S-812C Series
www.sii-ic.com
HIGH OPERATING VOLTAGE
CMOS VOLTAGE REGULATOR
© Seiko Instruments Inc., 2001-2011 Rev.6.1_00
Seiko Instruments Inc. 1
The S-812C Series is a high-withstand voltage regulator IC which is developed by using the CMOS technology.
This IC is suitable for applications which require withstand because its maximum voltage for operation is as high
as 16 V, also for portable device having the low current consumption because this IC not only has the low
current consumption but also a power-off circuit. This IC operates stably due to the internal phase compensation
circuit so that users are able to use cera mic capacitor as the output capacitor.
Features
Low current consumption: Current at operation: Typ. 1.0 μA, Max. 1.8 μA (product with 3.0 V)
Output voltage: 2.0 to 6.0 V, selectable in 0.1 V step.
Output voltage accuracy: ±2.0%
Output current: 50 mA capable (3.0 V output product, VIN=5 V) *1
75 mA capable (5.0 V output product, VIN=7 V) *1
Dropout voltage: Typ. 120 mV (VOUT = 5.0 V, IOUT = 10 mA)
Built-in Power-off circuit: Selectable if power-off function is available or not.
Active high or low in the regulator is selectable.
Short-circuit protection: Selectable with/without short-circuit protection.
Short-circuited current 40 mA Typ.: in the product with protection.
Operation voltage: 16 V max.
Lead-free, Sn 100%, halogen-fre e*2
*1. Attention should be paid to the power dissipation of the package when the load is large.
*2. Refer to “ Product Name Structure” for details.
Applications
Power source for home electric/electronic appliances
Power source for battery -powered devices
Power source for comm unication devices
Packages
SNT-6A(H)
SOT-23-5
SOT-89-3
SOT-89-5
TO-92
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 2
Block Diagrams
1. S-812CxxA Series (No short-circuit protection and power-off function)
VSS
VOUT
VIN *1
Reference
voltage
*1. Parasitic diode Figure 1
2. S-812CxxB Series (Short-circuit protection and power-off function)
VSS
VOUT
ON/OFF
VIN *1
Short-circuit
protection
Reference
voltage
*1. Parasitic diode Figure 2
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 3
3. S-812CxxE Series (Short-circuit protection and no power-off function)
VSS
VOUT
VIN *1
Reference
voltage
Short-circuit
protection
*1. Parasitic diode Figure 3
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 4
Product Name Structure
Users can select the product type, output voltage, and package type for the S-812C Seri es. Refer to the
1. Product Name” for the construction of the product name, “2. Package” re garding the package
drawings and “3. Product Name List” for the full product names.
1. Product name
1. 1 S-812CxxA series
1. 1. 1 Package SOT-23-5, SOT-89-3
S-812C xx A xx - xxx T2 x
Environmental code
U : Lead-f ree (Sn 10 0%), halogen-f ree
G : Lead-free (for detai ls, please contact
our sales office)
IC direction i n tape specifications*1
Product name (abbreviation)
Package name (abbreviation)*2
MC : SOT-23-5
UA : SOT-89- 3
Short-circu it protecti on and power-off function
A : No
Output voltage
20 to 60
(e.g. When the output voltage is 2.0 V,
it is expressed 20)
*1. Refer to the tape specifications.
*2. Refer to the “3. Product name list”.
1. 1. 2 Package TO-92
S-812C xx A Y - x 2 - U
Environment al code
U : Lead-free (Sn 100%), halo gen -free
Product name (abbreviation)
B : Bulk
Z : Tape and ammo
Package name (abbreviat ion)*1
Y : TO-92
Short-circui t protection and power-off f un cti
o
A : No
Output volt age
20 to 60
(e.g. When the ou tput voltage i s 2.0 V,
it is expressed 20 )
*1. Refer to the “3. Product name list”.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 5
1. 2 S-812CxxB series
S-812C xx B xx - xxx xx x
Environmental co de
U : Lead-free (Sn 100%), halogen-free
G : Lead-free (for details, please contact
our sale s office)
IC direction in tape specifications*1
TF : SNT-6A(H)
T2 : SOT-23-5, SOT-89-5
Product name (abbreviation)
Package name (abbreviati o n)*2
PI : SNT-6A(H)
MC : SOT-23-5
UC : SOT-89-5
Short-circuit protection and power-off fun c tion
B : Yes
ON/OFF pin Positive logic (operates by “H”)
Output voltage
20 to 60
(e.g. When the output voltage is 2.0V,
it is expressed 20)
*1. Refer to the tape specifications.
*2. Refer to the “3. Product name list”.
1. 3 S-812CxxE series
S-812C xx E UA - xxx T2 x
Environmental code
U : Lead-free (Sn 100%), haloge n-free
G : Lead-free (for details, please contact
our sales office)
IC direction in tape specifications*1
Product name (abbreviation)
Package name (abbreviation)*2
UA : SOT-89-3
Short-circuit protection and no power-off function
Output voltage
20 to 60
(e.g. When the outp ut voltag e is 2.0 V,
it is expressed 20)
*1. Refer to the tape specifications.
