This is information on a product in full production.
March 2019 DS11546 Rev 5 1/197
L99DZ100G, L99DZ100GP
Automotive door module with LIN and HS-CAN (L99DZ100G) or
HS-CAN supporting selective wake up (L99DZ100GP)
Datasheet - production data
Features
AEC Q100 compliant qualified
1 half bridge for 7.5 A load (RON = 100 m)
1 half bridge for 7.5 A load (RON = 150 m)
2 half bridges for 0.5 A load (RON = 2000 m)
2 half bridges for 3 A load (RON = 300 m)
1 configurable high-side driver for up to 1.5 A
(RON = 500 m) or 0.35 A (RON = 1600 m)
load
1 configurable high-side driver for 0.8 A
(RON = 800 m) or 0.35 A (RON = 1600 m)
load
3 configurable high-side drivers for
0.15 A/0.35 A (RON =2 )
1 configurable high-side driver for 0.25 A/0.5 A
(RON = 2 ) to supply EC Glass MOSFET
4 configurable high-side drivers for
0.15 A/0.25 A (RON = 5 )
Internal 10bit PWM timer for each stand-alone
high-side driver
Buffered supply for voltage regulators and 2
high-side drivers (OUT15 & OUT_HS / both
P-channel) to supply e.g. external contacts
Programmable soft-start function to drive loads
with higher inrush currents as current limitation
value (for OUT1-6, OUT7, OUT8 and
OUT_HS) with thermal expiration feature
All the embedded outputs come with protection
and supervision features:
Current Monitor (high-side only)
Open-load
Overcurrent
Thermal warning
Thermal shutdown
Fully protected driver for external MOSFETs in
H-bridge configuration or dual Half bridge
configuration
Fully protected driver for external high-side
MOSFET
Control block for electro-chromic element
Two 5 V voltage regulators for microcontroller
and peripheral supply
Programmable reset generator for power-on
and undervoltage
Configurable window watchdog
LIN 2.2a compliant (SAEJ2602 compatible)
transceiver
Advanced high speed CAN transceiver (ISO
11898-2:2003 /-5:2007 and SAE J2284
compliant) with local failure and bus failure
diagnosis and selective wake-up functionality
according to ISO 11898-6:2013
Separated (Isolated) fail-safe block with 2 LS
(RON = 1 ) to pull down the gates of the
external HS MOSFETs
Thermal clusters
A/D conversion of supply voltages and internal
temperature sensors
Embedded and programmable VS duty cycle
adjustment for LED driver outputs
Applications
Door zone applications.
www.st.com
L99DZ100G, L99DZ100GP
2/197 DS11546 Rev 5
Table 1. Device summary
Package Variant
Order codes
Tray Tape and reel
LQFP-64 epad High Speed CAN Transceiver with partial networking
(ISO 11898-6:2013) L99DZ100GP L99DZ100GPTR
LQFP-64 epad High Speed CAN Transceiver (ISO 11898-2:2003
and 11898-5:2007) L99DZ100G L99DZ100GTR
Product label
DS11546 Rev 5 3/197
L99DZ100G, L99DZ100GP Contents
7
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Block diagram and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 LQFP64 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Supply and supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Power-on reset (VSREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.4 Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.5 Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.6 Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.7 Watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.8 Current monitor output (CM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.9 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.10 Outputs OUT1 - OUT15, OUT_HS, ECV, ECDR . . . . . . . . . . . . . . . . . . 38
3.4.11 Power outputs switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.12 Current monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.13 Heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.14 H-bridge driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.15 Gate drivers for the external Power-MOS switching times . . . . . . . . . . 45
3.4.16 Drain source monitoring external H-bridge . . . . . . . . . . . . . . . . . . . . . . 48
3.4.17 Drain source monitoring external heater MOSFET . . . . . . . . . . . . . . . . 49
3.4.18 Open-load monitoring external H-bridge . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.19 Open-load monitoring external heater MOSFET . . . . . . . . . . . . . . . . . . 50
3.4.20 Electro-chrome mirror driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.21 Fail safe low-side switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.22 Wake up input WU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.23 High speed CAN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.24 LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Contents L99DZ100G, L99DZ100GP
4/197 DS11546 Rev 5
3.4.25 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.26 Inputs TxD_C and TxD_L for Flash mode . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.27 Inputs DIRH, PWMH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.28 Debug input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.29 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.30 Temperature diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.31 Interrupt outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.32 Timer1 and Timer2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.33 SGND loss comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1 Supply VS, VSREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.1 Voltage regulator: V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Voltage regulator: V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.3 Voltage regulator failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.4 Short to ground detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.5 Voltage regulator behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Flash modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 SW-debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.4 V1_standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.5 Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.6 CAN wake-up signalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.7 VBAT_standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Wake-up from Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.1 Wake up input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Functional overview (truth table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 Configurable window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6.1 Change watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Fail-safe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.1 Temporary failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.2 Non-recoverable failures – forced Vbat_standby mode . . . . . . . . . . . . . 83
4.8 Reset output (NReset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.9 LIN Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DS11546 Rev 5 5/197
L99DZ100G, L99DZ100GP Contents
7
4.9.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.9.2 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9.3 Wake up from Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9.4 Receive-only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.10 High-speed CAN bus transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.10.1 Features: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.10.2 CAN transceiver operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.10.3 Automatic voltage biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.10.4 Wake-up by CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.10.5 CAN looping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.10.6 Pretended networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.10.7 CAN error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.11 Serial Peripheral Interface (ST SPI Standard) . . . . . . . . . . . . . . . . . . . . . 93
4.12 Power supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.12.1 VS supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.12.2 VSREG supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.13 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . 97
4.14 Power outputs OUT1..15 and OUT_HS . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.15 Auto-recovery alert and thermal expiration . . . . . . . . . . . . . . . . . . . . . . . 99
4.16 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.17 Inductive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.18 Open-load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.19 Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.20 Current monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.21 PWM mode of the power outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.22 Cross-current protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.23 Programmable soft-start function to drive loads with higher inrush current .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.24 H-bridge control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.25 H-bridge driver slew-rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.26 Resistive low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.27 Short circuit detection / drain source monitoring . . . . . . . . . . . . . . . . . . 108
4.28 H-bridge monitoring in off-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.29 Programmable cross current protection . . . . . . . . . . . . . . . . . . . . . . . . . .111
Contents L99DZ100G, L99DZ100GP
6/197 DS11546 Rev 5
4.30 Power window H-bridge safety switch off block . . . . . . . . . . . . . . . . . . . .111
4.31 Heater MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
4.32 Controller of electro-chromic glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
4.33 Temperature warning and shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
4.34 Thermal clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
4.35 VS compensation (duty cycle adjustment) module . . . . . . . . . . . . . . . . . .117
4.36 Analog digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
5 Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.1 ST SPI 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.1.1 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.1 Clock and Data Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.2 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.3 Address definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2.4 Protocol failure detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7 SPI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.1 Global Status Byte GSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Control register overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3 Status register overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.4.1 Control Register CR1 (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.4.2 Control Register CR2 (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4.3 Control Register CR3 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.4.4 Control Register CR4 (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.4.5 Control Register CR5 (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.4.6 Control Register CR6 (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.4.7 Control Register CR7 (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.4.8 Control Register CR8 (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.4.9 Control Register CR9 (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.4.10 Control Register CR10 (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.4.11 Control Register CR11 (0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.4.12 Control Register CR12 (0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
DS11546 Rev 5 7/197
L99DZ100G, L99DZ100GP Contents
7
7.4.13 Control Register CR13 (0x0D) to CR17 (0x11) . . . . . . . . . . . . . . . . . . 167
7.4.14 Control Register CR18 (0x12) to CR22 (0x16) . . . . . . . . . . . . . . . . . . 168
7.4.15 Control Register CR23 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.4.16 Control Register CR24 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.4.17 Control Register CR25 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.4.18 Control Register CR26 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.4.19 Control Register CR27 (0x1B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.4.20 Control Register CR28 (0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.4.21 Control Register CR29 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.22 Control Register CR34 (0x22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.23 Configuration Register (0x3F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5 Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.5.1 Status Register SR1 (0x31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.5.2 Status Register SR2 (0x32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.5.3 Status Register SR3 (0x33) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.5.4 Status Register SR4 (0x34) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.5.5 Status Register SR5 (0x35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.5.6 Status Register SR6 (0x36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.5.7 Status Register SR7 (0x37) to SR9 (0x39) . . . . . . . . . . . . . . . . . . . . . 188
7.5.8 Status Register SR10 (0x3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.5.9 Status Register SR11 (0x3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.5.10 Status Register SR12 (0x3C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.1 LQFP-64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2 LQFP-64 marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
List of tables L99DZ100G, L99DZ100GP
8/197 DS11546 Rev 5
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 4. ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 5. Operating junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 6. Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 7. Supply and supply monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8. Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 9. Power-on reset (VSREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 10. Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 11. Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 12. Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 13. Watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 14. Current monitor output (CM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 15. Charge pump electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 16. Outputs OUT1 - OUT15, OUT_HS, ECV, ECDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 17. Power outputs switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 18. Current monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 19. Heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 20. H-bridge driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 21. Gate drivers for the external Power-MOS switching times . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 22. Drain source monitoring external H-bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 23. Drain source monitoring external heater MOSFET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 24. Open-load monitoring external H-bridge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 25. Open-load monitoring external heater MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 26. Electro-chrome mirror driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 27. Fail safe low-side switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 28. Wake-up inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 29. CAN communication operating range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 30. CAN transmit data input: pin TxDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 31. CAN receive data output: Pin RxDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 32. CAN transmitter dominant output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 33. CAN transmitter recessive output characteristics, CAN normal mode . . . . . . . . . . . . . . . . 54
Table 34. CAN transmitter recessive output characteristics, CAN low-power mode, biasing active . 54
Table 35. CAN transmitter recessive output characteristics, CAN low-power mode, biasing inactive 55
Table 36. CAN receiver input characteristics during CAN normal mode . . . . . . . . . . . . . . . . . . . . . . 55
Table 37. CAN receiver input characteristics during CAN low power mode, biasing active . . . . . . . . 55
Table 38. CAN Receiver input characteristics during CAN Low power mode, biasing inactive . . . . . 56
Table 39. CAN receiver input resistance biasing active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 40. CAN transceiver delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 41. Maximum leakage currents on CAN_H and CAN_L, unpowered . . . . . . . . . . . . . . . . . . . . 57
Table 42. Biasing control timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 43. LIN transmit data input: pin TxD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 44. LIN receive data output: pin RxD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 45. LIN transmitter and receiver: pin LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 46. LIN transceiver timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 47. Input: CSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 48. Inputs: CLK, DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
DS11546 Rev 5 9/197
L99DZ100G, L99DZ100GP List of tables
11
Table 49. DI, CLK and CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 50. Output: DO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 51. DO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 52. CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 53. Inputs: TxD_C and TxD_L for Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 54. Inputs DIRH, PWMH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 55. Debug input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 56. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 57. Temperature diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 58. Interrupt outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 59. Timer1 and Timer2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 60. SGND loss comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 61. CAN wake-up signalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 62. Wake-up events description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 63. Status of different functions/features vs operating modes . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 64. Temporary failures description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 65. Non-recoverable failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 66. Power output settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 67. H-bridge control truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 68. H-bridge monitoring in off-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 69. Heater MOSFET control truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 70. Thermal cluster definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 71. Operation codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 72. Global Status Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 73. Device application access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 74. Device information read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 75. RAM address range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 76. ROM address range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 77. Information Registers Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 78. SPI Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 79. Burst Read Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 80. SPI Data Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 81. Data Consistency Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 82. WD Type/Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 83. WD bit position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 84. Global Status Byte (GSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 85. GSB signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 86. Control register overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 87. Status register overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 88. Control Register CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 89. CR1 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 90. Wake-up input1 filter configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 91. CAN transceiver mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 92. Voltage regulator V2 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 93. Standby transition configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 94. Control Register CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 95. CR2 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 96. Configuration of Timer x on-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 97. Control Register CR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 98. CR3 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 99. Control Register CR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 100. CR4 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
List of tables L99DZ100G, L99DZ100GP
10/197 DS11546 Rev 5
Table 101. Control Register CR5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 102. CR5 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 103. OUTx Configuration bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 104. Control Register CR6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 105. CR6 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 106. Control Register CR7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 107. CR7 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 108. Half-bridge minimum ON time and related overcurrent recovery frequency. . . . . . . . . . . 160
Table 109. High-side minimum ON time and related overcurrent recovery frequency . . . . . . . . . . . . 160
Table 110. Control Register CR8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 111. CR8 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 112. Control Register CR9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 113. CR9 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 114. Control Register CR10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 115. CR10 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 116. Control Register CR11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 117. CR11 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 118. Control Register CR12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 119. CR12 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 120. Control Register CR13 to CR17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 121. CR13 to CR17 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 122. Control Register CR18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 123. CR18 to CR22 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 124. Control Register CR23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 125. CR23 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 126. Control Register CR24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 127. CR24 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 128. Control Register CR25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 129. CR25 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 130. Control Register CR26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 131. CR26 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 132. Control Register CR27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 133. CR27 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 134. Control Register CR28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 135. CR28 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 136. Control Register CR29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 137. CR29 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 138. Control Register CR34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 139. CR34 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 140. Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 141. CR signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 142. Status Register SR1 (0x31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 143. SR1 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 144. Status Register SR2 (0x32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 145. SR2 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 146. Status Register SR3 (0x33) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 147. SR3 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 148. Status Register SR4 (0x34) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 149. SR4 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 150. Status Register SR5 (0x35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 151. SR5 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 152. Status Register SR6 (0x36) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
DS11546 Rev 5 11/197
L99DZ100G, L99DZ100GP List of tables
11
Table 153. SR6 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 154. Status Register SR7 (0x37) to SR9 (0x39) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 155. SR7 to SR9 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 156. Status Register SR10 (0x3A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 157. SR10 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 158. Status Register SR11 (0x3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 159. SR11 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 160. Status Register SR12 (0x3B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 161. SR12 signals description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 162. LQFP-64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 163. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
List of figures L99DZ100G, L99DZ100GP
12/197 DS11546 Rev 5
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 2. Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 3. Activation profile 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 4. Activation profile 1 (first cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 5. Activation profile 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 6. Activation profile 2 (first cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 7. LQFP64 package and PCB thermal configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8. Voltage regulator V1 characteristics (quiescent current and accuracy) . . . . . . . . . . . . . . . 31
Figure 9. Watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 10. Watchdog early, late and safe windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 11. H-driver delay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 12. IGHxr ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 13. IGHxf ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 14. LIN transmit, receive timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 15. SPI – transfer timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 16. SPI input timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 17. SPI output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 18. SPI CSN - output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 19. SPI – CSN high to low transition and global status bit access . . . . . . . . . . . . . . . . . . . . . . 69
Figure 20. Voltage regulator behaviour and diagnosis during supply voltage . . . . . . . . . . . . . . . . . . . 72
Figure 21. Sequence to disable/enable the watchdog in CAN Flash mode . . . . . . . . . . . . . . . . . . . . . 73
Figure 22. NINT pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 23. Main operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 24. Watchdog in normal operating mode (no errors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 25. Watchdog with error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 26. Watchdog in Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 27. NReset pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 28. RxDL pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 29. Wake-up behavior according to LIN 2.2a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 30. RxDC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 31. CAN transceiver state diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 32. CAN wake up capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 33. Thermal shutdown protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 34. Example of long auto-recovery on OUT7. Temperature acquisition starts after tAR, thermal
expiration occurs after a T = 30° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 35. Block diagram of physical realization of AR alert and thermal expiration . . . . . . . . . . . . . 101
Figure 36. Charge pump low filtering and start up implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 37. Software strategy for half bridges before applying auto-recovery mode. . . . . . . . . . . . . . 104
Figure 38. Overcurrent recovery mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 39. H-bridge GSHx slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 40. H-bridge diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 41. H-bridge open-load-detection (no open-load detected) . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 42. H-bridge open-load-detection (open-load detected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 43. H-bridge open-load-detection (short to ground detected). . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 44. H-bridge open-load detection (short to VS detected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 45. PWMH cross current protection time implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 46. LSx_FSO: low-side driver “passively” turned on, taking supply from output pin (if main supply
fails), can guarantee VLSx_FSO < VOUT_max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
DS11546 Rev 5 13/197
L99DZ100G, L99DZ100GP List of figures
13
Figure 47. Safety concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 48. Heater MOSFET open-load and short-circuit to GND detection . . . . . . . . . . . . . . . . . . . . 113
Figure 49. Electro-chrome control block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 50. Thermal clusters identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 51. Block diagram VS compensation (duty cycle adjustment) module . . . . . . . . . . . . . . . . . . 118
Figure 52. Sequential ADC Read Out for VSREG, VS, WU and THCL1 ..THCL6 . . . . . . . . . . . . . . . . 119
Figure 53. SPI pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 54. SDO pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 55. SPI signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 56. SDI Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 57. SDO frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 58. Window watchdog operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 59. Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 60. Timer_x controlled by DIR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 61. Extended ID and extended ID mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 62. LQFP-64 package dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 63. LQFP-64 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Figure 64. LQFP-64 marking information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Description L99DZ100G, L99DZ100GP
14/197 DS11546 Rev 5
1 Description
The L99DZ100G and L99DZ100GP are door zone systems IC providing electronic control
modules with enhanced power management power supply functionality, including various
standby modes, as well as LIN and HS CAN physical communication layers.
The two low-drop voltage regulators of the devices supply the system microcontroller and
external peripheral loads such as sensors and provide enhanced system standby
functionality with programmable local and remote wake-up capability. In addition 8 high-side
drivers to supply LEDs, 2 high-side drivers to supply bulbs increase the system integration
level.
Up to 5 DC motors and 4 external MOS transistors in H-bridge configuration can be driven.
An additional gate drive can control an external MOSFET in high-side configuration to
supply a resistive load connected to GND (e.g. mirror heater). An electro-chromic mirror
glass can be controlled using the integrated SPI-driven module in conjunction with an
external MOS transistor. All outputs are SC protected and implement an open-load
diagnosis.
The ST standard SPI interface (4.0) allows control and diagnosis of the device and enables
generic software development.
DS11546 Rev 5 15/197
L99DZ100G, L99DZ100GP Block diagram and pin descriptions
196
2 Block diagram and pin descriptions
Figure 1. Block diagram
Table 2. Pin definitions and functions
Pin Symbol Function
1 WU Wake-up Input: Input pin for static or cyclic monitoring of external contacts
2 CP2M Charge pump pin for capacitor 2, negative side
3 CP2P Charge pump pin for capacitor 2, positive side
4 CP Charge pump output
5 CP1P Charge pump pin for capacitor 1, positive side
6 CP1M Charge pump pin for capacitor 1, negative side
'ULYHU,QWHUIDFH/RJLF'LDJQRVWLF
63,,QWHUIDFH
:LQGRZ
:DWFKGRJ
&61
&/.
'2
',
9B
&3
(&*ODVV
&RQWURO%ORFN
%,763,FRQWUROOHG
287P$UHVS$:DWW%XOE
&30
&33
&30
&33 96
[
*/
'HEXJ
3*1'
&0
*+
6+
95(*
95(*
+6&$1
ZLWK31


(&9
(&'5
+6
+6
+6
+6
+6
+6
+6
*+KHDWHU
6+KHDWHU
+6
3&KDQQHO
9B
15(6(7
/,1

&$16XSSO\
5['B&1,17
7['B&
&$1B+
&$1B/
5['B/1,17
7['B/
/,1
:8
',5
',5+
3:0+
+6
287P$
287
P$
287
P$
287
P$
287P
$
287P
$
287P
$
287P
$
287P
$
287P
$
965(*
287B+6P$
287
P$
*1'
6*1'
287
$$
287
$ !7RGULYH(&026)(7DVZHOO
%XI IHUHG96
',5
287P
$UHVS$:DWW%XOE
/6B)62
1,17
)DLO6DIH
/6B)62
[
%LW
$'&6$5
965(*
96
[7M
&O
+6
3&KDQQHO
&KDUJH
3XPS
[7M
&O
*$3*&)7
Block diagram and pin descriptions L99DZ100G, L99DZ100GP
16/197 DS11546 Rev 5
7 GHheater Gate driver for external power N-Channel MOSFET in high-side
configuration to control the heater
8 SHheater Source of high-side MOSFET to control the heater
9 OUT14 High-side-driver output to drive LEDs
10 OUT13 High-side-driver output to drive LEDs
11 OUT12 High-side-driver output to drive LEDs
12 OUT9 High-side-driver output to drive LEDs
13 OUT10
High-side-driver-output; Important: Beside the bits OUT10_x (CR 5) this
output can be switched on setting the ECON bit for electro-chrome control
mode with higher priority.
14 OUT11 High-side-driver output to drive LEDs
15 LS1_FSO Fail Safe low-side switch (Active low)
16 LS2_FSO Fail Safe low-side switch (Active low)
17 VS
Power supply voltage for power stage outputs (external reverse battery
protection required), for this input a ceramic capacitor as close as
possible to GND is recommended. Important: For the capability of driving,
the full current at the outputs all pins of VS must be connected externally!
18 VS; 2nd pin Current capability (pin description see above)
19 OUT7 High-side-driver output to drive LEDs or a 10 Watt bulb (programmable
Rdson)
20 OUT6
Half-bridge outputs: the output is built by a high-side and a low-side switch
which are internally connected. The output stage of both switches is a
power DMOS transistor. Each driver has an internal parasitic reverse
diode (bulk-drain-diode: high-side driver from output to VS, low-side driver
from GND to output)
21 OUT1
Half-bridge outputs: the output is built by a high-side and a low-side switch
which are internally connected. The output stage of both switches is a
power DMOS transistor. Each driver has an internal parasitic reverse
diode (bulk-drain-diode: high-side driver from output to VS, low-side driver
from GND to output)
22 OUT2
Half-bridge outputs: the output is built by a high-side and a low-side switch
which are internally connected. The output stage of both switches is a
power DMOS transistor. Each driver has an internal parasitic reverse
diode (bulk-drain-diode: high-side driver from output to VS, low-side driver
from GND to output)
23 OUT5
Half-bridge outputs: the output is built by a high-side and a low-side switch
which are internally connected. The output stage of both switches is a
power DMOS transistor. Each driver has an internal parasitic reverse
diode (bulk-drain-diode: high-side driver from output to VS, low-side driver
from GND to output)
24 OUT5; 2nd pin Current capability (pin description see above)
Table 2. Pin definitions and functions (continued)
Pin Symbol Function
DS11546 Rev 5 17/197
L99DZ100G, L99DZ100GP Block diagram and pin descriptions
196
25 VSREG
Power supply voltage to supply the internal voltage regulators, OUT15
and the OUT_HS (external reverse battery protection required / Diode) for
this input a ceramic capacitor as close as possible to GND and an
electrolytic back up capacitor is recommended.
26 OUT_HS High-side-driver output to drive LEDs or to supply contacts
27 OUT4
Half-bridge outputs: the output is built by a high-side and a low-side switch
which are internally connected. The output stage of both switches is a
power DMOS transistor. Each driver has an internal parasitic reverse
diode (bulk-drain-diode: high-side driver from output to VS, low-side driver
from GND to output)
28 OUT4; 2nd pin Current capability (pin description see above)
29 OUT3
Half-bridge outputs: the output is built by a high-side and a low-side switch
which are internally connected. The output stage of both switches is a
power DMOS transistor. Each driver has an internal parasitic reverse
diode (bulk-drain-diode: high-side driver from output to VS, low-side driver
from GND to output)
30 VS; 3rd pin Current capability (for the pin description see above)
31 OUT15 High-side-driver output to drive LEDs
32 PGND Power GND
33 OUT8 High-side-driver output to drive LEDs or a 5 Watt bulb (programmable
Rdson)
34 ECDR ECDR: using the device in EC control mode this pin is used to control the
gate of an external N-Channel MOSFET
35 SGND Signal Ground
36 CM
Current monitor output: depending on the selected multiplexer bits
CM_SEL_x (CR 7) of the; Control Register this output sources an image
of the instant current; through the corresponding high-side driver with a
fixed ratio
37 ECV
ECV: using the device in EC control mode this pin is used as voltage
monitor input. For fast discharge an additional low-side-switch is
implemented
38 CLK SPI: serial clock input
39 DO SPI: serial data output (push pull output stage)
40 DI SPI: serial data input
41 CSN SPI: chip select not input
42 TxD_L LIN Transmit data input
43 RxD_L/NINT RxDL -> LIN receive data output; NINT -> indicates local/remote wake-up
events (push pull output stage)
44 TxD_C CAN transmit data input
45 RxD_C/NINT CAN receive data output NINT -> indicates local/remote wake-up events
(push pull output stage)
46 DIR1 Direct Drive Input 1
Table 2. Pin definitions and functions (continued)
Pin Symbol Function
Block diagram and pin descriptions L99DZ100G, L99DZ100GP
18/197 DS11546 Rev 5
47 PWMH PWMH input: this input signal can be used to control the H-bridge Gate
Drivers.
48 DIRH Direction Input: this input controls the H-bridge Drivers for the external
MOSFETs
49 DIR2 Direct Drive Input 2
50 NRESET
NReset output to micro controller; (reset state = LOW) (Low-side switch
with drain connected to the output pin and internal pull up resistance to
5V_1)
51 5V_1 Voltage regulator 1 output: 5 V supply e.g. micro controller, CAN
transceiver
52 CAN Supply CAN supply input; to allow external CAN supply from V1 or V2 regulator
53 NINT
Interrupt output (low active; push-pull output stage) to indicate VSREG
early warning (Active mode); indicates wake-up events from V1_standby
mode
54 CAN_L CAN low level voltage I/O
55 CAN_H CAN high level voltage I/O
56 Debug Debug input to deactivate the window watchdog (high active)
57 LIN LIN bus line
58 5V_2 Voltage regulator 2 output: 5 V supply for external loads (potentiometer,
sensors) or CAN Transceiver. V2 is protected against reverse supply
59 GL1 Gate driver for PowerMOS low-side switch in half-bridge 1
60 SH1 Source of high-side switch in half-bridge 1
61 GH1 Gate driver for PowerMOS high-side switch in half-bridge 1
62 GH2 Gate driver for PowerMOS high-side switch in half-bridge 2
63 SH2 Source of high-side switch in half-bridge 2
64 GL2 Gate driver for PowerMOS low-side switch in half-bridge 2
Table 2. Pin definitions and functions (continued)
Pin Symbol Function
DS11546 Rev 5 19/197
L99DZ100G, L99DZ100GP Block diagram and pin descriptions
196
Figure 2. Pin connection (top view)

