient thermal
impedance
(D = tp / T)
Figure 22. Diode transient thermal
impedance as a function of pulse
width
(D=tP/T)
trr, REVERSE RECOVERY TIME
Qrr, REVERSE RECOVERY CHARGE
diF/dt, DIODE CURRENT SLOPE
diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery time as
a function of diode current slope
(VR=400V, IF=50A,
Dynamic test circuit in Figure E)
Figure 24. Typical reverse recovery charge
as a function of diode current
slope
(VR = 400V, IF = 50A,
Dynamic test circuit in Figure E)
0 ns
50 ns
100 ns
150 ns
200 ns
250 ns
300 ns
350 ns
900 A/µs 1100 A/µs 1300 A/µs
0 µC
1 µC
2 µC
3 µC
4 µC
5 µC
900 A/µs 1100 A/µs 1300 A/µs
R,( K/W )
, (s)
0.18355
7.425*10-2
0.12996
8.34*10-3
0.09205
7.235*10-4
0.03736
1.035*10-4
0.00703
4.45*10-5
C1=
1/R1
R1
R2
C2=
2/R2
R,( K/W )
, (s)
0.2441
7.037*10-2
6.53*10-2
0.2007
7.312*10-3
0.1673
6.431*10-4
0.1879
4.79*10-5
C1=
1/R1
R1
R2
C2=
2/R2
Tj =175°C
Tj =25°C
Tj =25°C
Tj =175°C
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
11
Rev. 2.3 17.09.2014
Irr, REVERSE RECOVERY CURRENT
dirr/dt, DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
diF/dt, DIODE CURRENT SLOPE
diF/dt, DIODE CURRENT SLOPE
Figure 25. Typical reverse recovery current
as a function of diode current
slope
(VR = 400V, IF = 50A,
Dynamic test circuit in Figure E)
Figure 26. Typical diode peak rate of fall of
reverse recovery current as a
function of diode current slope
(VR=400V, IF=50A,
Dynamic test circuit in Figure E)
IF, FORWARD CURRENT
0V 1V 2V
0A
20A
40A
60A
80A
100A
120A
175°C
TJ=25°C
VF, FORWARD VOLTAGE
0°C 50°C 100°C 150°C
0.0V
0.5V
1.0V
1.5V
2.0V
50A
IF=100A
25A
VF, FORWARD VOLTAGE
TJ, JUNCTION TEMPERATURE
Figure 27. Typical diode forward current as
a function of forward voltage
Figure 28. Typical diode forward voltage as a
function of junction temperature
0 A
10 A
20 A
30 A
40 A
50 A
900 A/µs 1100 A/µs 1300 A/µs
-900 A/µs
-800 A/µs
-700 A/µs
-600 A/µs
-500 A/µs
-400 A/µs
-300 A/µs
-200 A/µs
-100 A/µs
900 A/µs 1100 A/µs 1300 A/µs
Tj =175°C
Tj =175°C
Tj =25°C
Tj =25°C
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
12
Rev. 2.3 17.09.2014
PG-TO247-3
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
13
Rev. 2.3 17.09.2014
Figure C. Definition of diodes
switching characteristics
Figure D. Thermal equivalent
circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
Ir r m
90% Ir r m
10% Ir r m
di /dt
F
tr r
IF
i,v
t
QSQF
tStF
VR
di /dt
r r
Q =Q Q
r r S F
+
t =t t
r r S F
+
p(t) 1 2 n
T (t)
j
1
1
2
2n
n
T
C
r r
r
r
rr
IKW50N60TA
TRENCHSTOPTM Series q
IFAG IPC TD VLS
14
Rev. 2.3 17.09.2014
Revision History
IKW50N60TA
Revision: 2014-09-17, Rev. 2.3
Previous Revision
Revision
Date
Subjects (major changes since last revision)
2.1
2010-05-26
Release of final datasheet
2.2
2013-08-27
Update minor changes
2.2a
2014-01-28
Package Drawing according to Rev. 2.1
2.3
Update minor changes, figures 16, 23, 24, 25 and 26
Published by
Infineon Technologies AG
81726 München, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or
systems and/or automotive, aviation and aerospace applications or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or
effectiveness of that device or system. Life support devices or systems are intended to be implanted in the
human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable
to assume that the health of the user or other persons may be endangered.