LT1013/LT1014
1
10134fd
Typical applicaTion
DescripTion
Quad Precision Op Amp (LT1014)
Dual Precision Op Amp (LT1013)
The LT®1014 is the first precision quad operational amplifier
which directly upgrades designs in the industry standard
14-pin DIP LM324/LM348/OP-11/4156 pin configuration.
It is no longer necessary to compromise specifications,
while saving board space and cost, as compared to single
operational amplifiers.
The LT1014’s low offset voltage of 50µV, drift of 0.3µV/°C,
offset current of 0.15nA, gain of 8 million, common mode
rejection of 117dB and power supply rejection of 120dB
qualify it as four truly precision operational amplifiers.
Particularly important is the low offset voltage, since no
offset null terminals are provided in the quad configuration.
Although supply current is only 350µA per amplifier, a new
output stage design sources and sinks in excess of 20mA
of load current, while retaining high voltage gain.
Similarly, the LT1013 is the first precision dual op amp in the
8-pin industry standard configuration, upgrading the per-
formance of such popular devices as the MC1458/MC1558,
LM158 and OP-221. The LT1013’s specifications are similar
to (even somewhat better than) the LT1014’s.
Both the LT1013 and LT1014 can be operated off a single
5V power supply: input common mode range includes
ground; the output can also swing to within a few millivolts
of ground. Crossover distortion, so apparent on previous
single-supply designs, is eliminated. A full set of specifica-
tions is provided with ±15V and single 5V supplies.
FeaTures
applicaTions
n Single Supply Operation
Input Voltage Range Extends to Ground
Output Swings to Ground While Sinking Current
n Pin Compatible to 1458 and 324 with Precision Specs
n Guaranteed Offset Voltage: 150µV Max
n Guaranteed Low Drift: 2µV/°C Max
n Guaranteed Offset Current: 0.8nA Max
n Guaranteed High Gain
5mA Load Current: 1.5 Million Min
17mA Load Current: 0.8 Million Min
n Guaranteed Low Supply Current: 500µA Max
n Low Voltage Noise, 0.1Hz to 10Hz: 0.55µVP-P
n Low Current Noise—Better than 0P-07, 0.07pA/√Hz
n Battery-Powered Precision Instrumentation
Strain Gauge Signal Conditioners
Thermocouple Amplifiers
Instrumentation Amplifiers
n 4mA to 20mA Current Loop Transmitters
n Multiple Limit Threshold Detection
n Active Filters
n Multiple Gain Blocks
+
LT1014 1
4
11
2
3
5V
5V
1M
4k
OUTPUT A
10mV/°C
+
LT1014 7
6
5
1M
OUTPUT B
10mV/°C
4k
1.8k
YSI 44007
5k
AT 25°C
260Ω
1684Ω
299k3k
LT1004
1.2V
14
12
13
+
LT1014
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.
COLD JUNCTION COMPENSATION ACCURATE
TO ±1°C FROM 0°C TO 60°C.
USE 4TH AMPLIFIER FOR OUTPUT C.
LT1014 Distribution of Offset Voltage
3-Channel Thermocouple Thermometer
INPUT OFFSET VOLTAGE (µV)
–300 0 200
–200 –100 100 300
NUMBER OF UNITS
700
600
500
400
300
200
100
0
V
S
= ±15V
T
A
= 25°C
425 LT1014s
(1700 OP AMPS)
TESTED FROM
THREE RUNS
J PACKAGE
1013/14 TA02
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
LT1013/LT1014
2
10134fd
absoluTe MaxiMuM raTings
pin conFiguraTion
Supply Voltage ....................................................... ±22V
Differential Input Voltage........................................ ±30V
Input Voltage ................ Equal to Positive Supply Voltage
............5V Below Negative Supply Voltage
Output Short-Circuit Duration .......................... Indefinite
Storage Temperature Range
All Grades .......................................... 65°C to 150°C
Lead Temperature (Soldering, 10 sec.) ................. 300°C
Operating Temperature Range
LT1013AM/LT1013M/
LT1014AM/LT1014M ......................... 55 °C to 125°C
LT1013AC/LT1013C/LT1013D
LT1014AC/LT1014C/LT1014D................... 0°C to 70°C
LT1013I/ LT1014I .................................– 40°C to 85°C
(Note 1)
OBSOLETE PACKAGEOBSOLETE PACKAGE
Consider the N or S8 Packages for Alternate Source
OBSOLETE PACKAGE
Consider the N or SW Packages for Alternate Source
Consider the N or S8 (Not N8) Packages for Alternate Source
LT1013 LT1013 LT1013
1
2
3
4
8
7
6
5
TOP VIEW
INA
OUTA
V+
OUTB
+INA
V
+INB
INB
S8 PACKAGE
8-LEAD PLASTIC SO
+
+
NOTE: THIS PIN CONFIGURATION DIFFERS FROM
THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION
TJMAX = 150°C, θJA = 190°C/W
1
2
3
4
8
7
6
5
TOP VIEW
OUTPUT A
–IN A
+IN A
V
V+
OUTPUT B
–IN B
+IN B
N8 PACKAGE
8-LEAD PDIP
TJMAX = 150°C, QJA = 130°C
J8 PACKAGE
8-LEAD CERDIP
TJMAX = 150°C, QJA = 100°C
+
A
+
B
+
B
TOP VIEW
OUTPUT B
V+
OUTPUT A
–IN A –IN B
+IN B
+IN A
V(CASE)
8
7
6
5
3
2
1
4
H PACKAGE
8-LEAD TO-5 METAL CAN
+
A
TJMAX = 125°C, θJA = 55°C/W