6+
*+
*/
6+
*+
*/
&3
&33
&33
&30
&30
6+KHDWHU
*+KHDWHU
287
287
287
287
287
287
287
:8
9B
287
287
287
287
287
287
965(*
/,1
7['B/
5['B/1,17
&61
'2
',
&/.
',5+
5['B&1,17
3:0+
7['B&
&0
',5
&$16XSSO\
&$1B+
6*1'
15(6(7
9B
(&9
287
96
96
3*1'
287
&$1B/
(&'5
96
287
287
'HEXJ
',5
/6B)62
/6B)62
1,17
287B+6
*$3*&)7
Electrical specifications L99DZ100G, L99DZ100GP
20/197 DS11546 Rev 5
3 Electrical specifications
3.1 Absolute maximum ratings
Stressing the device above the rating listed in Table 3 may cause permanent damage to the
device. These are stress ratings only and operation of the device at these or any other
conditions above those indicated in the operating sections of this specification is not implied.
Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability
Table 3. Absolute maximum ratings
Symbol Parameter / test condition Value [DC voltage] Unit
VS, VSREG
DC supply voltage / “jump start” -0.3 to +28 V
Load dump -0.3 to +40 V
5V_1 Stabilized supply voltage, logic supply -0.3 to 6.5
V1 < VSREG
V
5V_2(1) Stabilized supply voltage -0.3 to +28(2) V
VDI, VCLK VCSN VDO,
VRXDL/NINT, VRXDC,
VNRESET, VCM, VDIR,
VDIR2, VPWMH,
VDIRH, VINT
Logic input / output voltage range -0.3 to V1+0.3 V
VTXDC, VTXDL Multi Level Inputs -0.3 to 40 V
VDebug Debug input pin voltage range -0.3 to 40 V
VLS1_FSO, VLS2_FSO
Output voltage range of Fail-Safe Low-side
Switches -0.3 to 35 V
VWU
DC Wake up input voltage / “jump start” -0.3 to +28 V
Load dump -0.3 to +40 V
VLIN LIN bus I/O voltage range -20 to +40 V
IInput(3) Current injection into VS related input pins 20 mA
IOUT_INJ(3) Current injection into VS related outputs 20 mA
VCANSUP CAN supply -0.3 to +5.25 V
VCANH, VCANL CAN bus I/O voltage range -27 to +40 V
VCANH - VCANL Differential CAN-Bus Voltage -5 to +10 V
VOUTn, VECDR, VECV,
Vout_HS
Output voltage (n = 1 to 15) -0.3 to VS+0.3 V
VGH1, VGH2 (VGxy) High Voltage Signal Pins VSxy-0.3 to
VSxy+13; VCP+0.3 V
VGL1, VGL2, (VGxy) High Voltage Signal Pins
VSxy-0.3 to
VSxy+13; VCP-0.3V
to +12V; Vcp+0.3V
V
DS11546 Rev 5 21/197
L99DZ100G, L99DZ100GP Electrical specifications
196
VSH1, VSH2 (VSxy)
High Voltage Signal Pins -1 to 40 V
High Voltage Signal Pins; single pulse with
tmax = 200ns -5 to 40 V
VCP1P High Voltage Signal Pins VS-0.3 to VS+14 V
VCP2P High Voltage Signal Pins VS-0.6 to VS+14 V
VCP1M, VCP2M High Voltage Signal Pins -0.3 to VS+0.3 V
VCP
High Voltage Signal Pin VS 26 V VS-0.3 to VS+14 V
High Voltage Signal Pin VS > 26 V VS-0.3 to +40 V
VGH_heater
VSheater -0.3 to
VSheater+13;
VCP+0.3
V
VSH_heater
-0.3 to 40V
Or -0.3 to Vs+0.3 V
ISH_Heater +/-10 mA
IECV, IOUT2, IOUT3,
IOUT9, IOUT10, IOUT11,
IOUT12, IOUT13,
IOUT14, IOUT15,
IOUT_HS
Output current(2)
±1.25 A
IOUT8 ±2.5 A
IOUT7 ±5 A
IOUT1,6 ±5 A
IOUT4,5 ±10 A
IVScum
Maximum cumulated current at VS drawn by
OUT1 & OUT2(2) ±7.5 A
IVScum
Maximum cumulated current at VS drawn by
OUT3, OUT8 & OUT10(2) ±2.5 A
IVScum
Maximum cumulated current at VS drawn by
OUT4(2) ±10 A
IVScum
Maximum cumulated current at VS drawn by
OUT5(2) ±10 A
IVScum
Maximum cumulated current at VS drawn by
OUT6 & OUT7(2) ±7.5 A
IVScum
Maximum cumulated current at VS drawn by
OUT9, OUT11, OUT12, OUT13, OUT14,
OUT15 and CP
±2.5 A
IVSREG
Maximum current at VSREG pin (2) (5V_1. 5V_2
and OUT_HS) ±2.5 A
IPGNDcum
Maximum cumulated current at PGND drawn
by OUT1 & OUT6(2) ±7.5 A
Table 3. Absolute maximum ratings (continued)
Symbol Parameter / test condition Value [DC voltage] Unit
Electrical specifications L99DZ100G, L99DZ100GP
22/197 DS11546 Rev 5
Note: All maximum ratings are absolute ratings. Leaving the limitation of any of these values may
cause an irreversible damage of the integrated circuit!
Note: Loss of ground or ground shift with externally grounded loads: ESD structures are
configured for nominal currents only. If external loads are connected to different grounds,
the current load must be limited to this nominal current.
3.2 ESD protection
IPGNDcum
Maximum cumulated current at PGND drawn
by OUT2 & OUT5(2) ±12.5 A
IPGNDcum
Maximum cumulated current at PGND drawn
by OUT3, OUT4 & ECV(2) ±12.5 A
ISGND Maximum current at SGND(2) ±1.25 A
GND pins PGND versus SGND -0.3 to 0.3 V
1. 5V_2 is robust against SC to 28 V only in case VSREG is supplied.
2. Values for the absolute maximum DC current through the bond wires. This value does not consider
maximum power dissipation or other limits.
3. Guaranteed by design.
Table 3. Absolute maximum ratings (continued)
Symbol Parameter / test condition Value [DC voltage] Unit
Table 4. ESD protection
Parameter Value Unit
All pins(1)
1. HBM (human body model, 100 pF, 1.5 k) according to MIL 883C, Method 3015.7 or EIA/JESD22A114-A.
+/-2 kV
All power output pins (2): OUT1 – OUT15, OUT_HS, ECV +/-4 kV
LIN
+/-8(2)
+/-9(3) (4)
+/-6(5)
2. HBM with all none zapped pins grounded.
3. Indirect ESD Test according to IEC 61000-4-2 (150 pF, 330 ) and ‘Hardware Requirements for LIN, CAN
and Flexray Interfaces in Automotive Applications’ (version 1.3, 2012-05-04).
4. Value has been verified by an external test house; the result was equal or better than minimum
requirement.
5. Direct ESD Test according to IEC 61000-4-2 (150 pF, 330 ) and ‘Hardware Requirements for LIN, CAN
and Flexray Interfaces in Automotive Applications’ (version 1.3, 2012-05-04).
kV
CAN_H, CAN_L +/-8(2)
+/-6(5) (4) kV
All pins(6)
6. Charged device model.
+/-500 V
Corner pins(6) +/-750 V
All pins(7)
7. Machine model; C = 220 pF, R = 0 .
+/- 200 V
DS11546 Rev 5 23/197
L99DZ100G, L99DZ100GP Electrical specifications
196
3.3 Thermal data
All parameters are guaranteed in the junction temperature range -40 to 150°C (unless
otherwise specified); the device is still operative and functional at higher temperatures (up to
175°C).
Note: Parameters limits at higher junction temperatures than 150°C may change respect to what
is specified as per the standard temperature range.
Note: Device functionality at high junction temperature is guaranteed by characterization.
3.3.1 LQFP64 thermal data
Devices belonging to L99DZxxx family embed a multitude of junctions (i.e. Outputs based
on a PowerMOSFET stage) housed in a relatively small piece of silicon. The devices
contain, among all the described features, 6 Half-bridges (12 N-Channel PowerMOS), 10
high-sides and two voltage regulators; all the other derivatives, even if smaller than the
family super set device, still contain a significant number of junctions.
For this reason, using the Thermal Impedance of a single junction (i.e. voltage regulator or
major power dissipation contributor) does not allow to predict thermal behavior of the whole
device and therefore it is not possible to assess if a device is thermally suitable for a given
activation profile and loads characteristics.
Thermal information is provided as temperature reading by different clusters placed close to
the most dissipative junctions.
Some representative and realistic worst-case thermal profiles are described in the below
paragraph.
Following measurement methods can be easily implemented, by final user, for a specific
activation profile.
Table 5. Operating junction temperature
Symbol Parameter Value Unit
TjOperating junction temperature -40 to 175 °C
Table 6. Temperature warning and thermal shutdown
Symbol Parameter Min. Typ. Max. Unit
TWThermal overtemperature warning threshold Tj(1)
1. Non-overlapping.
140 150 160 °C
TSD1 Thermal shutdown junction temperature 1
Tj(1)
Cluster 1-4
Cluster 5-6
165
165
175
175
185
190
°C
TSD2 Thermal shutdown junction temperature 2
Tj(1) 175 185 195 °C
TSD12hys Hysteresis 5 °C
Tjtft Thermal warning / shutdown filter time 32 µs
Electrical specifications L99DZ100G, L99DZ100GP
24/197 DS11546 Rev 5
L99DZ100G and L99DZ100GP thermal profiles
Profile 1
Battery Voltage: 16V, Ambient temperature start: 85°C
DC activation
V1 charged with 70 mA (DC activation)
V2 charged with 30 mA (DC activation)
OUT7: 1 x10W bulb (DC activation)
OUT8: 1 x 5W bulb (DC activation)
OUT11: 300 resistor (DC activation)
OUT12: 300 resistor (DC activation)
OUT13: 300 resistor (DC activation)
OUT14: 300 resistor (DC activation)
Cyclic activation
OUT4 – OUT5: 3,3 resistor placed across those outputs
10 activations of Lock/Un-lock (250 ms ON Lock; 500 ms wait; 250 ms ON Un-
lock unlock; 500 ms wait)
OUT5 – OUT6: 10 resistor placed across those outputs
(250 ms ON Safe Lock; 500 ms wait; 250 ms ON Safe unlock; 500 ms wait)
Test execution:
Once thermal equilibrium is reached with all DC load active, the “Cyclic Activation”
sequence is applied.
Temperature reading is logged just at the end of the whole sequence.
Figure 3. Activation profile 1
ϵϱ
ϭϬϱ
ϭϭϱ
ϭϮϱ
ϭϯϱ
ϭϰϱ
Ϭ ϱ ϭϬ ϭϱ
dĞŵƉĞƌĂƚƵƌĞ; ΣͿ
dŝŵĞ;ƐͿ
ůƵƐƚĞƌϮ
ůƵƐƚĞƌϯ
ůƵƐƚĞƌϰ
ůƵƐƚĞƌϱ
ůƵƐƚĞƌϲ
("1($'5
DS11546 Rev 5 25/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Figure 4. Activation profile 1 (first cycle)
Note: All curves are plotted interpolating measured samples with 15 ms of period.
Profile 2
Battery Voltage: 16V, Ambient temperature start: 85°C
DC activation
V1 charged with 70 mA (DC activation)
V2 charged with 30 mA (DC activation)
OUT7: 1 x10W bulb (DC activation)
OUT8: 1 x 5W bulb (DC activation)
OUT11: 300 resistor (DC activation)
OUT12: 300 resistor (DC activation)
OUT13: 300 resistor (DC activation
OUT14: 300 resistor (DC activation)
Cyclic activation
OUT1 – OUT6: 6,8 resistor placed across those outputs
2 activations of Fold/Unfold. (3s ON; 1s OFF; 2x)
Test execution:
Once thermal equilibrium is reached with all DC load active, the “Cyclic Activation”
sequence is applied.
Ͳϱ
Ͳϰ
Ͳϯ
ͲϮ
Ͳϭ
Ϭ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϵϱ
ϭϬϱ
ϭϭϱ
ϭϮϱ
ϭϯϱ
ϭϰϱ
Ϭϳ Ϭϵ ϭϭ ϭϯ ϭϱ ϭϳ ϭϵ Ϯϭ Ϯϯ
ƵƌƌĞŶƚ;Ϳ
dĞŵƉĞƌĂƚƵƌĞ;ΣͿ
dŝŵĞ;ƐͿ
ůƵƐƚĞƌϮ
ůƵƐƚĞƌϯ
ůƵƐƚĞƌϰ
ůƵƐƚĞƌϱ
ůƵƐƚĞƌϲ
Khdͺϱ
("1($'5
Electrical specifications L99DZ100G, L99DZ100GP
26/197 DS11546 Rev 5
Figure 5. Activation profile 2
Figure 6. Activation profile 2 (first cycle)
Note: All curves are plotted interpolating measured samples with 15 ms of period.
ϵϬ
ϭϬϬ
ϭϭϬ
ϭϮϬ
ϭϯϬ
ϭϰϬ
ϭϱϬ
ϭϲϬ
ϭϳϬ
Ϭϱ ϱϱ ϭϬϱ ϭϱϱ ϮϬϱ
džŝƐdŝƚůĞ
džŝƐdŝƚůĞ
ůƵƐƚĞƌϮ
ůƵƐƚĞƌϯ
ůƵƐƚĞƌϰ
ůƵƐƚĞƌϱ
ůƵƐƚĞƌϲ
("1($'5
ͲϮϱ
ͲϮ
Ͳϭϱ
Ͳϭ
ͲϬϱ
Ϭ
Ϭϱ
ϭ
ϭϱ
Ϯ
Ϯϱ
ϵϬ
ϭϬϬ
ϭϭϬ
ϭϮϬ
ϭϯϬ
ϭϰϬ
ϭϱϬ
ϭϲϬ
ϭϳϬ
Ϭϱ Ϯϱ ϰϱ ϲϱ ϴϱ ϭϬϱ
ƵƌƌĞŶƚ;Ϳ
dĞŵƉĞƌĂƚƵƌĞ;ΣͿ
dŝŵĞ;ƐͿ
ůƵƐƚĞƌϮ
ůƵƐƚĞƌϯ
ůƵƐƚĞƌϰ
ůƵƐƚĞƌϱ
ůƵƐƚĞƌϲ
KhdͺϭͲϲ
("1($'5
DS11546 Rev 5 27/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Figure 7. LQFP64 package and PCB thermal configuration
Note: Layout condition for Thermal Characterization (board finishing thickness 1.5 mm +/- 10%,
board four layers, board dimension 77 mm x 114 mm, board material FR4, Cu thickness
0,070 mm for outer layers, 0.0035 mm for inner layers, thermal vias separation 1.2 mm.
3.4 Electrical characteristics
3.4.1 Supply and supply monitoring
All SPI communication, logic and oscillator parameter are working down to VSREG = 3.5 V
and parameter are as specified in the according chapters (guaranteed by design).
SPI thresholds
Oscillator frequency (delay times correctly elapsed)
Internal register status correctly kept (reset at default values for VSREG< VPOR)
Reset threshold correctly detected
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified.
Electrical specifications L99DZ100G, L99DZ100GP
28/197 DS11546 Rev 5
Table 7. Supply and supply monitoring
Symbol Parameter Test condition Min. Typ. Max. Unit
VSUV VS undervoltage threshold VS increasing / decreasing 4.7 5.4 V
Vhyst_UV VS undervoltage hysteresis 0.04 0.1 0.2 V
VSOV VS overvoltage threshold
VS increasing 20 22.5
V
VS decreasing 18.5 22.5
Vhyst_OV VS overvoltage hysteresis 0.5 1 1.5 V
VSREG_UV VSREG undervoltage threshold VSREG increasing / decreasing 4.2 4.9 V
Vhyst_UV VSREG undervoltage hysteresis 0.04 0.1 0.2 V
VSREG_OV VSREG overvoltage threshold
VSREG increasing 20 22.5
V
VSREG decreasing 18.5 22.5
Vhyst_OV VSREG overvoltage hysteresis 0.5 1 1.5 V
tovuv_filt
VS/VSREG over/undervoltage filter
time 64 µs
IV(act)
Current consumption in Active
mode
VS = VSREG = 12 V;
TxD CAN = high;
TxD LIN = high; V1 = ON;
V2 = ON; HS/LS Driver OFF;
CP = ON
11 15 mA
IV(BAT)
Current consumption in
Vbat_standby mode (1)
VS = 12 V; Both voltage
regulators deactivated; HS/LS
Driver OFF; No CAN
communication; CAN automatic
voltage biasing enabled
82135µA
IV(BAT)CS
Current consumption in
Vbat_standby mode with cyclic
sense enabled (1)
VS = 12 V; Both voltage
regulators deactivated;
T = 50 ms, tON = 100 µs
40 100 143 µA
IV(BAT)CW
Current consumption in
Vbat_standby mode with cyclic
wake enabled (1)
VS = 12 V; Both voltage
regulators deactivated during
standby phase
40 100 143 µA
IV(V1stby)
Current consumption in
V1_standby mode (1)
VS = 12 V; Voltage regulator V1
active; (IV1 = 0); HS/LS Driver
OFF
16 56 76 µA
Current consumption in
V1_standby mode (1) (2)
VS = 12 V; Voltage regulator V1
active; (IV1 = ICMP); HS/LS
Driver OFF
196 µA
Current consumption in
V1_standby mode (1)
VS = 12V; Voltage regulator V1
active; (IV1 = IPEAK); HS/LS
Driver OFF
436 µA
IV(SW)
Current consumption adder in
standby mode if Selective
Wakeup enabled and CAN
communication on the bus
TRX_BIAS mode (1)
VS = 12 V 1570 2000 µA
DS11546 Rev 5 29/197
L99DZ100G, L99DZ100GP Electrical specifications
196
3.4.2 Oscillator
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified.
3.4.3 Power-on reset (VSREG)
All outputs open; Tj = -40 °C to 150 °C, unless otherwise specified.
IqCAN
Quiescent current adder for CAN
wake up activated Guaranteed by design 0 µA
IqLIN
Quiescent current adder for LIN
wake up activated Guaranteed by design 0 µA
IOUT_HS
Additional bias quiescent current
for switched on OUT_HS or
OUT15 by DIR or Timer; value for
1 output
Guaranteed by design 620 1100 µA
IOUTHS_DIR
Quiescent current adder if
OUT_HS and/or OUT15 are
configured for Direct Drive; value
during output off
Guaranteed by design 0 5 µA
Itimer
Quiescent current adder if timer1
and/or timer 2 are active to
provide interrupt on NINT upon
timer expiration
Guaranteed by design 65 110 µA
1. Conditions for specified current consumption:
— VLIN > (VS-1.5 V)
— (VCAN_H – VCAN_L) < 0.4 V or (VCAN_H – VCAN_L) > 1.2 V
— VWU < 1 V or VWU > (VS – 1.5 V)
2. Iq = Iq0 + 2% * ILOAD (see also Figure 8: Voltage regulator V1 characteristics (quiescent current and accuracy)
Table 7. Supply and supply monitoring (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 8. Oscillator
Symbol Parameter Test condition Min. Typ. Max. Unit
fCLK1(1)
1. OSC1: charge pump, SPI, output drivers, watchdog
OSC2: ADC, CAN-PN
Oscillation frequency OSC1 1.66 2.0 2.34 MHz
fCLK2(1) Oscillation frequency OSC2 30.4 32.0 33.6 MHz
Table 9. Power-on reset (VSREG)
Symbol Parameter Test condition Min. Typ. Max. Unit
VPOR_R VPOR threshold VSREG rising 3.45 4.5 V
VPOR_F VPOR threshold VSREG falling(1)
1. This threshold is valid if VSREG had already reached VPOR_R(max) previously.
2.45 3.5 V
Electrical specifications L99DZ100G, L99DZ100GP
30/197 DS11546 Rev 5
3.4.4 Voltage regulator V1
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 4.5 V VS 28 V; 4.5 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified.
Table 10. Voltage regulator V1
Symbol Parameter Test condition Min. Typ. Max. Unit
V1 Output voltage VSREG = 13.5V 5.0 V
VSREG_absmin
VSREG absolute
minimum value for
controlling NRESET
output
VSREG rising/falling 2 V
V1_low_acc
Output voltage
tolerance Low accuracy
mode
ILOAD = 0 mA to ICMP; (Active
mode) or ILOAD = 0 mA to IPEAK
(V1stdby); VSREG = 13.5 V
-3 3 %
V1_hi_acc
Output voltage
tolerance High accuracy
mode
ILOAD = ICMP to 100 mA; (Active
mode) or ILOAD = IPEAK to
100 mA (V1stdby);
VSREG = 13.5 V
-2 2 %
V1_250mA
Output voltage
tolerance (100 to
250mA)
ILOAD = 250 mA;
VSREG = 13.5 V -3 3 %
VDP1 Drop-out Voltage
ILOAD = 50 mA; VSREG = 5 V 0.2 0.4 V
ILOAD = 100 mA; VSREG = 5 V 0.3 0.5 V
ILOAD = 150 mA; VSREG = 5 V 0.45 0.6 V
ICC1
Output current in Active
mode Max. continuous load current 250 mA
ICCmax1
Short circuit output
current Current limitation 340 600 900 mA
Cload1 Load capacitor1 Ceramic (+/- 20%) 0.22(1) µF
tTSD
V1 deactivation time
after thermal shut-down 1sec
ICMP_ris
Current comp. rising
thresh Rising current 2 4 6 mA
ICMP_fal
Current comp. falling
threshold Falling current 1.4 2.8 4.2 mA
ICMP_hys
Current comp.
Hysteresis 1.2 mA
IPeak_ris(2) Current comp. rising
thresh. Rising current 6 12 18 mA
IPeak_fal(2) Current comp. falling
threshold Falling current 5 10 15 mA
IPeak_hys(2) Current comp.
Hysteresis 2mA
DS11546 Rev 5 31/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Figure 8. Voltage regulator V1 characteristics (quiescent current and accuracy)
3.4.5 Voltage regulator V2
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 4.5 V VS 28 V; 4.5 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified.
V1fail V1 fail threshold V1 forced 2 V
tV1fail V1 fail filter time 2 µs
tV1short V1 short filter time 4 ms
tV1FS V1 Fail-Safe Filter Time 2 ms
tV1off
V1 deactivation time
after 8 consecutive WD
failures
Tested by scan 150 200 250 ms
1. Nominal capacitor value required for stability of the regulator. Tested with 220 nF ceramic (+/- 20%). Capacitor must be
located close to the regulator output pin. A 2.2 µF capacitor is recommended to minimize the DPI stress in the application.
2. In Active mode, V1 regulator is switched to high accuracy mode, dropping below the ICMP threshold regulator switches to
low accuracy mode.
Table 10. Voltage regulator V1 (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
,/RDG
,3HDN
,&03
,T
,T
6ORSH ,/RDG
9VWGE\PRGH
/RZDFFXUDF\99
:'RQ
/RZDFFXUDF\
99
9VWGE\:'RII
$FWLYHPRGH:'RQ
$FWLYHPRGH
+LJKDFFXUDF\9 9
:'RQ
$FWLYH9VWGE\PRGH
+LJKDFFXUDF\9 9
:'RQ
("1($'5
Table 11. Voltage regulator V2
Symbol Parameter Test condition Min. Typ. Max. Unit
V2 Output voltage VSREG = 13.5 V 5.0 V
V2_1mA
Output voltage tolerance
(0 to 1 mA) ILOAD = 1 mA; VSREG = 13.5 V -6.5 6.5 %
Electrical specifications L99DZ100G, L99DZ100GP
32/197 DS11546 Rev 5
3.4.6 Reset output
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 4V VSREG 28V; Tj = -40 °C to 150 °C, unless otherwise specified.
V2_25mA
Output voltage tolerance
(1 to 25 mA) ILOAD = 25 mA; VSREG = 13.5 V -3 3 %
V2_50mA
Output voltage tolerance
(25 to 50 mA) ILOAD = 50 mA; VSREG = 13.5 V -4 4 %
V2_100mA
Output voltage tolerance
(50 to 100 mA) ILOAD = 100 mA; VSREG = 13.5 V -4 4 %
VDP2 Drop-out voltage
ILOAD = 25 mA; VSREG = 5.25 V 0.3 0.4 V
ILOAD = 50 mA; VSREG = 5.25 V 0.4 0.8 V
ILOAD = 100 mA; VSREG = 13.5 V 1 1.6 V
ICC2
Output current in Active
mode Max. continuous load current 50 mA
ICCmax2
Short circuit output
current Current limitation 100 150 250 mA
Cload Load capacitor Ceramic (+/- 20%) 0.22 (1) F
V2fail V2 fail threshold V2 forced 2 V
tV2fail V2 fail filter time 2 µs
tV2short V2 short filter time 4 ms