*2. Refer to the “3. Product name list”.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 6
2. Package
Drawing code
Package name Package Tape Reel Zigzag Land
SNT-6A(H) PI006-A-P-SD PI006-A-C-SD PI006-A-R-SD PI006-A-L-SD
SOT-23-5 MP005-A-P-SD
MP005-A-C-SD MP005-A-R-SD
SOT-89-3 UP003-A-P-SD UP003-A-C-SD UP003-A-R-SD
SOT-89-5 UP005-A-P-SD UP005-A-C-SD UP005-A-R-SD
TO-92 (Bulk) YS003-D-P-SD
TO-92 (Tape and ammo)
YZ003-E-P-SD YZ003-E-C-SD YZ003-E-Z-SD
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 7
3. Product name list
3. 1 S-812CxxA Series (No short-circuit protection, power-off function)
Table 1
Output voltage SOT-23-5 SOT-89-3 SOT-89-5 TO-92*1
2.0 V±2.0 % S-812C20AMC-C2AT2x S-812C20AUA-C2AT2x S-812C20AY-n2-U
2.1 V±2.0 % S-812C21AMC-C2BT2x S-812C21AUA-C2BT2x S-812C21AY-n2-U
2.2 V±2.0 % S-812C22AMC-C2CT2x S-812C22AUA-C2CT2x S-812C22AY-n2-U
2.3 V±2.0 % S-812C23AMC-C2DT2x S-812C23AUA-C2DT2x S-812C23AY-n2-U
2.4 V±2.0 % S-812C24AMC-C2ET2x S-812C24AUA-C2ET2x S-812C24AY-n2-U
2.5 V±2.0 % S-812C25AMC-C2FT2x S-812C25AUA-C2FT2x S-812C25AY-n2-U
2.6 V±2.0 % S-812C26AMC-C2GT2x S-812C26AUA-C2GT2x S-812C26AY-n2-U
2.7 V±2.0 % S-812C27AMC-C2HT2x S-812C27AUA-C2HT2x S-812C27AY-n2-U
2.8 V±2.0 % S-812C28AMC-C2IT2x S-812C28AUA-C2IT2x S-812C28AY-n2-U
2.9 V±2.0 % S-812C29AMC-C2JT2x S-812C29AUA-C2JT2x S-812C29AY-n2-U
3.0 V±2.0 % S-812C30AMC-C2KT2x S-812C30AUA-C2KT2x S-812C30AY-n2-U
3.1 V±2.0 % S-812C31AMC-C2LT2x S-812C31AUA-C2LT2x S-812C31AY-n2-U
3.2 V±2.0 % S-812C32AMC-C2MT2x S-812C32AUA-C2MT2x S-812C32AY-n2-U
3.3 V±2.0 % S-812C33AMC-C2NT2x S-812C33AUA-C2NT2x S-812C33AY-n2-U
3.4 V±2.0 % S-812C34AMC-C2OT2x S-812C34AUA-C2OT2x S-812C34AY-n2-U
3.5 V±2.0 % S-812C35AMC-C2PT2x S-812C35AUA-C2PT2x S-812C35AY-n2-U
3.6 V±2.0 % S-812C36AMC-C2QT2x S-812C36AUA-C2QT2x S-812C36AY-n2-U
3.7 V±2.0 % S-812C37AMC-C2RT2x S-812C37AUA-C2RT2x S-812C37AY-n2-U
3.8 V±2.0 % S-812C38AMC-C2ST2x S-812C38AUA-C2ST2x S-812C38AY-n2-U
3.9 V±2.0 % S-812C39AMC-C2TT2x S-812C39AUA-C2TT2x S-812C39AY-n2-U
4.0 V±2.0 % S-812C40AMC-C2UT2x S-812C40AUA-C2UT2x S-812C40AY-n2-U
4.1 V±2.0 % S-812C41AMC-C2VT2x S-812C41AUA-C2VT2x S-812C41AY-n2-U
4.2 V±2.0 % S-812C42AMC-C2WT2x S-812C42AUA-C2WT2x S-812C42AY-n2-U
4.3 V±2.0 % S-812C43AMC-C2XT2x S-812C43AUA-C2XT2x S-812C43AY-n2-U
4.4 V±2.0 % S-812C44AMC-C2YT2x S-812C44AUA-C2YT2x S-812C44AY-n2-U
4.5 V±2.0 % S-812C45AMC-C2ZT2x S-812C45AUA-C2ZT2x S-812C45AY-n2-U
4.6 V±2.0 % S-812C46AMC-C3AT2x S-812C46AUA-C3AT2x S-812C46AY-n2-U
4.7 V±2.0 % S-812C47AMC-C3BT2x S-812C47AUA-C3BT2x S-812C47AY-n2-U
4.8 V±2.0 % S-812C48AMC-C3CT2x S-812C48AUA-C3CT2x S-812C48AY-n2-U
4.9 V±2.0 % S-812C49AMC-C3DT2x S-812C49AUA-C3DT2x S-812C49AY-n2-U
5.0 V±2.0 % S-812C50AMC-C3ET2x S-812C50AUA-C3ET2x S-812C50AY-n2-U
5.1 V±2.0 % S-812C51AMC-C3FT2x S-812C51AUA-C3FT2x S-812C51AY-n2-U
5.2 V±2.0 % S-812C52AMC-C3GT2x S-812C52AUA-C3GT2x S-812C52AY-n2-U
5.3 V±2.0 % S-812C53AMC-C3HT2x S-812C53AUA-C3HT2x S-812C53AY-n2-U
5.4 V±2.0 % S-812C54AMC-C3IT2x S-812C54AUA-C3IT2x S-812C54AY-n2-U
5.5 V±2.0 % S-812C55AMC-C3JT2x S-812C55AUA-C3JT2x S-812C55AY-n2-U
5.6 V±2.0 % S-812C56AMC-C3KT2x S-812C56AUA-C3KT2x S-812C56AY-n2-U
5.7 V±2.0 % S-812C57AMC-C3LT2x S-812C57AUA-C3LT2x S-812C57AY-n2-U
5.8 V±2.0 % S-812C58AMC-C3MT2x S-812C58AUA-C3MT2x S-812C58AY-n2-U
5.9 V±2.0 % S-812C59AMC-C3NT2x S-812C59AUA-C3NT2x S-812C59AY-n2-U
6.0 V±2.0 % S-812C60AMC-C3OT2x S-812C60AUA-C3OT2x S-812C60AY-n2-U
*1. “n” changes according to the packing form in TO-92.
B: Bulk, Z: Tape and ammo.
Remark 1. Please contact our sales office for products with an output voltage value other than those
specified above.
2. x: G or U
3. Please select products of environm ental code = U for Sn 100%, halogen -free products.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 8
3. 2 S-812CxxB Series (Short-circuit protection and power-off function)
Table 2
Output voltage SNT-6A(H) SOT-23-5 SOT-89-5
2.0 V±2.0 % S-812C20BPI-C4ATFx S-812C20BMC-C4AT2x
2.1 V±2.0 % S-812C21BPI-C4BTFx S-812C21BMC-C4BT2x
2.2 V±2.0 % S-812C22BPI-C4CTFx S-812C22BMC-C4CT2x
2.3 V±2.0 % S-812C23BPI-C4DTFx S-812C23BMC-C4DT2x
2.4 V±2.0 % S-812C24BPI-C4ETFx S-812C24BMC-C4ET2x
2.5 V±2.0 % S-812C25BPI-C4FTFx S-812C25BMC-C4FT2x
2.6 V±2.0 % S-812C26BPI-C4GTFx S-812C26BMC-C4GT2x
2.7 V±2.0 % S-812C27BPI-C4HTFx S-812C27BMC-C4HT2x
2.8 V±2.0 % S-812C28BPI-C4ITFx S-812C28BMC-C4IT2x
2.9 V±2.0 % S-812C29BPI-C4JTFx S-812C29BMC-C4JT2x
3.0 V±2.0 % S-812C30BPI-C4KTFx S-812C30BMC-C4KT2x