LT1014 LT1014
1
2
3
4
5
6
7
8
TOP VIEW
SW PACKAGE
16-LEAD PLASTIC SO
16
15
14
13
12
11
10
9
OUTPUT A
IN A
+IN A
V+
+IN B
IN B
OUTPUT B
NC
OUTPUT D
IN D
+IN D
V
+IN C
IN C
OUTPUT C
NC
TJMAX = 150°C, θJA = 130°C/W
1
2
3
4
5
6
7
TOP VIEW
N PACKAGE
14-LEAD PDIP
TJMAX = 150°C, QJA = 100°C
J PACKAGE
14-LEAD CERDIP
TJMAX = 150°C, QJA = 100°C
14
13
12
11
10
9
8
OUTPUT A
–IN A
+IN A
V+
+IN B
–IN B
OUTPUT B
OUTPUT D
–IN D
+IN D
V
+IN C
–IN C
OUTPUT C
+
A
+
D
+B
+
C
LT1013/LT1014
3
10134fd
orDer inForMaTion
LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE
LT1013DS8#PBF LT1013DS8#TRPBF 1013 8-Lead Plastic SO 0°C to 70°C
LT1013IS8#PBF LT1013IS8#TRPBF 1013I 8-Lead Plastic SO –40°C to 85°C
LT1013ACN8#PBF LT1013ACN8#TRPBF LT1013ACN8 8-Lead PDIP 0°C to 70°C
LT1013CN8#PBF LT1013CN8#TRPBF LT1013CN8 8-Lead PDIP 0°C to 70°C
LT1013DN8#PBF LT1013DN8#TRPBF LT1013DN8 8-Lead PDIP 0°C to 70°C
LT1013IN8#PBF LT1013IN8#TRPBF LT1013IN8 8-Lead PDIP –40°C to 85°C
LT1014DSW#PBF LT1014DSW#TRPBF LT1014DSW 16-Lead Plastic SO 0°C to 70°C
LT1014ISW#PBF LT1014ISW#TRPBF LT1014ISW 16-Lead Plastic SO –40°C to 85°C
LT1014ACN#PBF LT1014ACN#TRPBF LT1014ACN 14-Lead PDIP 0°C to 70°C
LT1014CN#PBF LT1014CN#TRPBF LT1014CN 14-Lead PDIP 0°C to 70°C
LT1014DN#PBF LT1014DN#TRPBF LT1014DN 14-Lead PDIP 0°C to 70°C
LT1014IN#PBF LT1014IN#TRPBF LT1014IN 14-Lead PDIP –40°C to 85°C
LT1013AMJ8#PBF LT1013AMJ8#TRPBF LT1013AMJ8 8-Lead CERDIP –55°C to 125°C (OBSOLETE)
LT1013MJ8#PBF LT1013MJ8#TRPBF LT1013MJ8 8-Lead CERDIP –55°C to 125°C (OBSOLETE)
LT1013ACJ8#PBF LT1013ACJ8#TRPBF LT1013ACJ8 8-Lead CERDIP 0°C to 70°C (OBSOLETE)
LT1013CJ8#PBF LT1013CJ8#TRPBF LT1013CJ8 8-Lead CERDIP 0°C to 70°C (OBSOLETE)
LT1013AMH#PBF LT1013AMH#TRPBF LT1013AMH 8-Lead TO-5 Metal Can –55°C to 125°C (OBSOLETE)
LT1013MH#PBF LT1013MH#TRPBF LT1013MH 8-Lead TO-5 Metal Can –55°C to 125°C (OBSOLETE)
LT1013ACH#PBF LT1013ACH#TRPBF LT1013ACH 8-Lead TO-5 Metal Can 0°C to 70°C (OBSOLETE)
LT1013CH#PBF LT1013CH#TRPBF LT1013CH 8-Lead TO-5 Metal Can 0°C to 70°C (OBSOLETE)
LT1014AMJ#PBF LT1014AMJ#TRPBF LT1014AMJ 14-Lead CERDIP –55°C to 125°C (OBSOLETE)
LT1014MJ#PBF LT1014MJ#TRPBF LT1014MJ 14-Lead CERDIP –55°C to 125°C (OBSOLETE)
LT1014ACJ#PBF LT1014ACJ#TRPBF LT1014ACJ 14-Lead CERDIP 0°C to 70°C (OBSOLETE)
LT1014CJ#PBF LT1014CJ#TRPBF LT1014CJ 14-Lead CERDIP 0°C to 70°C (OBSOLETE)
Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
LT1013/LT1014
4
10134fd
elecTrical characTerisTics
SYMBOL PARAMETER CONDITIONS
LT1013AM/AC
LT1014AM/AC
LT1013C/D/I/M
LT1014C/D/I/M
UNITSMIN TYP MAX MIN TYP MAX
VOS Input Offset Voltage LT1013
LT1014
LT1013D/I, LT1014D/I
40
50
150
180
60
60
200
300
300
800
µV
µV
µV
Long-Term Input Offset Voltage
Stability
0.4 0.5 µV/Mo.
ISO Input Offset Current 0.15 0.8 0.2 1.5 nA
IBInput Bias Current 12 20 15 30 nA
en Input Noise Voltage 0.1Hz to 10Hz 0.55 0.55 µVP-P
enInput Noise Voltage Density fO = 10Hz
fO = 1000Hz
24
22
24
22
nV/√Hz
nV/√Hz
inInput Noise Current Density fO = 10Hz 0.07 0.07 pA/√Hz
Input Resistance – Differential
Common Mode
(Note 2) 100 400
5
70 300
4
AVOL Large-Signal Voltage Gain VO = ± 10V, RL = 2k
VO = ±10V, RL = 600Ω
1.5
0.8
8.0
2.5
1.2
0.5
7.0
2.0
V/µV
V/µV
Input Voltage Range 13.5
15.0
13.8
15.3
13.5
15.0
13.8
15.3
V
V
CMRR Common Mode Rejection Ratio VCM = 13.5V, –15.0V 100 117 97 114 dB
PSRR Power Supply Rejection Ratio VS = ±2V to ±18V 103 120 100 117 dB
Channel Separation VO = ±10V, RL = 2k 123 140 120 137 dB
VOUT Output Voltage Swing RL = 2k ±13 ±14 ±12.5 ±14 V
Slew Rate 0.2 0.4 0.2 0.4 V/µs
ISSupply Current Per Amplifier 0.35 0.50 0.35 0.55 mA
TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted.
SYMBOL PARAMETER CONDITIONS
LT1013AM/AC
LT1014AM/AC
LT1013C/D/I/M
LT1014C/D/I/M
UNITSMIN TYP MAX MIN TYP MAX
VOS Input Offset Voltage LT1013
LT1014
LT1013D/I, LT1014D/I
60
70
250
280
90
90
250
450
450
950
µV
µV
µV
IOS Input Offset Current 0.2 1.3 0.3 2.0 nA
IBInput Bias Current 15 35 18 50 nA
AVOL Large-Signal Voltage Gain VO = 5mV to 4V, RL = 500Ω 1.0 1.0 V/µV
Input Voltage Range 3.5 3.8
0.3
3.5
0
3.8
0.3
V
V
VOUT Output Voltage Swing Output Low, No Load
Output Low, 600Ω to Ground
Output Low, ISINK = 1mA
Output High, No Load
Output High, 600Ω to
Ground
4.0
3.4
15
5
220
4.4
4.0
25
10
350
4.0
3.4
15
5
220
4.4
4.0
25
10
350
mV
mV
mV
V
V
ISSupply Current Per Amplifier 0.31 0.45 0.32 0.50 mA
TA = 25°C. VS+ = 5V, VS = 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted
LT1013/LT1014
5
10134fd
The l denotes the specifications which apply over the temperature range
55°C ≤ TA ≤ 125°C. VS = ±15V, VCM = 0V unless otherwise noted.