1. Nominal capacitor value required for stability of the regulator. Tested with 220 nF ceramic (+/- 20%). Capacitor must be
located close to the regulator output pin. A 2.2 µF capacitor is recommended to minimize the DPI stress in the application.
Table 11. Voltage regulator V2 (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 12. Reset output
Symbol Parameter Test condition Min. Typ. Max. Unit
VRT1falling
Reset threshold
voltage1 VV1 decreasing 3.25 3.5 3.7 V
VRT2falling
Reset threshold
voltage2 VV1 decreasing 3.55 3.8 4 V
VRT3falling
Reset threshold
voltage3 VV1 decreasing 3.75 4.0 4.2 V
VRT4falling
Reset threshold
voltage4 VV1 decreasing 4.1 4.3 4.5 V
VRTrising
Reset threshold
voltage4 VV1 increasing 4.67 4.8 4.87 V
VRESET
Reset Pin low output
voltage V1 > 1 V; IRESET = 5 mA 0.2 0.4 V
RRESET
Reset pull up int.
resistor 10 20 30 k
DS11546 Rev 5 33/197
L99DZ100G, L99DZ100GP Electrical specifications
196
tRR Reset reaction time ILOAD = 1 mA 6 40 µs
tUV1
V1 undervoltage
filter time 16 µs
tV1R
Reset pulse duration
(V1 undervoltage
and V1 power on
reset)
1.5 2.0 2.5 ms
tWDR
Reset pulse duration
(watchdog failure) 345ms
Table 12. Reset output (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Electrical specifications L99DZ100G, L99DZ100GP
34/197 DS11546 Rev 5
3.4.7 Watchdog timing
4.5 V VSREG 28 V; Tj = -40 °C to 150 °C, unless otherwise specified.
Table 13. Watchdog timing
Symbol Parameter Test condition Min. Typ. Max. Unit
tLW Long open window 160 200 240 ms
TEFW1 Early Failure Window 1 4.5 ms
TLFW1 Late Failure Window 1 20 ms
TSW1 Safe Window 1 7.5 12 ms
TEFW2 Early Failure Window 2 22.3 ms
TLFW2 Late Failure Window 2 100 ms
TSW2 Safe Window 2 37.5 60 ms
TEFW3 Early Failure Window 3 45 ms
TLFW3 Late Failure Window 3 200 ms
TSW3 Safe Window 3 75 120 ms
TEFW4 Early Failure Window 4 90 ms
TLFW4 Late Failure Window 4 400 ms
TSW4 Safe Window 4 150 240 ms
DS11546 Rev 5 35/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Figure 9. Watchdog timing
7/: ORQJRSHQZLQGRZ
7():
HDUO\IDLOXUHZLQGRZ
76: VDIHWULJJHUZLQGRZ
WULJJHUVLJQDO
7:'5 ZDWFKGRJUHVHWGXUDWLRQ
WLPHPV
WLPHPV
WLPHPV
1RUPDOVWDUWXSRSHUDWLRQDQGWLPHRXWIDLOXUHV
:'
WULJJHU
FRUUHFWWULJJHUWLPLQJ
7/:
7():76:
0LVVLQJ0LFURFRQWUROOHUWULJJHUVLJQDO
7():
7(): 7 6:
15(6
2XW 7:'5
7/:
HDUO\WULJJHUWLPLQJ
PLVVLQJWULJJHU
7/:
7:'5
QRUPDORSHUDWLRQ PLVVLQJ
WULJJHU
HDUO\
ZULWH
7/:
15(6
2XW 7:'5 7:'5
:'
WULJJHU 7/: 7/:
7:'5
WLPHPV
("1($'5
Electrical specifications L99DZ100G, L99DZ100GP
36/197 DS11546 Rev 5
Figure 10. Watchdog early, late and safe windows
3.4.8 Current monitor output (CM)
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VS 28V; 6 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified
VDIHWULJJHUDUHD
7():QBPD[
76:QBPLQ
7/):QBPLQ
76:Q 6DIHZLQGRZ
7():Q (DUO\)DLOXUHZLQGRZ
7/):Q /DWHIDLOXUHZLQGRZ
WLPH
(DUO\
:DWFKGRJ
IDLOXUH
XQGHILQHG
XQGHILQHG
76:QBPD[
/DWH
ZDWFKGRJ
IDLOXUH
("1($'5
Table 14. Current monitor output (CM)
Symbol Parameter Test condition Min. Typ. Max. Unit
VCM Functional voltage range 0 V1-1V V
ICMr
Current monitor output ratio:
ICM/IOUT1,4,5,6 and 7 (low on-
resistance)
0 V VCM (V1 - 1 V)
1/10000
ICM/IOUT8 (low on-resistance) 1/6500
ICM/IOUT 2,3, 7,8 (high on-
resistance) 1/2000
ICM/IOUT9,10,11,12,13,14,15 and HS 1/1000
DS11546 Rev 5 37/197
L99DZ100G, L99DZ100GP Electrical specifications
196
3.4.9 Charge pump
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VS 28V; Tj = -40 °C to 150 °C, unless otherwise specified.
ICM acc
Current monitor accuracy
accICMOUT1,4,5,6 and 7(low on-
resistance)
0 V VCM (V1 - 1 V);
IOUTmin = 500 mA;
IOUT4,5max=7.4 A;
IOUT1,6max = 2.9 A;
IOUT7max = 1.4 A
4% + 1%
FS(1)
8% + 2%
FS(1)
Current monitor accuracy
accICMOUT 8 (low on-resistance)
0 V VCM (V1 - 1 V);
IOUTmin = 100 mA;
IOUT8max=0.9 A
Current monitor accuracy
accICMOUT2,3, 9,10,11,12,13,14,15
,HS and OUT7,8 (high on-
resistance)
0 V VCM (V1 - 1 V);
IOUT.min = 100 mA; IOUT11,12,
15 HS = 0.2 A; IOUT7,8
max = 0.3 A
ICM acc_2ol
Current monitor accuracy
accICMOUT1,4,5,6 and 7 (low on-
resistance)
0 V VCM (V1 - 1 V);
IOUTmin = 2 * IOLD;
IOUT4,5max = 7.4 A;
IOUT1,6max = 2.9 A;
IOUT7max = 1.4 A
4% + 1%
FS(1)
8% + 2%
FS(1)
Current monitor accuracy
accICMOUT 8(low on-resistance)
0 V VCM (V1 - 1 V);
IOUTmin = 2 * IOLD;
IOUT8max = 0.9 A
Current monitor accuracy
accICMOUT2, 3, 9,11,12,13,14,15, HS
and OUT7,8 (high on-resistance)
0 V VCM (V1 - 1 V);
IOUT.min = 2 * IOLD;
IOUT2,3max = 0.4 A;
IOUT9,13,14max = 0.3 A;
IOUT11,12,15 HS = 0.2 A;
IOUT7,8 max = 0.3 A
Current monitor accuracy
accICMOUT10
0 V VCM (V1 - 1 V);
IOUT.min = 2 * IOLD;
IOUT10max = 0.4 A
4% + 1%
FS(1)
8% + 4%
FS(1)
tcmb Current monitor blanking time 32 µs
1. FS (full scale) = IOUTmax * ICMr
Table 14. Current monitor output (CM) (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 15. Charge pump electrical characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
VCP Charge pump output voltage
VS = 6 V, ICP = -15 mA VS+6 VS+7 V
VS 10 V, ICP = -15 mA VS+11 VS+12 VS+13.5 V
ICP Charge pump output current(1)
VCP = VS + 10 V;
VS = 13.5 V;
C1 = C2 = CCP = 100 nF
22.5 mA
Electrical specifications L99DZ100G, L99DZ100GP
38/197 DS11546 Rev 5
3.4.10 Outputs OUT1 - OUT15, OUT_HS, ECV, ECDR
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V, all outputs open;
Tj = -40 °C to 150 °C, unless otherwise specified.
ICPlim
Charge pump output current
limitation(2)
VCP = VS;
VS = 13.5 V;
C1 = C2 = CCP = 100 nF
70 mA
VCP_low
Charge pump low threshold
voltage VS+4.5 VS+5 VS+5.5 V
TCP Charge pump low filter time 64 µs
fCP Charge Pump frequency 400 kHz
1. ICP is the minimum current the device can provide to an external circuit without VCP going below VS + 10 V.
2. ICPlim is the maximum current, which flows out of the device in case of a short to VS.
Table 15. Charge pump electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 16. Outputs OUT1 - OUT15, OUT_HS, ECV, ECDR
Symbol Parameter Test condition Min. Typ. Max. Unit
rON OUT1,6
On-resistance to supply or
GND
VS = 13.5 V; Tj = 25 °C;
IOUT1,6 = ±1.5A 300 m
VS = 13.5V; Tj = 130°C
IOUT1,6 = ±1.5 A 600 m
rON OUT2,3
On-resistance to supply or
GND
VS = 13.5 V; Tj = 25 °C;
IOUT2,3 = ±0.25 A 2000 m
VS = 13.5 V; Tj = 130 °C;
IOUT2,3 = ±0.25 A 4000 m
rON OUT4
On-resistance to supply or
GND
VS = 13.5V; Tj = 25 °C;
IOUT4 = ±3 A 150 m
VS = 13.5 V; Tj = 130 °C;
IOUT4 = ±3 A 300 m
rON OUT5
On-resistance to supply or
GND
VS = 13.5 V; Tj = 25°C;
IOUT5 = ±3 A 100 m
VS = 13.5 V; Tj = 130 °C;
IOUT5 = 3 A 200 m
rON OUT7
On-resistance to supply in
low resistance mode
VS = 13.5 V; Tj = 25 °C;
IOUT7 = -0.8 A 500 m
VS = 13.5 V; Tj = 130 °C;
IOUT7 = -0.8 A 1000 m
On-resistance to supply in
high resistance mode
VS = 13.5 V; Tj = 25°C;
IOUT7 = -0.2 A 1600 m
VS = 13.5 V; Tj = 130 °C;
IOUT7 = -0.2 A 3200 m
DS11546 Rev 5 39/197
L99DZ100G, L99DZ100GP Electrical specifications
196
rON OUT8
On-resistance to supply in
low resistance mode
VS = 13.5 V; Tj = 25 °C;
IOUT8 = -0.4 A 800 m
VS = 13.5 V; Tj = 130 °C;
IOUT8 = -0.4 A 1600 m
On-resistance to supply in
high resistance mode
VS = 13.5 V; Tj = 25 °C;
IOUT8 = -0.2 A 1600 m
VS = 13.5 V; Tj = 130 °C;
IOUT8 = -0.2 A 3200 m
rON OUT9,10,13,14 On-resistance to supply
VS = 13.5 V; Tj = 25 °C;
IOUT9,10,13,14 = -75 mA 2000 m
VS = 13.5 V; Tj = 130 °C;
IOUT9,10,13,14 = -75 mA 4000 m
rON OUT11,12,15, HS On-resistance to supply
VS = 13.5 V; Tj = 25 °C;
IOUT11,12,15, HS = -75 mA 5
VS = 13.5 V; Tj = 130 °C;
IOUT11,12,15, HS = -75 mA 10
rON ECV On-resistance to GND
VS = 13.5 V; Tj = 25 °C;
IOUTECV,ECFD = +0.4 A 1600 2200 m
VS = 13.5 V; Tj = 130 °C;
IOUTECV,ECFD = +0.4 A 2500 3400 m
IQLH
Switched-off output current
high-side drivers of OUT7-
15, OUT_HS
VOUT = 0 V; standby mode -5 µA
VOUT = 0 V; active mode -10 µA
IQLH
Switched-off output current
high-side drivers of OUT1-6
VOUT = 0 V; standby mode -5 µA
VOUT = 0 V; Active mode -100 µA
IQLL
Switched-off output current
low-side drivers of OUT1-6
VOUT = VS; standby mode 165 µA
VOUT = VS - 0.5 V; active
mode -100 µA
Switched-off output current
low-side driver of ECV
VOUT = VS - 2.5 V with
ECDR = VS; standby mode -15 15 µA
VOUT = VS - 2.5 V with
ECDR = VS; active mode -10 µA
Table 16. Outputs OUT1 - OUT15, OUT_HS, ECV, ECDR (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Electrical specifications L99DZ100G, L99DZ100GP
40/197 DS11546 Rev 5
3.4.11 Power outputs switching times
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified.
Table 17. Power outputs switching times
Symbol Parameter Test condition Min. Typ. Max. Unit
td ON H
Output delay time high-side driver
on (OUT1,2,3,4,5,6)
VS = 13.5 V; V1 = 5 V;
corresponding low-side
driver is not active (1)(2)(3)
(from CSN 50% to OUT
50%) see Figure 18
15 40 80 µs
Output delay time high-side driver
on (OUT7,8)20 40 90 µs
td OFF H
Output delay time high-side driver
off (OUT1,4,5,6)VS = 13.5 V; V1 = 5 V
(1)(2)(3) (from CSN 50% to
OUT 50%) see Figure 18
50 150 300 µs
Output delay time high-side driver
off (OUT2,3, 7,8)20 70 130 µs
td ON H
Output delay time high-side driver
on (OUT9 …OUT15, OUT_HS)
VS/VSREG = 13.5 V;
V1 = 5 V; (from CSN 80% to
OUT 80%)
30 µs
td OFF H
Output switch off delay time high-
side driver on (OUT9 …OUT15,
OUT_HS)
VS/VSREG = 13.5 V;
V1 = 5 V; (from CSN 80% to
OUT 20%)
35 µs
td ON L
Output delay time low-side driver
(OUT1-6, ECV) on
VS = 13.5 V; V1 = 5 V;
corresponding high-side
driver is not active (1)(2)(3)
(from CSN 50% to OUT
50%) see Figure 18
15 30 70 µs
td OFF L
Output delay time low-side driver
(OUT1-6) off
VS = 13.5 V; V1 = 5 V
(1)(2)(3) (from CSN 50% to
OUT 50%) see Figure 18
40 150 300 µs
Output delay time low-side driver
(ECV) off
VS = 13.5 V; V1 = 5 V
(1)(2)(3) (from CSN 50% to
OUT 50%) see Figure 18
15 45 110 µs
td HL Cross current protection time
(OUT1-6)
tcc ONLS_OFFHS – td OFF H(4)
50 200 400 µs
td LH tcc ONHS_OFFLS – td OFF L (4)
dVOUT/dt Slew rate of OUT1-OUT8, ECV VS = 13.5 V; V1 = 5 V
(1)(2)(3) 0.1 0.2 0.6 V/µs
dVmax/dt
Maximum external applied slew
rate on OUT1-OUT6 without
switching on the LS and HS (only in
Active mode)
Guaranteed by design 20 V/µs
dVOUT/dt Slew rate of OUT9-OUT15,
OUT_HS
VS/VSREG = 13.5 V;
V1 = 5 V (1)(2)(3) 2V/µs
fPWMx(00) PWM switching frequency VS/VSREG = 13.5 V;
V1 = 5 V 100 Hz
DS11546 Rev 5 41/197
L99DZ100G, L99DZ100GP Electrical specifications
196
3.4.12 Current monitoring
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified.
fPWMx(01) PWM switching frequency VS/VSREG = 13.5 V;
V1 = 5 V 200 Hz
fPWMx(10) PWM switching frequency VS/VSREG = 13.5 V;
V1 = 5 V 330 Hz
fPWMx(11) PWM switching frequency VS/VSREG = 13.5 V;
V1 = 5 V 500 Hz
1. RLOAD = 16 at OUT1,6 and OUT7,8 in low on-resistance mode
2. RLOAD = 4 at OUT4,5
3. RLOAD = 128 at OUT2,3,4,9,10,11,12,13,15,15,HS, ECV and OUT7,8 in high on-resistance mode
4. tCC is the switch-on delay time if complement in half bridge has to switch off
Table 17. Power outputs switching times (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 18. Current monitoring
Symbol Parameter Test condition Min. Typ. Max. Unit
|IOC1|,
|IOC6|
Overcurrent threshold HS & LS
VS = 13.5 V; V1 = 5 V; sink
and source
35A
|IOC2|,
|IOC3|0.5 1.0 A
|IOC4|
VS = 13.5 V; V1 = 5 V; sink
and source; Tj = -40 °C to
70 °C
7.5 10 A
VS = 13.5 V; V1 = 5 V; sink
and source; Tj = 130 °C 610A
|IOC5_1|
VS = 13.5 V; V1 = 5 V; sink
and source
34 5A
|IOC5_2|4.567.5A
|IOC5_3|7.510A
Electrical specifications L99DZ100G, L99DZ100GP
42/197 DS11546 Rev 5
|IOC7|
Overcurrent threshold HS in low on-
resistance mode
VS/VSREG = 13.5 V;
V1 = 5 V; source
1.5 2.5 A
Overcurrent threshold HS in high
on-resistance mode 0.35 0.65 A
|IOC8|
Overcurrent threshold HS in low on-
resistance mode 0.7 1.3 A
Overcurrent threshold HS in high
on-resistance mode 0.35 0.65 A
|IOC9|,
|IOC13|,
|IOC14|
Overcurrent threshold HS in high
current mode 0.35 0.7 A
Overcurrent threshold to HS in low
current mode 0.15 0.3 A
|IOC10|
Overcurrent threshold HS in high
current mode 0.5 1 A
Overcurrent threshold HS in low
current mode 0.25 0.5 A
|IOC11|,
|IOC12|,
|IOC15|,
|IOC_HS|
Overcurrent threshold HS in high
current mode 0.25 0.5 A
Overcurrent threshold HS in low
current mode 0.15 0.3 A
|IOCECV| output current threshold LS VS = 13.5 V; V1= 5 V; sink 0.5 1.0 A
tFOC Filter time of overcurrent signal
Duration of overcurrent
condition to set the status
bit
10 55 100 µs
frec0
Recovery frequency for OC;
OCR_FREQ (CR 7) = 0 1 4 kHz
frec1
Recovery frequency for OC;
OCR_FREQ (CR 7) = 1 2 6 kHz
tAR Auto recovery time limit
OUT1 to OUT6 100 ms
OUT7, OUT8, OUT_HS 120 ms
|IOLD1|,
|IOLD6|
Under-current threshold HS & LS VS = 13.5 V; V1 = 5 V; sink
and source
63080mA
|IOLD2|,
|IOLD3|62030mA
|IOLD4|,
|IOLD5|40 150 300 mA
Table 18. Current monitoring (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
DS11546 Rev 5 43/197
L99DZ100G, L99DZ100GP Electrical specifications
196
3.4.13 Heater
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 28 V; Tj = -40 °C to 150 °C, unless otherwise specified.
|IOLD7|
Under-current threshold HS in low
on-resistance mode
VS/VSREG = 13.5 V;
V1 = 5 V; source
15 40 60 mA
Under-current threshold HS in high
on-resistance mode 51015mA
|IOLD8|
Under-current threshold HS in low
on-resistance mode 10 30 45 mA
Under-current threshold HS in high
on-resistance mode 51015mA
IOLD9|,
|IOLD13|,
|IOLD14|
Under-current threshold HS in high
current mode 612mA
Under-current threshold HS in low
current mode 0.5 4 mA
|IOLD10|
Under -current threshold HS in high
current mode 10 30 mA
Under -current threshold HS in low
current mode 0.3 4 mA
|IOLD11|,
|IOLD12|,
|IOLD15|,
|IOLD_HS|
Under -current threshold HS in high
current mode 612mA
Under -current threshold HS in low
current mode 0.85 4 mA
|IOLDECV| Under-current threshold LS VS = 13.5 V; V1 = 5 V; sink 6 20 30 mA
tOL_out Filter time of open-load signal
Duration of open-load
condition to set the status
bit
150 200 250 µs
Table 18. Current monitoring (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 19. Heater
Symbol Parameter Test condition Min. Typ. Max. Unit
IGHheater
Average charge-current
(charge stage) Tj = 25 °C 0.3 A
RGLheater
On-resistance (discharge-
stage)
VSLx = 0 V; IGHx = 50 mA;
Tj = 25 °C 4810
VSLx = 0 V; IGHx = 50 mA;
Tj = 130 °C 11 14
VGHheater Gate-on voltage
VS = SH= 6 V; ICP = 15 mA VSHheater +
6V
VS = SH = 12 V; ICP = 15 mA VSHeahter +
8
VSHeater
+ 10
VSHeater
+ 11.5 V
Electrical specifications L99DZ100G, L99DZ100GP
44/197 DS11546 Rev 5
3.4.14 H-bridge driver
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V; Tj = -40°C to 150 °C, unless
otherwise specified.
RGSHeater
Passive gate-clamp
resistance 15 k
TG(HL)xHL
Propagation delay time
high to low (switch mode)
VS = 13.5 V; VSHx = 0;
RG = 0 ; CG = 2.7 nF 1.5 µs
TG(HL)xLH
Propagation delay time low
to high (switch mode)
VS = 13.5 V; VSLx = 0;
RG = 0 ; CG = 2.7 nF 1.5 µs
t0GHheaterr Rise time (switch mode) VS = 13.5 V; VSheater = 0;
RG = 0 ; CG = 2.7 nF 45 ns
t0GHheaterf Fall time (switch mode) VS = 13.5 V; VSheater = 0;
RG = 0 ; CG = 2.7 nF 85 ns
Table 19. Heater (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 20. H-bridge driver
Symbol Parameter Test condition Min. Typ. Max. Unit
Drivers for external high-side PowerMOS
IGHx(Ch)
Average charge current
(charge stage) Tj = 25 °C 0.3 A
RGHx
On-resistance (discharge-
stage)
VSHx = 0 V; IGHx = 50 mA;
Tj = 25 °C 61014
VSHx = 0 V; IGHx = 50 mA;
Tj = 130 °C 14 20
VGHHx Gate-on voltage
VS = SH = 6 V; ICP = 15 mA VSHx + 6 V
VS = SH = 12 V; ICP = 15 mA VSHx + 8 VSHx + 10 VSHx + 11.5 V
RGSHx
Passive gate-clamp
resistance VGHx = 0.5 V 15 k
Drivers for external low-side Power-MOS
IGLx(Ch)
Average charge-current
(charge stage) Tj = 25 °C 0.3 A
RGLx
On-resistance (discharge-
stage)
VSLx = 0 V; IGHx = 50 mA;
Tj = 25 °C 61014
VSLx = 0 V; IGHx = 50 mA;
Tj = 130 °C 14 20
VGHLx Gate-on voltage
VS = 6 V; ICP = 15 mA VSLx + 6 V
VS = 12 V; ICP = 15 mA VSLx + 8 VSLx + 10 VSLx + 11.5 V
RGSLx
Passive gate-clamp
resistance 15 k
DS11546 Rev 5 45/197
L99DZ100G, L99DZ100GP Electrical specifications
196
3.4.15 Gate drivers for the external Power-MOS switching times
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified.
Table 21. Gate drivers for the external Power-MOS switching times
Symbol Parameter Test condition Min. Typ. Max. Unit
TG(HL)xHL
Propagation delay time high to low
(switch mode(1)
VS = 13.5 V; VSHx = 0;
RG = 0 ; CG = 2.7 nF 1.5 µs
TG(HL)xLH
Propagation delay time low to high
(switch mode)(1)
VS = 13.5 V; VSLx = 0;
RG = 0 ; CG = 2.7 nF 1.5 µs
IGHxrmax
Maximum source current (current
mode)
VS = 13.5 V; VSHx = 0;
VGHx = 1 V;
SLEW<4:0> = 1 FH
32 mA
IGHxfmax
Maximum sink current (current
mode)
VS = 13.5 V, VSHx = 0;
VGHx = 2 V;
SLEW<4:0> = 1 FH
32 mA
dIIGHxr Source current accuracy VS = 13.5 V; VSHx = 0;
VGHx = 1 V
See Figure 12: IGHxr
ranges
dIIGHxf Sink current accuracy VS = 13.5 V; VSHx = 0;
VGHx = 2 V
See Figure 13: IGHxf
ranges
VDSHxrSW
Switching voltage (VS-VSH)
between current mode and switch
mode (rising)
VS = 13.5 V 2.8 V
VDSHxfSW
Switching voltage (VS-VSH)
between switch mode and current
mode (falling)
VS = 13.5 V 2.8 V
t0GHxr Rise time (switch mode) VS = 13.5 V; VSHx = 0;
RG = 0 ; CG = 2.7 nF 45 ns
t0GHxf Fall time (switch mode) VS = 13.5 V; VSHx = 0;
RG = 0 ; CG = 2.7 nF 85 ns
t0GLxr Rise time VS = 13.5 V; VSLx = 0;
RG = 0 ; CG = 2.7 nF 45 ns
t0GLxf Fall time VS = 13.5 V; VSLx = 0;
RG = 0 ; CG = 2.7 nF 85 ns
tccp0001
Programmable cross-current
protection time 500 ns
tccp0010
Programmable cross-current
protection time 750 ns
tccp0011
Programmable cross-current
protection time 1000 ns
tccp0100
Programmable cross-current
protection time 1250 ns
tccp0101
Programmable cross-current
protection time 1500 ns
Electrical specifications L99DZ100G, L99DZ100GP
46/197 DS11546 Rev 5
tccp0110
Programmable cross-current
protection time 1750 ns
tccp0111
Programmable cross-current
protection time 2000 ns
tccp1000
Programmable cross-current
protection time 2250 ns
tccp1001
Programmable cross-current
protection time 2500 ns
tccp1010
Programmable cross-current
protection time 2750 ns
tccp1011
Programmable cross-current
protection time 3000 ns
tccp1100
Programmable cross-current
protection time 3250 ns
tccp1101
Programmable cross-current
protection time 3500 ns
tccp1110
Programmable cross-current
protection time 3750 ns
tccp1111
Programmable cross-current
protection time 4000 ns
fPWMH PWMH switching frequency(1)
VS = 13.5 V; VSLx = 0;
RG = 0 ; CG = 2.7 nF;
PWMH-Duty-Cycle = 50%
50 kHz
1. Without cross-current protection time tCCP
.
Table 21. Gate drivers for the external Power-MOS switching times (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
DS11546 Rev 5 47/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Figure 11. H-driver delay times
Figure 12. IGHxr ranges
9
*6+/[
W
9
&613:0+',5
W
W



