COS/MOS INTEGRATED CIRCUIT PRELIMINARY DATA LOW POWER MONOSTABLE/ASTABLE MULTIVIBRATOR QUIESCENT CURRENT SPECIFIED TO 15V (see page 10) MAX, INPUT LEAKAGE CURRENT 1 pA @ 15V (FULL TEMP. RANGE) HIGH NOISE IMMUNITY: 45% of Vpp (TYP.) INPUTS FULLY PROTECTED TRUE and COMPLEMENTED BUFFERED OUTPUTS ONLY ONE EXTERNAL R and C REQUIRED FREE - RUNNING or GATABLE OPERATING MODES 50% DUTY CYCLE POSITIVE or NEGATIVE EDGE TRIGGER OUTPUT PULSE WIDTH INDEPENDENT of TRIGGER PULSE WIDTH RETRIGGERABLE OPTION for PULSE WIDTH EXPANSION The HBC 4047A (extended temperature range) and HBF 4047A (standard temperature range) are monolithic integrated circuits, available in 14-lead dual in-line plastic or ceramic package and ceramic flat package. The HBC/HBF 4047A types consist of gatable astable multivibrator; the incorporated logic circuits permit positive or negative edge triggered monostable multivibrator action with re- triggering and external counting options. For operating modes see functional terminal connections and application notes. ABSOLUTE MAXIMUM RATINGS Vpop-Vss Supply voltage -0.5 to 15 Vv vi Input voltage Vss S Vi S Vpp Prot Total power dissipation (per package) 200 mW Tstg Storage temperature -65 to 150 C Top Operating temperature: for HBC types -55 to 125 c for HBF types -A0 to 85 C ORDERING NUMBERS: HBC 4047 AD for dual in-line ceramic package HBC 4047 AF for dual in-line ceramic package frit seal, (extended temperature range) HBC 4047 AK for ceramic flat package HBF 4047 AE for dual in-line plastic package HBF 4047 AF for dual in-line ceramic package frit seal, (standard temperature range) 439 Supersedes issue dated 10//5 11/76MECHANICAL DATA (dimensions in mm) Dual in-line ceramic package Dual in-line plastic package for HBC/HBF 4047 AF for HBF 4047 AE Foot A Dual in-line ceramic package Ceramic fiat package for HBC 4047 AD for HBC 4047 AK 747 7% an 025] 395 0454 162 ree 8 0127 43) a ee an t 159 0.38 440CONNECTION DIAGRAM c 1 [ D 16 Yop R 2 [ ] 43 OSCILLATOR out R-c commons [| I] 12 RE TRIGGER SS TABLE 4 {i | nN 6 astasle 5 [] f} 10 a -Triscen 6 || [] 9xT. RESET Veg all [] 8+ TRIGGER S-1291 LOGIC DIAGRAMS S asrapte. Ce{_--______________.__. c Von COMMON c R 3 e 2 ky ea ASTABLE 64#_f>-____-- a + TRIGGER ba _ Th & ~~ Ko ~ B -trieceR OF 4 Yoo aE a. _f>=<6 OSC, OUT Q b Ve MB oo ~ cP ES RETRIGGER gq je RY R2 WwW yy | 2a ss u 6 L 48 EXTERNAL ET a INPUTS PROTECTED BY STANDARD COS/MCS. aR MODIFIED INPUT PROTECTION CIRCUIT TO RES RESISTOR- DIODE NETWORK PERMIT LARGER INPUT-VOLTAGE SWINGS s-1299 441LOGIC DIAGRAMS (continued) ' R- 3 LS OSEILE ATOR i ae OUT i \ 5 ASTABLE O- t-y ASTABLE Hl 12 b GATE Re eer b TORE TRIGGER ASTABLE Oe CONTROL . t 1 | | : LOW POWER ! 1 ASTABLE ! ' ! MULTIVIBRATOR | 1 I t 1 10 Su. O 9 = TRIGGER ~ : 8 1 MONOSTABLE FREQUENCY 1 CONTR IVIDER(-2) ' S TRIGGER Gato CONTROL _ - t Oo 6 T 1 | | & EXTERNAL po we Yoo I 1 RESET 1 gg Lone eee ee ee ee eee ee ee eee : FUNCTIONAL TERMINAL CONNECTIONS TERMINAL CONNECTIONS OUTPUT OUTPUT PERIOD FUNCTION * PULSE OR INPUT FROM PULSE WIDTH TOVpp | TO Vss | PULSETO Astable Multivibrator: Free Running 4,5,6, 14 7,8,9,12 _ 10,11, 13 [tg (10, 11) = 4.40 RC True Gating 4,6, 14 7,8,9,12 5 10,11, 13 _ ~ .6, 8,9, 11, ta (13) =2.20RC Complement Gating 6, 14 5, 7,8,9,12 4 10,11, 13 A (13) = 2.20 R Monostabie Multivibrator: Positive-Edge Trigger 4,14 5,6, 7,9, 12 8 10, 14 Negative-Edge Trigger | 4,8, 14 5,7,9,12 6 10,11 Retriggerable 4,14 5,6,7,9 8,12 10,11 | tng (10,11) = 2.48 RC External Countdown** 14 5,6,7,8,9,12 _ 10,11 * In all cases external capacitor and resistor between pins, 1, 2 and 3 (see logic cliagrams) **Input pulse to Reset of External Counting Chip External Counting Chip Output to pin 4 RECOMMENDED OPERATING CONDITIONS Vop Supply valtage 3 to 15 Vv v,* Input voltage Vop to Vss Top Operating temperature: for HBC types -55 to 125 c for HBF types -40 to 85 c * In normal operation of the 4047, signals at terminal 3 may go above Vpp or bellow Ves 442STATIC ELECTRICAL CHARACTERISTICS Parameter Test conditions Min. Typ. Max.| Unit HBC types (extended temperature range) Ie Quiescent current Vop= bv (for values at 15V at Tamp=-b0C 5| uA see page 10) at Tamp= 25C 0.03 5/ UA at Tamp 125C 300 | WA Vpp= 10V at Tamb =-55C 10| uA at Tamp= 25C 0.05 10) vA at Tamp 125C 600} WA Vou Output high voltage Vop= 5V at Tamp =7D5C} 4.99 Vv at Tamp= 25C/4.99 5 Vv at Tamp = 125C] 4.95 Vv Vpp= 10V at Tamp=-535C| 9.99 Vv at Tamp= 25C|9.99 10 Vv at Tamp =! 25C] 9.95 Vv VoL Output low voltage Vpop= 5V or 10V at Tamb =-98C 0.01] V at Tamp= 25C 0 0.01/ V at Tamp 125C 0.05| V VN Noise immunity Vp5o=5V Vg =0.8V at Tamb=-55C} 1.4 Vv at Tamp= 25C] 1.5 2.25 Vv at Tamp=125C| 1.5 Vv Vpp=10V. Vo =1V at Tamp=-55C| 2.9 Vv at Tamp= 25C} 3 4.5 Vv at Tamp=125C] 3 Vv 443STATIC ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions Min. Typ. Max.| Unit VAL Noise immunity Vop= 5V Vo = 4.2V at Tamp =-B5C | 1.5 Vv at Tamp= 25C 11.5 2.25 Vv at Tarnp=125C | 1.4 Vv Vpp=10V Vo =9V at Tamp=-55C | 3 Vv at Tamp= 25C ]3 45 Vv at Tamp=125C (2.9 Vv lon Output drive current Vpp= 5V Vo =0.5V N-channel at Tamp =-DBC 10.5 mA at Tamp= 25C (0.4 08 mA at Tamp=125C | 0.28 mA Vpp=10V. Vo =0.5V at Tamp=-b5C | 1.25 mA at Tamp= 25C) 1 2 mA at Tamp=125C | 0.7 mA lop Output drive current Vpp= SV Vo =4.5V P-channel at Tamp=-B8C | -0.5 mA at Tamp= 25C |-0.4 -0.8 mA at Tamp =125C | -0.28 mA Vpp=10V Vo =9.5V at Tamp==-85C| -1.25 mA at Tamp= 25C] -1 -2 mA at Tamp=125C| -0.7 mA | Jie. 4, Input leakage current Vpp= 15V (any input) +105 +1) MA HBF types (standard ternperature range) i Quiescent current Vpp= 5V (for values at 15V at Tamp =-40C 50 | uA see page 10} at Tamp= 25C 0.1 5O] MA at Tamp= 85C 700 | pA Vop= 10V at Tamp =-40C 100 | pA at Tamp= 25C 0.2 100] pA at Tamp= 85C 1400 | uA 444STATIC ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions Min. Typ. Max.) Unit Vou Output high voltage Vop= 5V at Tamp = -40C| 4.99 Vv at Tamp= 25C|4.99 5 Vv at Tamp= 85C|4.95 Vv Vpp= 10V at Tamb = -40C| 9.99 Vv at Tamp= 25C/9.99 10 Vv at Tamp 85C/9.95 Vv Voi Output low valtage Vpp= 5V or 10V at Tamp= ~40C 0.01; V at Tamp= 25C 0 0.01) V at Tamp= 85C 0.05; V VNH Noise immunity Vpop= 5V Vo= 0.8V at Tamp= -40C] 1.4 Vv at Tamp= 25C|1.5 2.25 Vv at Tamp= 85C}1.5 Vv Vpp=10V Vo=1V at Tamp= -40C|2.9 Vv at Tamb= 25C|3 45 Vv at Tamb= 85C|3 Vv VAL Noise immunity Vpp= 5V Vo=4.2V at Tambp= ~40C|1.5 Vv at Tamp= 25C{1.5 2.25 Vv at Tamp= 85C}1.4 Vv Vop=10V Vo= 9V at Tamp = -40C|3 Vv at Tamp= 25C/3 45 Vv at Tamp= 85C}2.9 Vv lon Output drive current |Vpp=5V Vo=05V N-channel at Tamp = ~40C|0.34 mA at Tamn= 25C/0.28 0.8 mA at Tamp= 85C|0.23 mA Vpop=10V Vo=0.5V at Tamb = ~40C/0.85 mA at Tamp= 25C|0.7 2 mA at Tamp= 85C)0.6 mA 445STATIC ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions Min. Typ. Max.