3.1 V±2.0 % S-812C31BPI-C4LTFx S-812C31BMC-C4LT2x
3.2 V±2.0 % S-812C32BPI-C4MTFx S-812C32BMC-C4MT2x
3.3 V±2.0 % S-812C33BPI-C4NTFx S-812C33BMC-C4NT2x S-812C33BUC-C4NT2x
3.4 V±2.0 % S-812C34BPI-C4OTFx S-812C34BMC-C4OT2x
3.5 V±2.0 % S-812C35BPI-C4PTFx S-812C35BMC-C4PT2x
3.6 V±2.0 % S-812C36BPI-C4QTFx S-812C36BMC-C4QT2x
3.7 V±2.0 % S-812C37BPI-C4RTFx S-812C37BMC-C4RT2x
3.8 V±2.0 % S-812C38BPI-C4STFx S-812C38BMC-C4ST2x
3.9 V±2.0 % S-812C39BPI-C4TTFx S-812C39BMC-C4TT2x
4.0 V±2.0 % S-812C40BPI-C4UTFx S-812C40BMC-C4UT2x
4.1 V±2.0 % S-812C41BPI-C4VTFx S-812C41BMC-C4VT2x
4.2 V±2.0 % S-812C42BPI-C4WTFx S-812C42BMC-C4WT2x
4.3 V±2.0 % S-812C43BPI-C4XTFx S-812C43BMC-C4XT2x
4.4 V±2.0 % S-812C44BPI-C4YTFx S-812C44BMC-C4YT2x
4.5 V±2.0 % S-812C45BPI-C4ZTFx S-812C45BMC-C4ZT2x
4.6 V±2.0 % S-812C46BPI-C5ATFx S-812C46BMC-C5AT2x
4.7 V±2.0 % S-812C47BPI-C5BTFx S-812C47BMC-C5BT2x
4.8 V±2.0 % S-812C48BPI-C5CTFx S-812C48BMC-C5CT2x
4.9 V±2.0 % S-812C49BPI-C5DTFx S-812C49BMC-C5DT2x
5.0 V±2.0 % S-812C50BPI-C5ETFx S-812C50BMC-C5ET2x S-812C50BUC-C5ET2x
5.1 V±2.0 % S-812C51BPI-C5FTFx S-812C51BMC-C5FT2x
5.2 V±2.0 % S-812C52BPI-C5GTFx S-812C52BMC-C5GT2x
5.3 V±2.0 % S-812C53BPI-C5HTFx S-812C53BMC-C5HT2x
5.4 V±2.0 % S-812C54BPI-C5ITFx S-812C54BMC-C5IT2x
5.5 V±2.0 % S-812C55BPI-C5JTFx S-812C55BMC-C5JT2x
5.6 V±2.0 % S-812C56BPI-C5KTFx S-812C56BMC-C5KT2x
5.7 V±2.0 % S-812C57BPI-C5LTFx S-812C57BMC-C5LT2x
5.8 V±2.0 % S-812C58BPI-C5MTFx S-812C58BMC-C5MT2x
5.9 V±2.0 % S-812C59BPI-C5NTFx S-812C59BMC-C5NT2x
6.0 V±2.0 % S-812C60BPI-C5OTFx S-812C60BMC-C5OT2x
Remark 1. Please contact our sales office for products with an output voltage value other than those
specified above.
2. x: G or U
3. Please select products of environm ental code = U for Sn 100%, halogen -free products.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 9
3. 3 S-812CxxE Series (Short-circuit protection, no power-off function)
Table 3
Output voltage SOT-23-5 SOT-89-3 SOT-89-5 TO-92*1
3.3 V±2.0 % S-812C33EUA-C5PT2x
3.6 V±2.0 % S-812C36EUA-C5RT2x
4.0 V±2.0 % S-812C40EUA-C5QT2x
*1. “n” changes according to the packing form in TO-92.
B: Bulk, Z: Tape and ammo.
Remark 1. Please contact our sales office for products with an output voltage value other than those
specified above.
2. x: G or U
3. Please select products of environm ental code = U for Sn 100%, halogen -free products.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 10
Pin Configurations
Table 4
Pin No. Symbol Description
1 NC
*1 No connection
2 VIN Input voltage pin
3 VOUT Output voltage pin
4 VSS GND pin
5 VIN Input voltage pin
6 ON/OFF Power-off pin
SNT-6A(H)
Top view
1
2
3 4
6
5
Figure 4
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Table 5
Pin No. Symbol Description
1 VSS GND pin
2 VIN Input voltage pin
3 VOUT Output voltage pin
4 NC*1 No conn ection
ON/OFF Power-off pin (B type)
5 NC*1 No connection (A type, E type)
SOT-23-5
Top view
5
4
3
2
1
Figure 5
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Table 6
Pin No. Symbol Description
1 VSS GND pin
2 VIN Input voltage pin
3 VOUT Output voltage pin
SOT-89-3
Top view
3
2
1
Figure 6
Table 7
Pin No. Symbol Description
1 VOUT Output voltage pin
2 VIN Input voltage pin
3 VSS GND pin
ON/OFF Power-off pin (B type)
4 NC*1 No connection (A type, E type)
5 NC*1 No conn ection
SOT-89-5
Top view
1 3
2
4 5
*1. The NC pin is electrically open.
The NC pin can be connected to VIN or VSS.
Figure 7
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 11
Table 8
Pin No. Symbol Description
1 VSS GND pin
2 VIN Input voltage pin
3 VOUT Output voltage pin
TO-92
Bottom view
1 3 2
Figure 8
Absolute Maximum Ratings
Table 9 (Ta=25°C unless otherwi se specified)
Item Symbol Absolute Maximum Rating Units
VIN VSS0.3 to VSS+18 V
Input voltage VON/OFF VSS0.3 to VIN+0.3 V
Output voltage VOUT VSS0.3 to VIN+0.3 V
SNT-6A(H) 500*1 mW
250 (When not mounted on board) mW
SOT-23-5 600*1 mW
500 (When not mounted on board) mW
SOT-89-3 1000*1 mW
500 (When not mounted on board) mW
SOT-89-5 1000*1 mW
400 (When not mounted on board) mW
Power dissipation
TO-92
PD
800*1 mW
Operating temperature range Topr 40 to +85 °C
Storage temperature Tstg 40 to +125 °C
*1. When mounted on board
[Mounted board]
(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm
(2) Board name : JEDEC STANDARD51-7
Caution The absolute maximum ratings are rated values exceeding which the product could suffer
physical damage. These values must therefore not be exceeded under any conditions.