elecTrical characTerisTics
SYMBOL PARAMETER CONDITIONS
LT1013AM LT1014AM LT1013M/LT1014M
UNITSMIN TYP MAX MIN TYP MAX MIN TYP MAX
VOS Input Offset Voltage
VS = 5V, 0V; VO = 1.4V
55°C ≤ TA ≤ 100°C
VCM = 0.1V, TA = 125°C
VCM = 0V, TA = 125°C
l
l
80
80
120
250
300
450
450
900
90
90
150
300
350
480
480
960
110
100
200
400
550
750
750
1500
µV
µV
µV
µV
Input Offset Voltage Drift (Note 3) l0.4 2.0 0.4 2.0 0.5 2.5 µV/°C
IOS Input Offset Current
VS = 5V, 0V; VO = 1.4V
l
l
0.3
0.6
2.5
6.0
0.3
0.7
2.8
7.0
0.4
0.9
5.0
10.0
nA
nA
IBInput Bias Current
VS = 5V, 0V; VO = 1.4V
l
l
15
20
30
80
15
25
30
90
18
28
45
120
nA
nA
AVOL Large-Signal Voltage Gain VO = ±10V, RL = 2k l0.5 2.0 0.4 2.0 0.25 2.0 V/µV
CMRR Common Mode Rejection VCM = 13.0V, –14.9V l97 114 96 114 94 113 dB
PSRR Power Supply Rejection
Ratio
VS = ±2V to ±18V l100 117 100 117 97 116 dB
VOUT Output Voltage Swing RL = 2k
VS = 5V, 0V
RL = 600Ω to Ground
Output Low
Output High
l
l
l
±12
3.2
±13.8
6
3.8
15
±12
3.2
±13.8
6
3.8
15
±11.5
3.1
±13.8
6
3.8
18
V
mV
V
ISSupply Current
Per Amplifier
VS = 5V, 0V; VO = 1.4V
l
l
0.38
0.34
0.60
0.55
0.38
0.34
0.60
0.55
0.38
0.34
0.7
0.65
mA
mA
LT1013/LT1014
6
10134fd
elecTrical characTerisTics
SYMBOL PARAMETER CONDITIONS
LT1013AC LT1014AC
LT1013C/D/I
LT1014C/D/I
UNITSMIN TYP MAX MIN TYP MAX MIN TYP MAX
VOS Input Offset Voltage
LT1013D/I, LT1014D/I
VS = 5V, 0V; VO = 1.4V
LT1013D/I, LT1014D/I
VS = 5V, 0V; VO = 1.4V
l
l
l
l
55
75
240
350
65
85
270
380
80
230
110
280
400
1000
570
1200
µV
µV
µV
µV
Average Input Offset
Voltage Drift
(Note 3)
LT1013D/I, LT1014D/I
l
l
0.3 2.0 0.3 2.0 0.4
0.7
2.5
5.0
µV/°C
µV/°C
IOS Input Offset Current
VS = 5V, 0V; VO = 1.4V
l
l
0.2
0.4
1.5
3.5
0.2
0.4
1.7
4.0
0.3
0.5
2.8
6.0
nA
nA
IBInput Bias Current
VS = 5V, 0V; VO = 1.4V
l
l
13
18
25
55
13
20
25
60
16
24
38
90
nA
nA
AVOL Large-Signal Voltage Gain VO = ±10V, RL = 2k l1.0 5.0 1.0 5.0 0.7 4.0 V/µV
CMRR Common Mode Rejection
Ratio
VCM = 13.0V, –15.0V l98 116 98 116 94 113 dB
PSRR Power Supply Rejection
Ratio
VS = ±2V to ±18V l101 119 101 119 97 116 dB
VOUT Output Voltage Swing RL = 2k
VS = 5V, 0V; RL = 600Ω
Output Low
Output High
l
l
l
±12.5
3.3
±13.9
6
3.9
13
±12.5
3.3
±13.9
6
3.9
13
±12.0
3.2
±13.9
6
3.9
13
V
mV
V
ISSupply Current per Amplifier
VS = 5V, 0V; VO = 1.4V
l
l
0.36
0.32
0.55
0.50
0.36
0.32
0.55
0.50
0.37
0.34
0.60
0.55
mA
mA
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Rating condition for extended periods may affect device reliability
and lifetime.
The l denotes the specifications which apply over the temperature range
40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless
otherwise noted.
Note 2: This parameter is guaranteed by design and is not tested. Typical
parameters are defined as the 60% yield of parameter distributions of
individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically
240 op amps (or 120 ) will be better than the indicated specification.
Note 3: This parameter is not 100% tested.
LT1013/LT1014
7
10134fd
Typical perForMance characTerisTics
Offset Voltage Drift with
Temperature of Representative
Units
TEMPERATURE (°C)
–50
INPUT OFFSET VOLTAGE (µV)
200
100
0
–100
–200
050 75
–25 25 100 125
V
S
= ±15V
1013/14 TPC01
Warm-Up Drift
BALANCED SOURCE RESISTANCE (Ω)
1k 3k 10k 30k 100k 300k 1M 3M 10M
INPUT OFFSET VOLTAGE (mV)
10
1
0.1
0.01
V
S
= 5V, 0V, –55°C TO 125°C
V
S
= ±15V, 0V, –55°C TO 125°C
V
S
= 5V, 0V, 25°C
V
S
= ±15V, 0V, 25°C
+
R
S
R
S
1013/14 TPC02
Offset Voltage vs Balanced
Source Resistance
Common Mode Rejection Ratio
vs Frequency 0.1Hz to 10Hz Noise
Power Supply Rejection Ratio
vs Frequency
FREQUENCY (Hz)
10
COMMON MODE REJECTION RATIO (dB)
120
100
80
60
40
20
0100 1k 10k 100k 1M
VS = 5V, 0V VS = ±15V
TA = 25°C
1013/14 TPC04
FREQUENCY (Hz)
0.1
POWER SUPPLY REJECTION RATIO (dB)
120
100
80
60
40
20
0100 10k
1 10 1k 100k 1M
POSITIVE
SUPPLY
NEGATIVE
SUPPLY
V
S
= ±15V + 1V
P-P
SINE WAVE
T
A
= 25°C
1013/14 TPC05
TIME (SECONDS)
0
NOISE VOLTAGE (200nV/DIV)
8
24610
T
A
= 25oC
V
S
= p2V TO p18V
1013/14 TPC06
10Hz Voltage Noise
Distribution
Noise Spectrum Supply Current vs Temperature
FREQUENCY (Hz)
1
VOLTAGE NOISE DENSITY (nV/√Hz)
CURRENT NOISE DENSITY (fA/√Hz)
1000
100
10
300
30
10 100 1k
CURRENT NOISE
VOLTAGE NOISE
1/f CORNER 2Hz
T
A
= 25°C
V
S
= ±2V TO ±18V
1013/14 TPC07
VOLTAGE NOISE DENSITY (nV/√Hz)
10
NUMBER OF UNITS
200
180
160
140
120
100
80
60
40
20
050
20 30 40 60
V
S
= ±15V
T
A
= 25°C
328 UNITS TESTED
FROM THREE RUNS
1013/14 TPC08
TEMPERATURE (°C)
–50
SUPPLY CURRENT PER AMPLIFIER (µA)
460
420
380
340
300