| Unit lop Output drive current |Vpp=5V Vo= 4.5V P-channel at Tamp = ~40C | -0.34 mA at Tamp= 25C |-0.28 ~0.8 mA at Tamp= 85C] -0.23 mA Vop=10V Vo =9.5V at Tamp = -40C | -0.85 mA atTamp= 25C)-0.7 -2 mA at Tamp= 85C | -0.6 mA lia, lip Input leakage current Vpp= 15V (any input) 105 +1) uA Typical N-channel drain characteristics for Q and O buffers -1713 Ton (mA) | TTamp = 25C TYPICAL TEMPERATURE COEFFICIENT AT ALL VALUES OF Vos, = - 0.3% eC GS? 20 0 2 6 6 8 10 12 Vos (Vv) Typical P-channel drain characteristics for Q and O buffers G-1722 pp (mA) 25V COEFFICIENT AT ALL 10 Vos * 20 30 446Minimum N-channel drain characteri- stics for Q and O buffer Tow | [tamb * 25C (ma) TYPICAL TEMPERATURE COEFFICIENT AT AL VALUES OF Yes s- 0.9% 1C oon HBC 4067A0.AK,AF mame HBF 4O47AE,AF 20 10 0 2 4 6 8 10 12 Vos() TEST CIRCUITS Quiescent device current 10V t 14 2 13 3 12- s W 5 10 +6 gt TEST PINS 3.4 5 6 8 9g 12 1 11231210 2 2 11101 1 0 3 o1i10di1i@=0 4 NC 10000 90 Minimum P-channel drain characteri- stics for G and O buffer 6-172 =5V -lpp : (mA) HBC 4047 AF-AD-. HBF 4047 AE-AF amb = TYPICAL TEMPERA 14 | COEFFICIENT AT ALL 5- 0.3 %e/9C 15V 0 2 6 6 6 10 2 -Vo5 () Noise immunity 5Vor lov ~ 4 HW 15 0 be Oo 1S or3v 6 g ry 7? g Ae 35 oF PV S-1295 447DYNAMIC ELECTRICAL CHARACTERISTICS (T,,,p=25C, C_=15 pF, typical temperature coefficient for all Vj>5=0.3%/C values Parameter Test conditions Min. Typ. Max.| Unit teri, Propagation delay time | Astable, Astable to osc. out tere Vop= 5V for HBC types 200 400; ns for HBF types 200 550] ns Vop= 10V for HBC types 100 2001 ns for HBF types 100 275] ns Astable, Astable to Q, 0 Vop= 5V for HBC types 550 900] ns for HBF types 550 1200; ns Voo =10V for HBC types 250 500; ns for HBF types 250 650] ns + Trigger, - Trigger to Q, QO Vpop= 5V for HBC types 700 1200 | ns for HBF types 700 1600/ ns Vpp= 10V for HBC types 300 600] ns for HBF types 300 800] ns + Trigger, Retrigger to Q, a for HBC types 300 600| ns for HBF types 300 800; ns Vop= 10V for HBC types 175 300) ns for HBF types 175 400] ns External Reset to Q, 0 for HBC types 300 600} ns for HBF types 300 800; ns Vpo= 10V for HBC types 125 250] ns for HBF types 125 350] ns 448DYNAMIC ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions Min. Typ. Max.| Unit trtH. Transition time a,a tTHL Vop =5V for HBC types 75 125] ns for HBF types 75 150] ns Vop= 10V for HBC types 45 75 | ns for HBF types 45 100] ns Ose. Out I Vpp=5V for HBC types 75 150] ns for HBF types 75 180] ns Vop = 10V for HBC types 45 100; ns for HBF types 45 130] ns towH Minimum input Vop= 5V towL pulse width for HBC types 500 1000 | ns for HBF types 500 1300 | ns Vop= 10V for HBC types 200 400] ns for HBF types 200 600} ns tor, Clock rise and Vop= 5V tor fall time for HBC and HBF types 15 | us Vop= 10V for HBC and HBF types 5] ps Cc, Input capacitance Any input for HBC and HBF types 