050 100 150
1200
800
0
Power dissipation (PD) [mW]
A
m bi ent temperature (Ta) [°C]
SOT-89-5
SOT-89-3
400
SNT-6A(H)
1000
200
600
TO-92
SOT-23-5
Figure 9 Power Dissipation of The Package (When mounted on Board )
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 12
Electrical Characteristics
Table 10 (Ta=25°C unless otherwi se specified)
Parameter Symbol Conditions Min. Typ. Max. Units
Test
circuits
Output voltage
*1
V
OUT(E)
V
IN
= V
OUT(S)
+2 V, I
OUT
= 10mA V
OUT(S)
×
0.98 V
OUT(S)
V
OUT(S)
×
1.02 V 1
2.0V
V
OUT(S)
2.9V 30
mA 3
3.0V
V
OUT(S)
3.9V 50
mA 3
4.0V
V
OUT(S)
4.9V 65
mA 3
Output current
*2
I
OUT
V
OUT(S)
+2V
V
IN
16V 5.0V
V
OUT(S)
6.0V 75
mA 3
2.0V
V
OUT(S)
2.4V
0.46 0.95 V 1
2.5V
V
OUT(S)
2.9V
0.32 0.68 V 1
3.0V
V
OUT(S)
3.4V
0.23 0.41 V 1
3.5V
V
OUT(S)
3.9V
0.19 0.35 V 1
4.0V
V
OUT(S)
4.4V
0.16 0.30 V 1
4.5V
V
OUT(S)
4.9V
0.14 0.27 V 1
5.0V
V
OUT(S)
5.4V
0.12 0.25 V 1
Dropout voltage
*3
V
drop
I
OUT
=
10mA
5.5V
V
OUT(S)
6.0V
0.11 0.23 V 1
Line regulation 1
Δ
V
OUT11
V
OUT(S)
+ 1 V
V
IN
16 V,
I
OUT
= 1mA
5 20 mV 1
Line regulation 2
Δ
V
OUT2
1 V
OUT(S)
+ 1 V
V
IN
16 V,
I
OUT
= 1
μ
A
5 20 mV 1
2.0V
V
OUT(S)
2.9V,
1
μ
A
I
OUT
20mA
6 30 mV 1
3.0V
V
OUT(S)
3.9V,
1
μ
A
I
OUT
30mA
10 45 mV 1
4.0V
V
OUT(S)
4.9V,
1
μ
A
I
OUT
40mA
13 65 mV 1
Load regulation
Δ
V
OUT3
1 V
IN
= V
OUT(S)
+ 2V
5.0V
V
OUT(S)
6.0V,
1
μ
A
I
OUT
50mA
17 80 mV 1
Output voltage
temperature coefficient
*4
OUT
OUT
VTaΔ
VΔ
V
IN
= V
OUT(S)
+ 1 V, I
OUT
= 10mA,
-40
°
C
Ta
85
°
C
±
100
ppm/
°
C
1
2.0V
V
OUT(S)
2.7V
0.9 1.6
μ
A 2
2.8V
V
OUT(S)
3.7V
1.0 1.8
μ
A 2
3.8V
V
OUT(S)
5.1V
1.2 2.1
μ
A 2
Current consumption I
SS
V
IN
=
VOUT(S)+2,
no load 5.2V
V
OUT(S)
6.0V
1.5 2.5
μ
A 2
Input voltage V
IN
16 V 1
Applied to products with Power-off Function
Current consumption
at power-off I
SS2
V
IN
= V
OUT(S)
+ 2V,
V
ON/OFF
= 0V, no load
0.1 0.5
μ
A 2
Power-off pin
Input voltage for high level V
SH
V
IN
= V
OUT(S)
+ 2V, R
L
= 1k
Ω
,
determined by V
OUT
output level 2.0
V 4
Power-off pin
Input voltage for low level V
SL
V
IN
= V
OUT(S)
+ 2V, R
L
= 1k
Ω
,
determined by V
OUT
output level
0.4 V 4
Power-off pin
Input current at high level I
SH
V
IN
= 7V, V
ON/OFF
= 7V -0.1
0.1
μ
A 4
Power-off pin
Input current at low level I
SL
V
IN
= V
OUT(S)
+ 2V, V
ON/OFF
= 0V -0.1
0.1
μ
A 4
Applied to products with Short-circuit Protection
Short-circuit current I
OS
V
IN
= V
OUT(S)
+ 2 V, V
OUT
= 0 V
40
mA 3
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 13
*1. VOUT(S): Specified output voltage
V
OUT(E): Effective output voltage
i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.
*3. V
drop = VIN1(VOUT(E) × 0.98), where VIN1 is the input voltage at which output voltage reaches 98% of VOUT(E)
after gradually decreasing input voltage.
*4. The ratio of temperature change in output voltage [mV/°C] is calculated usi ng the following equation.
[] [] []
1000Cppm/
VTaV
VVCmV/
Ta
V
OUT
OUT OUT
(S)
OUT ÷°
Δ
Δ
×=°
Δ
Δ
3*2*1*
*1. The ratio of temperature change in o utput voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 14
Test Circuits
1.
VSS
VOUT
(ON/OFF)
*1
Set to power ON
VIN
V
A
Figure 10
2.
VSS
VOUT
(ON/OFF)
*1
VIN
A
Set to VIN or
GND
Figure 11
3.
Set to power ON
VSS
VOUT
(ON/OFF)
*1
VIN
V
A
Figure 12
4.
VSS
VOUT
(ON/OFF)
*1
VIN
V
A
RL
Figure 13
*1. In case of product with power-off function.
Standard Circuit
VSS
VOUT
(ON/OFF)
*3
VIN
CIN
*1
CL
*2
INPUT OUTPUT
GND
Single GND
*
1. CIN is a capacitor for stabilizing the input.
*
2. In addition to tantalum capacitor, ceramic capacito r can be used for CL.
*
3. Control this ON/OFF pin in the product with power-off function.
Figure 14
Caution The above connection diagram and constan t will not guarantee successful operation.
Perform through evaluation using the actual application to set the constant.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 15
Technical Terms
1. Output capacitors (CL)
Generally in voltage regulator, output capacitor is used to stabilize regulation and to improve the
characteristics of transient response. The S-812C Series operates stably without output capacitor CL.
Thus the output capacitor CL is used only for improvement of the transient response. In the applications
that users will use the S-812C Series, and they are not cautious about the transient response, it is
possible to omit an output capacitor. If using an output capacitor for this IC, users are able to use devices
such as ceramic capacitor which has sm all E S R (E quivalent Series Resi stance).
2. Output voltage (VOUT)
The accuracy of the output voltage ± 2.0% is assured under the specified conditions for input voltage,
which differs depending upon the produ c t items, output current, and temperature.
Caution If the above conditions chan ge, the output voltage value may vary and go out of the
accuracy range of the output voltage. See the electrical characte ristics and
characteristics data for d etails.
3. Line regulations 1 and 2 (ΔVOUT1, ΔVOUT2)
Indicate the dependency of the output voltage against the input voltage. That is, the value shows h ow
much the output voltage changes due to a change in the input voltage after fixing output current constant.
4. Load regulation (ΔVOUT3)
Indicates the dependency of the output voltage against the output current. That is, the value shows how
much the output voltage changes due to a change in the output cu rrent after fixing output current
constant.
5. Dropout voltage (Vdrop)
Indicates the difference betwee n the output voltage and the input voltage VIN1, which is the input voltage
(VIN) when; decreasing input voltage VIN gradually until the output voltage has dropped to the value of
98% of output voltage VOUT(E), which is at VIN = VOUT(S) + 1.0 V.
Vdrop = VIN1 (VOUT(E) × 0.98)
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 16
6. Temperature coefficient of output voltage
OUT
OUT
VΔTa
ΔV
The shadowed area in Fig ure 15 is the range where VOUT varies in the operating temperatu re range when
the temperature coefficient of the output voltage is ±100 ppm/°C.
The ratio of temperature change in output voltage [mV/°C] is calculated from the following e quation.
[]
[]
[]
1000Cppm/
VTaV
V VCmV/
Ta
VOUT
OUT OUT
(S)
OUT ÷°
Δ
Δ
×=°
Δ
Δ
3*
2*
1*
*1. The ratio of temperature change in o utput voltage
*2. Specified output voltage
*3. Output voltage temperature coefficient
-40 25
+0.30mV/°C
VOUT[V]
VOUT(E)
*1
85 Ta [°C]
-0.30mV/°C
*1. VOUT(E) is a measured value of output voltage at 25°C.