260 050 75
–25 25 100 125
V
S
= ±15V
V
S
= 5V, 0V
1013/14 TPC09
LT1013/LT1014
8
10134fd
Typical perForMance characTerisTics
INPUT BIAS CURRENT (nA)
0
COMMON MODE INPUT VOLTAGE, V
S
= +5V, 0V (V)
5
4
3
2
1
0
–1
COMMON MODE INPUT VOLTAGE, V
S
= ±15V (V)
15
10
5
0
–5
–10
–15
–5 –10 –15 –20 –25 –30
T
A
= 25°C
V
S
= 5V, 0V
V
S
= ±15V
1013/14 TPC10
Input Bias Current
vs Common Mode Voltage
TEMPERATURE (°C)
–50
INPUT BIAS CURRENT (nA)
–30
–25
–20
–15
–10
–5
025 75
–25 0 50 100 125
V
CM
= 0V
V
S
= 5V, 0V
V
S
= ±15V
V
S
= ±2.5V
1013/14 TPC12
TEMPERATURE (°C)
–50
INPUT OFFSET CURRENT (nA)
1.0
0.8
0.6
0.4
0.2
0050 75
–25 25 100 125
V
CM
= 0V
V
S
= 5V, 0V
V
S
= ±2.5V
V
S
= ±15V
1013/14 TPC11
Input Bias Current
vs Temperature
Large-Signal Transient
Response, VS = ±15V
5V/DIV
AV = +1 50µs/DIV 1013/14 TPC15
Large-Signal Transient
Response, VS = 5V, 0V
AV = +1 10µs/DIV 1013/14 TPC18
NO LOAD
INPUT = 0V TO 4V PULSE
4V
2V
0V
Small-Signal Transient
Response, VS = ±15V
20mV/DIV
AV = +1 2µs/DIV 1013/14 TPC14
Large-Signal Transient
Response, VS = 5V, 0V
AV = +1 10µs/DIV 1013/14 TPC17
RL = 4.7k TO 5V
INPUT = 0V TO 4V PULSE
4V
2V
0V
Output Saturation vs Sink
Current vs Temperature
TEMPERATURE (°C)
–50 –25 0 25 50 75 100 125
SATURATION VOLTAGE (V)
10
1
0.1
0.01
V+ = 5V TO 30V
V = 0V
ISINK = 10mA
ISINK = 5mA
ISINK = 1mA
ISINK = 100µA
ISINK = 10µA
ISINK = 0
1013/14 TPC13
AV = +1 20µs/DIV 1013/14 TPC16
RL = 600Ω TO GROUND
INPUT = 0V TO 100mV PULSE
Small-Signal Transient
Response, VS = 5V, 0V
100mV
50mV
0
Input Offset Current
vs Temperature
LT1013/LT1014
9
10134fd
Typical perForMance characTerisTics
Voltage Gain vs Frequency
FREQUENCY (Hz)
0.01 0.1
VOLTAGE GAIN (dB)
1M 10M
1 10 100 1k 10k 100k
140
120
100
80
60
40
20
0
–20
V
S
= ±15VV
S
= 5V, 0V
T
A
= 25°C
C
L
= 100pF
1013/14 TPC21
LOAD RESISTANCE TO GROUND (Ω)
100
100k
VOLTAGE GAIN (V/V)
1M
10M
1k 10k
V
O
= 20mV TO 3.5V
WITH V
S
= 5V, 0V
T
A
= 25°C, V
S
= ±15V
T
A
= –55°C, V
S
= ±15V
T
A
= 125°C, V
S
= ±15V
T
A
= –55°C, V
S
= 5V, 0V
T
A
= 25°C, V
S
= 5V, 0V
T
A
= 125°C, V
S
= 5V, 0V
V
O
= ±10V WITH V
S
= ±15V
1013/14 TPC20
Output Short-Circuit Current
vs Time
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)
0
SHORT-CIRCUIT CURRENT (mA)
SINKING SOURCING
1 2
40
30
20
10
0
–10
–20
–30
–40 3
–55°C
25°C
25°C
125°C
125°C
–55°C V
S
= ±15V
1013/14 TPC19
Voltage Gain vs Load Resistance
Gain, Phase vs Frequency
Channel Separation
vs Frequency
applicaTions inForMaTion
FREQUENCY (MHz)
0.1 0.3
VOLTAGE GAIN (dB)
20
10
0
–10
PHASE SHIFT (DEGREES)
80
100
120
140
160
180
200
1 3 10
T
A
= 25°C
V
CM
= 0V
C
L
= 100pF
PHASE
±15V
5V, 0V
±15V
5V, 0V
GAIN
1013/14 TPC22
FREQUENCY (Hz)
10
CHANNEL SEPARATION (dB)
160
140
120
100
80
60 100k
100 1k 10k 1M
LIMITED BY
THERMAL
INTERACTION
R
S
= 1kΩ
R
S
= 100Ω
V
S
= ±15V
T
A
= 25°C
V
IN
= 20Vp-p to 5kHz
R
L
= 2k
LIMITED BY
PIN TO PIN
CAPACITANCE
1013/14 TPC23
Single Supply Operation
The LT1013/LT1014 are fully specified for single supply
operation, i.e., when the negative supply is 0V. Input
common mode range includes ground; the output swings
within a few millivolts of ground. Single supply operation,
however, can create special difficulties, both at the input
and at the output. The LT1013/LT1014 have specific circuitry
which addresses these problems.
At the input, the driving signal can fall below 0V—in-
advertently or on a transient basis. If the input is more
than a few hundred millivolts below ground, two distinct
problems can occur on previous single supply designs,
such as the LM124, LM158, OP-20, OP-21, OP-220,
OP-221, OP-420:
a) When the input is more than a diode drop below
ground, unlimited current will flow from the substrate
(V terminal) to the input. This can destroy the unit. On
the LT1013/LT1014, the 400Ω resistors, in series with the
input (see Schematic Diagram), protect the devices even
when the input is 5V below ground.
LT1013/LT1014
10
10134fd
b) When the input is more than 400mV below ground
(at 25°C), the input stage saturates (transistors Q3 and
Q4) and phase reversal occurs at the output. This can
cause lock-up in servo systems. Due to a unique phase
reversal protection circuitry (Q21, Q22, Q27, Q28), the
LT1013/LT1014’s outputs do not reverse, as illustrated
below, even when the inputs are at –1.5V.
There is one circumstance, however, under which the phase
reversal protection circuitry does not function: when the
other op amp on the LT1013, or one specific amplifier of
the other three on the LT1014, is driven hard into negative
saturation at the output.