9
&613:0+',5

7
*+/[/+
7
*+/[+/
*$3*&)7
,*+[U DFFXUDF\








,*+[U0D[
,*+[U7\S
,*+[U0LQ
'DWDLQSXW
("1($'5
Electrical specifications L99DZ100G, L99DZ100GP
48/197 DS11546 Rev 5
Figure 13. IGHxf ranges
3.4.16 Drain source monitoring external H-bridge
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V; Tj = -40°C to 150 °C, unless
otherwise specified.
,*+[I DFFXUDF\
'DWDLQSXW









,*+[I0D[
,*+[I7\S
,*+[I0LQ
("1($'5
Table 22. Drain source monitoring external H-bridge
Symbol Parameter Test condition Min. Typ. Max. Unit
VSCd1_HB Drain-source threshold voltage 0.375 0,5 0.625 V
VSCd2_HB Drain-source threshold voltage 0.6 0,75 0.9 V
VSCd3_HB Drain-source threshold voltage 0,85 1 1,15 V
VSCd4_HB Drain-source threshold voltage 1,06 1,25 1,43 V
VSCd5_HB Drain-source threshold voltage 1,27 1,5 1,73 V
VSCd6_HB Drain-source threshold voltage 1,49 1,75 2,01 V
VSCd7_HB Drain-source threshold voltage 1,7 2 2,3 V
tSCd_HB Drain-source monitor filter time 6 µs
tscs_HB
Drain-source comparator settling
time
VS = 13.5 V;
VSH = jump from GND to VS
s
DS11546 Rev 5 49/197
L99DZ100G, L99DZ100GP Electrical specifications
196
3.4.17 Drain source monitoring external heater MOSFET
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified.
3.4.18 Open-load monitoring external H-bridge
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified.
Table 23. Drain source monitoring external heater MOSFET
Symbol Parameter Test condition Min. Typ. Max. Unit
VSCd1_HE Drain-source threshold voltage 160 200 250 mV
VSCd2_HE Drain-source threshold voltage 200 250 305 mV
VSCd3_HE Drain-source threshold voltage 240 300 360 mV
VSCd4_HE Drain-source threshold voltage 280 350 420 mV
VSCd5_HE Drain-source threshold voltage 320 400 480 mV
VSCd6_HE Drain-source threshold voltage 360 450 540 mV
VSCd7_HE Drain-source threshold voltage 400 500 600 mV
VSCd8_HE Drain-source threshold voltage 440 550 660 mV
tSCd_HE Drain-source monitor filter time 6 µs
tscs_HE
Drain-source comparator settling
time
VS = 13.5 V; VSH = jump
from GND to VS
s
tscbl_HE
Drain-source monitoring blanking
time s
Table 24. Open-load monitoring external H-bridge
Symbol Parameter Test condition Min. Typ. Max. Unit
VODSL
Low-side drain-source monitor low
off-threshold voltage VSLx = 0 V; VS = 13.5 V 0.15 VSV
VODSH
Low-side drain-source monitor high
off-threshold voltage VSLx = 0 V; VS = 13.5 V 0.85 VSV
VOLSHx
Output voltage of selected SHx in
open-load test mode VSLx = 0 V; VS = 13.5 V 0.5 VSV
RpdOL
Pull-down resistance of the non-
selected SHx pin in open-load mode
VSLx = 0 V; VS = 13.5 V;
VSHX = 4.5 V 20 k
tOL_HB Open-load filter time 2 ms
Electrical specifications L99DZ100G, L99DZ100GP
50/197 DS11546 Rev 5
3.4.19 Open-load monitoring external heater MOSFET
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 28 V; 6 V VSREG 28 V; Tj = -40 °C to 150 °C, unless
otherwise specified.
3.4.20 Electro-chrome mirror driver
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6V VS 28V; 6V VSREG 28V; Tj = -40 °C to 150 °C, unless
otherwise specified.
Table 25. Open-load monitoring external heater MOSFET
Symbol Parameter Test condition Min. Typ. Max. Unit
VOLheater Open-load -threshold voltage VSLx = 0 V; VS = 13.5 V 2 V
IOLheater
Pull-up current source open-load
diagnosis activated
VSLx = 0 V; VS = 13.5 V;
VSHheater = 4.5 V 1mA
tOL_HE Open-load filter time 2 ms
Table 26. Electro-chrome mirror driver
Symbol Parameter Test condition Min. Typ. Max. Unit
VCTRLmax
Maximum EC-control
voltage
ECV_HV (Config Reg) = 1
(1) 1.4 1.6 V
ECV_HV (Config Reg) = 0
(1) 1.12 1.28 V
DNLECV Differential Non Linearity -2 2 LSB
(2)
IdVECVIVoltage deviation between
target and ECV
dVECV = Vtarget(3) - VECV;
IIECDRI < 1 µA
-5% -
1LSB(2)
+5% +
1LSB(2) mV
dVECVnr
Difference voltage between
target and ECV sets flag if
VECV is below it
dVECV = Vtarget(3) - VECV;
toggle bitx = 1; status reg. x 120 mV
dVECVhi
Difference voltage between
target and ECV sets flag if
VECV is above it
dVECV = Vtarget(3) - VECV;
toggle bitx = 1; status reg. x -180 mV
tFECVNR ECVNR filter time 32 µs
tFECVHI ECVHI filter time 32 µs
VECDRminHIGH Output voltage range
IECDR = -10 µA V1 -
0.3 V V1 V
VECDRmaxLOW IECDR = 10 µA 0 0.7 V
DS11546 Rev 5 51/197
L99DZ100G, L99DZ100GP Electrical specifications
196
3.4.21 Fail safe low-side switch
The voltages are referred to power ground and currents are assumed positive, when the
current flows into the pin. 6 V VS 18 V; Tj = 40 °C to 150 °C, unless otherwise specified.
IECDR Current into ECDR
Vtarget(3) > VECV + 500 mV;
VECDR = 3.5 V -100 -10 µA
Vtarget(3) < VECV - 500 mV;
VECDR = 1.0 V; Vtarget = 0 V;
VECV = 0.5 V
10 100 µA
Recdrdis
Pull-down resistance at
ECDR in fast discharge
mode and while EC-mode
is off
VECDR = 0.7 V; ECON = ‘1’,
EC<5:0> = 0 or ECON = ‘0’ 10 k
1. Bit ECV_HV (Config Reg) ='1' or ‘0’: ECV voltage, where IIECDR can change sign.
2. 1 LSB (Least Significant Bit) = 23.8 mV typ
3. Vtarget is set by bits EC<5:0> (CR 11) and bit ECV_HV (Config Reg); tested for each individual bit.
Table 26. Electro-chrome mirror driver (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 27. Fail safe low-side switch
Symbol Parameter Test condition Min. Typ. Max. Unit
VOUT_max
Max output voltage in
case of missing supply IOUT = 1 mA; VS = VSREG = 0 V 2 2.5 V
RDSON DC output resistance
ILOAD = 250 mA; Tj = 25 °C 1.4
ILOAD = 250 mA; Tj = 130 °C 2.2
IOLimit Overcurrent limitation 8 V < VS < 16 V 500 1500 mA
tONHL
Turn on delay time to
10% VOUT
100 µs
tOFFLH
Turn off delay time to
90% VOUT
100 µs
tSCF Short circuit filter time 64 µs
dVmax/dt
Maximum external
applied slew rate on
LS1_FSO and LS2_FSO
without switching on LS
Guaranteed by design 60 V/µs
Electrical specifications L99DZ100G, L99DZ100GP
52/197 DS11546 Rev 5
3.4.22 Wake up input WU
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VSREG 28 V; Tj = 40 °C to 150 °C, unless otherwise specified.
3.4.23 High speed CAN transceiver
ISO 11898-2:2003 and ISO 11898-5:2007 compliant.
SAE J2284 compliant.
Selective wake functionality according to ISO 11898-6:2013.
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin.
5.5 V VSREG 18 V; VCANSUP = V1; Tjunction = -40 °C to 150 °C, unless otherwise
specified. -12 V (VCANH + VCANL) / 2 12 V
Table 28. Wake-up inputs
Symbol Parameter Test condition Min. Typ. Max. Unit
VWUthn
Wake-up negative
edge threshold voltage
0.4
VSREG
0.45
VSREG
0.5
VSREG
V
VWUthp
Wake-up positive edge
threshold voltage
0.5
VSREG
0.55
VSREG
0.6
VSREG
V
VHYST Hysteresis 0.05
VSREG
0.1
VSREG
0.15
VSREG
V
tWU_stat Static wake filter time 64 µs
IWU_stdby
Input current in
standby mode
VWU < 1 V or
VWU > (VSREG – 1.5 V) 53060A
RWU_act
Input resistor to GND
in Active mode and in
Standby mode during
Wake-up input sensing
80 160 300 k
tWU_cyc Cyclic wake filter time 16 µs
Table 29. CAN communication operating range
Symbol Parameter Test condition Min. Typ. Max. Unit
VSREG_COM
Supply voltage operating
range for CAN
communication
VV1 = VCANSUP 5.5 18 V
VCANSUPlow CAN supply low voltage flag VV1 = VCANSUP decreasing 4.5 4.65 4.8 V
VCANHL,CM Common mode Bus voltage Measured with respect to the
ground of each CAN node -12 12 V
DS11546 Rev 5 53/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Table 30. CAN transmit data input: pin TxDC
Symbol Parameter Test condition Min. Typ. Max. Unit
VTXDCLOW
Input voltage dominant
level 1.0 1.45 2.0 V
VTXDCHIGH
Input voltage recessive
level 1.2 1.85 2.3 V
VTXDCHYS VTXDCHIGH-VTXDCLOW 0.2 0.4 0.7 V
RTXDCPU TXDC pull up resistor 16 35 60 k
td,TXDC(dom-rec)
TXDC - CANH,L delay
time dominant -
recessive
RL = 60 ; CL = 100 pF; 70 %
VRXD – 30% VDIFF; TXDC rise
time = 10 ns (10% - 90%)(1)
0120ns
td,TXDC(rec-diff)
TXDC - CANH,L delay
time recessive -
dominant
RL = 60 ; CL = 100 pF; 30 %
VRXD – 70% VDIFF; TXDC fall
time = 10 ns (90% - 10%)(1)
0120ns
tdom(TXDC) TXDC dominant time-out 0.8 2 5 ms
1. Guaranteed by design.
Table 31. CAN receive data output: Pin RxDC
Symbol Parameter Test condition Min. Typ. Max. Unit
VRXDCLOW Output voltage dominant level IRXDC = 2 mA 0 0.2 0.5 V
VRXDCHIGH
Output voltage recessive
level IRXDC = -2 mA V1 - 0.5 V1 - 0.2 V1 V
tr,RXDC RXDC rise time CL = 15 pF;
30% - 70% VRXDC(1) 025ns
tf,RXDC RXDC fall time CL = 15 pF;
70% - 30% VRXDC(1) 025ns
td,RXDC(dom-rec)
CANH,L – RXDC delay time
dominant - recessive
CL = 15 pF;
30% VDIFF – 70% VRXDC(1) 0 120 ns
td,RXDC(rec - dom)
CANH,L – RXDC delay time
recessive - dominant
CL = 15 pF;
70% VDIFF – 30% VRXDC(1) 0 120 ns
1. Guaranteed by design.
Table 32. CAN transmitter dominant output characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
VCANHdom
Single ended CANH voltage
level in dominant state
VTXDC = VTXDCLOW; RL = 50 ;
65 2.75 3.5 4.5 V
VCANLdom
Single ended CANL voltage
level in dominant state
VTXDC = VTXDCLOW;
RL = 50 ; 65 0.5 1.5 2.25 V
VDIFF,dom
Differential output voltage in
dominant state: VCANHdom-
VCANLdom
VTXDC = VTXDCLOW;
RL = 50 ; 65 1.5 2.0 3 V
Electrical specifications L99DZ100G, L99DZ100GP
54/197 DS11546 Rev 5
Note: CAN normal mode: tested in TRX ready state while the device is in active mode.
Note: CAN low power mode, biasing active: tested in TRX BIAS state while the device is in active
mode, V1 Standby mode and Vbat_standby mode
VSYM
Driver symmetry
VSYM = VCANHdom +
VCANLdom
Measured over one 250 kHz
period (4 µs) RL = 50 ; 65 ;
fTXDC = 250 kHz (square wave,
50% duty cycle); (1)
CSPLIT = 4.7 nF (+-5%)
4.5 5 5.5 V
IOCANH,dom (0V)
CANH output current in
dominant state
VTXDC = VTXDCLOW;
VCANH = 0 V -100 -75 -45 mA
IOCANL,dom (5V)
CANL output current in
dominant state VTXDC = VTXDCLOW; VCANL = 5 V 45 75 100 mA
IOCANH,dom (40V)
CANH output current in
dominant state
VTXDC = VTXDCLOW;
VCANH = 40 V; RL = 65 ;
VS = 40 V
05mA
IOCANL,dom (40V)
CANL output current in
dominant state
VTXDC = VTXDCLOW;
VCANL = 40 V;
RL = 65 ; VS = 40 V
0100mA
1. Measurement equipment input load <20 pF, >1 M.
Table 32. CAN transmitter dominant output characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 33. CAN transmitter recessive output characteristics, CAN normal mode
Symbol Parameter Test condition Min. Typ. Max. Unit
VCANHrec
CANH voltage level in
recessive state
TRX ready state;
VTXDC = VTXDCHIGH; No load 22.53V
VCANLrec
CANL voltage level in
recessive state
TRX Ready state;
VTXDC = VTXDCHiGH; No load 22.53V
VDIFF,recOUT
Differential output
voltage in recessive state
VCANHrec-VCANLrec
TRX Ready state;
VTXDC = VTXDCHIGH; No load -50 50 mV
Table 34. CAN transmitter recessive output characteristics, CAN low-power mode, biasing active
Symbol Parameter Test condition Min. Typ. Max. Unit
VCANHrecLPbias
CANH voltage level in
recessive state
TRX BIAS state;
VTXDC = VTXDCHIGH; No load 22.53 V
VCANLrecLPbias
CANL voltage level in
recessive state
TRX BIAS state;
VTXDC = VTXDCHiGH; No load 22.53 V
VDIFF,recOUTLPbias
Differential output voltage
in recessive state
VCANHrec-VCANLrec
TRX BIAS state;
VTXDC = VTXDCHIGH; No load -50 50 mV
DS11546 Rev 5 55/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Note: CAN Low Power mode, biasing inactive: tested in TRX sleep state while the device is in
active mode, V1 Standby mode and Vbat_standby mode.
Note: CAN normal mode: tested in TRX ready state while the device is in active mode.
Note: CAN low power mode, biasing active: tested in TRX BIAS state while the device is in active
mode, V1 Standby mode and Vbat_standby mode.
Table 35. CAN transmitter recessive output characteristics, CAN low-power mode, biasing
inactive
Symbol Parameter Test condition Min. Typ. Max. Unit
VCANHrecLP
CANH voltage level in
recessive state
TRX Sleep state;
VTXDC = VTXDCHIGH; No load -0.1 0 0.1 V
VCANLrecLP
CANL voltage level in
recessive state
TRX Sleep state;
VTXDC = VTXDCHIGH; No load -0.1 0 0.1 V
VDIFF,recOUTLP
Differential output voltage
in recessive state
VCANHrec -VCANLrec
TRX Sleep state;
VTXDC = VTXDCHIGH; No load -50 50 mV
Table 36. CAN receiver input characteristics during CAN normal mode
Symbol Parameter Test condition Min. Typ. Max. Unit
VTHdom
Differential receiver
threshold voltage recessive
to dominant state
TRX ready state;
(VCANH + VCANL) / 2 = -12 V,
2.5 V, 12 V (1)
0.5 0.9 V
VTHrec
Differential receiver
threshold voltage dominant
to recessive state
TRX Ready state;
(VCANH + VCANL) / 2 = -12 V,
2.5 V, 12 V (1)
0.5 0.9 V
1. Parameter evaluated with specific RL = 60 ; guaranteed by characterization.
Table 37. CAN receiver input characteristics during CAN low power mode, biasing active
Symbol Parameter Test condition Min. Typ. Max. Unit
VTHdomLPbias
Differential receiver threshold
voltage recessive to
dominant state
TRX BIAS state;
(VCANH + VCANL) / 2 = -12 V,
2.5 V, 12 V(1)
0.5 0.9 V
VTHrecLPbias
Differential receiver threshold
voltage dominant to
recessive state
TRX BIAS state;
(VCANH + VCANL) / 2 = -12 V,
2.5 V, 12 V(1)
0.5 0.9 V
1. Parameter evaluated with specific RL = 60 ; guaranteed by characterization.
Electrical specifications L99DZ100G, L99DZ100GP
56/197 DS11546 Rev 5
Note: CAN Low Power mode, biasing inactive: Tested in TRX Sleep state while the device is in
active mode, V1 Standby mode and Vbat_standby mode.
Note: CAN Normal and Low Power mode, biasing active: Tested in TRX Ready and TRX BIAS
state while the device is in active and V1 Standby mode.
Table 38. CAN Receiver input characteristics during CAN Low power mode, biasing inactive
Symbol Parameter Test condition Min. Typ. Max. Unit
VTHdomLP
Differential receiver
threshold voltage
recessive to dominant
state
TRX sleep state;
(VCANH + VCANL) / 2 = -12 V; 0 V; 12 V(1) 0.5 0.9 V
VTHrecLP
Differential receiver
threshold voltage
dominant to recessive
state
TRX Sleep state;
(VCANH + VCANL) / 2 = -12 V; 0 V; 12 V(1) 0.5 0.9 V
1. Parameter evaluated with specific RL = 60 ; guaranteed by characterization.
Table 39. CAN receiver input resistance biasing active
Symbol Parameter Test condition Min. Typ. Max. Unit
Rdiff
Differential internal
resistance
TRX Ready & TRX BIAS states;
VTXDC = VTXDCHIGH; no load 40 60 100 k
RCANH, CANL
Single ended Internal
resistance
TRX Ready & TRX BIAS states;
VTXDC = VTXDCHIGH; no load 20 30 50 k
mR
Internal Resistance
matching RCANH,CANL
TRX Ready & TRX BIAS states;
VTXDC = VTXDCHIGH; no load;
mR = 2 x (RCAN_H - RCAN_L) /
(RCAN_H + RCAN_L)
-0.03 0.03
Cin Internal capacitance Guaranteed by design 20 35 pF
Cin,diff
Differential internal
capacitance Guaranteed by design 10 20 pF
Table 40. CAN transceiver delay
Symbol Parameter Test condition Min. Typ. Max. Unit
tTXpd,hl
Loop delay TXDC to
RXDC (High to Low)
RL = 60 ; CL = 100 pF;
30% VTXDC – 30% VRXDC;
TXDC fall time = 10 ns (90% - 10%);
CRXDC = 15 pF; fTXDC = 250 kHz
255 ns
tTXpd,lh
Loop delay TXDC to
RXDC (Low to High)
RL = 60; CL = 100pF;
70% VTXD – 70% VRXD;
TXDC rise time = 10 ns (10% - 90%);
CRXDC = 15 pF; fTXDC = 250 kHz
255 ns
DS11546 Rev 5 57/197
L99DZ100G, L99DZ100GP Electrical specifications
196
TBitrec
Recessive Bit
symmetry
RL = 60 ; CL = 100 pF;
70% VTXDC (rising) - 30% VRXDC
(falling); CRXD = 15 pF; 10 ns (10% -
90%, 90% - 10%); Rectangular pulse
signal TTXDC = 6000 ns, high pulse
1000 ns, low pulse 5000 ns
765 1000 1255 ns
tCAN
CAN permanent
dominant time-out 500 700 1000 s
tWUP-V1(1)
Time between WUP(2)
on the CAN bus until
V1 goes active
Wake-Up according to ISO11898-
5:2007 (Bit SWEN = 0);
70% VDIFF – 90% V1(min)
0 200 µs
tWUF-V1(1)
Time between WUF(3)
on the CAN bus until
V1 goes active
Wake-Up according to ISO11898-
6:2013 (Bit SWEN = 1);
30% VDIFF – 90% V1(min)
0 200 µs
1. Guaranteed by characterization.
2. Time starts with the end of last dominant phase of the WUP.
3. Time starts with the end of CRC delimiter of the WUF.
Table 40. CAN transceiver delay (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 41. Maximum leakage currents on CAN_H and CAN_L, unpowered
Symbol Parameter Test condition Min. Typ. Max. Unit
ILeakage, CANH
Input leakage current
CANH
Unpowered device; VCANH = 5 V;
VCANL = 5 V; VSREG, VCANSUP connected
via 0 to GND; VSREG
, VCANSUP
connected via 47 k to GND(1)
Tj = -40 °C to 105 °C(2)
Tj = 130 °C(3)
-10
-12
10
12
A
ILeakage, CANL
Input leakage current
CANL
Unpowered device; VCANH = 5 V;
VCANL = 5 V; VSREG, VCANSUP connected
via 0 to GND; VSREG, VCANSUP connected
via 47 k to GND(1)
Tj = -40 °C to 105 °C(2)
Tj = 130 °C(3)
-10
-12
10
12
A
1. Guaranteed by design.
2. 105°C is the maximum junction temperature of an unpowered device according to this test condition within the specified
ambient temperature range
3. Used for device test only.
Table 42. Biasing control timings
Symbol Parameter Test condition Min. Typ. Max. Unit
tfilter CAN activity filter time 0.5 5 s
twake Wake-up time out 0.5 1 5 ms
Electrical specifications L99DZ100G, L99DZ100GP
58/197 DS11546 Rev 5
3.4.24 LIN transceiver
LIN 2.2 compliant for bit-rates up to 20 kBit/s SAE J2602 compatible.
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VSREG 18 V; Tjunction = -40 °C to 150°C unless otherwise
specified.
tSilence CAN timeout 600 700 1200 ms
tBIAS Bias reaction time
RL = 50 , 65 ; CL = 100 pF; CGND
(= CSPLIT) = 100 pF;
VTXDC = VTXDCLOW;
50% VDIFF - VCANH =
VCANL = VCAN(H,L)rec(min)(1);
Transition TRX Sleep to TRX BIAS in
Active, V1-Standby and Vbat_standby
modes
0 200 µs
1. A wake-up-pattern is sent with a bit length of tfilter. TBIAS is measured from the rising edge after having released the bus at
the end of the 2nd dominant bit until CANH and CANL reach the minimum recessive output voltage (VCANHrec, VCANHrec).
Table 42. Biasing control timings (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 43. LIN transmit data input: pin TxD
Symbol Parameter Test condition Min. Typ. Max. Unit
VTXDLOW Input voltage dominant level Active mode 1.0 V
VTXDHIGH Input voltage recessive level Active mode 2.3 V
VTXDHYS VTXDHIGH-VTXDLOW Active mode 0.2 V
RTXDPU TXD pull up resistor Active mode 13 29 46 k
Table 44. LIN receive data output: pin RxD
Symbol Parameter Test condition Min. Typ. Max. Unit
VRXDLOW Output voltage dominant level Active mode 0.2 0.5 V
VRXDHIGH Output voltage recessive level Active mode V1-0.5 V1-0.2 V
Table 45. LIN transmitter and receiver: pin LIN
Symbol Parameter Test condition Min. Typ. Max. Unit
VTHdom
Receiver threshold voltage
recessive to dominant state
0.4
VSREG
0.45
VSREG
0.5
VSREG
V
VBusdom Receiver dominant state 0.4VSRE
G
V
VTHrec
Receiver threshold voltage
dominant to recessive state
0.5
VSREG
0.55
VSREG
0.6
VSREG
V
VBusrec Receiver recessive state 0.6
VSREG
V
DS11546 Rev 5 59/197
L99DZ100G, L99DZ100GP Electrical specifications
196
VTHhys
Receiver threshold
hysteresis: VTHrec -VTHdom
0.07
VSREG
0.1
VSREG
0.175
VSREG
V
VTHcnt
Receiver tolerance center
value: (VTHrec +VTHdom)/2
0.475
VSREG
0.5
VSREG
0.525
VSREG
V
VTHwkup
Activation threshold for
wake-up comparator 1.0 1.5 2 V
VTHwkdwn
Activation threshold for
wake-up comparator
VSREG -
3.5
VSREG -
2.5
VSREG-
1.5 V
tLINBUS
LIN Bus Wake-up Dominant
Filter time Sleep mode; edge: rec-dom 64 s
tdom_LIN
LIN Bus Wake-up Dominant
Filter time
Sleep mode; edge: rec-dom-
rec 28 s
ILINDomSC
Transmitter input current
limit in dominant state
VTXD = VTXDLOW;
VLIN = VBATMAX = 18 V 40 100 180 mA
Ibus_PAS_dom
Input leakage current at the
receiver incl. pull-up resistor
VTXD = VTXDHIGH; VLIN = 0 V;
VBAT = 12 V; Slave mode -1 mA
Ibus_PAS_rec
Transmitter input current in
recessive state
In standby modes;
VTXD = VTXDHIGH; VLIN > 8 V;
VBAT < 18 V; VLIN VBAT
20 A
Ibus_NO_GND
Input current if loss of GND
at device
GND = VSREG;
0 V < VLIN < 18 V;
VBAT = 12 V
-1 1 mA
Ibus
Input current if loss of VBAT
at device
GND = VS; 0 V < VLIN < 18 V
Tj=-40 °C ....105 °C(1) 30 A
GND = VS; 0 V < VLIN < 18 V
Tj = 130°C(2) 35 A
VLINdom
LIN voltage level in
dominant state
Active mode;
VTXD = VTXDLOW
RBus=500 Ohm
1.2 V
VLINrec
LIN voltage level in
recessive state
Active mode;
VTXD = VTXDHIGH;
ILIN = 10 µA
0.8*VSV
RLINup LIN output pull up resistor VLIN = 0 V 20 40 60 k
CLIN LIN input capacitance 30 pF
1. 105°C is the maximum junction temperature of an unpowered device according to this test condition within the specified
ambient temperature range.
2. Used for device test only.
Table 45. LIN transmitter and receiver: pin LIN (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Electrical specifications L99DZ100G, L99DZ100GP
60/197 DS11546 Rev 5
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6V < VS < 28V; Tj = -40 °C to 150 °C, unless otherwise specified.
Table 46. LIN transceiver timing
Symbol Parameter Test condition Min. Typ. Max. Unit
tRXpd
Receiver propagation
delay time
tRXpd = max(tRXpdr, tRXpdf);
tRXpdf = t(0.5 VRXD)-t(0.45 VLIN);
tRXpdr = t(0.5 VRXD)-t(0.55 VLIN);
VSREG = 12 V; CRXD=20 pF;
Rbus = 1 k, Cbus = 1 nF; Rbus = 660 ,
Cbus = 6.8 nF; Rbus = 500 ,
Cbus = 10 nF
6s
tRXpd_sym
Symmetry of receiver
propagation delay time
(rising vs. falling edge)
tRXpd_sym = tRXpdr - tRXpdf; VSRE = 12 V;
Rbus = 1 k; Cbus = 1 nF; CRXD = 20 pF -2 2 s
D1 Duty Cycle 1
THRec(max) = 0.744 * VSREG;
THDom(max) = 0.581 * VSREG;
VSREG = 7 to 18 V, tbit = 50 µs;
D1 = tbus_rec(min) / (2 x tbit);
Rbus = 1 k, Cbus = 1 nF; Rbus = 660 ,
Cbus = 6.8 nF; Rbus = 500 ,
Cbus = 10 nF
0.396
D2 Duty Cycle 2
THRec(min) = 0.422* VSREG;
THDom(min) = 0.284* VSREG;
VSREG = 7.6 to 18 V, tbit = 50 µs;
D2 = tbus_rec(max) / (2 x tbit);
Rbus = 1 k, Cbus = 1 nF; Rbus = 660 ,
Cbus = 6.8 nF; Rbus = 500 ,
Cbus = 10 nF
0.581
D3 Duty Cycle 3
THRec(max) = 0.778* VSREG;
THDom(max) = 0.616* VSREG; VSREG = 7
to 18 V, tbit = 96 µs;
D3 = tbus_rec(min) / (2 x tbit);
Rbus = 1 k, Cbus = 1 nF; Rbus = 660 ,
Cbus = 6.8 nF; Rbus = 500 ,
Cbus = 10 nF
0.417
D4 Duty Cycle 4
THRec(min) = 0.389* VSREG;
THDom(min) = 0.251* VSREG;
VSREG = 7.6 to 18 V, tbit = 96 µs;
D4 = tbus_rec(max) / (2 x tbit);
Rbus = 1 k, Cbus = 1 nF; Rbus = 660 ,
Cbus = 6.8 nF; Rbus = 500 ,
Cbus = 10 nF
0.590
tdom(TXDL)
TXDL dominant time-
out 12 ms
tLIN
LIN permanent
recessive time-out 40 s
tdom(bus)
LIN Bus permanent
dominant time-out 12 ms
DS11546 Rev 5 61/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Figure 14. LIN transmit, receive timing
3.4.25 SPI
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V < VSREG < 18 V; V1 = 5 V; all outputs open; Tj = -40 °C to 150 °C,
unless otherwise specified.
WLPH
WLPH
97['
9/,1
97+UHF
97+GRP


