ZA SERIES APPLICATIONS REPLACEMENT FOR the following when used as transient e Solid State Motor Control suppressor: Solid State Relays/Timers e Selenium Tryectors @ AC Line Cord Protection e Zener Diodes e Control Arc Suppression * Silicon Carbide e Traffic Controllers e Gas Discharge Tubes e Communication Equipment e R-C Networks (non-dv/dt) e Automobiles e Neon Bulbs Calculators e Electronic Crowbar Circuits e Smoke Detectors e Instrumentation OZ . 13 5-15 JOULES JOULES Replaces Many Zeners Voltages 12-115 VRMS, 16-153 VDC Energy Absorption to 15 Joules Peak Pulse Current to 1000A e Characterized @ ImA DC e For Complete Specifications, see Page No. 1438. MAXIMUM MAXIMUM Maximum MAXIMUM APPLIED VOLTAGE MAXIMUM NON-REPETITIVE AvraaGe VARISTOR MODEL ENERGY PEAK PULSE POWER VOLTAGE AC-PEAK JOULES CURRENT AT 1 AMP/ M | NUMBER = AC-RMS | soeons | DC t) <6 US DISSIPATION 47D AY VOLTS VOLTS | VOLTS (WATT-SECS) AMPS WATTS VOLTS viezal os : 0.18 Visza3 30 0.40 V22ZA1 0.6 0.17 V22ZA3 3.0 0.40 V24ZA1 0.8 0.18 V24ZA4 4.0 0.40 V27ZA1 0.8 0.18 V27ZA4 : 4.0 0.40 V33ZA1 1.0 0.19 V33ZA5 5.0 0.40 V39ZA1 : 1.2 0.20 V392A6 6.0 0.45 Va7ZAl / 1.4 : 0.21 V47ZA7 7.0 : 0.45 V56ZA2 V7 9.22 V56ZA8 8.0 0.45 V68ZA2 2.0 0.24 V68ZA10 0.50 V82ZA2~ SC 2.5 : 0.25 V82ZA12 0.50 V100ZA3 3.0 0.26 V100ZA15 0.55 V120ZA1 1.0 0.20 V120ZA6 6.0 : 0.45 V1S50ZA1 : 0.20 V150ZA8 8. 0.45 v180ZA1 . : : 0.20 V180ZA10 , 0.45 160Description: GE-MOV zinc oxide varistors are voltage dependent, symmetrical resistors which perform in a manner similar to back-to-back zener diodes in circuit protective functions and offer advantages in performance and economics. The ZA series is characterized at the 1mADC varistor voltage following 10% EIA values as are zener diodes and other varistors used as transient suppressors. When exposed to high energy voltage transients, the varistor impedance changes from a very high standby value to a very low conducting value thus clamping the transient voltage to a safe level. The dangerous energy of the incoming high voltage pulse is absorbed by the GE-MOV varistor, thus protecting your voltage sensitive circuit components. Replacement For: @ Zener Diodes @ Silicon Carbide Selenium Thyrectors R-C Networks (non dv/dt) 1-3 JOULES 3-15 JOULES IV Oscillograph (Actual Photo) Features: @ Low Voltage Design Exceilent Clamping High Transient Current Capability (2000 Amps) @ Nanosecond Response High Energy Capability Wide Operating Temperature Range @ Low Temperature Coefficient @ Low Standby Drain Compact and Lightweight Benefits: Improves Circuit, Component and System Reliability e Extends Contact Life Reduction of Lightning Effects @ Promotes System Cost Reduction @ Reduces System Size and Weight Requirements Increases Product Safety No Follow-On Current Applications: Telephone Relays @ Telephone Solid State Circuits Communication Equipment Relay Coils Traffic Controllers Computer Equipment @ Railroad Circuitry @ Numerical Control Test Equipment {instrumentation 1438 @ Solid State Relays/Timers @ Power Supplies Solid State Security Systems @ Medical Equipment @ Fire Alarms @ Solid State Motor Control Television @ Copier Machines Calculators e Contact Arc Suppression: . SERIES ZA Maximum Electrical Ratings: Maximum Energy, Power and Peak Current 2... 