Phase reversal protection does not work on amplifier:
A when D’s output is in negative saturation. B’s and C’s
outputs have no effect.
B when C’s output is in negative saturation. A’s and D’s
outputs have no effect.
C when B’s output is in negative saturation. A’s and D’s
outputs have no effect.
applicaTions inForMaTion
D when A’s output is negative saturation. B’s and C’s
outputs have no effect.
At the output, the aforementioned single supply designs
either cannot swing to within 600mV of ground (OP-20)
or cannot sink more than a few microamperes while swing-
ing to ground (LM124, LM158). The LT1013/LT1014’s
all-NPN output stage maintains its low output resistance and
high gain characteristics until the output is saturated.
In dual supply operations, the output stage is crossover
distortion-free.
Comparator Applications
The single supply operation of the LT1013/LT1014 lends
itself to its use as a precision comparator with TTL com-
patible output:
In systems using both op amps and comparators, the
LT1013/LT1014 can perform multiple duties; for example,
on the LT1014, two of the devices can be used as op amps
and the other two as comparators.
4V
LT1013/LT1014
NO PHASE REVERSAL
2V
4V
0V
6VP-P INPUT, –1.5V TO 4.5V
4V
LM324, LM358, OP-20
EXHIBIT OUTPUT PHASE
REVERSAL
VS = 5V, 0V
4
2
0
100
0
2
0
0
100
INPUT (mV) OUTPUT (V)
INPUT (mV) OUTPUT (V)
Voltage Follower with Input Exceeding the Negative Common Mode Range
Comparator Rise Response Time
10mV, 5mV, 2mV Overdrives
Comparator Fall Response Time
to 10mV, 5mV, 2mV Overdrives
2V2V
0V0V
4
50µs/DIV
VS = 5V, 0V
50µs/DIV
LT1013/LT1014
11
10134fd
Typical applicaTions
applicaTions inForMaTion
Low Supply Operation
The minimum supply voltage for proper operation of the
LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical
supply current at this voltage is 290µA, therefore power
dissipation is only one milliwatt per amplifier.
Noise Testing
For applications information on noise testing and calcula-
tions, please see the LT1007 or LT1008 data sheet.
Test Circuit for Offset Voltage and
Offset Drift with Temperature
+
LT1013
OR LT1014
LT1013/14 F06
15V
–15V
100Ω*
50k*
50k*
V
O
RESISTOR MUST HAVE LOW
THERMOELECTRIC POTENTIAL.
THIS CIRCUIT IS ALSO USED AS THE BURN-IN
CONFIGURATION, WITH SUPPLY VOLTAGES
INCREASED TO ±20V.
V
O
= 1000V
OS
*
**
50MHz Thermal RMS-to-DC Converter
+
+
LT1014
LT1014
8
10
9
7
4
11
6
5
0V TO 4V
OUTPUT
10k*
10k*10k*
10k*
10k
10k*
20k
FULL-
SCALE
TRIM
5V
+
LT1014 14
13
12
10k*100k*
0.01
0.01
+
LT1014 1
2
3
100k*
0.01
300Ω*
30k*
1µF
1µF
10k
10k
T1A T1B T2B T2A
BRN RED RED
GRN GRN
BRN
INPUT
300mV–
10VRMS
5V
2% ACCURACY, DC–50MHz.
100:1 CREST FACTOR CAPABILITY.
0.1% RESISTOR.
T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.
ENCLOSE T1 AND T2 IN STYROFOAM.
7.5mW DISSIPATION.
*
30k*
1013/14 TA03
+
1/2 LT1013
8
4
7
5
6
5V
OUTPUT A
R2
R1
1µF
1µF
5
2
3
15
6
18
+INPUT
–INPUT
+
1/2 LT1013 1
3
2
OUTPUT B
R2
R1
1µF
8
11
12
14
7
13
+INPUT
–INPUT
1/2 LTC1043
1/2 LTC1043
16
0.01
OFFSET = 150mV
GAIN = + 1.
CMRR = 120dB.
COMMON MODE RANGE IS 0V TO 5V.
R2
R1
1µF
1013/14 TA04
5V Single Supply Dual Instrumentation Amplifier
LT1013/LT1014
12
10134fd
Typical applicaTions
+
+
A2
LT1014
6
5
7
6.98k*
1k*
5k
FLOW
CALIB
1µF
10M
RESPONSE
TIME
100k
1M*
+
A1
LT1014
2
3
1
1M*
1M*
6.25k**
1M*
T2T1
3.2k*
3.2k**
6.25k**
15Ω
DALE
HL-25
A4
LT1014
12
13
14
4
11
15V
–15V
300pF
4.7k
15V
OUTPUT
0Hz TO 300Hz =
0 TO 300ML/MIN
1N4148
+
A3
LT1014
9
10
8100k
100k
0.1
100k
383k*
2.7k
–15V
LT1004-1.2
2N4391
15Ω HEATER RESISTOR
FLOWFLOW
PIPE
T1 T2 1% FILM RESISTOR.
SUPPLIED WITH YSI THERMISTOR NETWORK.
T1, T2 YSI THERMISTOR NETWORK = #44201.
FLOW IN PIPE IS INVERSELY PROPORTIONAL TO
RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.
A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED
FREQUENCY OUTPUT.
*
**
15V
1013/14 TA06
Hot-Wire Anemometer
+
+
+
A4
LT1014
13
14
12 0V TO 10V =
0 TO 1000 FEET/MINUTE
10M
RESPONSE
TIME
ADJUST
1µF
1µF
100k
A3
LT1014
9
8
10
500k
2M
FULL-
SCALE
FLOW
12k
A2
LT1014
6
7
5
150k*2k
Q2
Q4
Q3
Q1
Q5
TIE CA3046 PIN 13
TO –15V. DO NOT USE Q5
13
–15V
1000pF
33k
2k
Q1–Q4
CA3046
1k
ZERO
FLOW 3.3k LT1004-1.2
4
6, 8
–15V
150k*
+15V
+
A1
LT1014
2
1
3
Q6
TIP12O OR
EQUIVALENT
220
500pF
15V
–15V
4
11
0.01µF
10k*
27Ω
1W
2k*
#328
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.
A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.
A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.
1% RESISTOR.
*
1013/14 TA05
Liquid Flowmeter
LT1013/LT1014
13
10134fd
Typical applicaTions
5V Powered Precision Instrumentation Amplifier
+
LT1014
6
5
+
LT1014
2
3
7
1
200k*
200k*
RG (TYP 2k)
5V
5V
20k
20k
–INPUT
+INPUT
+
LT1014
13
12
14
10k
10k
10k*
10k* 10k*
10k*
OUTPUT
4
11
5V
+
LT1014
9
10
8
TO
INPUT
CABLE SHIELDS
1% FILM RESISTOR. MATCH 10k's 0.05%
GAIN EQUATION: A = + 1.