WLPH
95['
9/,1GRP
9/,1UHF
W7;SGI W7;SGU
W5;SGI W5;SGU
*$3*&)7
Table 47. Input: CSN
Symbol Parameter Test condition Min. Typ. Max. Unit
VCSNLOW Input voltage low level Normal mode 1.0 V
VCSNHIGH Input voltage high level Normal mode 2.3 V
VCSNHYS VCSNHIGH - VCSNLOW Normal mode 0.2 V
ICSNPU CSN Pull up resistor Normal mode 13 29 46 k
Table 48. Inputs: CLK, DI
Symbol Parameter Test condition Min. Typ. Max. Unit
tset
Delay time from standby
to Active mode
Time until SPI, ADC and
OUT15/OUT_HS are operative 10 µs
tset_CP
Delay time from standby
to Active mode
Time until power stages that are
supplied by the CP are operative 560 750 960 µs
Vin_L Input low level 1.0 V
Vin_H Input high level 2.3 V
Vin_Hyst Input hysteresis 0.2 V
Ipdin
Pull down current at
input Vin = 1.5 V 5 30 60 µA
Electrical specifications L99DZ100G, L99DZ100GP
62/197 DS11546 Rev 5
Note: See Figure 16: SPI input timing.
Cin(1)
Input capacitance at
input CSN, CLK, DI and
PWM1,2
Guaranteed by design 15 pF
fCLK
SPI input frequency at
CLK 4MHz
1. Value of input capacity is not measured in production test. Parameter guaranteed by design.
Table 49. DI, CLK and CSN timing
Symbol Parameter Test condition Min. Typ. Max. Unit
tCLK Clock period 250 ns
tCLKH Clock high time 100 ns
tCLKL Clock low time 100 ns
tset_CSN
CSN setup time, CSN low
before rising edge of CLK 150 ns
tset_CLK
CLK setup time, CLK high
before rising edge of CSN 150 ns
tset_DI DI setup time 25 ns
thold_DI DI hold time 25 ns
tr_in
Rise time of input signal DI,
CLK, CSN 25 ns
tf_in
Fall time of input signal DI,
CLK, CSN 25 ns
Table 48. Inputs: CLK, DI (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 50. Output: DO
Symbol Parameter Test condition Min. Typ. Max. Unit
VDOL Output low level IDO = -4 mA 0.5 V
VDOH Output high level IDO = 4 mA V1 - 0.5 V
IDOLK
3-state leakage
current VCSN = V1, 0 V < VDO < V1 -10 10 A
CDO
3-state input
capacitance Guaranteed by design 10 15 pF
Table 51. DO timing
Symbol Parameter Test condition Min. Typ. Max. Unit
tr DO DO rise time CL = 50 pF; ILOAD = -1 mA 25 ns
tf DO DO fall time CL = 50 pF; ILOAD = -1 mA 25 ns
DS11546 Rev 5 63/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Note: See Figure 17: SPI output timing.
Note: See Figure 18: SPI CSN - output timing.
3.4.26 Inputs TxD_C and TxD_L for Flash mode
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6V VSREG 18; V1 = 5 V; Tj = -40 °C to 150 °C.
ten DO tri L
DO enable time from
3-state to low level
CL = 50 pF; ILOAD = -1 mA;
pull-up load to V1 50 100 ns
tdis DO L tri
DO disable time from
low level to 3-state
CL = 50 pF; ILOAD = -1 mA;
pull-up load to V1 50 100 ns
ten DO tri H
DO enable time from
3-state to high level
CL = 50 pF; ILOAD = -1 mA;
pull-down load to GND 50 100 ns
tdis DO H tri
DO disable time from
high level to 3-state
CL = 50 pF; ILOAD = -1 mA;
pull-down load to GND 50 100 ns
td DO DO delay time VDO < 0.3 V1;
VDO > 0.7 V1; CL = 50 pF 30 60 ns
Table 51. DO timing (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 52. CSN timing
Symbol Parameter Test condition Min. Typ. Max. Unit
tCSN_HI,min
Minimum CSN
High time, active
mode
Transfer of SPI-command to
Input Register 6s
tCSNfail CSN low timeout 20 35 50 ms
Table 53. Inputs: TxD_C and TxD_L for Flash mode
Symbol Parameter Test condition Min. Typ. Max. Unit
VflashL
Input low level (VTXDC/L for
exit from Flash mode) 6.1 7.25 8.4 V
VflashH
Input high level (VTXDC/L for
transition into Flash mode) 7.4 8.4 9.4 V
VflashHYS Input voltage hysteresis 0.6 0.8 1.0 V
Electrical specifications L99DZ100G, L99DZ100GP
64/197 DS11546 Rev 5
3.4.27 Inputs DIRH, PWMH
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VSREG 18 V; Tj = -40 °C to 150 °C.
3.4.28 Debug input
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VSREG 18 V; Tj = -40 °C to 150 °C.
3.4.29 ADC characteristics
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VSREG 18 V, Tj = -40 °C to 150 °C.
Table 54. Inputs DIRH, PWMH
Symbol Parameter Test condition Min. Typ. Max. Unit
VIL Input voltage low level VSREG = 13.5 V 1 V
VIH Input voltage high level VSREG = 13.5 V 2.3 V
VIHYS Input hysteresis VSREG = 13.5 V 0.2 V
Iin Input pull-down current VSREG = 13.5 V 5 30 60 µA
Table 55. Debug input
Symbol Parameter Test condition Min. Typ. Max. Unit
VdIL Input voltage low level VSREG = 13.5 V 1 V
VdIH Input voltage high level VSREG = 13.5 V 2.3 V
VdIHYS Input hysteresis VSREG = 13.5 V 0.2 V
Rdin Pull-down resistor VDEBUG = 6 to 18 V 2.5 5 7.5 k
Table 56. ADC characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
tcon Conversion time 2.5 µs
fADC
Clock frequency (see
fclk2) 8MHz
Acc Accuracy
Voltage divider + reference(1) -2 2
%
Overall accuracy for WU
input: VS = 22 V -3 3
Overall accuracy for WU
input: VS = 18 V -3.5 3.5
Overall accuracy for WU
input: VS = 6 V -4 4
Overall accuracy for WU
input: VS = 4.5 V -4.6 4.6
DS11546 Rev 5 65/197
L99DZ100G, L99DZ100GP Electrical specifications
196
3.4.30 Temperature diode characteristics
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VSREG 18 V, Tj = -40 °C to 150 °C
3.4.31 Interrupt outputs
The voltages are referred to ground and currents are assumed positive, when the current
flows into the pin. 6 V VSREG 18 V, Tj = -40 °C to 150°C
IEII Integral linearity error 4 LSB
IEDIDifferential linearity
error 2LSB
VAINVS
Conversion voltage
range (VS, VSREG &
WU)
122V
VAINTemp
Conversion voltage
range (TCL1 …TCL6) 02V
1. Guaranteed by design.
Table 56. ADC characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Table 57. Temperature diode characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
VTROOM 1-6
TSENSE output
voltage at 25 °C VS = 12 V; T = 25 °C 1.4 V
VTSENSE1-6
TSENSE output
voltage 1 - 8
T = 25 °C; T = 130 °C;
T = -40 °C —-4 mV/K
Table 58. Interrupt outputs
Symbol Parameter Test condition Min. Typ. Max. Unit
VINTL Output low level IINT = -4 mA 0.5 V
VINTH Output high level IINT = 4 mA V1 - 0.5 V
IINTLK 3-state leakage current 0 V < VINT < V1 -10 10 A
tInterrupt
Interrupt pulse duration
(NINT, RxD_L/NINT,
RxD_C/NINT
56 s
tInt_react Interrupt reaction time Tested by scan chain 6 40 µs
Electrical specifications L99DZ100G, L99DZ100GP
66/197 DS11546 Rev 5
3.4.32 Timer1 and Timer2
6 V VSREG 18 V; Tj = -40 °C to 150 °C
Figure 15. SPI – transfer timing diagram
The SPI can be driven by a micro controller with its SPI peripheral running in following
mode:
CPOL = 0 and CPHA = 0.
For this mode input data is sampled by the low to high transition of the clock CLK, and
output data is changed from the high to low transition of CLK.
Table 59. Timer1 and Timer2
Symbol Parameter Test condition Min. Typ. Max. Unit
ton 1 Timer on time 0.1 ms
ton 2 Timer on time 0.3 ms
ton 3 Timer on time 1 ms
ton 4 Timer on time 10 ms
ton 5 Timer on time 20 ms
T1 Timer period 10 ms
T2 Timer period 20 ms
T3 Timer period 50 ms
T4 Timer period 100 ms
T5 Timer period 200 ms
T6 Timer period 500 ms
T7 Timer period 1000 ms
T8 Timer period 2000 ms
   
 
      
 
 
&61
&/.
',
'2
,QSXW
'DWD
5HJLVWHU
&61KLJKWRORZ'2HQDEOHG
WLPH
',GDWDZLOOEHDFFHSWHGRQWKHULVLQJHGJHRI&/.VLJQDO WLPH
WLPH
WLPH
WLPH
'2GDWDZLOOFKDQJHRQWKHIDOOLQJHGJHRI&/.VLJQDO
*OREDO(UURU
&61ORZWRKLJKDFWXDOGDWDLV
WUDQVIHUHGWRRXWSXWSRZHUVZLWFKHV
ROGGDWD QHZGDWD
     
     

;;
;;
;;
&RPPDQG%\WH
*OREDO6WDWXV%\WH
'DWD
*$3*&)7
DS11546 Rev 5 67/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Figure 16. SPI input timing
9DOLG 9DOLG
&61
&/.
',
WVHW&61 W&/.+ WVHW&/.
W&/./WKROG',WVHW',
*$3*&)7
7$$
7$$
7$$
7$$
7$$
7$$
Electrical specifications L99DZ100G, L99DZ100GP
68/197 DS11546 Rev 5
Figure 17. SPI output timing
7I&/. 7U&/.
&/.
9FF
9FF
9FF
'2
ORZWRKLJK
9FF
9FF
7U'2
7G
'2
9FF
9FF
7I'2
'2
KLJKWRORZ
7I&61 7U&61
&61
9FF
9FF
9FF


7HQ'2BWULB/
7HQ'2BWULB+
7GLV
'2B/BWUL
7GLV
'2B+BWUL
("1($'5
DS11546 Rev 5 69/197
L99DZ100G, L99DZ100GP Electrical specifications
196
Figure 18. SPI CSN - output timing
Figure 19. SPI – CSN high to low transition and global status bit access
3.4.33 SGND loss comparator
Tj = -40 °C to 150 °C, unless otherwise specified.
&61
G21
W


WULQ ILQ
W
2))
W
G2))
W
2)) VWDWH
21 VWDWH 2)) VWDWH
21 VWDWH
21
W
RXWSXW FXUUHQW
RI D GULYHU







RXWSXW FXUUHQW
RI D GULYHU
&61 ORZ WR KLJK GDWD IURP VKLIW UHJLVWHU
LV WUDQVIHUUHG WR RXWSXW SRZHU VZLWFKHV
W&61B+,PLQ
("1($'5
&61
&/.
',
'2
&61KLJKWRORZDQG&/.VWD\VORZVWDWXVLQIRUPDWLRQRIGDWDELWIDXOWFRQGLWLRQLVWUDQVIHUHGWR'2
',GDWDLVQRWDFFHSWHG
'2VWDWXVLQIRUPDWLRQRIGDWDELW*67%IDXOWFRQGLWLRQZLOOVWD\DVORQJDV&61LVORZ
WLPH
WLPH
WLPH
WLPH