0... eee ee ee ete ee eee See Rating Table Storage Temperature, ToTG 2.6. ee ee ee eee ee eee -40C to +125C Operating Surface Temperature, Tg... ee ee eee ene te eee ee ee ees 115C Operating Ambient Temperature (without derating) 2... te eee ete eres 85C Maximum Voltage Temperature Coefficient 2... eee eee ee eee tees -0,05%/OC Mechanical Ratings: Insulation ResistanceMegohms... 2... 0. ee ee eee teen eee > 1000 Hipot EncapsulationVolts D.C. for 1 Minute... 2... eee eee tee tes 2500 Solderability 0... ee ee ene ee ee ee eee Per Mil Std 202C Method 208C Model Number Nomenclature: V33ZA5 Typical V-1 Characteristics: V 33 ZA 5 | [ iS. GENERAL VNomM,NOMINAL PRODUCT PULSE ELECTRIC VARISTOR VOLTAGE SERIES ENERGY GE-MOV (VDC) RATING VARISTOR (JOULES) i qT r qT T 26 Teg T 3 5 a 8 VnNom Voc The ZA series GE-MOV varistors are characterized at the ImADC varistor voltage according to RETMA values. For exampleV33ZA5: The nominal varistor voltage is 33VDC, 10%, at ImADC. The maximum allowable steady state applied voltages, 26VDC and 28VAC (peak) fall below the low side nominal varistor voltage of 29.7 VDC (33 VDC 10% ) to insure the maximum idle power dissipation AMaximum allowable steady state DC applied voltage. ] See Ratings Table. characteristics are not exceeded. BMaximum allowable steady state recurrent peak applied voltage. See Ratings Table. VNOMNominal Varistor voltage at lmADC. See Characteristics Table. 3 AMBIENT : - oe -40 10 40 TO 85C VIOOZA3 Vv & LOWER Ol Vl2O0ZAl VI2ZOZA6 i & HIGHE & HIGHER | vizdzae! & R CURRENT PULSES ATIpt!0% S100zSEC WIDE, PRF <3Hz RESISTANCE PER VOLT OF NOMIMAL VOLTAGE (OHMS/VNOM.} DYNAMIC IMPEDANCE PER VOLT OF NOM. VOLTAGE (OHMS/V NOM.) OO! ol A | lo 100 A l 10 loo PEAK CURRENT~ AMPERES PEAK CURRENT- AMPERES FIGURE 1 TYPICAL CHARACTERISTIC OF DYNAMIC FIGURE 2 MAXIMUM RESISTANCE VS. IMPEDANCE VS. PEAK CURRENT PEAK CURRENT 1439SERIES ZA MAXIMUM RATINGS CHARACTERISTICS STEADY STATE (1) TRANSIENT pc | RMS(2,3,4)| RECURRENT AVERAGE | PEAK VARISTOR VOLTAGE TYPICAL MODEL APPLIED | APPLIED [PEAK APPLIED| ENERGY | POWER PULSE @1.0 mA CAPACITANCE NUMBER | VOLTAGE| VOLTAGE| VOLTAGE (a) DISSIPATION] CURRENT DC CURRENT (5) (1,2,4) |50-60Hz AC) (2,3,4) (a) (6) volts | voLTs VOLTS wart sexs) WATTS AMPS VOLTS TOL. PICOFARADS V18ZA1 14 10 14 0.5 18 250 18 + 20% 2500 V18ZA3 14 10 14 3.0 .40 1000 18 + 20% 12000 V22ZA1 18 14 19 0.6 18 250 22 + 15% 2000 V22ZA3 18 14 19 3.0 .40 1000 22 + 15% 10000 V24ZA1 20 15 21 0.8 18 250 24 + 10% 1700 V24Z2A4 20 15 21 4.0 .40 1000 24 + 10% 8500 V27ZA1 22 17 24 0.8 18 250 27 + 15% 1700 V27ZA4 22 17 24 4.0 .40 1000 27 + 15% 8500 V33ZA1 26 20 28 1.0 19 250 33 + 10% 1400 V33ZA5 26 20 28 5.0 40 1000 33 + 10% 7000 V39ZA1 31 25 35 1.2 .20 250 39 + 10% 1200 V39ZA6 31 25 35 6.0 AS 1000 39 + 10% 6000 V47ZA1 38 30 42 1.4 21 250 47 + 10% 1000 V47ZA7 38 30 42 7.0 A5 1000 47 + 10% $000 V56ZA2 45 35 49 1.7 22 250 56 + 10% 800 V56ZA8 45 35 49 8.0 45 1000 56 + 10% 4000 V68ZA2 56 40 57 2.0 .24 250 68 + 10% 700 V68ZA10 56 40 57 10.0 .50 1000 68 + 10% 3500 V82ZA2 66 50 71 2.5 25 250 82 + 10% 600 V82ZA12 66 50 71 12.0 50 1000 82 + 10% 3000 V100ZA3 81 60 85 3.0 26 250 100 + 10% 500 V100ZA15 81 60 85 15.0 