FOR HIGH SOURCE IMPEDANCES,
USE 2N2222 AS DIODES.
400,000
RG
*
1µF
1013/14 TA07
9V Battery Powered Strain Gauge Signal Conditioner
+
LT1014
13
12
14
+
LT1014
6
5
7
+
LT1014
9
10
8
100k
100k
499
499
350Ω
STRAIN GAUGE
BRIDGE
TO A/D RATIO
REFERENCE
2N2219
330Ω
0.01
4.7k
47µF
9V
TO A/D
22M
+
LT1014
2
3
1
1N4148
100k
100k100k
0.068
15k
0.068
0.068
15k
3k
15
14
7
6
13
9
9V
TO A/D
CONVERT COMMAND
1
5
9V
4
11
74C221
9V
SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650µA.
4.7k-0.01µF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO
HIGH ∆V/∆T STEPS. 1013/14 TA08
LT1013/LT1014
14
10134fd
Typical applicaTions
5V Powered Motor Speed Controller
No Tachometer Required
+
A1
1/2 LT1013
2
3
1
6
5
7
100k
0.47
330k
1M
6.8M
2k
0.068
+
A2
1/2 LT1013
5V
8
4
E
IN
0V TO 3V
2k
3.3M
Q1
2N3904
0.47
0.068
Q2
1N4148
1N4148
2k
82Ω
1k
5V
Q3
2N5023
1N4001
1N4001
47
MOTOR = CANON–FN30–R13N1B.
A1 DUTY CYCLE MODULATES MOTOR.
A2 SAMPLES MOTORS BACK EMF.
1/4 CD4016
1013/14 TA09
+
+
LT1013
6
5
7
8
4
1k
4.7M
120k
2N2222
OUTPUT
100k*
6.19k
0.005
+
LT1013
2
3
11N4148
LT1004
1.2V
100k 100Ω
10Ω
20k
0.33
0.1
5V
1N4148
1N4148 1N4148
0.05
2N2222
2N2222
2N2222
4.7k
820
270Ω
820
1N4148
TTL INPUT
1N4148
5V
MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND
RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.
SUITABLE FOR BATTERY POWERED USE (600µA QUIESCENT CURRENT).
1% METAL FILM.
*600µs RC
21V
DALE
#TC-10-04
1013/14 TA10
5V Powered EEPROM Pulse Generator
LT1013/LT1014
15
10134fd
Typical applicaTions
Methane Concentration Detector with Linearized Output
+
+
13
12
14
A4
LT1014
74C04
74C04
74C04
470pF
10k
470pF
5V
–5V 1N4148
OUTPUT
500ppm TO 10,000ppm
50Hz TO 1kHz
2k
1N4148 (4)
+
6
5
7
A2
LT1014
Q4
Q3Q2
Q1
150k*2k
1000pF
100k*
+
2
3
1
A1
LT1014
4
5V
5k
1000ppm
TRIM
12k*
LTC1044
10µF
4 2 3
5 8 5V
SENSOR
9
10
8
A3
LT1014
11
100k*
390k*
LT1004
1.2V
10µF
0.033
14
1
–5V
5V
CD4016
1% METAL FILM RESISTOR
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813
*
–5V
CA3046
1
14
2.7k
1013/14 TA11
+
+
Low Power 9V to 5V Converter
+
LT1013
1
2
3
330k
9V
LT1004
1.2V
120k
1%
390k
1%
5V
20mA
2N5434
+
LT1013
7
5
6
HP5082-2811
100µA
8
4
9V
47k
471N4148
L
10k
10k
2N2905
L = DALE TE-3/Q3/TA.
SHORT CIRCUIT CURRENT = 30mA.
≈ 75% EFFICIENCY.
SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.
9V INPUT
V
D
= 200mV
1013/14 TA12
+
LT1013/LT1014
16
10134fd
Typical applicaTions
5V Powered 4mA to 20mA Current Loop Transmitter
+
A2
1/2 LT1013
3
2
1
+
A1
1/2 LT1013
6
5
7
100k
4.3k
5V
8
4
LT1004
1.2V
5V 10µF
4mA TO 20mA OUT
FULLY FLOATING
8-BIT ACCURACY.
0.1Ω
68k*
301Ω*
1k
20mA
TRIM
4k*
10k*
2k
4mA
TRIM
INPUT
0V TO 4V
TO INVERTER
DRIVE
T1
1N4002 (4)
1013/14 TA14
+
Fully Floating Modification to 4mA-20mA Current Loop
+
A2
1/2 LT1013
6
5
7
+
A1
1/2 LT1013
2
3
1
INPUT
0V TO 4V
1k
4mA
TRIM
4k*
10k*
4.3k
5V
8
4
LT1004
1.2V
2k
Q4
2N2222
100pF
5V
0.33 100k
10k*
80k*
10k*
20mA
TRIM
10µF
Q1
2N2905
Q2
2N2905
10k 10k
0.002
820Ω
820Ω
10µF
100Ω*
4mA TO 20mA OUT
TO LOAD
2.2kΩ MAXIMUM
68Ω
Q3
2N2905
5V
12-BIT ACCURACY.
1% FILM.
T1 = PICO-31080.
*
1N4002 (4)
T1
74C04
(6)
1013/14 TA13
+
+
LT1013/LT1014
17
10134fd
Typical applicaTions
5V Powered, Linearized Platinum RTD Signal Conditioner
+
A4
1/4 LT1014
9
10
8OUTPUT
0V TO 4V =
0°C TO 400°C
±0.05°C
GAIN TRIM
1k
3.01k
150Ω
+
A2
1/4 LT1014
2
3
1
+
A3
1/4 LT1014
6
5
7
2M
5k
LINEARITY
200k
200k
2M
50k
ZERO
TRIM
8.25k
274k
10k
+
A1
1/4 LT1014
13
12
14
5V
4
11
250k
2.4k
5%
LT1009
2.5V
5V
SENSOR
Q2Q1
167Ω499Ω
1.5k
ROSEMOUNT
118MF
ALL RESISTORS ARE TRW-MAR-6 METAL FILM.
RATIO MATCH 2M–200K ± 0.01%.
TRIM SEQUENCE:
SET SENSOR TO 0° VALUE.
ADJUST ZERO FOR 0V OUT.
SET SENSOR TO 100°C VALUE.
ADJUST GAIN FOR 1.000V OUT.
SET SENSOR TO 400°C.
ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.