("1($'5
Table 60. SGND loss comparator
Symbol Parameter Test condition Min. Typ. Max. Unit
VSGNDloss VSGND loss threshold (VSGND – VPGND ) 100 270 500 mV
tSGNDloss VSGND loss filter time 5 7 9 µs
Application information L99DZ100G, L99DZ100GP
70/197 DS11546 Rev 5
4 Application information
4.1 Supply VS, VSREG
VSREG supplies voltage regulators V1 and V2, all internal regulated voltages for analog and
digital functionality, LIN, CAN, the EC control block and both P-channel high-side switches
OUT15 and OUT_HS.
All other high-sides, Fail Safe block and the charge pump are supplied by VS.
In case the VSREG pin is disconnected, all power outputs connected to VS are automatically
switched off.
4.2 Voltage regulators
The device contains two independent and fully protected low drop voltage regulators
designed for very fast transient response and do not require electrolytic output capacitors
for stability.
The output voltage is stable with ceramic load capacitors >220 nF.
4.2.1 Voltage regulator: V1
The V1 voltage regulator provides 5 V supply voltage and up to 250 mA continuous load
current to supply the system microcontroller and the integrated CAN transceiver. The V1
regulator is embedded in the power management and fail-safe functionality of the device
and operates according to the selected operating mode. The V1 voltage regulator is
supplied by pin VSREG
.
In addition, the V1 regulator supplies the devices internal loads. The voltage regulator is
protected against overload and overtemperature. An external reverse current protection has
to be provided by the application circuitry to prevent the input capacitor from being
discharged by negative transients or low input voltage. Current limitation of the regulator
ensures fast charge of external bypass capacitors. The output voltage is stable for ceramic
load capacitors >220 nF.
In case the device temperature exceeds the TSD1 threshold (either cluster or grouped
mode) the V1 regulator remains on. The micro controller has the possibility for interaction or
error logging. If the chip temperature exceeds the TSD2 threshold (TSD2 > TSD1), V1 will
be deactivated and all wakeup sources (CAN, LIN, WU and Timer) are disabled. After tTSD,
the voltage regulator will restart automatically. If the restart fails 7 times within one minute
the devices enter the Forced Vbat_standby mode. The status bit
FORCED_SLEEP_TSD2/V1SC (SR1) is set.
DS11546 Rev 5 71/197
L99DZ100G, L99DZ100GP Application information
196
4.2.2 Voltage regulator: V2
The voltage regulator V2 is supplied by pin VSREG and can supply additional 5 V loads such
as sensors or potentiometers. The maximum continuous load current is 50 mA. The
regulator is protected against:
Overload
Overtemperature
Short-circuit (short to ground and battery supply voltage)
Reverse biasing
4.2.3 Voltage regulator failure
The V1, and V2 regulator output voltages are monitored.
In case of a drop below the failure thresholds (V1 < V1fail for t > tV1fail, V2 < V2fail for
t > tV2fail), the failure bits V1FAIL, V2FAIL (SR 2) are latched.
4.2.4 Short to ground detection
At turn-on of the V1 and V2 regulators, a short-to-GND condition is detected by monitoring
the regulator output voltage.
If V1 or V2 is below the V1fail (or V2fail) threshold for t > tV1short (t > tV2short) after turn-on, the
devices will identify a short circuit condition at the related regulator will be switched off.
In case of V1 short-to-GND the device enters Forced Vbat_standby mode automatically. Bits
FORCED_SLEEP_TSD2/V1SC and (SR 1) V1FAIL (SR 2) are set.
In case of a V2 short-to-GND failure the V2SC (SR 2) and V2FAIL (SR 2) bits are set.
Once the output voltage of the corresponding regulator exceeded the V1fail (V2fail) threshold
the short-to-ground detection is disabled. In case of a short-to-ground condition, the
regulator is switched off due to thermal shutdown. V1 is switched off at TSD2, V2 is
switched off at TSD1.
Application information L99DZ100G, L99DZ100GP
72/197 DS11546 Rev 5
4.2.5 Voltage regulator behavior
Figure 20. Voltage regulator behaviour and diagnosis during supply voltage
4.3 Operating modes
The devices can be operated in the following operating modes:
Active
LIN Flash
CAN Flash
V1_standby
VBAT_standby
Debug
4.3.1 Active mode
All functions are available and the device is controlled by SPI.
9VUHJ>9@
9>9@
1UHVHW
RXWSXW
9325
567%ELWLVVHWDQGUHJLVWHUV
DUHVHWWRGHIDXOWDW9325B5
XV
957+
+LJK
/RZ
9IDLO
,IW!WYVKRUW
9VKRUWGHWHFWHG
9EDWWVWDQGE\
W!W9IDLO
9IDLOELWLVVHW
9VUHJXY ELWLVVHW
ILOWHUWLPHW2989BILOW
WW89
WUU WUU
W!W89
1R5HVHWJHQHUDWHG
W!W89
WYU WYU
96UHJ89
W9)6
9
VSHFLILF&RQWURO5HJLVWHUVDUHVHWWRGHIDXOWYDOXHV
9VUHJ$%6PLQ
+LJK=*URXQGHG 9VUHJ$%6PLQ PLQLPXP9VUHJWRFRQWURO15HVHW
96UHJ89 9VUHJXQGHUYROWDJH
9325B5) 9VUHJSRZHURQUHVHWYROWDJH
ULVLQJIDOOLQJ
957+ 9UHVHWWKUHVKROGYROWDJH
9)$,/ 9IDLOWKUHVKROGYROWDJH
W89 9XQGHUYROWDJHILOWHUWLPH
W9IDLO 9IDLOILOWHUWLPH
WUU UHVHWSXOVHUHDFWLRQWLPH
WYU UHVHWSXOVHGXUDWLRQ
W9VKRUW 9VKRUWILOWHUWLPH
W9)6 9IDLOVDIHILOWHUWLPH
W2989BILOW 9VUHJRYHUXQGHUYROWDJHILOWHUWLPH
&RQWURO
5HJLVWHUV
VHWWRGHIDXOW
DW9325B)
("1($'5
DS11546 Rev 5 73/197
L99DZ100G, L99DZ100GP Application information
196
4.3.2 Flash modes
To program the system microcontroller via LIN or HS CAN bus signals, the devices can be
operated in LIN Flash mode or CAN Flash mode. The watchdog is disabled in these modes.
The Flash modes are entered by applying an external voltage at the respective pin:
VTxDL VFlashH (CAN Flash mode)
VTxDC VFlashH (LIN Flash mode)
In CAN Flash mode the CAN transceiver is set in TRX bias mode
(CAN_GO_TO_TRX_RDY = 1) and TRX Normal mode automatically
During CAN Flash mode, the watchdog can be deactivated by setting CR34: WDEN = 0.
Write access to this bit is only possible during CAN Flash mode in order to prevent
accidental deactivation of the watchdog. After setting WDEN (CR 34) the CAN Flash mode
can be left (VTxDL < VFlashL) and the Watchdog will remain deactivated (see Figure 21)
Figure 21. Sequence to disable/enable the watchdog in CAN Flash mode
In LIN Flash mode the maximum bitrate is increased to 100 kbit/s automatically
(LIN_HS_EN = 1).
A transition from Flash modes to V1_standby or Vbat_standby mode is not possible.
At exit from Flash modes (VTxDL < VFlashL, VTxDC < VFlashL) no NReset pulse is generated.
The watchdog starts with a Long Open Window (tLW).
Note: Setting both TxDL and TxDC to high voltage levels (> VFlashH) is not allowed.
Communication at the respective TxD pin is not possible.
4.3.3 SW-debug mode
To allow software debugging, the watchdog can be deactivated by applying an external
voltage to the DEBUG input pin (Vdebug > VdiH).
In Debug mode, all device functionality and Operating modes are available. The watchdog
is deactivated. At Exit from Debug mode (Vdebug < VdiL) the watchdog starts with a Long
Open Window.
Note: The device includes a test mode. This mode is activated by a dedicated sequence which
includes a high voltage at the Debug Pin. The Debug Pin must be kept at nominal voltage
levels in order to avoid accidental activation of the test mode.
$FWLYH )ODVK $FWLYH
/,1&RPPXQLFDWLRQ
2SHUDWLQJ
0RGH
7['/
9
9
63,&61
:'DFWLYH
:'LQDFWLYH
:ULWH&5
:'(1 
ZLWK:'(1 
)ODVK $FWLYH
:ULWH&5
:'(1 
("1($'5
Application information L99DZ100G, L99DZ100GP
74/197 DS11546 Rev 5
4.3.4 V1_standby mode
The transition from Active mode to V1_standby mode is controlled by SPI.
To supply the micro controller in a low power mode, the V1 voltage regulator remains active.
After the V1_standby command (CSN low to high transition), the device enters V1_standby
mode immediately and the watchdog starts a Long Open Window (tLW). The watchdog is
deactivated as soon as the V1 load current drops below the ICMP threshold (IV1< Icmp_fal).
The V1 load current monitoring can be deactivated by setting ICMP = 1. In this configuration
the watchdog will be deactivated upon transition into V1_standby mode without monitoring
the V1 load current.
Writing ICMP (CR 34) = 1 is only possible with the first SPI command after setting
ICMP_CONFIG_EN (Config Reg) = 1.
The ICMP_CONFIG_EN bit is reset to 0 automatically with the next SPI command.
Power outputs (except OUT_HS & OUT15) are switched off in V1_standby mode. OUT_HS
& OUT15 remain in the configuration programmed prior to the standby command in order to
enable (cyclic) supply of external contacts. The timer signal (Timer1 or Timer2) can be
mirrored to the NINT output pin during V1_standby mode.
CAN and LIN transmitters (TxDL, TxDC) are off.
Wake-up capability by CAN and LIN can be disabled by SPI. The CAN transceiver can be
configured in Listen mode (TxDC disabled, RxDC enabled) in order to support pretended
networking concepts (for details see Section 4.10.6: Pretended networking)
4.3.5 Interrupt
Figure 22. NINT pins
RxDL/NINT indicates:
a wake-up event from V1_standby mode (except wake-up by CAN) and the
programmable timer interrupt
RxDL/NINT pin is pulled low for t = tinterrupt.
'LJLWDO
ORJLF
*1'
9
'DWD2XW
'DWD,Q
(QDEOH
*1'
(6'SURW
("1($'5
DS11546 Rev 5 75/197
L99DZ100G, L99DZ100GP Application information
196
RxDC/NINT indicates:
Mode transitions of the CAN transceiver according to Figure 31: CAN transceiver state
diagram
CAN communication timeout (no CAN communication for t > tSilence). The CANTO flag
is set. This interrupt can be masked by SPI (CR2: CANTO_IRQ_EN).
RxDC/NINT pin is pulled low for t = tinterrupt.
See also Section 4.3.6: CAN wake-up signalization
NINT indicates:
In Active mode:
VSREG dropped below the programmed early warning threshold in Control Register 3
(VSREG < VSREG_EW_TH); feature is deactivated if VSREG_EW_TH is set to 0 V.
In V1_standby mode
Programmable timer interrupt; An NINT pulse is generated at the beginning of the
timer on-time (Timer 1 or Timer2)
CAN communication timeout (no CAN communication for t > tSilence). The CANTO
flag is set. This interrupt can be masked by SPI (CR2: CANTO_IRQ_EN).
Wake-up from V1_standby mode by any wake-up source
NINT is pulled low for t = tinterrupt
In case of increasing V1 load current during V1_standby mode (IV1 > Icmp_ris), the device
remains in standby mode and the watchdog starts with a Long Open Window. No Interrupt
signal is generated.
4.3.6 CAN wake-up signalization
Table 61. CAN wake-up signalization
Operating
mode Event Mode transition Status flag Interrupt pin
Active
WUP or
WUP/WUF(1) Transition to TRX_Ready WAKE_CAN
WUP/WUF(1) RxDC
CAN Timeout Transition to TRX_Sleep CANTO RxDC (2)
WUP(3) Transition into TRX_Bias WUP RxDC and NINT
V1_standby
WUP or
WUP/WUF(1)
Transition into Active
mode; TRX_Ready
WAKE_CAN
WUP/WUF(1) RxDC and NINT
CAN Timeout Transition to TRX_Sleep CANTO RxDC and NINT (2)
WUP(3) Transition into TRX_Bias WUP RXDC and NINT
Vbat_standby
WUP or
WUP/WUF(1)
Transition into Active
mode; TRX_Ready
WAKE_CAN
WUP/WUF(1) none
CAN Timeout Transition to TRX_Sleep CANTO
1. SW_EN = 0, PNW_EN = 0:
— wake-up according ISO 11898-5:2007 (on WUP)
— Flags: Wake_CAN, WUP
SW_EN = 1:
— wake-up according ISO 11898-6:2013 (on WUP/WUF combination)
— After the reception of a wake-up pattern (WUP) the CAN Enhanced Voltage Biasing is turned on until a CAN timeout is
detected
— Flags: Wake_CAN, WUP, WUF
Application information L99DZ100G, L99DZ100GP
76/197 DS11546 Rev 5
Note: See also Figure 31: CAN transceiver state diagram.
4.3.7 VBAT_standby mode
The transition from Active mode to Vbat_standby mode is initiated by an SPI command. In
Vbat_standby mode, the voltage regulators V1 and V2 (depending on configuration in
CR 1), the power outputs (except OUT15 and OUT_HS) as well as LIN and CAN
transmitters are switched off.
An NReset pulse is generated upon wake-up from Vbat_standby mode. At transition into
Vbat_standby mode with selective wake-up enabled (SWEN = 1), the CAN transceiver is
automatically set to TRX_standby configuration (RXEN = 0).
4.4 Wake-up from Standby modes
A wake-up from standby mode will switch the device to Active mode. This can be initiated by
one or more of the following events:
To prevent the system from a deadlock condition (no wake up from standby possible) a
configuration where the wake up by LIN and HS CAN are both disabled is not allowed. All
wake-up sources are configured to default values in case of such invalid setting. The SPI
Error Bit SPIE (Global Status Byte) is set.
2. Interrupt can be disabled by SPI (CANTO_IRQ_EN).
3. SW_EN = 0, PWN_EN = 1 (Pretended Networking mode)
— no wake-up
— after reception of a wake-up patter (WUP) the transceiver enters TRX Bias mode
— Flags: WUP
Table 62. Wake-up events description
Wake up source Description
LIN bus activity Can be disabled by SPI
CAN bus activity Can be disabled by SPI
Selective Wake-up can be enabled and configured by SPI
Level change of WU Can be configured or disabled by SPI
IV1 >Icmp_ris
Device remains in V1_standby mode but watchdog is enabled (If
ICMP = 0). No interrupt is generated.
Timer Interrupt / Wake up
of µC by TIMER
Programmable by SPI:
V1_standby mode: configurable timer interrupt. NINT and RxDL/NINT
interrupt signals are generated
Vbat_standby mode: device wakes up after programmable timer
expiration, V1 regulator is turned on and NReset signal is generated
SPI Access Always active (except in VBAT_STANDBY mode)
Wake up event: CSN is low and first rising edge on CLK
DS11546 Rev 5 77/197
L99DZ100G, L99DZ100GP Application information
196
4.4.1 Wake up input
The WU input can be configured as wake-up source. The wake-up input is sensitive to any
level transition (positive and negative edge) and can be configured for static or cyclic
monitoring of the input voltage level.
For static contact monitoring, a filter time of tWU_STAT is implemented. The filter is started
when the input voltage passes the specified threshold VWU_THP or VWU_THN.
Cyclic contact monitoring allows periodical activation of the wake-up input to read the status
of the external contact. The periodical activation can be configured to Timer 1 or Timer 2.
The input signal is filtered with a filter time of tWU_CYC after a delay (80% of the configured
Timer on-time. A Wake-up will be processed if the status has changed versus the previous
cycle. The buffered output OUT_HS can be used to supply the external contacts with the
timer setting according to the cyclic monitoring of the wake-up input.
In standby modes, the input WU is configurable with an internal pull-up or pull-down current
source according to the setup of the external contact. In Active mode the inputs have an
internal pull down resistor (RWU_act) and the input status can be read by SPI. Static sense
should be configured before the read operation is started in order to reflect the actual input
level.
4.5 Functional overview (truth table)
Table 63. Status of different functions/features vs operating modes
Function Comments
Operating modes
Active mode V1-standby static
mode (cyclic sense)
Vbat-standby static
mode (cyclic sense)
Voltage regulator V1 VOUT = 5 V On On(1) Off
Voltage regulator V2 VOUT = 5 V On/ Off(2) On(2) / Off On(2) / Off
Reset generator On On Off
Window watchdog V1 monitor On Off (on if IV1 > ICMP
and ICMP = 0) Off
Wake up Off Active(3) Active(3)
HS-cyclic supply Oscillator time
base On / Off On(2) / Off On(2) / Off
LIN LIN 2.2a On Off(4) Off(4)
HS_CAN On / Off(5) Off(4) Off(4)
Oscillator OSC1 2 MHz On On/Off(6) On/Off(6)
Oscillator OSC2 32 MHz ON ON/Off(7) ON/Off(7)
VSREG-Monitor On (8) (8)
VS-Monitor On Off Off
Application information L99DZ100G, L99DZ100GP
78/197 DS11546 Rev 5
H Bridge Gate Driver, EC
control, bridge drivers, heater
driver, all high-side drivers
(except OUT_HS & OUT15)
supplied by VS
On/ Off(2) Off Off
Fail-safe low-side switches On/ Off(9) On On
Short circuit protection for
fail-safe low-side switches (in
case LS is switched on)
On On On
OUT_HS & OUT15 (P-
channel HS) supplied by
VSREG
On/ Off(2) On/ Off (2) On/ Off(2)
Charge pump On Off Off
ADC (SPI read out and
VSREG early warning
interrupt)
On Off Off
Thermal shutdown TSD2 On On Off
Thermal shutdown TSD1x for
OUT_HS and OUT15 (P-
channel HS)
On On/ Off(2) On/ Off(2)
1. Supply the processor in low current mode.
2. According to SPI setting and DIR.
3. Unless disabled by SPI.
4. The bus state is internally stored when going to standby mode. A change of bus state will lead to a wake-up after exceeding
of internal filter time (if wake-up by LIN or CAN is not disabled by SPI). Selective Wake functionality if enabled by SPI
5. After power-on, the HS CAN transceiver is in CAN_TRX_SLEEP mode. It is activated by SPI command
(CAN_GO_TRX_RDY= 1)
6. ON, if cyclic sense is enabled or during wake-up request.
7. ON if SWEN=1 (CAN partial networking enabled) and ongoing CAN communication on the bus.
8. Cyclic activation = pulsed ON during cyclic sense.
9. ON in Fail-Safe mode; if standby mode is entered with active Fail-safe mode the output remains ON in standby mode.
Table 63. Status of different functions/features vs operating modes (continued)
Function Comments
Operating modes
Active mode V1-standby static
mode (cyclic sense)
Vbat-standby static
mode (cyclic sense)
DS11546 Rev 5 79/197
L99DZ100G, L99DZ100GP Application information
196
Figure 23. Main operating modes
4.6 Configurable window watchdog
During normal operation, the watchdog monitors the micro controller within a programmable
trigger cycle.
After power-on or standby mode, the watchdog is started with a timeout (Long Open
Window tLW). The timeout allows the micro controller to run its own setup and then to start
the window watchdog by setting TRIG (CR1,ConfigReg) =1
Subsequently, the micro controller has to serve the watchdog by alternating the watchdog
trigger bit TRIG (CR1,Config Reg) within the safe trigger area TSWX.
The trigger time is configurable by SPI. A correct watchdog trigger signal will immediately
start the next cycle. After 8 watchdog failures in sequence, the V1 regulator is switched off
for tV1OFF
. After 7 additional watchdog failures the V1 regulator is turned off permanently
and the device goes into Forced Vbat_standby mode. The status bit FORCED_SLEEP_WD
(SR 1) is set. A wake-up is possible by any activated wake-up source.
After wake-up from Forced Vbat_standby mode and the watchdog trigger still fails, the
device enters Forced Vbat_standby mode again after one Long Open Window.
$FWLYH
0RGH
921
5HVHW*HQHUDWRUDFWLYH
:DWFKGRJDFWLYH
96WDQGE\
0RGH
921
5HVHW*HQHUDWRUDFWLYH
:DWFKGRJ
2))LI,Y,FPSRU,&03 
9EDW6WDQGE\
0RGH
92))
5HVHW*HQHUDWRU2))1UHVHW ORZ
:DWFKGRJ2))
:DNHXS
(YHQW
:DNHXS
(YHQW 63,FRPPDQG
9EDWVWDUWXS
$OOUHJLVWHUV
6HWWRGHIDXOW
&KLS5HVHWELW567%