5 pF 449Typical low-to-high level propagation Typical transition time, vs. load capa- delay time vs. load capacitance for citance for O and O buffers and O buffer 'TLH {THLE {ns} 160 tPLH (ns) 800 600 120 400 80 200 40 0 20 40 60 80 C, (pF) 0 20 40 60 80 Cy (pF) APPLICATION INFORMATIONS 1 Circuit description and timing - component limitations The HBC/HBF 4047A inputs include + Trigger, - Trigger, Astable, Astable, Retrigger, and External Reset. Buffered outputs are O, OQ, and Oscillator. In all modes of operation an ex- ternal capacitor must be connected between C-Timing and RC-Common terminals, and an external resistor must be connected between the R-Timing and RC-Common terminals. Astable operation is enabled by a high level on the Astable input or a low level on the Astable input allowing the circuit to be used as a gatable multivibrator. The period of the square wave at the Q and Q outputs is a function of the external components employed. An output, whose period is half of that which appears of Q terminal, is available of the Oscil- lator Output terminal; a 50% duty cycle is only guaranteed at Q output. In the monostable mode positive-edge triggering is accomplished by epplication of a leading- edge pulse to the + Trigger input and a low level to the -Trigger input. For negative-edge triggering a trailing-edge pulse is applied to the -Trigger and a high level is applied to the + Trigger. Input pulses may be of any duration relative to the output pulse. The multivi- brator can be retriggered (an the leading edge only) by applying a common pulse to both the "Rettrigger and "+ Trigger inputs. In this mode the output pulse remains high as long as the input pulse period is shorter than the period determined by the RC components. A high level on the External Reset input assures no output pulse during an ON power con- dition. This input can also be activated to terminate the output pulse at any time. 450APPLICATION INFORMATIONS (continued) The capacitor used in the circuit should be non-polarized and have low feakage (i.e. the pa- rallel resistance of the capacitor should be an order of magnitude greater than the external resistor used). There is no upper or lower limit for either R or C value to maintain oscillation. However, in consideration of accuracy, C must be much larger than the inherent stray capa- citance in the system (unless this capacitance can be measured and taken into account). R must be much larger than the COS/MOS ON resistance in series with it, which typically is hundreds of ohms. In addition, with very large values of R, some short-term instability with respect to time may be noted. The recommended values for these components should be : C = 100 pF, up to any pratical value, for astable modes; C = 1000 pF, up to any pratica! vatue for monostable modes. 