2N4250
(2)
1013/14 TA15
Strain Gauge Bridge Signal Conditioner
+
1/2 LT1013
5
6
7
0.047
2k GAIN TRIM
46k*
100Ω*
OUTPUT 0V TO 3.5V
0psi TO 350psi
0.33
100k
10k
ZERO
TRIM
A
D
E
C
301k
VREF
220
5V
1.2VOUT REFERENCE
TO A/D CONVERTER
FOR RATIOMETRIC OPERATION
1mA MAXIMUM LOAD
+
2
3
139k
8
4
5V
1/2 LT1013
0.1
8
5
2
4
100µF
100µF
PRESSURE
TRANSDUCER
350Ω
V ≈ –VREF
LTC1044
1% FILM RESISTOR.
PRESSURE TRANSDUCER–BLH/DHF–350.
CIRCLED LETTER IS PIN NUMBER.
*
LT1004
1.2V
1013/14 TA16
+
+
LT1013/LT1014
18
10134fd
Typical applicaTions
LVDT Signal Conditioner
+
LT1013 1
3
2
200k
10k
OUT
0V TO 3V
1µF
100k
14
8
1313
7
12
11
BLK
GRN
BLUE
RD-
BLUE
+
LT1011 7
2
3
1/2 LTC1043
1
8
4
1k
5V
TO PIN 16, LT1043
100k
7.5k
0.01
100k
PHASE
TRIM
LVDT
YEL-BLK
+
LT1013 7
5
6
5V
–5V
0.0050.005 30k
30k
10k
4.7k
1.2k
1N914
LT1004
1.2V
10µF
2N4338
LVDT = SCHAEVITZ E-100.
FREQUENCY =
1.5kHz
YEL-RD
1013/14 TA17
+
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation
+
1/4 LT1014
9
10
8OUTPUT
+
1/4 LT1014
6
5
7
+
1/4 LT1014
12
13
14
4
11
R3
R2
R2
R1
R
G
R1
+
1/4 LT1014
2
3
1
V
V
+
100k
10pF
2R
10M
R
5M
+INPUT
–INPUT
R3
GAIN = 1 +
2R1
R
G
R3
R2
INPUT BIAS CURRENT TYPICALLY <1nA
INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN
NEGATIVE COMMON MODE LIMIT = V
+ I
B
s 2R + 30mV
= 150mV for V
= 0V
I
B
= 12nA
2R
10M
1013/14 TA18
LT1013/LT1014
19
10134fd
Typical applicaTions
Voltage Controlled Current Source with Ground Referred Input and Output
+
LT1013
3
2
1
8
4
+
A2
LT1013
6
5
7
1M
LT1004
1.2V
1.2k
1N914
0.01Ω
100k 100Ω
120k
30k
V
BATT
6V
0.003µF
5V OUTPUT
50k
OUTPUT ADJUST
10
2 4 5
3 8
LTC1044
100Ω
1N914
12 OUTPUT
10
2N2219
0.009V DROPOUT AT 5mA OUTPUT.
0.108V DROPOUT AT 100mA OUTPUT.
I
QUIESCENT
= 850µA.
1013/14 TA19
+
+
Low Dropout Regulator for 6V Battery
+
1/2 LT1013
3
2
1
8
4
5V
0V TO 2V
1µF
8
11
12
14
7
13
1/2 LTC1043
0.68µF
1k
100Ω
1µF
IOUT = 0mA TO 15mA
IOUT = VIN
100Ω
FOR BIPOLAR OPERATION,
RUN BOTH ICs FROM
A BIPOLAR SUPPLY.
1013/14 TA20
LT1013/LT1014
20
10134fd
Typical applicaTions
+
1/2 LT1013 1
8
4
3
2
+
1/2 LT1013 7
6
5
5V
1M*
5M*
20k
4.22M*
4.22M*
100k
5V
1M*RT1
3.2k
1M*
RT2
6.25k
RT
YSI 44201
2.16k*
3.4k*
4.3k
TEMPERATURE
COMPENSATION
GENERATOR
LT1009
2.5V
5V
680Ω
100Ω
100k
560k
MV-209
3.5MHz
XTAL
OSCILLATOR SUPPLY
STABILIZATION
OSCILLATOR 510pF
510pF
3.5MHz OUTPUT
0.03ppm/°C, 0°C TO 70°C
2N2222
1% FILM
3.5MHz XTAL = AT CUT – 35°20'
MOUNT RT NEAR XTAL
3mA POWER DRAIN
THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES
A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO
MINIMIZE OVERALL OSCILLATOR DRIFT
*
1013/14 TA22
Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)
+
LT1013
6
5
7
+
LT1013
2
8
4
3
1
1M
1.4M
82k
0.005
2N5114
2N4391
LT1004
1.2V
100k
6V
16V
–16V
0.005
10
15V
OUT
–15V
OUT
200k
V
OUT
ADJ
15pF
15pF
1µF
10
16V
–16V
L1
1MHY
2N3904
2N3906
10k
10k
10k
22k
22k
10k
+V Q1 CLK 2
D1 Q1 Q2D2
CLK 1 Q2
74C74
+
100kHz INPUT
L1 = 24-104 AIE VERNITRON
±5mA OUTPUT
75% EFFICIENCY
6V
74C00
6V
= 1N4148
1013/14 TA21
+
+
6V to ±15V Regulating Converter
LT1013/LT1014
21
10134fd
scheMaTic DiagraM
1/2 LT1013, 1/4 LT1014
9k 9k 1.6k
5k 2k5k
Q5 Q6
1.6k
Q16
Q30
Q14Q13
Q3
Q4
Q1
Q21
400Ω
Q2
Q22
400Ω
Q12
Q11
1.6k
Q15
100Ω
2k
Q9 Q7
Q29
Q17
1.3k
Q20
Q26
10pF
Q8 Q23
Q31
3.9k 21pF
2.5pF
Q32
1k
Q18
Q19
Q25
2.4k 18Ω
100pF
4pF
2k
75pF
Q24
30Ω
42k
14k
Q33
Q34
Q37
Q38
Q40
J1
Q39
Q41
600Ω
800Ω
V
V
+
IN
IN
Q10
OUTPUT
Q35
Q36
Q27
Q28
+
1013/14 SD
LT1013/LT1014
22
10134fd
package DescripTion
J8 0801
.014 – .026
(0.360 – 0.660)
.200
(5.080)
MAX
.015 – .060
(0.381 – 1.524)
.125
3.175
MIN
.100
(2.54)
BSC
.045 – .065
(1.143 – 1.651)
.045 – .068
(1.143 – 1.650)
FULL LEAD
OPTION
.023 – .045
(0.584 – 1.143)
HALF LEAD
OPTION
CORNER LEADS OPTION
(4 PLCS)
.300 BSC
(7.62 BSC)
.008 – .018
(0.203 – 0.457) 0o – 15o
.005
(0.127)
MIN
.405
(10.287)
MAX
.220 – .310
(5.588 – 7.874)
1 2 34
8 7 6 5
.025
(0.635)
RAD TYP
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
OBSOLETE PACKAGES
J14 0801
.045 – .065
(1.143 – 1.651)
.100
(2.54)
BSC
.014 – .026
(0.360 – 0.660)
.200
(5.080)
MAX
.015 – .060
(0.381 – 1.524)
.125
(3.175)
MIN
.300 BSC
(7.62 BSC)
.008 – .018
(0.203 – 0.457) 0o – 15o
12 3 4 5 6 7
.220 – .310
(5.588 – 7.874)
.785
(19.939)
MAX
.005
(0.127)
MIN 14 11 891013 12
.025
(0.635)
RAD TYP
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