55 1000 100 + 10% 2500 V120ZA1 102 75 106 1.0 .20 500 120 + 10% 200 V120ZA6 102 75 106 6.0 45 2000 120 + 10% 1200 V150ZA1 127 95 134 1.2 .20 S500 150 + 10% 170 V150ZA8 127 95 134 8.0 45 2000 150 + 10% 1000 V180ZA1 153 115 163 1.5 .20 500 180 + 10% 140 V180ZA10 153 115 163 10.0 45 2000 180 + 10% 800 600 500 200 VOLTS 100 80 60 40 Ol MAXIMUM VOLT-AMPERE CHARACTERISTICS V24ZAl V22ZAl VIBZAI 1.0 lo AMPERES FIGURE 3 (oo {000 600 500 400 300 200 VOLTS 80 50 40 OF 1440 1.0 10 AMPERES FIGURE 4 1. Leakage current @ max DC rated voltage = 20 UA typical 200 pA max. 2. Applied Voltage is that voltage across the varistor terminals when no transient is present. Include high line conditions on selection. 3. For AC applications a sinusoidal Applied Voltage is assumed assumed to be the normal input condition, If Applied Voltage is non-sinusoidal, Recurrent Peak Applied Voltage values should be used to select the correct model. 4. See Figure 11. 3. 1mA DC current puise, 20 msec min. 6.See Figures 7 thru 10. 100 1000MAXIMUM VOLT-AMPERE CHARACTERISTICS SERIES ZA 600 500 400 300 200 (oo 80 MAXIMUM PEAK VOLTS 60 50 40 V24ZA4 30 V22ZA3 VI8ZA3 20 Ol JO 1.0 10 loo 1000 -Ol mle) 1.0 10 100 1000 PEAK AMPERES PEAK AMPERES FIGURE 5 FIGURE 6 PULSE LIFETIME RATINGS MAXIMUM PEAK VOLTS 200 APPLICABLE MODELS: APPLICABLE MODELS: VI8ZAI TO Vi8BOZAZ 500 VI8ZA3 TO VIOOZAIS 100 an Ww 10 Ww 5 10? & w 50 a. 200 = = oS 8B 20 a iw) J 2 4 0 D> 2 a oO x | x 5 | V \ above 70C the applied voltage and energy ratings are linearly * -40 40 60 60 70 80 90 100 NO 20 educed to zero at 100C. AMBIENT TEMPERATURE C Figure 11. VOLTAGE AND ENERGY RATINGS VS. AMBIENT TEMPERATURE AND AVERAGE POWER OF INPUT TRANSIENTS oe 7 r ? cr) +19 f MARKING & Somme 52 pare OF" NOT TO SCALE f eLgcrEuat A 8p &4 MODEL | marking | MAX MAX MAX MIN. MAX MIN MAX NUMBER a: : " . * IN | MM IN MM IN | MM | IN | MM] IN | MM {| IN | MMj IN | MM V12 ZAI 18Z1 .461/11.71 .335 8.51 }.158! 4.0 |.038 10.98 |.079 | 2.0 |.023} 59 |.027| .68 ViEZA3 Vi8ZA3 -745( 16.9} .636 | 16.15 |.173 1} 4.4 |.043{1.09 |.079 1 2.0 |.030! .77 |.034; .86 V222A1 22Z1 461411.7] 335 8.51 4.1581 4.0 |.038 }0.98 |.079 | 2.0 023 | .59 |.027) .68 V22Z2A3 V22ZA3 -745{16.9}] .636 | 16.15 |.173]| 4.4 |.043 11.09 |.079 | 2.0 |.030{ .77 |.034; .86 V24ZA1 24Z1 461/11.7} .315 8.51 |[.158] 4.0 |.038 |0.98 |.079 | 2.0 |.023] .59 |.027] .68 V24ZA4 V24ZA4 -745|18.9{ .636 | 16.15 |.173| 4.4 |.043 |1.09 |.079 | 2.0 |.030! .77 |.034| .86 V27ZA1 27Z1 461} 11.7] .335 8.51 [.158 |} 4.0 |.038 |0.98 |.079 | 2.0 |.023| .59 |.027]| .68 V27ZA4 V27ZA4 .745|18.9} 636 | 16.15 |.197| 5.0 }.054| 1.36 |.099 | 2.5 1.030) .77 |.034) .86 V33ZA1 33Z1 .461/11.7]| .335 8.51 |.158 | 4.0 |.038 10.98 |.079 | 2.0 |.023| .59 |.027} .68 V33ZA5 V33ZA5 -745(18.9]} .636 | 16.15 |.197] 5.0 |.054|1.36 |.099 | 2.5 |.030] .77 |.034] .86 V39ZA1 39Z1 .461/11.7] .335 8.51 |.178} 4.5 |.048 11.24 |.099 | 2.5 |.023 | .59 |.027]| .68 V39ZAG6 V39ZA6 -745|18.9| 636 | 16.15 |.197]| 5.0 }.054 |1.36 |.099 | 2.5 |.030| .77 |.034/ .86 V47ZA1 47Z1 461 )11.7} .335 8.51 |.197 1 5.0 }.059 71.50 |.119 | 3.0 }.023} .59 |.027) .68 VA7ZA7 V47ZAT7 -745118.9| 636 | 16.15 |.212! 