Figure 15 Ex. S-812C30A Typ.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 17
Operation
1. Basic Operation
Figure 16 shows the block diagram of the S-812C Series.
The error amplifier compa r es the reference voltage (Vref) with Vfb, which is the output voltage resi stance-
divided by feedback resistors Rs and Rf. It supplies the gate voltage necessary to maintain the constant
output voltage which is not influenced by the input voltage and temperature change, to the output
transistor.
Reference
voltage
circuit
VOUT
*1
VSS
VIN
RS
Rf
Error amplifier
Current supply
Vref
+
*1. Parasitic diode Figure 16
2. Output Transistor
In the S-812C Series, a low on-resistance P-channel MOS FET is used as the o utput tran sistor.
Be sure that VOUT does not exceed VIN + 0.3 V to prevent the voltage regulator from being damaged d ue
to inverse current which flows, be cause of a parasitic diode between the VIN and VOUT pin.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 18
3. Power-off function (ON/OFF pin)
This function starts and sto ps the regulator.
When the ON/OFF pin is set to power-off level, the entire internal circuit stops operating, and the built-in
P-channel MOS FET output transistor between the VIN and VOUT pin is turned off, in order to reduce
the current consumption si gnificantly. The VOUT pin is set to the VSS level by the internal dividing
resistor of several MΩ between the VOUT and VSS pin.
The ON/OFF pin is configured as shown in Figure 17 Since the ON/OFF pin is neither pulled down nor
pulled up internally, do not use it in the floating state. Note that if applying the voltage of VIN + 0.3 V or
more, the current flows to VIN via a parasitic diode in the IC.
When not using the power-off pin in the product with the po wer-off function, connect the ON/OFF pin to
the VIN pin (in positive logic), or to the VSS pin (in ne gative logic).
The output voltage may increase by stopping regulation whe n a lower current (less than 100 μA) is
applied.
If the output voltage increased during power-off, pull the VOUT pin down to the VSS pin and set the
ON/OFF pin to the power-down level.
Table 11
Logic Type ON/OFF Pin Internal Circuits VOUT Pin Voltage Current Consumption
B “L”: Power off Stop VSS level ISS2
B “H”: Power on Operation Set value ISS
VIN
ON/OFF
VSS
Figure 17
4. Short-circuit protection circuit
In the S-812C Series, users are able to select whether to set the short circuit protection, which prote cts
the output capacitor from short-circuiting the VOUT and VSS pin.
The short circuit protection circuit controls the output current against voltage VOUT, as seen in “
Characteristics (Typical Data) 1”, and limits the output current at approx. 40 mA even if the VOUT and
VSS pins are short-circuited.
However, this short circuit protection circuit doe s not work as for thermal protection. Pay attention to the
conditions of input voltage and load current so that, under the usag e con dition including short circuit, the
loss of the IC will not exceed power dissipation of the package.
Even if pins are not short-circuited, this protectio n circuit works to li mit the curren t to the specified value,
in order to protect the output capacitor, whe n the output curre nt and the potential difference between
input and output voltages increase.
In the product without the short circuit protection circuit, the S-812C Series allows the relatively larger
current because this protection circuit is detached.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 19
Selection of External Components
1. Output Capacitor (CL)
The S-812C Series has an internal phase compensation circuit whi ch sta bilizes the operation regardl ess
of the change of output load. Therefore it is possible for users to ha ve a stable operation without an
output capacitor (CL). However, the values of output overshoot and undershoot, which are the
characteristics of transient response, vary depending on the output capacitor. In sele cting the value of
output capacitor, refer to the data on CL dependency in “ Reference data 1. Transient response
characteristics”.
Set ESR 10 Ω or less when using a tantalum ca pacitor or an aluminum electrolytic capacitor. Pay
attention at low temperature, that aluminum electrolytic capacitor especially may oscillate because ESR
increases. Evaluate sufficiently including the temperature cha racteri stics in use.
Application Circuit
1. Output Current Boost Circuit
As shown in Figure 18, the output current can be boosted by externally attaching a PNP transistor.
Between the input voltage VIN and the VIN pin (for po wer supply) in the S-812C Series, if setting the
base-emitter voltage VBE which fully switches the PNP transistor on, S-812C Series controls the base
current in a PNP transistor so that the output voltage VOUT reaches t he level of voltage which is set by
the S-812C Series.
Since the output current boosting circuit in Figure 18 doe s not have the good characteri stics of transient
response, under the usage conditio n, confirm if output fluctuation due to power-on, and fluctuations of
power supply and load affect on the operation or not before use.
Note that the short-circuit protection circuit in the S-812C Series does not work as short -circuit protection
for this boost circuit.
R1
Tr1
GND
VOUT
ON/OFF
VIN
VSS
V
IN
V
OUT
C
L
S-812C
Series
C
IN
Figure 18
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 20
2. Constant Current Circuit
This circuit can be used as a constant curre nt circuit if makin g the composition seen in Figure 19 and
20. Constant current IO is calculated from the followin g equatio n:
IO = (VOUT(E) ÷ RL) + ISS
(VOUT(E) = effective output voltage)
Note that by using a circuit in Figure 19, it is impossible to set the better driving ability to the constant
amperage (IO) than the S-812C Series basically has.
To gain the driving ability which exceeds the S-812C Serie s, there’ s a way to combine a constant
current circuit and a curren t boosting circuit, as seen in Figure 20.
The maximum input voltage for a constant current circuit is 16 V + the voltage for device (VO).
It is not recommended to add a capacitor between th e VIN (power supply) and VSS pin or the VOUT
(output) and VSS pin because the rush current flows at power-on.
GND
R
L
VOUTVIN
V
IN
V
OUT
V
O
I
O
C
IN
ON/OFF VSS
S-812C
Series
Device
Figure 19 Constant Current Circuit
I
O
ON/OFF
R
1
GND
R
L
VOUT
V
IN
V
OUT
C
IN
VSS
S-812C
Series
Tr1
V
O
Device
VIN
Figure 20 Constant Current Boost Ci rcuit
3. Output Voltage Adjustment Circuit
(Only for S-812CxxA Series (No short-circuit protection, power-off function))
By using the composition seen in Figure 21, users are able to increase the output voltage. The value of
output voltage VOUT1 is calculated from the following equation:
VOUT1 = VOUT(E) × (R1 + R2) ÷ R1 + R2 × ISS
(VOUT(E) = effective output voltage)
Set the value of resistors R1 and R2 so that the S-812C Series is not affected by current cons umption
ISS.
Capacitor C1 reduces output fluctuation due to power-on, power flu ctuation a nd load fluctuation. Set the
value according to the actual evaluation.
It is not recommended to add a capacitor between th e VIN (power supply) and VSS pin or the VOUT
(output) and VSS pin because it causes output fluctuation and output oscillation due to power-on.