.200
(5.080)
TYP
.027 – .045
(0.686 – 1.143)
.028 – .034
(0.711 – 0.864)
.110 – .160
(2.794 – 4.064)
INSULATING
STANDOFF
45o
H8(TO-5) 0.200 PCD 0204
.050
(1.270)
MAX
.016 – .021**
(0.406 – 0.533)
.010 – .045*
(0.254 – 1.143)
SEATING
PLANE
.040
(1.016)
MAX .165 – .185
(4.191 – 4.699)
GAUGE
PLANE
REFERENCE
PLANE
.500 – .750
(12.700 – 19.050)
.305 – .335
(7.747 – 8.509)
.335 – .370
(8.509 – 9.398)
DIA
LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE
AND THE SEATING PLANE
FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS .016 – .024
(0.406 – 0.610)
*
**
PIN 1
H Package
8-Lead TO-5 Metal Can (.200 Inch PCD)
(Reference LTC DWG # 05-08-1320)
J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
J Package
14-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
LT1013/LT1014
23
10134fd
package DescripTion
N8 1002
.065
(1.651)
TYP
.045 – .065
(1.143 – 1.651)
.130 ± .005
(3.302 ± 0.127)
.020
(0.508)
MIN
.018 ± .003
(0.457 ± 0.076)
.120
(3.048)
MIN
1 2 34
8 7 6 5
.255 ± .015*
(6.477 ± 0.381)
.400*
(10.160)
MAX
.008 – .015
(0.203 – 0.381)
.300 – .325
(7.620 – 8.255)
.325 +.035
–.015
+0.889
–0.381
8.255
( )
NOTE:
1. DIMENSIONS ARE INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
.100
(2.54)
BSC
N14 1103
.020
(0.508)
MIN
.120
(3.048)
MIN
.130 ± .005
(3.302 ± 0.127)
.045 – .065
(1.143 – 1.651)
.065
(1.651)
TYP
.018 ± .003
(0.457 ± 0.076)
.005
(0.127)
MIN
.255 ± .015*
(6.477 ± 0.381)
.770*
(19.558)
MAX
31 24567
8910
11
1213
14
.008 – .015
(0.203 – 0.381)
.300 – .325
(7.620 – 8.255)
.325 +.035
–.015
+0.889
–0.381
8.255
( )
NOTE:
1. DIMENSIONS ARE INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
.100
(2.54)
BSC
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
N Package
14-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
LT1013/LT1014
24
10134fd
package DescripTion
SO8 0303
.016 – .050
(0.406 – 1.270)
.010 – .020
(0.254 – 0.508)s 45°
0°– 8° TYP
.008 – .010
(0.203 – 0.254)
.053 – .069
(1.346 – 1.752)
.014 – .019
(0.355 – 0.483)
TYP
.004 – .010
(0.101 – 0.254)
.050
(1.270)
BSC
1234
.150 – .157
(3.810 – 3.988)
NOTE 3
8765
.189 – .197
(4.801 – 5.004)
NOTE 3
.228 – .244
(5.791 – 6.197)
.245
MIN .160 ±.005
RECOMMENDED SOLDER PAD LAYOUT
.045 ±.005
.050 BSC
.030 ±.005
TYP
INCHES
(MILLIMETERS)
NOTE:
1. DIMENSIONS IN
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
S16 (WIDE) 0502
NOTE 3
.398 – .413
(10.109 – 10.490)
NOTE 4
16 15 14 13 12 11 10 9
1
N
2 3 4567 8
N/2
.394 – .419
(10.007 – 10.643)
.037 – .045
(0.940 – 1.143)
.004 – .012
(0.102 – 0.305)
.093 – .104
(2.362 – 2.642)
.050
(1.270)
BSC .014 – .019
(0.356 – 0.482)
TYP
0° – 8° TYP
NOTE 3
.009 – .013
(0.229 – 0.330)
.005
(0.127)
RAD MIN
.016 – .050
(0.406 – 1.270)
.291 – .299
(7.391 – 7.595)
NOTE 4
s 45°
.010 – .029
(0.254 – 0.737)
INCHES
(MILLIMETERS)
NOTE:
1. DIMENSIONS IN
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
.420
MIN
.325 ±.005
RECOMMENDED SOLDER PAD LAYOUT
.045 ±.005
N
1 2 3 N/2
.050 BSC
.030 ±.005
TYP
S6 Package
6-Lead Plastic TSOT-23
(Reference LTC DWG # 05-08-1636)
SW Package
XX-Lead Plastic Small Outline (Wide .300 Inch)
(Reference LTC DWG # 05-08-1620)
LT1013/LT1014
25
10134fd
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.
revision hisTory
REV DATE DESCRIPTION PAGE NUMBER
D 05/10 Updates to Typical Application “Hot-Wire Anemometer”
Updated Related Parts
12
26
(Revision history begins at Rev D)
LT1013/LT1014
26
10134fd
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 FAX: (408) 434-0507 www.linear.com
LINEAR TECHNOLOGY CORPORATION 1990
LT 0510 REV D • PRINTED IN USA
relaTeD parTs
Typical applicaTion
PART NUMBER DESCRIPTION COMMENTS
LT2078/LT2079 Dual/Quad 50µA Single Supply Precision Amplifier 50µA Max IS, 70µV Max VOS
LT2178/LT2179 Dual/Quad 17µA Single Supply Precision Amplifier 17µA Max IS, 70µV Max VOS
LTC6081/LTC6082 Dual/Quad 400µA Precision Rail-to-Rail Amplifier VS = 2.7V to 6V, 400µA Max IS, 70µV VOS 0.8µV/°C TCVOS
LTC6078/LTC6079 Dual/Quad 72µA Precision Rail-to-Rail Amplifier VS = 2.7V to 6V, 72µA Max IS, 25µV VOS 0.7µV/°C TCVOS
Step-Up Switching Regulator for 6V Battery
+
+
LT1013
58
4
6
7
LT1013
3
2
1
0.1
200k
LT1004
1.2V
130k
300Ω
OUTPUT
15V
50mA
INPUT
6V
100
1N5821
2N5262
L1
1MHY
2.2
5.6k
5.6k
220pF
220k1M
22k
2N2222
0.001
LT = AIE–VERNITRON 24–104
78% EFFICIENCY
1013/14 TA23
+
+