10Kn ooourret R ~L text INPUT | PULSE ae $1299 5 Power Consumption In the standby mode (Monostable or Astable), power dissipation wil/ be a function of leaka- ge current in the circuit, as shown in the static electrical characteristics. For dynamic opera- tion, the power needed to charge the external timing capacitor C is given by the following formula: Astable Mode: P = 2CV*f. (Output at Pin 13) P = 4CV7f. (Output at Pin 10 and 11) _ (2.9CV2) (Duty Cycle) T Monostable Mode: P (Output at Pin 10 and 11} The circuit is designed so that most of the total power is consumed in the external compo- nents. In practice, the lower the values of frequency and valtage used, the closer the actual power dissipation will be to the calculated value. Because the power dissipation does not depend on R, a design for minimum power dissipation would be a small value of C. The value of R would depend on the desired period (within the limitations discussed above). See Figs. 14 - 16 for typical power consumption in astable mode. 454Fig. 1 - Typical Q-and--O-period accu- racy vs. supply voltage (high frequency) G~1726 (%) 20 ASTABLE MODE Tamb 2 25C 0 2 4 6 8 10. 12 Yop () Fig. 3- Typical Q-and--O-period ac- curacy vs. supply voltage low frequency G. T Ch) ASTABLE Tamp2 25C 8 amb 8 f=1kHz,C =1000pF, R=220kN 4 2 0 =l00Hz, C=1000pF, R=2.2M0 -2 wh 0 2 4 6 8 10 12 Ybo (%) ~4 20.8 20.46 Fig. 2- Typical Q-and-O-period ac- curacy vs. supply voltage me- dium frequency 3- ASTABLE MODE Tamb 7 25C 0 2 #& 6 8 10 12 Vpp(V) Fig. 4- Typical Q-and-Q-period ac- curacy vs. supply voltage very low frequency G- 1728 amb * ACCURACY RANGE FOR FREQUENCY OF LESS O1 uF SC S1MF 100kN <= R<10MN THAN 100 Hz 2 4 6 8 10 12 Yoo () 455nec HBF 40 Fig. 5 - Typical Q-and-O-period ac- curacy vs. frequency G-1730 ASTABLE MODE Tamb = 25C = 5vs 10V 210% IV210% 10" 10 10 (Hz) Fig. 7 - Typical Q-and-Q-period ac- curacy vs. ambient tempera- ture medium frequency G-1732 T (th) ASTABLE MODE 2 0 R -2 . 47 100 [ 47 | 10 2 bs 100 [220] 10 220 -50 Q 50 100 Tamb (C) tow (%o) 7 Fig. 6 - Typical Q-and-G-period ac - curacy vs. ambient tempera - ture high frequency G~1731 STABLE MODE kHz} pF jk A 10 | 47 B (100 {100} 22 100 Tamn(*C) Fig. 8- Typical Q-and-O-pulse-width accuracy vs. supply voltage G-1733 Tamb = 25C MONOSTABLE MODE vn R pF | ka A 1 4 B {| 60 | 100 }220 4 2 4 6 8 10 12 Yoo(Y) 456Fig. 9 - Typical Q-and-G-pulse-width accuracy vs. supply voltage G-1734 tow amb = 25C (%) [|MONOS TABLE MODE 2246 2 21.6 21.2 08 04 0 2 4 6 86 412 Vpp() Fig.11- Typical Q-and-Q-pulse-width accuracy vs. OQ and QO pulse- width G-1736 tpw (ed STABLE MODE Tamb = 25C 23 22 5V2 10% 5V 210% Fa] SVvt10% 210% 0 105 108107 107? 0" (s) tow Fig. 10 - Typical Q-and-Q-pulse-width accuracy vs. supply voltage G-1738 tpw (%e} 03 0.2 0.1 0 -1 2 URACY RANGE FOR PERIODS OF 2 100ms. 3 OOtur SC S1pF 100kN SR S$10MN ak +5 0 2 4 6 68 10 12 #14 16 Vpp(} Fig. 12- Typical O-and-Q-pulse-width accuracy vs.ambient tempera- ture high frequency tpw () TABLE MODE c R pF 100 | 47 | 5310 100 { 220/540 Yoo ka v ~10 -50 0 50 100 Tamp (C) 457Fig.13- Typical Q-and-G-pulse-width tow ("%e) 03 0.2 MONOSTABLE MODE accuracy vs. ambient tempera- ture high frequency G-1738 100 ps ty Sims Vop = SHOV = ty = t0ms = SH10V 100 Tampp(*C? Fig.15- Power dissipation vs. output Ptot (pw) frequency evn Vpp =10 408 10 10? 10" 10 (Hz) 10 107 10 = 10 Fig. 14~ Power dissipation vs. output frequency Prot (pw) TABLE MODE Vpp =5V 10* 103 10? wm 04 10 10? 10? = 104 G-1739 10 (Hz) Fig.16- Power dissipation vs. output frequency Prot (uw) 408 10* 10 10? ot 4 10 107107104 G-17461 10 (Hz) 458