GND
V
OUT1
R
2
R
1
VOUTVIN V
IN
C
L
C
1
C
IN
VSS
S-812C
Series
Figure 21
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 21
Precautions
Wiring patterns for the VIN, VOUT and GND pins should be designed so that the impedance is low. When
mounting an output capacitor between the VOUT and VSS pins (CL) and a capacitor for stabilizing the
input between VIN and VSS pins (CIN), the distance from the capacitors to these pins should be as short
as possible.
Note that output voltage may be increased at low load current of less than 1 μA.
At low load current less than 100 μA output voltage may increase when the reg ulating operation is halted
by the ON/OFF pin.
To prevent oscillation, it is recommended to use the external parts under the foll owing conditions.
Equivalent Series Resistance (ES R): 1 0 Ω or less (in case of using output capacitor)
Input series resistan ce (RIN): 10 Ω or less
A voltage regulator may oscillate when power source impedance is high and in put cap acitor is low or not
connected.
Pay attention to the operating conditions for input/output voltage and load current so that the power loss in
the IC does not exceed the power dissipation of the packag e.
Do not apply an electrostatic disch arg e to this IC that exceeds the performance ratings of the built-in
electrostatic protection circuit.
SII claims no responsibility for any and all disputes a rising out of or in connectio n with any infringe ment of
the products including this IC upo n patents owned by a third party.
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 22
Characteristics (Typical Data)
1. Output Voltage vs Output Current (When load current increases)
0.0
0.5
1.0
1.5
2.0
2.5
0 50 100 150
IOUT (mA)
VOUT (V)
VIN=2.5V
3V
5V
4V
7V
S-812C20B (Ta=25°C) Short- circuit protection
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 50 100 150 200
IOUT (mA)
VOUT (V)
VIN=3.5V
4V
6V
5V
8V
S-812C30B (Ta=25°C) Short-circuit protection
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0 100 200 300
IOUT (mA)
VOUT (V)
VIN=5.5V
6V
8V
7V
10V
S-812C50B (Ta=25°C) Short-circuit protection
VOUT (V)
No short-circuit protection
S-812C20A (Ta=25ºC)
0.0
0.5
1.0
1.5
2.0
2.5
0 100 200 300
IOUT (mA)
7V
5V4V
3V
2.5V
VIN=2.3V
VOUT (V)
S-812C30A (Ta=25ºC)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0 100 200 300 400
I
OUT
(mA)
8V
6V
5V
4V
3.5V
V
IN
=3.3V No short-circuit protection
VOUT (V)
S-812C50A (Ta=25ºC)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0 100 200 300 400
I
OUT
(mA)
10V
8V
7V
6V
5.5V
V
IN
=5.3V
No short-circuit protection
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 23
2. Maximum Output Current vs Input Voltage
IOUTMAX (mA)
0
20
40
60
80
100
120
140
0481216
VIN (V)
Ta=-40°C
S-812C20B Short-circuit protection
25°C 85°C
IOUTMAX (mA)
0
50
100
150
200
0481216
VIN (V)
Ta=-40°C
S-812C30B Short-circuit protection
25°C 85°C
IOUTMAX (mA)
0
50
100
150
200
250
300
0481216
VIN (V)
Ta=-40°C
S-812C50B Short-circuit protection
25°C 85°C
IOUTMAX (mA)
S-812C20A
0
20
40
60
80
100
120
140
0481216
VIN
V
85ºC
Ta=-40ºC
25ºC
No short-circuit protection
IOUTMAX (mA)
S-812C30A
0
50
100
150
200
0481216
VIN
V
85ºC
Ta=40ºC
25ºC
No short-ci r cui t prot ect i on
IOUTMAX (mA)
No short-circuit protection
S-812C50A
0
50
100
150
200
250
300
0481216
VIN(V)
85ºC
Ta=-40ºC
25ºC
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 24
3. Maximum Output Current vs. Input Voltage
S-812C20B (Ta=25°C)
2.10
2.05
2.00
1.95
1.90 1.5 2 2.5 3 3.5 4
V
OUT
(V)
-50 mA
-20 mA
-10 mA
-1 mA
I
OUT
=-1
μ
A
V
IN
(V)
S-812C30B (Ta=25°C)
3.15
3.10
3.05
2.95
2.85 2.5 33.5 4 4.5
5
V
OUT
(V)
-50 mA
-20 mA
-10 mA
-1 mA
I
OUT
=-1
μ
A
V
IN
(V)
3.00
2.90
S-812C50B (Ta=25°C)
5.25
5.15
5.05
4.95
4.5 5 5.5 6 6.5 7
VOUT (V)
-50 mA
-20 mA
-1 mA
I
OUT
=-1
μ
A
VIN (V)
4.85
4.75
-10 mA
4. Dropout Voltage vs Output Current
0
500
1000
1500
2000
0 10 20 30 40 50
IOUT
(
mA
)
Vdro
p
(
mV
)
Ta=-40°C
S-812C20B
25°C 85°C
0
200
400
600
800
1000
1200
1400
1600
010 20 30 40 50
I
OUT
(
mA
)
Vdro
p
(
mV
)
Ta=-40°C
S-812C30B
25°C 85°C
0
100
200
300
400
500
600
700
800
900
1000
0 10 20 30 40 50
IOUT
(
mA
)
Vdro
p
(
mV
)
Ta=-40°C
S-812C50B
25°C
85°C
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 25
5. Output Voltage vs Ambient Temperature
-50
2.02
Ta (°C)
VOUT (V)
2.04
2.00
1.98
1.96 0 50
100
S-812C20B
-50
3.03
Ta (°C)
V
OUT
(V)
3.06
3.00
2.97
2.94 050
100
S-812C30B
-50
5.05
Ta (°C)
VOUT (V)
5.10
5.00
4.95
4.90 0 50
100
S-812C50B
6. Line Regulation 1 vs Ambient Temperatu re 7. Line Regulation 2 vs Ambient Temperature
-50
15
Ta (°C)
ΔVOUT1 (mV)
20
10
5
0 0 50
100
S-812C50B
S-812C20B S-812C30B
-50
15
Ta (°C)
ΔVOUT2 (mV)
20
10
5
0050
100
S-812C50B
S-812C20B S-812C30B
8. Load Regulation vs Ambient Temperature
-50
60
Ta (°C)
ΔVOUT3 (mV)
80
40
20
0 0 50
100
S-812C50B
S-812C30B S-812C20B
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 26
9. Current Consumption vs Input Voltage
0.0
0.5
1.0
1.5
2.0
2.5
0481216
VIN (V)
ISS (μA)
S-812C 20B
25°C 85°C
Ta=-40°C
0.0
0.5
1.0
1.5
2.0
2.5
0 4 8 12 16
VIN (V)
ISS (μA)
S-812C 30B
25°C 85°C
Ta=-40°C
0.0
0.5
1.0
1.5
2.0
2.5
0481216
VIN (V)
ISS (μA)
S-812C 50B
25°C 85°C
Ta=-40°C
10. Power-off Pin Input Threshold vs Input Voltage
0.0
0.5
1.0
1.5
2.0
2.5
0 4 8 12 16
V
IN
(V)
V
SH
/ V
SL
(V)
Ta=−40°C
25°C
85°C
Ta=−40°C
25°C
85°C
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 27
Reference Data
1. Transient Response Characteristics (Typical data: Ta=25 °C)
Overshoot
In p u t v o lta g e
Ou tp u t v o lta g e
or
Load current
Undershoot
1-1. Power-on : S-812C30B (CL=10μF; ceramic ca pacitor)
TIME
(
100
μ
s/div
)
VOUT (0.5 V/div)
0 V
5 V
0 V
3 V
VIN, VON/OFF=05 V, IOUT=10 mA, CL=10 μF
Load dependency of overshoot at power-on CL dependency of overshoot at power-on
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0 0.02 0.04 0.06 0.08 0.1
IOUT (A)
Overshoot (V)
S-812C50B
S-812C30B
VIN, VON/OFF=0VOUT(S)+2 V, CL=10 μF
0.0
0.2
0.4
0.6
0.8
0 10 20 30 40 50
CL
(
μ
F
)
Overshoot (V)
S-812C50B
VIN, VON/OFF=0VOUT(S)+2 V, IOUT=10 mA