9V!9SRU
[7KHUPDO6KXWGRZQ76'
25
[:'IDLO
)ODVK0RGH/,1&$1
)XQFWLRQDOLW\DVLQ$FWLYH0RGH
:DWFKGRJ2))
&$1)ODVK0RGH
&$175;5'< 5;(1 7;(1 
/,1)ODVK0RGH
/,1B+6BHQ 
97;'/!9IODVK
25
97;'&!9IODVK
97;'/!9IODVK
25
97;'&!9IODVK
97;'/9IODVK
$1'
97;'&9IODVK
97;'/!9IODVK
25
97;'&!9IODVK
63,FRPPDQG
25
[7KHUPDO6KXWGRZQ
25
9VKRUWWR*1'
99IRUPVDIWHUVZLWFK21
25
[:')DLOXUH
("1($'5
Application information L99DZ100G, L99DZ100GP
80/197 DS11546 Rev 5
This actually produces an additional watchdog failure but the watchdog fail counter will
remain at maximum value of 15 failures.
This sequence is repeated until a valid watchdog trigger event is performed by writing
TRIG = 1.
In case of a Watchdog failure, the power outputs and V2 are switched off and the status bit
WDFAIL (SR 1) is set to 1. A reset pulse is generated at NReset output and the device
enters Fail-safe mode. Control registers are set to their Fail Safe values and the Fail-safe
low-side switches are turned on. Please refer to chapter Section 4.7: Fail-safe mode for
more details.
The following diagrams illustrate the Watchdog behavior of the devices. The diagrams are
split into 3 parts. First diagram shows the functional behavior of the watchdog without any
error. The second diagram covers the behavior covering all the error conditions, which can
affect the watchdog behavior. Figure 26: Watchdog in Flash mode shows the transition in
and out of Flash modes. Figure 24, Figure 25 and Figure 26 can be overlapped to get all the
possible state transitions under all circumstances. For a better readability, they were split in
normal operating, operating with errors and Flash mode.
Figure 24. Watchdog in normal operating mode (no errors)
:'
2))
ORQJ
RSHQ
ZLQGRZ
:LQGRZ
0RGH
SURSSHUWULJJHULQ
:LQGRZPRGH
75,* Ã 9EDWVWDQGE\PRGH
96WDQGE\,9,&03
$FWLYHPRGH
$FWLYHPRGH
:DNHXS
9!9
57[
*R9EDWVWE\
2U
*R9VWE\$1',Y,FPS
*R9VWE\
JR9EDWVWE\
("1($'5
DS11546 Rev 5 81/197
L99DZ100G, L99DZ100GP Application information
196
Figure 25. Watchdog with error conditions
Figure 26. Watchdog in Flash mode
Note: Whenever the device is operated without servicing the mandatory watchdog trigger events,
a sequence of 15 consecutive reset events is performed and the device enters the
Forced_Vbat_Stby mode with bit FORCED_SLEEP_WD in SR1 set.
If the device is woken up after such a forced VBAT_Standby condition and the watchdog is
still not serviced, the device, after one long open watchdog window will re-enter the same
Forced_Vbat_Stby mode until the next wake up event. In this case, an additional watchdog
failure is generated, but the fail counter is not cleared, keeping the maximum number of 15
failures. This sequence is repeated until a valid watchdog trigger event is performed by
writing TRIG = 1.
("1($'5
:'
2))
ORQJ
RSHQ
ZLQGRZ
:LQGRZ
0RGH
SURSSHUWULJJHULQ
:LQGRZPRGH
75,* Ã
99UWK
9EDWVWDQGE\PRGH
IRUFHG9%$7[:'IDLO
[76'
6KRUW9
$FWLYHPRGH
$FWLYHPRGH
)DLO6DIH
(YHQW
)DLO6DIH
(YHQW
IRUFHG9EDWVWE\
99UWK
9!9UWK
:'
2))
ORQJ
RSHQ
ZLQGRZ
:LQGRZ
0RGH
)/$6+'HEXJ
PRGH
$FWLYHPRGH
$FWLYHPRGH
(QWHU
)/$6+'HEXJPRGH
([LWIURP
)/$6+'HEXJPRGH
(QWHU
)/$6+'HEXJPRGH
("1($'5
Application information L99DZ100G, L99DZ100GP
82/197 DS11546 Rev 5
4.6.1 Change watchdog timing
The watchdog trigger time is configured by setting WD_TIME_x (CR 2). Writing to these bits
is possible only using the first SPI command after setting WD_CONFIG_EN = 1 (Config
Reg). The WD_CONFIG_EN bit is reset to 0 automatically with the next SPI command.
4.7 Fail-safe mode
4.7.1 Temporary failures
The devices enter Fail-safe mode in case of:
Watchdog failure
V1 turn on failure
V1 short (V1 < V1fail for t > tV1short)
V1 failure (V1 < VRTxfalling for t > tV1FS)
Thermal Shutdown TSD2
The Fail Safe functionality is also available in V1_Standby mode. During V1_Standby mode
the Fail Safe mode is entered in the following cases:
V1 failure (V1 < VRTxfalling for t > tV1FS)
Watchdog failure (if watchdog still running due to IV1 > Icmp_fal)
Thermal Shutdown TSD2
In Fail Safe mode the devices return to a fail safe state. The Fail Safe condition is indicated
to the system in the Global Status Byte. The conditions during Fail Safe mode are:
All outputs beside LS1_FSO and LS2_FSO are turned off
All Control Registers are set to fail safe default values except:
SWEN (CR1<bit 7>): selective Wake-up enable
Partial Networking Configuration: CR23-CR29
Write operations to Control Registers are blocked until the Fail Safe condition is
cleared. The following bits are not WRITE protected:
TRIG (CR1<bit 0>, Config Register <bit 0>): watchdog trigger bit
V2_x (CR1<bit 4:5>): Voltage Regulator V2 control
CAN_GO_TRX_RDY (CR1<bit 8>): activation of CAN transceiver
CR2 (bit <8:23>): Timer1 and Timer2 settings
OUT_HS_x (CR5 <bit 0:3>): OUT_HS configuration
OUT15_x (CR6<bit 0:3>): OUT15 configuration
PWMx_freq_y (CR12): PWM frequency configuration
PWMx_DC_y (CR13 – CR17): PWM duty cycle configuration
LIN and HS CAN transmitter and SPI remain on (transmitters are deactivated in case of
thermal shutdown TSD1 (TSD1 cluster 5 or 6 in cluster mode)
Corresponding Failure Bits in Status Registers are set
FS Bit (Global Status Byte) is set
LS1_FSO and LS2_FSO will be turned on
Charge pump is switched off
DS11546 Rev 5 83/197
L99DZ100G, L99DZ100GP Application information
196
If the Fail Safe mode was entered it keeps active until the Fail safe condition is removed and
the Fail Safe was read by SPI. Depending on the root cause of the Fail Safe operation, the
actions to exit Fail safe mode are as shown in the following table.
4.7.2 Non-recoverable failures – forced Vbat_standby mode
If the Fail-safe condition persists and all attempts to return to normal system operation fail,
the devices enter the Forced Vbat_standby mode in order to prevent damage to the system.
The Forced Vbat_standby mode can be terminated by any wake-up source. The root cause
of the Forced Vbat_standby mode is indicated in the SPI Status Registers. In forced
Vbatstby mode and with Fail Safe conditions still present at wake-up, the Fails safe low side
outputs LSx_FSO are switched OFF for 25us after the wake up event.
In Forced Vbat_standby mode, all Control Registers are set to power-on default values
except:
SWEN (CR1<bit 7>)
All bits from CR23 to CR29
CP_DITH_DIS (Config. Reg <bit 5>)
The Forced Vbat_standby mode is entered in case of:
Multiple watchdog failures: FORCED_SLEEP_WD (SR 1) = 1 (15 x watchdog failure)
Multiple thermal shutdown 2: FORCED_SLEEP_TSD2/V1SC (SR 1) = 1 (7 x TSD2)
V1 short at turn-on (V1 < V1fail for t > tV1short):
FORCED_SLEEP_TSD2/V1SC (SR 1) = 1
Table 64. Temporary failures description
Failure source Failure condition Diagnosis Exit from Fail-safe mode
Microcontroller
(oscillator)
Watchdog early write
failure or expired
window
FS (Global Status Byte) =1;
WDFAIL (SR 1) =1;
WDFAIL_CNT_x (SR 1) = n+1
TRIG (CR 1) = 1 during long
open window Read&Clear
SR1
V1
Short at turn-on
FS (Global Status Byte) =1;
FORCED_SLEEP_TSD2/V1SC
(SR 1) =1
Wake-up;
Read&Clear SR1
Undervoltage FS (Global Status Byte) = 1; V1UV
(SR 1) = 1; V1fail (SR 2) = 1(1)
V1 >VRTrising;
Read&Clear SR1
Temperature Tj > TSD2
FS (Global Status Byte) = 1; TW
(SR 2) = 1;
TSD1 (SR 1) =1;
TSD2 (SR 1) =1
Tj < TSD2;
Read&Clear SR1
1. If V1 < V1fail (for t > tV1fail). The Fail-safe Bit is located in the Global Status Register.
Application information L99DZ100G, L99DZ100GP
84/197 DS11546 Rev 5
4.8 Reset output (NReset)
Figure 27. NReset pin
If V1 is turned on and the voltage exceeds the V1 reset threshold, the reset output NReset is
pulled up to V1 by an internal pull-up resistor after a reset delay time (tV1R). This is
necessary for a defined start of the micro controller when the application is switched on.
Since the NReset output is realized as an open drain output it is also possible to connect an
external NReset open drain NReset source to the output. As soon as the NReset is released
by the devices the watchdog starts with a long open window.
A reset pulse is generated in case of:
V1 drops below VRTxfalling (configurable by SPI) for t > tUV1
Watchdog failure
Turn-on of the V1 regulator (VSREG Power-on or wake-up from Vbat_standby mode)
Table 65. Non-recoverable failure
Failure source Failure condition Diagnosis Exit from Fail-safe mode
Microcontroller
(Oscillator)
15 consecutive
Watchdog Failures
FS (Global Status Byte) = 1; WDFAIL (SR
1) = 1; FORCED_SLEEP_WD (SR 1) = 1
Wake-up;
TRIG (CR 1) = 1 during long
open window; Read&Clear
SR1
V1 Short at turn-on FS (Global Status Byte) = 1;
FORCED_SLEEP_TSD2/V1SC (SR 1) = 1
Wake-up;
Read&Clear SR1
Temperature 7 times TSD2
FS (Global Status Byte) =1; TW (SR 2) = 1;
TSD1 (SR 1) = 1; TSD2 (SR 1) = 1;
FORCED_SLEEP_TSD2/V1SC (SR 1) = 1
Wake-up;
Read&Clear SR1
'LJLWDO
ORJLF
*1'
9
'DWD2XW
'DWD,Q
*1'
(6'SURW
.2KPV
("1($'5
DS11546 Rev 5 85/197
L99DZ100G, L99DZ100GP Application information
196
4.9 LIN Bus Interface
Figure 28. RxDL pin
4.9.1 Features
LIN 2.2a compliant (SAEJ2602 compatible) transceiver
LIN Cell has been designed according to “Hardware requirements for transceivers
(version 1.3)
Bitrate up to 20 kbit/s
Dedicated LIN Flash mode with bitrate up to 100 kbit/s
GND disconnection fail safe at module level
Off mode: does not disturb network
GND shift operation at system level
Micro controller Interface with CMOS-compatible I/O pins
Internal pull-up resistor
Receive-only mode
ESD and transient immunity according to ISO7637 and EN / IEC61000-4-2
Matched output slopes and propagation delay
Wake-up behaviour according to LIN2.2a and Hardware Requirements for LIN, CAN
and Flexray Interfaces (version 1.3)
At VSREG > VPOR (i.e. VSREG power-on reset threshold), the LIN transceiver is enabled. The
LIN transmitter is disabled in case of the following errors:
Dominant TxDL time out
LIN permanent recessive
Thermal shutdown 1
VSREG overvoltage/ undervoltage
The LIN receiver is not disabled in case of any failure condition.
The default bitrate of the transceiver allows communication up to 20 kbit/s. To enable fast
flashing via the LIN bus, the transceiver can be operated in high speed mode by setting bit
LIN_HS_EN (Config Reg) = 1. This feature is enabled automatically in LIN Flash mode.
'LJLWDO
ORJLF
*1'
9
'DWD2XW
'DWD,Q
(QDEOH
*1'
(6'SURW
("1($'5
Application information L99DZ100G, L99DZ100GP
86/197 DS11546 Rev 5
4.9.2 Error handling
The devices LIN transceiver provides the following 3 error handling features.
Dominant TxDL time out
If TXD_L is in dominant state (low) for t > tdom(TXDL) the transmitter will be disabled, the
status bit LIN_TXD_DOM (SR 2) will be set.
The transmitter remains disabled until the status bit is cleared.
The TxD dominant timeout detection can be disabled via SPI (LIN_TXD_TOUT_EN = 0).
Permanent recessive
If TXD_L changes to dominant (low) state but RXD_L signal does not follow within t < tLIN
the transmitter will be disabled, the status bit LIN_PERM_REC (SR 2) will be set.
The transmitter remains disabled until the status bit is cleared.
Permanent dominant
If the bus state is dominant (low) for t > tdom(bus) a bus permanent dominant failure will be
detected. The status bit LIN_PERM_DOM (SR 2) will be set.
The transmitter will not be disabled.
4.9.3 Wake up from Standby modes
In low power modes (V1_standby mode and Vbat_standby mode) the devices can receive
two types of wake up signals from the LIN bus (configurable by SPI bit LIN_WU_CONFIG
(Config Reg)):
Recessive-Dominant-recessive pattern with t > tdom_LIN (default, according LIN 2.2a)
State Change recessive-to-dominant or dominant-to-recessive (according LIN 2.1)
Pattern Wake-up (default)
Figure 29. Wake-up behavior according to LIN 2.2a
/,1UHFHVVLYH
/,1GRPLQDQW
96XSSO\
96XSSO\
WGRP/,1
VOHHSPRGH VWDQGE\PRGH
9ROWDJHDW/,13LQRI/,13K\VLFDO/D\HUGHYLFH
RUVLPLODUPRGHQDPLQJ
*$3*&)7
DS11546 Rev 5 87/197
L99DZ100G, L99DZ100GP Application information
196
Status change wake-up - Recessive-to-dominant
Normal wake-up can occur when the LIN transceiver was set in standby mode while LIN
was in recessive (high) state. A dominant level at LIN for t > tLINBUS, will switch the devices
to Active mode.
Status change wake-up - Dominant-to-recessive
If the LIN transceiver was set in standby mode while LIN was in dominant (low) state,
recessive level at LIN for t > tLINBUS, will switch the devices to Active mode.
4.9.4 Receive-only mode
The LIN transmitter can be disabled in Active mode by setting the bit LIN_REC_ONLY
(CR2). In this mode it is possible to listen to the bus but not sending to it.
4.10 High-speed CAN bus transceiver
Figure 30. RxDC pin
'LJLWDO
ORJLF
*1'
9
'DWD2XW
'DWD,Q
(QDEOH
*1'
(6'SURW
("1($'5
Application information L99DZ100G, L99DZ100GP
88/197 DS11546 Rev 5
4.10.1 Features:
ISO 11898-2:2003 and ISO 11898-5:2007 compliant
ISO 11898-6: 2013 compliant (Selective wake-up functionality up to 500kbps); only
L99DZ100GP
HS-CAN cell has been designed according to “Requirements for partial networking
(version 2.2)” and “Hardware requirements for transceivers (version 1.3)”
Supports pretended networking
Listen mode (transmitter disabled)
Enhanced Voltage Biasing according to ISO 11898-6:2013
SAE J2284 compliant
Bitrate up to 1Mbit/s.
Function range from -27V to +40V DC at CAN pins.
GND disconnection fail safe at module level.
GND shift operation at system level.
Micro controller Interface with CMOS compatible I/O pins.
ESD and transient immunity according to ISO7637 and EN / IEC61000-4-2
Matched output slopes and propagation delay
DS11546 Rev 5 89/197
L99DZ100G, L99DZ100GP Application information
196
4.10.2 CAN transceiver operating modes
Figure 31. CAN transceiver state diagram
TRX Ready State
In this state the bus-biasing is on. The Frame Decoder is enabled, if selective wake-up is
activated (SWEN=1).
The transmitter and receiver can be configured by SPI (RXEN, TXEN) as follows:
TRX Standby (default): transmitter and receiver disabled
TRX Listen: transmitter disabled, receiver enabled
TRX Normal: transmitter enabled, receiver enabled
6%&
$FWLYH
75;6OHHS
75;%,$6 &$1&RPPXQLFDWLRQ
7LPHRXW
)(&
)ODJ&$172
6%&
9EDW6WDQGE\
75;6OHHS
75;%,$6
&$1&RPPXQLFDWLRQ
7LPHRXW
)(&
)ODJ&$172
,QWHUUXSW5['&1,17

75;%,$6
&$1&RPPXQLFDWLRQ
7LPHRXW
)(& 
)ODJ&$172
,QWHUUXSW5['&

6:(1 RU31:(1 
:DNHXSSDWWHUQ
:83
)ODJ:83
,QWHUUXSW5['&1,17RQO\
IRU31:(1 
2U
*275;5($'< 
75;5HDG\
63,FPG
(QDEOH9EDW6WE\0RGH
6:(1 
:DNHXS)UDPH:8)
)ODJV:83:8):$.(&$1
,QWHUUXSW1RQH
RU
)UDPH'HWHFWLRQ(UURU
)ODJ)'(UU
,QWHUUXSW1RQH
6:(1 
:DNHXS)UDPH:8)
)ODJV:83:8):$.(&$1
,QWHUUXSW5['&
RU
)UDPH'HWHFWLRQ(UURU
)ODJ)'(UU
,QWHUUXSW5['&
RU
*275;5'< 
6:(1 
:DNHXS)UDPH:8)
)ODJV:83:8):$.(&$1
,QWHUUXSW5['&1,17
RU
)UDPH'HWHFWLRQ(UURU
)ODJ)'(UU
,QWHUUXSW5['&1,17
2U
:DNHE\63,LI*275;5'<
63,FPG
(QDEOH96WE\0RGH
*275;5'<
6%&
9 6WDQGE\
63,FPG
(QDEOH9%$7VWE\
6:(1 $1'31:B(1 

:DNHXSSDWWHUQ:83
)ODJV:83:$.(&$1
,QWHUUXSW5['&
2U
*275;5'< 
6:(1 $1'31:B(1 

:DNHXSSDWWHUQ
:83
)ODJV:83:$.(&$1
,QWHUUXSW5['&1,17
2U
:DNHE\63,LI*275;5'<
6:(1 RU31:(1 

:DNHXSSDWWHUQ
:83
)ODJ:83
,QWHUUXSW5['&1,17RQO\IRU
31:(1  6:(1 
:DNHXSSDWWHUQ
:83
)ODJ:83
6:(1 
:DNHXSSDWWHUQ
:83
)ODJV:83:$.(&$1
,QWHUUXSW1RQH
75;6OHHS
3RZHU8S5HVHW
63,FPG
(QDEOH96WE\0RGH
:DNHE\63,LI*2 75;5'<
1RWH,Q3UHWHQGHG1HWZRUNLQJFRQILJXUDWLRQ31:B(1 D:83OHDGVWR
x7UDQVFHLYHUWUDQVLWLRQLQWR75;%,$6PRGHQR6%&PRGHWUDQVLWLRQ
x,QWHUUXSWDW5['&DQG1,17
7KH:DNHXS)UDPHGHFRGHULVWXUQHGRIIPLQLPL]HGFXUUHQWFRQVXPSWLRQ
1RWH&$172,QWHUUXSWRQ5['&DQG1,17FDQEHPDVNHGE\63,&5&$172,54(1!
7UDQVLWLRQ
6:(1 ! !)(& 
,QLWLDO9DOXH
)(& 
*$3*&)7
Application information L99DZ100G, L99DZ100GP
90/197 DS11546 Rev 5
TRX BIAS State
In this transceiver state the bus biasing is on and the Automatic Voltage Biasing is active
(i.e. transceiver enters TRX_Sleep at t > tSilence and turns off the biasing). The Frame
Decoder is enabled if selective wake-up is configured (SWEN = 1).
The CAN transmitter is disabled. The receiver can be configured by SPI (RXEN) as follows:
TRX Standby(default): receiver disabled
TRX Listen: receiver enabled
The CAN receiver is capable to detect a wake-up pattern (WUP) or a wake-up frame (WUF;
if selective wake-up is enabled by SWEN = 1). In V1_standby mode and Active mode, a
wake-up is indicated to the micro-controller by an interrupt signal and the transceiver enters
TRX_Ready State (receiver and transmitter according to setting of TXEN and RXEN). After
serving the interrupt, the micro controller can enable the receiver and transmitter by setting
TXEN = 1 and RXEN = 1.
In case of a Frame-Detect-Error (FDERR = 1), an automatic wake up is performed and the
selective wakeup feature is disabled (SWEN = 0).
TRX SLEEP State
After Power-on the CAN transceiver enters TRX_Sleep state. In this state, the CAN
transceiver is disabled and the biasing is turned off. Transmitter and receiver are disabled
(TRX_Standby state). The CAN selective wakeup reference oscillator and the Frame
Decoder are off. After the detection of CAN communication (WUP), an interrupt signal is
generated and the transceiver enters TRX_Ready state (if SWEN = 0) or TRX_BIAS state (if
SWEN = 1). Receiver and transmitter are configured according to setting of TXEN and
RXEN.
TRX_Sleep state is entered automatically after a CAN communication timeout (see
Section 4.10.3: Automatic voltage biasing)
4.10.3 Automatic voltage biasing
The Automatic Voltage Biasing is described in ISO 11898-6:2013. This feature is active in all
transceiver low-power modes independent of the SBC operating modes and independent if
selective wake-up is enabled or not (SWEN (CR 1) = 0 or SWEN = 1).
If there has been no activity on the bus for longer than tSilence, the bus lines are biased
towards 0V via the receiver input resistors Rin. If wake-up activity on the bus lines is
detected (Wake-up pattern, WUP), the bus lines are biased to VCANHrec respectively
VCANLrec via the internal receiver input resistors Rin. The biasing is activated not later than
tBias.
4.10.4 Wake-up by CAN
The devices support 2 wake-up modes. The selective wake-up according to ISO 11898-
6:2013 or the wake-up by any bus activity according to ISO 11898-2:2003/-5:2007 (default
configuration). The wake-up behavior can be configured by SPI.
Wake-up by CAN pattern (WUP)
The default setting for the wake up behavior after Power-on reset is the wake-up by regular
communication on the CAN bus according to ISO 11898-5:2007 (SWEN=0). When the CAN
DS11546 Rev 5 91/197
L99DZ100G, L99DZ100GP Application information
196
transceiver is in a low power mode (TRX_BIAS or TRX_Sleep) the device can be woken up
by sending 2 consecutive dominant bits separated by a recessive bit.
A wake-up can be detected if the CAN transceiver was set in standby mode while the CAN
bus was in recessive (high) state or dominant (low) state (see Figure 32: CAN wake up
capabilities).
Figure 32. CAN wake up capabilities
For details, see Figure 31: CAN transceiver state diagram
Wakeup by Wake-up Frame (WUF)
In this configuration, the wake-up behavior is according to ISO 11898-6:2013. This option is
activated by setting SWEN = 1. Upon reception of a valid wake up frame, an interrupt will be
generated, the WUF flag will be set and the device enters Active mode.
The included frame-error-counter according ISO 11898-6:2013 is reset whenever selective
wake-up is set to enable and whenever tSilence has expired in TRX BIAS state (i.e. either on
a transition SWEN = 0 -> 1 or on a transition TRX BIAS -> TRX Sleep).
To detect a failure of the internal 32 MHz oscillator, the following mechanism is
implemented. While selective wake-up is enabled a timer is started with each recessive to
dominant edge. After 64 µs and with periodic 64 µs timer, a check is performed on CAN PN
oscillator activity, and if an oscillator fail is detected, the osc_mon bit is set to ‘1’.
Subsequently the device enters wake-up mode according to ISO11898-5 (wake-up pattern
wake-up).
For details, see Figure 31: CAN transceiver state diagram.
Sequence for enabling selective wakeup
After Power-On-Reset, the selective wakeup feature is disabled. The PN Configuration
Registers have to be read and verified by the microcontroller in order to ensure a valid
configuration. A read operation to Registers CR23 to CR29 is required to allow enabling the
selective wake-up feature (set SWEN=1). SWRD_CRxx (SR 12) bits will indicate a valid
read operation. The SWRD_CRxx bits are reset to 0 with every WRITE operation.
$&7,9( 67$1'%< $&7,9(
&$15;
67$7(
WILOWHU WILOWHU WILOWHU
&$1SDWWHUQZDNHXS
$&7,9( 67$1'%< $&7,9(
&$15;
67$7(
WILOWHU WILOWHU WILOWHU
&$1SDWWHUQZDNHXSZLWKGRPLQDQWVWDWHEHIRUH6WDQGE\
WZDNH
W
ZDNH
*$3*&)7
Application information L99DZ100G, L99DZ100GP
92/197 DS11546 Rev 5
When all SWRD_CRxx bits are set, SWEN can be set to enable the Selective Wakeup
function. In case SYSERR (SR 12) is set while Selective Wakeup is enabled, the Selective
Wakeup will be disabled automatically. In case SYSERR is set, enabling the Selective
Wakeup function is blocked. While selective wake-up is enabled (SWEN = 1), writing to
CR23 – CR29 is blocked but SWEN is reset to ‘0’. To re-configure the selective wakeup
feature, it is recommended to set SWEN = 0 before writing to CR23 - CR29.
Wake up from TRX SLEEP
If the CAN Transceiver is in TRX_Sleep state the CAN frame detection logic is disabled. The
wake up can be done in two steps. To enable the CAN frame detection logic a wake up
pattern must be sent on the bus. With the detection of the wake up pattern an automatic
state transition to TRX_BIAS State is done. WUP flag is set. In TRX_BIAS State the CAN
frame detection logic is enabled. If there is no bus communication for longer than tSilence an
automatic state transition to TRX_Sleep state will be done and the CAN frame detection
logic will be disabled. At frame error counter (FECNT_x) overflow, a wake up will be
performed and the selective wakeup feature will be disabled. For details, see Figure 31:
CAN transceiver state diagram.
4.10.5 CAN looping
If CAN_LOOP_EN (CR 2) is set the TxD_C input is mapped directly to the RxD_C pin. This
mode can be used in combination with the CAN Receive-only mode, to run diagnosis for the
CAN protocol handler of the micro controller.
4.10.6 Pretended networking
To support pretended networking concepts, the devices can be configured as follows:
V1_standby mode or Active mode (if watchdog is required)
Pretended Networking enabled (PNW_EN (CR 2) = 1)
In this configuration, the microcontroller is supplied by V1 in low current mode. The CAN
Automatic Voltage Biasing is active. Upon incoming CAN messages, the biasing is turned
on (TRX_BIAS State) and an interrupt is generated. If the device is in V1_standby mode it
remains in this mode.
The incoming CAN frames are passed to the microcontroller via the RxD_C signal line for
decoding.
4.10.7 CAN error handling
The devices provide the following four error handling features. After Power-on Reset (VS >
VPOR) the CAN transceiver is disabled. The transceiver is enabled by setting
CAN_GO_TRX_RDY(CR 1) = 1. The CAN transmitter will be disabled automatically in case
of the following errors:
Dominant TxD_C time out
CAN permanent recessive
RxD_C permanent recessive
Thermal Shutdown 1
The CAN receiver is not disabled in case of any failure condition.
DS11546 Rev 5 93/197
L99DZ100G, L99DZ100GP Application information
196
Dominant TxDC time out
If TXD_C is in dominant state (low) for t > tdom(TxDC) the transmitter will be disabled,
CAN_TXD_DOM (SR 2) will be latched and can be read and optionally cleared by SPI. The
transmitter remains disabled until the status register is cleared.
CAN Permanent Recessive
If TXD_C changes to dominant (low) state but CAN bus does not follow for 4 times, the
transmitter will be disabled, CAN_PERM_REC (SR 2) will be latched and can be read and
optionally cleared by SPI. The transmitter remains disabled until the status register is
cleared.
CAN Permanent Dominant
If the bus state is dominant (low) for t > tCAN a permanent dominant status will be detected.
CAN_PERM_DOM (SR 2) will be latched and can be read and optionally cleared by SPI.
The transmitter will not be disabled.
RXDC Permanent Recessive
If RXD_C pin is clamped to recessive (high) state, the controller is not able to recognize a
bus dominant state and could start messages at any time, which results in disturbing the
overall bus communication. Therefore, if RXD_C does not follow TXD_C for 4 times the
transmitter will be disabled. CAN_RXD_REC (SR 2) will be latched and can be read and
optionally cleared by SPI. The transmitter remains disabled until the status register is
cleared.
4.11 Serial Peripheral Interface (ST SPI Standard)
A 32-bit SPI is used for bi-directional communication with the microcontroller.
The SPI is driven by a microcontroller with its SPI peripheral running in following mode:
CPOL = 0 and CPHA = 0. For this mode input data is sampled by the low to high transition
of the clock CLK, and output data is changed from the high to low transition of CLK.
This device is not limited to microcontroller with a built-in SPI. Only three CMOS-compatible
output pins and one input pin is needed to communicate with the device. A fault condition
can be detected by setting CSN to low. If CSN = 0, the DO-Pin reflects the global error flag
(fault condition) of the device.
Chip Select Not (CSN)
The input Pin is used to select the serial interface of this device. When CSN is high, the
output Pin (DO) is in high impedance state. A low signal activates the output driver and
a serial communication can be started.
The state during CSN = 0 is called a communication frame.
If CSN = low for t > tCSNfail the DO output is switched to high impedance in order to not
block the signal line for other SPI nodes.
Serial Data In (DI)
The input Pin is used to transfer data serial into the device. The data applied to the DI is
sampled at the rising edge of the CLK signal and shifted into an internal 32-bit shift
register. At the rising edge of the CSN signal the content of the shift register is
transferred to Data Input Register. The writing to the selected Data Input Register is
only enabled if exactly 32-bit are transmitted within one communication frame (i.e. CSN
Application information L99DZ100G, L99DZ100GP
94/197 DS11546 Rev 5
low). If more or less clock pulses are counted within one frame the complete frame is
ignored. This safety function is implemented to avoid an activation of the output stages
by a wrong communication frame.
Note: Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel
operation of the SPI bus by controlling the CSN signal of the connected IC's is
recommended.
Serial Data Out (DO)
The data output driver is activated by a logical low level at the CSN input and will go
from high impedance to a low or high level depending on the global error flag (fault
condition). The first rising edge of the CLK input after a high to low transition of the
CSN Pin will transfer the content of the selected status register into the data out shift
register. Each subsequent falling edge of the CLK will shift the next bit out.
Serial Clock (CLK)
The CLK input is used to synchronize the input and output serial bit streams. The data
input (DI) is sampled at the rising edge of the CLK and the data output (DO) will change
with the falling edge of the CLK signal. The SPI can be driven with a CLK Frequency up
to 4 MHz.
4.12 Power supply failure
4.12.1 VS supply failure
VS overvoltage
If the supply voltages VS reaches the overvoltage threshold VSOV:
LIN remains enabled
CAN remains enabled
OUT1 to OUT_14 are turned off (default).
The shutdown of outputs may be disabled by SPI (VS_OV_SD_EN (CR 3) = 0)
Charge pump is disabled (and is switched on automatically in case the supply voltage
recovers to normal operating voltage)
H-bridge gate driver and heater MOSFET gate driver are switched into sink condition
ECV is switched in high impedance state and ECDR is discharged by RECDRDIS (to
ensure the gate of the external MOSFET is discharged => EC mode considered as off)
Recovery of outputs after overvoltage condition is configurable by SPI:
VS_LOCK_EN (CR 3) = 1: outputs are off until Read&Clear VS_OV (SR 2).
VS_LOCK_EN (CR 3) = 0: outputs turned on automatically after VS overvoltage
condition has recovered.
The overvoltage bit VS_OV (SR 2) is set and can be cleared with a ‘Read&Clear
command. The overvoltage bit is reset automatically if VS_LOCK_EN (CR 3) = 0 and
the overvoltage condition has recovered.
DS11546 Rev 5 95/197
L99DZ100G, L99DZ100GP Application information
196
VS undervoltage
If the supply voltage VS drops below the under voltage threshold voltage (VSUV):
LIN remains enabled
CAN remains enabled
OUT1 to OUT14 are turned off (default).
The shutdown of outputs may be disabled by SPI (VS_UV_SD_EN (CR 3) = 0)
Heater MOSFET gate driver switched into sink condition
ECV is switched in high impedance state and ECDR is discharged by RECDRDIS (to
ensure the gate of the external MOSFET is discharged => EC mode considered as off)
Recovery of outputs after undervoltage condition is configurable by SPI:
VS_LOCK_EN (CR 3) = 1: outputs are off until Read&Clear VS_UV (SR 2).
VS_LOCK_EN (CR 3) = 0: outputs turned on automatically after VS undervoltage
condition has recovered.
The undervoltage bit VS_UV (SR 2) is set and can be cleared with a ‘Read&Clear’
command. The undervoltage bit is removed automatically if VS_LOCK_EN (CR 3) = 0
and the undervoltage condition has recovered.
4.12.2 VSREG supply failure
VSREG overvoltage
If the supply voltages VSREG reaches the overvoltage threshold VSREG_OV:
LIN is switched to high impedance
CAN remains enabled
OUT15 and OUT_HS are turned off (default).
The shutdown of outputs may be disabled by SPI (VSREG_OV_SD_EN (CR 3) = 0)
Recovery of outputs after overvoltage condition is configurable by SPI:
VSREG_LOCK_EN (CR 3) = 1: outputs are off until Read&Clear VSREG_OV
(SR 2).
VSREG_LOCK_EN (CR 3) = 0: outputs turned on automatically after VSREG
overvoltage condition has recovered.
The overvoltage bit VSREG_OV (SR 2) is set and can be cleared with a ‘Read&Clear
command. The overvoltage bit is reset automatically if VSREG_LOCK_EN (CR 3) = 0
and the overvoltage condition has recovered.
Application information L99DZ100G, L99DZ100GP
96/197 DS11546 Rev 5
VSREG undervoltage
If the supply voltage VSREG drops below the under voltage threshold voltage (VSREG_UV):
LIN is switched to high impedance
CAN remains enabled
OUT15 and OUT_HS are turned off (default).
The shutdown of outputs may be disabled by SPI (VSREG_UV_SD_EN (CR 3) = 0)
Recovery of outputs after undervoltage condition is configurable by SPI:
VSREG_LOCK_EN (CR 3) = 1: outputs are off until Read&Clear VSREG_UV
(SR 2).
VSREG_LOCK_EN (CR 3) = 0: Outputs turned on automatically after VSREG
undervoltage condition has recovered.
The undervoltage bit VSREG_UV (SR 2) is set and can be cleared with a ‘Read&Clear’
command. The undervoltage bit is removed automatically if
VSREG_LOCK_EN (CR 3) = 0 and the undervoltage condition has recovered.
DS11546 Rev 5 97/197
L99DZ100G, L99DZ100GP Application information
196
4.13 Temperature warning and thermal shutdown
Figure 33. Thermal shutdown protection and diagnosis
Note: The Thermal State machine will recover the same state were it was before entering Standby
mode. In case of a TSD2 it will enter TSD1 state.
$FWLYH
0RGH
6WDQGE\0RGHV
GXULQJF\FOLFVHQVH
7HPSHUDWXUH
:DUQLQJ
'LDJQRVLV7: 
76'
$OORXWSXWVDQG9RII
9RQ
'LDJQRVLV76' 
7M!76'
Ã5HDGDQG&OHDU¶
25
3RZHURQUHVHW
76'
$OORXWSXWVDQG9RII
9RIIIRUW W
76'
'LDJQRVLV76' 
7M!76'
)RUFHG
9EDWBVWDQGE\
0RGH
[76'
:DNHXSHYHQW
3RZHURQUHVHW
Ã5HDGDQG&OHDU¶
25
3RZHURQUHVHW
7M!7Z
W!W
76'
3RZHU2Q5HVHW
$OORXWSXWVLQFO9RII
9V!9SRU
1RWH,QWKHUPDOFOXVWHUPRGH76'&RQILJ 
RQO\WKHFRQFHUQHGRXWSXWFOXVWHUZLOOEHVZLWFKHGRII
("1($'5
Application information L99DZ100G, L99DZ100GP
98/197 DS11546 Rev 5
4.14 Power outputs OUT1..15 and OUT_HS
The component provides a total of 6 half bridges outputs OUT1..6 to drive motors and 10
stand alone high-side outputs OUT7..15 and OUT_HS to drive e.g. LED’s, bulbs or to supply
contacts. All high-side outputs beside OUT_HS and OUT15 are supplied by the pin VS and
OUT_HS and OUT15 are supplied by the buffered supply VSREG
. OUT_HS is intended to be
used as contact supply. Beside OUT15 and OUT_HS the high-side switches can be
activated only in case of running charge pump. OUT15 and OUT_HS can be activated also
in standby modes.
All high-side and low-side outputs switch off in case of:
VS (VSREG) overvoltage and undervoltage (depending on configuration, see
Section 4.12.2: VSREG supply failure)
Overcurrent (depending on configuration, auto recovery mode (see below)
Overtemperature (TSD1x/ cluster or single mode)
Fail safe event
Loss of GND at SGND pin
In case of overcurrent or overtemperature (TSD1_CLx (SR 6)) condition, the drivers will
switch off. The according status bit will be latched and can be read and optionally cleared by
SPI. The drivers remain off until the status is cleared. In case overvoltage/ undervoltage
condition, the drivers will be switched off. The according status bit will be latched and can be
read and optionally cleared by SPI. If VSREG_LOCK_EN (CR 3) respectively
VS_LOCK_EN (CR 3) are set, the drivers remain off until the status is cleared. If the
VS_LOCK_EN or VSREG_LOCK_EN) bit is set to 0, the drivers will switch on automatically
if the error condition disappears. Undervoltage and overvoltage shutdown can be disabled
by SPI. In case of open-load condition, the according status register will be latched. The
status can be read and optionally cleared by SPI. The high and low-side outputs are not
switched off in case of open-load condition.
For OUT1..OUT8 and OUT_HS the auto recovery feature (OUTx_OCR (CR 7)) can be
enabled. If these bits are set to 1 the driver will automatically restart from an overload
condition. This overload recovery feature is intended for loads which have an initial current
higher than the overcurrent limit of the output (e.g. Inrush current of cold light bulbs). The
SPI bits OUTx_OCR_ALERT (SR4) indicate that the output reached auto-recovery
condition.
Note: The maximum voltage and current applied to the High-side Outputs is specified in the
‘Absolute Maximum Ratings’. Appropriate external protection may be required in order to
respect these limits under application conditions. In case of outputs switch off due to loss of
ground at SGND pin, the device has to be re-started through a power off on both VS and
VSREG
.
Each of the stand alone high-side driver outputs OUT7 … OUT15 and OUT_HS can be
driven with an internally generated PWM signal, an internal Timer or with DIR1 respectively
DIR2. See table below.
DS11546 Rev 5 99/197
L99DZ100G, L99DZ100GP Application information
196
4.15 Auto-recovery alert and thermal expiration
The thermal expiration feature provides a robust protection against possible microcontroller
malfunction, switching off a given channel if continuously driven in auto-recovery. If the
temperature of the related cluster increases by more than 30 °C after reaching the auto-
recovery time tAR, the channel is switched off. The thermal expiration status bit
OUTx_TH_EX (SR 3) is set.
During auto-recovery condition, OUTx_OCR_ALERT (SR 4) is set. The Alert bit indicates
that an overload condition (load in-rush, short-circuit, etc) is present.
The thermal expiration feature is controlled by SPI (OUTx_OCR_THX_EN (CR 8).
Table 66. Power output settings
OUTx_3 OUTx_2 OUTx_1 OUTx_0 Description
00 0 0OFF
00 0 1ON
00 1 0
Timer1 output is controlled by timer1; starting with ON
phase after timer restart
00 1 1
Timer2 output is controlled by timer2; starting with ON
phase after timer restart
01 0 0PWM1
01 0 1PWM2
01 1 0PWM3
01 1 1PWM4
10 0 0PWM5
10 0 1PWM6
10 1 0PWM7
10 1 1PWM8
11 0 0PWM9
11 0 1PWM10
11 1 0DIR1
11 1 1DIR2
Application information L99DZ100G, L99DZ100GP
100/197 DS11546 Rev 5
Figure 34. Example of long auto-recovery on OUT7. Temperature acquisition starts after tAR,
thermal expiration occurs after a T = 30°
DS11546 Rev 5 101/197
L99DZ100G, L99DZ100GP Application information
196
Figure 35. Block diagram of physical realization of AR alert and thermal expiration
4.16 Charge pump
The charge pump uses two external capacitors, which are switched with fCP
. The output of
the charge pump has a current limitation. In standby mode and after a thermal shutdown
has been triggered the charge pump is disabled. If the charge pump output voltage remains
too low for longer than TCP
, the power-MOS outputs and the EC-control are switched off.
The H-bridge MOSFET gate drivers and the Heater MOSFET gate driver are switched to
resistive low and CP_LOW (SR 2) is set. This bit has to be cleared to reactivate the drivers.
If the bit CP_LOW_CONFIG (Configuration Register 0x3F) is set to ‘1’, CP_LOW (SR2)
behaves as a ‘live’ bit and the outputs are re-activated automatically upon recovery of the
charge pump output voltage.
In case of reaching the overvoltage shutdown threshold VSOV the charge pump is disabled
and automatically restarted after VS recovered to normal operating voltage.
Figure 36. Charge pump low filtering and start up implementation
#BUU4VQQMZ
0WFSDVSSFOU
DPNQ
$VSSFOU
4FOTF
*UI
5@EBUB
-BNQ%SJWFS*$
(BUF
ESJWFS
0/
DPNNBOE
%JBHOPTUJD
$
)4@&OBC
"3MJNJU
SFBDIFE
04$
%JHJUBM4UBUF
.BDIJOF
"%$
5FNQTFOTF
"NQ
1PXFS.04
*$3*&)7
0$
9&3ORZ
&3
)LOWHU7LPH7
&3