5.4 |.065 |1.63 |.119 | 3.0 }.030] .77 |.034] .86 V56ZA2 56Z2 461 )11.7} .335 8.51 3.197 | 5.0 |.059 |1.50 |.119 | 3.0 |.023] .59 |.027] .68 V56ZA8 VS56ZA8 -745|18.9| 636 | 16.15 |.237 | 6.0 |.075 {1.90 |.138 | 3.5 |.030] .77 |.024] .68 V68ZA2 68Z2 .461/11.7]{ .335 8.51 |.217| 5.5 |.068 |1.75 |.138 | 3.5 |.023 | .59 |.027] .68 V68ZA10 V68ZA10 -745}18.9] .636 16.15 }.251 | 6.4 |.086 }2.17 }.158 | 4.0 |.030} .77 |.034] .86 V82ZA2 82Z2 .461/11.7] .335 8.51 |.237 | 6.0 |.079 }2.01 |.158 | 4.0 [.023 | .59 |.027] .68 V82ZA12 V82ZA12 745 118.9] .636 | 16.15 |.275 | 7.0 |.097 [2.44 |.178 | 4.5 |.030] .77 |.034] .86 V100ZA3 100Z .461}11.7] .335 8.51 |.256] 6.5 |.089 12.27 |.178 | 4.5 |.023 | .59 |.027]| .68 V100ZA15 | VIOOZAI1S |.745/18.9] .636 | 16.15 |.291 | 7.4 |.107 {2.71 |.197 | 5.0 |.030| .77 |.034] .86 V120ZA1 120Z 461 111.7) .335 8.51 }.158 14.0 }|.038 10.98 ].079 } 2.0 |.023 | .59 |.027) .68 V120ZA6 V120ZA6 745 {18.9} .636 | 16.15 {.197 | 5.0 |.059 |1.36 |.099 | 2.5 [030] .77 1.034] .86 V150ZA1 150Z .461/11.7] .335 8.51 1.178 | 4.5 [048 |1.24 |.099 | 2.5 1023 | .59 |.027| .68 V150ZA8 V150ZA8 745 118.9} .636 | 16.15 |.197 15.0 |.054 {1.36 |.099 | 2.5 [0301.77 |.034| .86 V180ZA1 180Z .461/11.7] .335 8.51 5.178 | 4.5 [048 |1.24 |.099 | 2.5 1023 | .59 |.027] .68 V180ZA10 | VI80ZA10 |.745118.9] .636 16.15 }.212 | 5.4 |065 |1.63 |.119 |} 3.0 1030] .77 |.034) .86 1442GE-MOV VARISTOR APPLICATIONS ELECTRONIC SWITCHING OF INDUCTIVE LOADS When an inductive load is switched off by a transistor, a high S.0.R. (Safe Operation Region) is required of the transistor to prevent reverse-biased second breakdown. If a GE-MOV Varistor is connected from collector to emitter, the energy stored in the inductor is no longer forced through the tran- sistor but instead is transferred to the Varistor, This results in a significant decrease in transistor stress and a much more reliable circuit operation. ELECTRONIC SWITCHING FOR REGULATION Sudden application of supply voltage (or initial turn-on) can damage a switch mode regulator switching device by subject- ing it to the heavy current surge required to charge the un- charged filter capacitor. A GE-MOV Varistor can be used to shunt the initial surge around the switching device, precharging the capacitor to a safe value. The Varistor will not affect circuit operation at times other than at initial turn-on because it draws extremely little current at a voltage of Vij - Vour. Applied in this manner, the GE-MOV Varistor can offer important protec- tion for a line operated power supply. V+ V+ ir Period of high S.O.R. requirement vt V+ eet fe ! \ J 1 \ 1 vos 1 : t p f SS i. a v, = out in CONTROL CIRCUIT T i (transistor) Voee Ie =| . r x Vin CONTROL CIRCUIT t--Pot} 14 i {transistor} GE-MOV VARISTOR APPLICATION NOTES PUB. NO. 200.60 GE-MOV Varistors Voltage Transient Suppressors 200.72 Using GE-MOV Varistors to Extend Contact Life 200.73 Testing GE-MOV Varistors 200.77 Detecting & Suppressing Nanosecond Wide Spikes with GE-MOV Varistors 201.28 Energy Dissipation in GE-MOV Varistors for Various Pulse Shapes 660.30 Six Ways to Control Voltage Transients, Reprint from Electronic Design 660.32 Transient Suppression ... Dont Make The Cure Worse Than The Disease, Reprint from Machine Design 451.133 Transient Voltage Suppression Manual 1443