S-812C30B
VDD dependency of overshoot at power-on “Ta” dependency of overshoot at power-on
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0 5 10 15 20
VDD (V)
Overshoot (V)
S-812C50B
VIN, VON/OFF=0VDD, IOUT=10 mA,
C
L
=10
μ
F
S-812C30B
0.00
0.01
0.02
0.03
0.04
0.05
0.06
50 0 50 100
Ta (°C)
Overshoot (V)
S-812C50B
VIN, VON/OFF=0VOUT(S)+2 V, IOUT=10 mA,
C
L
=10
μ
F
S-812C30B
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 28
1-2. Power-on by power-off pin : S-812C30A (CL=10μF; ceramic capacitor)
TIME (200
μ
s/div)
VOUT (0.5 V/div)
5 V
0 V
0 V
3 V
VIN=5 V, V
O
N
/O
FF=05 V, I
OUT
=10 mA, CL=10
μ
F
Load dependency of overshoot at power-on by power-
off pin CL dependency of overshoot at power-o n by powe r-off
pin
0.0
0.2
0.4
0.6
0.8
0.001 0.01 0.1 1 10 100
IOUT (mA)
Over s hoot ( V )
S-812C50B
VIN=VOUT(S)+2 V, VON/OFF=0 VOUT(S)+2 V,
CL=10 μF
S-812C30B
0.0
0.2
0.4
0.6
0.8
0 10 20 30 40 50
CL
(
μ
F
)
Overshoot (V)
S-812C50B
VIN=VOUT(S)+2 V, VON/OFF=0VOUT(S)+2 V,
IOUT=10 mA
S-812C30B
VDD dependency of overshoot at power-on by power-off
pin “Ta” dependency of overshoot at power-on by power-
off pin
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0 5 10 15 20
VDD (V)
Overshoot (V)
S-812C50B
VIN=VDD, VON/OFF=0VDD, IOUT=10 mA,
CL=10 μF
S-812C30B
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
50 0 50 100
Ta (°C)
Overshoot (V)
S-812C50B
VIN=VOUT(S)+2 V, VON/OFF=0VOUT(S)+2 V,
IOUT=10 mA, CL=10 μF
S-812C30B
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 29
1-3. Line Transient Response : S-812C30B (CL=10μF; ceramic capacitor)
V
IN
,
V
ON/OFF
=4 8 V
,
I
OUT
=10 m
A
TIME
(
100
μ
s/div
)
VOUT (0.05V / div)
10 V
0 V
5 V
3 V
2.9 V
Load dependency of overshoot at line transient CL dependency of oversho ot at line transient
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0 10 20 30 40 50
IOUT (m A)
Overshoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+1 VVOUT(S)+5 V,
CL=10 μF
S-812C30B
0.00
0.05
0.10
0.15
0.20
0.25
0 10 20 30 40 50
CL
(
μ
F
)
Overshoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+1 VVOUT(S)+5 V,
IOUT=10 m
A
S-812C30B
VDD dependency of overshoot at line transient “Ta”
dependency of overshoot at line transient
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0 5 10 15 20
VDD (V)
Overshoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+1 VVDD, I OUT=10 mA,
CL=10 μF
S-812C30B
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
50 0 50 100
Ta (°C)
Overshoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+1 VVOUT(S)+5 V,
IOUT=10 mA, CL=10 μF
S-812C30B
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 30
TIME
(
500
μ
s/div
)
VOUT (0.05 V / div)
10 V
0 V
5 V
3 V
2.8
V
2.9
V
VIN, VON/OFF=84 V, IOUT=10 m
A
Load dependency of undershoot at line transient CL dependency of undershoot at line transient
0.0
0.2
0.4
0.6
0.8
0 10 20 30 40 50
IOUT (m A)
Undershoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+5 VVOUT(S)+1 V,
CL=10 μF
S-812C30B
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0 10 20 30 40 50
CL
(
μ
F
)
Undershoot (V)
S-812C50B
VIN, VON/OFF= VOUT(S)+5 VVOUT(S)+1 V,
IOUT=10 mA
S-812C30B
VDD dependency of undershoot at line transient “Ta”
dependency of undershoot at line transient
0.00
0.05
0.10
0.15
0.20
0.25
0 5 10
15 20
VDD (V)
Undershoot (V)
S-812C50B
VIN, VON/OFF=VDDVOUT(S)+1 V,
IOUT=10mA, CL=10 μF
S-812C30B
0.00
0.05
0.10
0.15
0.20
0.25
0.30
50 0 50 100
Ta (°C)
Undershoot (V)
S-812C50B
S-812C30B
VIN, VON/OFF=VOUT(S)+5 VVOUT(S)+1 V,
IOUT=10mA, CL=10 μF
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
Rev.6.1_00 S-812C Series
Seiko Instruments Inc. 31
1-4. Load Transient Response : S-81 2C30B (CL=10μF; ceramic capacitor)
V
IN
=5 V
,
I
OUT
=10 mA1
μ
A
,
C
L
=10
μ
F
TIME
(
200
μ
s / div
)
VOUT (0.05 V / div)
2.9 V
3.1 V
3 V
0 mA
10 mA
Load dependency of overshoot at load transient CL dependen cy of oversho ot at load tran sient
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0 20 40 60 80 100
ILoad (mA)
Overshoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=ILoad1 μA, CL=10μF
S-812C30B
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0 10 20 30 40 50
CL
(
μ
F
)
Overshoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=10 mA1 μA
S-812C30B
VDD dependency of overshoot at load transient “Ta”
dependency of overshoot at load transient
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0 5 10 15 20
VDD (V)
Overshoot (V)
S-812C50B
IOUT=10 mA1
μ
A, CL=10
μ
F
S-812C30B
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
50 0 50 100
Ta ( °C)
Overshoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=10 mA1 μA, CL=10 μF
S-812C30B
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series Rev.6.1_00
Seiko Instruments Inc. 32
TIME
(
500
μ
s / div
)
VOUT (0.05 V / div)
2.9 V
3 V
VIN=5 V, IOUT=1
μ
A,10 mA, CL=10
μ
F
0 mA
10 mA
Load dependency of undershoot at load transient CL dependency of undershoot at load transie nt
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0 20 40
60 80 100
ILoad (mA)
Undershoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=1 μAILoad, CL=10μF
S-812C30B
0.00
0.05
0.10
0.15
0.20
0.25
0 10 20 30 40 50
CL
(
μ
F
)
Undershoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=1 μA10 mA
S-812C30B
VDD dependency of undershoot at load transient “Ta
dependency of undershoot at load transient
0.00
0.05
0.10
0.15
0.20
0 5 10 15 20
VDD (V)
Undershoot (V)
S-812C50B
IOUT=1
μ
A10 mA, CL=10
μ
F
S-812C30B
0.00
0.05
0.10
0.15
0.20
0.25
50 0 50 100
Ta (°C)
Undershoot (V)
S-812C50B
VIN, VON/OFF=VOUT(S)+2 V,
IOUT=1 μA10 mA, CL=10 μF
S-812C30B
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
SNT-6A(H)-A-PKG Dimensions
PI006-A-P-SD-2.0
0.2±0.05
0.48±0.02
0.08 +0.05
-0.02
0.5
1.57±0.03
No. PI006-A-P-SD-2.0
12
3
4
5
6
Feed direction
4.0±0.1
2.0±0.05
4.0±0.1
ø1.5 +0.1
-0
ø0.5
1.85±0.05 0.65±0.05
0.25±0.05
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
PI006-A-C-SD-1.0
SNT-6A(H)-A-Carrier Tape
No. PI006-A-C-SD-1.0
+0.1
-0
1
2
4
3
56
12.5max.
9.0±0.3
ø13±0.2
(60°) (60°)
QTY.
No. PI006-A-R-SD-1.0
PI006-A-R-SD-1.0
Enlarged drawing in the central part
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
SNT-6A(H)-A-Reel
5,000
No.
TITLE
SCALE
UNIT mm
SNT-6A(H)-A-Land Recommendation
Seiko Instruments Inc.
PI006-A-L-SD-3.0
No. PI006-A-L-SD-3.0
0.3
0.20.3
0.20.3
0.52
1.36
0.52
Caution Making the wire pattern under the package is possible. However, note that the package
may be upraised due to the thickness made by the silk screen printing and of a solder
resist on the pattern because this package does not have the standoff.
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
2.9±0.2
1.9±0.2
0.95±0.1
0.4±0.1
0.16 +0.1
-0.06
123
4
5
No. MP005-A-P-SD-1.2
MP005-A-P-SD-1.2
SOT235-A-PKG Dimensions
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
ø1.5 +0.1
-0 2.0±0.05
ø1.0 +0.2
-0 4.0±0.1
1.4±0.2
0.25±0.1
3.2±0.2
123
45
No. MP005-A-C-SD-2.1
MP005-A-C-SD-2.1
SOT235-A-Carrier Tape
Feed direction
4.0±0.1(10 pitches:40.0±0.2)
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
12.5max.
9.0±0.3
ø13±0.2
(60°) (60°)
QTY. 3,000
No. MP005-A-R-SD-1.1
MP005-A-R-SD-1.1
SOT235-A-Reel
Enlarged drawing in the central part
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
0.4±0.05
1.5±0.1
4.5±0.1
1.6±0.2
1.5±0.1 1.5±0.1
0.45±0.1
0.4±0.1
0.4±0.1
45°
312
No. UP003-A-P-SD-1.1
UP003-A-P-SD-1.1
SOT893-A-PKG Dimensions
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
2.0±0.1
0.3±0.05
8.0±0.1
ø1.5+0.1
-0
2.0±0.05
ø1.5+0.1
-0
4.75±0.1
5° max.
No. UP003-A-C-SD-1.1
UP003-A-C-SD-1.1
SOT893-A-Carrier Tape
Feed direction
4.0±0.1(10 pitches : 40.0±0.2)
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
13.0±0.3
16.5max.
(60°)
(60°)
QTY. 1,000
No. UP003-A-R-SD-1.1
UP003-A-R-SD-1.1
SOT893-A-Reel
Enlarged drawing in the central part
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
1.5±0.1 1.5±0.1
1.6±0.2
4.5±0.1
132
1.5±0.1
0.4±0.05
0.4±0.1
0.45±0.1
0.4±0.1
45°
0.3
54
No. UP005-A-P-SD-1.1
UP005-A-P-SD-1.1
SOT895-A-PKG Dimensions
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
2.0±0.1
0.3±0.05
8.0±0.1
ø1.5+0.1
-0
2.0±0.05
ø1.5+0.1
-0
4.75±0.1
5° max.
1
32
54
No. UP005-A-C-SD-1.1
UP005-A-C-SD-1.1
SOT895-A-Carrier Tape
Feed direction
4.0±0.1(10 pitches : 40.0±0.2)
No.
TITLE
SCALE
UNIT mm
Seiko Instruments Inc.
16.5max.
13.0±0.3
QTY. 1,000
(60°)
(60°)
No. UP005-A-R-SD-1.1
UP005-A-R-SD-1.1
SOT895-A-Reel
Enlarged drawing in the central part
No.
TITLE
SCALE
UNIT
Seiko Instruments Inc.
No. YS003-D-P-SD-2.0
YS003-D-P-SD-2.0
TO92-D-PKG Dimensions
5.2max.
0.45±0.1
1.27
0.45±0.1
4.2max.
0.6max.
Marked side
mm
No.
TITLE
SCALE
UNIT
Seiko Instruments Inc.
No. YZ003-E-P-SD-2.0
YZ003-E-P-SD-2.0
TO92-E-PKG Dimensions
5.2max. 4.2max.
1.27
Marked side
0.45±0.1
0.45±0.1
2.5 +0.4
-0.1
0.6max.
mm
No.
TITLE
SCALE
UNIT
Seiko Instruments Inc.
12.7±1.0
6.35±0.4 ø4.0±0.2
1.0max. 1#pin 3#pin
1.0max. 1.0max.
0.7±0.2
1.45max.
Feed direction
Z type
12.7±0.3(20 pitches : 254.0±1.0)
Marked side
No. YZ003-E-C-SD-1.1
YZ003-E-C-SD-1.1
TO92-E-Radial Tape
mm
No.
TITLE
SCALE
UNIT
Seiko Instruments Inc.
QTY. 2,000
YZ003-E-Z-SD-1.0
TO92-E-Ammo Packing
333
43
162
Spacer(Sponge)
312 35
18
154
314
Side spacer placed in front side
Space more than 4 strokes
No. YZ003-E-Z-SD-1.0
mm
www.sii-ic.com
The information described herein is subject to change without notice.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the approp riate governmental authority.
Use of the information described herein for other purposes and/or reproduction or copying without the
express permissi on of Seiko Instruments Inc. is strictly prohibited.
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus
installed in airplanes and other vehicle s, without prior written permission of Seiko Instrum ents Inc.
The products described herein are not designed to be radiation-proof.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or comm unity damage that may ensue.