W\S V
6WDUW8S%ODQNLQJ
7LPHW
VHWB&3
W\S LFD O V
3RZHU6WDJH'LVDEOH
$OOSRZ HUVWDJH EH VLGH 3& KDQQH OGLVDE OHG
*DWH'ULYH2XWSXWVGLVDEOHG
&3ORZ
'
&/.
*$3*&)7
Application information L99DZ100G, L99DZ100GP
102/197 DS11546 Rev 5
4.17 Inductive loads
Each of the half bridges is built by internally connected high-side and low-side power DMOS
transistors. Due to the built-in reverse diodes of the output transistors, inductive loads can
be driven at the outputs OUT1 to OUT6 without external freewheeling diodes. The high-side
drivers OUT7 to OUT15 and OUT_HS are intended to drive resistive loads only. Therefore
only a limited energy (E < 1 mJ) can be dissipated by the internal ESD-diodes in
freewheeling condition. For inductive loads (L > 100 H) an external freewheeling diode
connected between GND and the corresponding output is required. The low-side driver at
ECV does not have a freewheel diode built into the device.
4.18 Open-load detection
The open-load detection monitors the load current in each activated output stage. If the load
current is below the open-load detection threshold for t > tOL_OUT the corresponding open-
load bit OUTx_OL (SR 5) is set in the status register.
4.19 Overcurrent detection
An overcurrent condition is detected after a filter time of tFOC and is indicated by the status
bit OUTx_OC (SR 3). In case of overcurrent, the corresponding driver switches off to reduce
the power dissipation and to protect the integrated circuit. If the outputs are not configured in
recovery mode, the microcontroller has to clear the according status bits to reactivate the
corresponding drivers.
4.20 Current monitor
The current monitor sources a current image of the power stage output current at the
current monitor pin CM, which has a fixed ratio (ICMr) of the instantaneous current of the
selected high-side driver. The signal at output CM is blanked for tcmb after switching on the
driver until correct settlement of the circuitry. The bits CM_SELx (CR 7) define which of the
outputs is multiplexed to the current monitor output CM. The current monitor output allows a
more precise analysis of the actual state of the load rather than the detection of an open-
load or overload condition. For example, it can be used to detect the motor state (starting,
free running, stalled). The current monitor output is enabled after the current-monitor
blanking time, when the selected output is switched on. If this output is off, the current
monitor output is in high impedance mode. The current monitor can be deactivated by
CM_EN (CR 7).
4.21 PWM mode of the power outputs
Description see Section 7.3: Status register overview.
4.22 Cross-current protection
The six half-brides of the device are cross-current protected by an internal delay time. If one
driver (LS or HS) is turned off, the activation of the other driver of the same half bridge will
be automatically delayed by the crosscurrent protection time. After the crosscurrent
DS11546 Rev 5 103/197
L99DZ100G, L99DZ100GP Application information
196
protection time is expired the slew-rate limited switch-off phase of the driver is changed to a
fast turn-off phase and the opposite driver is turned-on with slew-rate limitation. Due to this
behavior, it is always guaranteed that the previously activated driver is completely turned off
before the opposite driver starts to conduct.
4.23 Programmable soft-start function to drive loads with higher
inrush current
Loads with start-up currents higher than the overcurrent limits (e.g. inrush current of lamps,
start current of motors) can be driven by using the programmable soft-start function (i.e.
overcurrent recovery mode). Each driver has a corresponding overcurrent recovery bit
OUTx_OCR (CR 7). If this bit is set, the device automatically switches the outputs on again
after a programmable recovery time. The PWM modulated current will provide sufficient
average current to power up the load (e.g. heat up the bulb) until the load reaches operating
condition. The PWM frequency is defined by CR7<8:12> setting.
The device itself cannot distinguish between a real overload (e.g. short-circuit condition) and
a load characterized by operation currents exceeding the short-circuit threshold.
Examples are non-linear loads like a light bulb used on the HS outputs or a motor used on
the half bridge output with inrush and stall currents that shall be limited by the auto recovery
feature.
For the bulb, a real overload condition can only be qualified by time. For overload detection
the microcontroller can switch on the light bulbs by setting the overcurrent recovery bit for
the first e.g. 50 ms. After clearing the recovery bit, the output will be switched off
automatically if the overload condition remains.
For the half bridges the high current can be present during all motor activation and another
SW strategy must be applied to identify a SC to GND or Supply. Before running the motor
e.g. with a first SPI command all bridge LS are switched on (without auto recovery
functionality / cleared overcurrent recovery bit), all HS are switched off and a SC to Battery
can be diagnosed. With a next SPI command, all HS are switched on (without auto recovery
functionality/ cleared overcurrent recovery bit) and all LS are switched off. In this sequence,
a short to GND can be diagnosed. If in both sequences no overload condition is identified,
the motor can be run by switching on the according HS and LS each configured in auto
recovery mode (see Figure 37: Software strategy for half bridges before applying auto-
recovery mode). Such sequence can be applied before any motor activation to identify SC
just before operating the motor (in case the delay due to the 2 additional SPI commands is
not limiting the application) or in case of power up of the system resp. applied on a certain
time base.
Application information L99DZ100G, L99DZ100GP
104/197 DS11546 Rev 5
Figure 37. Software strategy for half bridges before applying auto-recovery mode
As soon as an output reaches auto-recovery condition, OUTx_OCR_ALERT (SR 4)) is set.
The Alert bit indicates that an overload condition (load in-rush, short-circuit, etc) is present.
/'=/'=
2))
21
287[+6
287[/6 287\/6
287[ 287\
96
0
*1'
287\+6
96
*1'
9EDW
21
2))
6KRUWWR9V"
1
<
""
/'=/'=
2))
21
287[+6
287[/6 287\/6
287[ 287\
96
0
*1'
287\+6
96
*1'
9EDW
6:6WHS6KRUWWRJURXQGGHWHFWLRQ
21
2))
6KRUWWR*1'"
1
<
6:6WHS6KRUWWREDWWHU\GHWHFWLRQ
%(*,1
6:5RXWLQH
+62))
/621
6:6WHS
+621
/62))
.HHS$52))
6ZLWFK/62))
6:6WHS
(1'
6:5RXWLQH
6HW$521
.HHS$52))
6ZLWFK+62))
""
$52))
("1($'5
DS11546 Rev 5 105/197
L99DZ100G, L99DZ100GP Application information
196
Figure 38. Overcurrent recovery mode
4.24 H-bridge control
The PWMH and DIRH inputs control the drivers of the external H-bridge transistors. In
single Motor mode the motor direction can be chosen with the direction input (DIRH), the
duty cycle and frequency with the PWMH input (single mode). With the SPI bits SD (CR 10)
and SDS (CR 10) four different slow-decay modes (via drivers and via diode) can be
selected using the high-side or the low-side transistors. Unconnected inputs are defined by
internal pull-down current.
Alternatively, the bridge can be driven in half bridge mode (dual mode). By setting the dual
mode bit DM (Config Reg) = 1, both half-bridges can be controlled independently.
W
,/2$'
8QOLPLWHG,QUXVK&XUUHQW
/LPLWHG,QUXVK&XUUHQWLQ
SURJUDPPDEOHUHFRYHU\PRGH
&XUUHQW/LPLWDWLRQ
*$3*&)7
Application information L99DZ100G, L99DZ100GP
106/197 DS11546 Rev 5
Table 67. H-bridge control truth table
Control
pins Control bits Failure bits Output pins
Motor
config Comment
Nb
DIRH
PWMH
HEN
SD
SDS
DM
CP_LOW
VS_OV
VS_UV
DS
TSD1
GH1
GL1
GH2
GL2
1 x x 0 x x x x x x x x RL RL RL RL H-bridge disabled
2 x x 1 x x 0 1 0 0 0 0 RL RL RL RL
Single
Charge pump voltage too low
3 x x 1 x x 0 0 x x x 1 RL RL RL RL Thermal shutdown
4 x x1xx001000L L L L Overvoltage
5 x x1xx000010L
(1) L(1) L(1) L(1) Short-circuit(1)
6 0 1 1 x x 0 0 0 0 0 0 L H H L Bridge H2/L1 on
7 x 0100000000L H LH Slow-decay mode LS1 and
LS2 on
800101000000LHL L Slow-decay mode LS1 on
910101000000L L L H Slow-decay mode LS2 on
10 1 1 1 x x 0 0 0 0 0 0 H L L H Bridge H1/L2 on
11x 0110000000H L HL Slow-decay mode HS1 and
HS2 on
1200111000000L L H L Slow-decay mode HS1 on
1310111000000HL L L Slow-decay mode HS2 on
1400110100000L L L L
Dual Half bridge mode
1501110100000L L LH
1610110100000LHL L
1711110100000LHLH
1800101100000L L L L
1901101100000L LHL
2010101100000HL L L
2111101100000HLHL
2200111100000HLHL
2301111100000HL LH
2410111100000LHH L
2511111100000LHLH
1. Only the H-bridge (low-side and high-side), in which one MOSFET is in short-circuit condition is switched off. Both
MOSFETs of the other H-bridge remain active and driven by DIRH and PWMH.
DS11546 Rev 5 107/197
L99DZ100G, L99DZ100GP Application information
196
During watchdog long-open window, the H-bridge drivers are forced off until the first valid
watchdog trigger in window mode (setting TRIG = 0 during safe window). The Control
Registers remain accessible during long open window.
4.25 H-bridge driver slew-rate control
The rising and falling slope of the drivers for the external high-side Power-MOS can be slew
rate controlled. If this mode is enabled the gate of the external high-side Power-MOS is
driven by a current source instead of a low-impedance output driver switch as long as the
drain-source voltage over this Power-MOS is below the switch threshold. The current is
programmed using the bits SLEW_x<4:0> (CR 10), which represent a binary number. This
number is multiplied by the minimum current step. This minimum current step is the
maximum source-/sink-current (IGHxrmax / IGHxfmax) divided by 31. Programming
SLEW_x <4:0> to 0 disables the slew rate control and the output is driven by the low-
impedance output driver switch.
Figure 39. H-bridge GSHx slope
4.26 Resistive low
The resistive output mode protects the devices and the H-bridge in the standby mode and in
some failure modes (thermal shutdown TSD1 (SR 1), charge pump low CP_LOW (SR 2)
and DI pin stuck at ‘1’ SPI_INV_CMD (SR 2)). When a gate driver changes into the resistive
output mode due to a failure a sequence is started. In this sequence the concerning driver is
9*6+[
W
&XUUHQW
&RQWUROOHG
&XUUHQW
&RQWUROOHG
/RZ5HVLVWLYH
6ZLWFK
&RQWUROOHG
9'6+[
W
*$3*&)7
Application information L99DZ100G, L99DZ100GP
108/197 DS11546 Rev 5
switched into sink condition for 32 s to 64 s to ensure a fast switch-off of the H-bridge
transistor. If slew rate control is enabled, the sink condition is slew-rate controlled.
Afterwards the driver is switched into the resistive output mode (resistive path to source).
4.27 Short circuit detection / drain source monitoring
The Drain - Source voltage of each activated external MOSFET of the H-bridge is monitored
by comparators to detect shorts to ground or battery. If the voltage-drop over the external
MOSFET exceeds the configurable threshold voltage VSCd_HB (DIAG_x (CR 10) for longer
t > tSCd_HB the corresponding gate driver switches off the external MOSFET and the
corresponding drain source monitoring flag DS_MON_x (SR 2) is set. The DSMON_x bits
have to be cleared through the SPI to reactivate the gate drivers. This monitoring is only
active while the corresponding gate driver is activated. If a drain-source monitor event is
detected, the corresponding gate-driver remains activated for at maximum the filter time.
When the gate driver switches on, the drain-source comparator requires the specified
settling time until the drain-source monitoring is valid. During this time, this drain-source
monitor event may start the filter time. The threshold voltage VSCd_HB can be programmed
using the SPI bits DIAG_x (CR 10).
Figure 40. H-bridge diagnosis
4.28 H-bridge monitoring in off-mode
The drain source voltages of the H-bridge driver external transistors can be monitored, while
the transistors are switched off. If either bit OL_H1L2 (CR 10) or OL_H2L1 (CR 10) is set to
0
9V
*+
96
6+
*/
96
*+
6+
*/
N
N
*DWH'ULYHU+6
*DWH'ULYHU/6
'60RQLWRULQJ+6
'60RQLWRULQJ/6
2/0RQLWRULQJ
9
7KUHV
9
7KUHV
N
N
*DWH'ULYHU+6
*DWH'ULYHU/6
'60RQLWRULQJ+6
'60RQLWRULQJ/6
2/0RQLWRULQJ
9
7KUHV
9
7KUHV
("1($'5
DS11546 Rev 5 109/197
L99DZ100G, L99DZ100GP Application information
196
1, while bit HEN (CR 1) = 1, the H-drivers enter resistive low mode and the drain-source
voltages can be monitored. Since the pull-up resistance is equal to the pull-down resistance
on both sides of the bridge a voltage of 2/3 VS on the pull-up highside and 1/3 VS on the low-
side is expected, if they drive a low-resistive inductive load (e.g. motor). If the drain source
voltage on each of these Power-MOS is less than 1/6 VS, the drain-source monitor bit of the
associated driver is set.
The open-load filter time is tOL_HB.
Figure 41. H-bridge open-load-detection (no open-load detected)
Figure 42. H-bridge open-load-detection (open-load detected)
0
P
N
N
N
9V
9V
97 9V
'60
 '
60 
97 9V
9V
*$3*&)7
0
P
N
N
N
2SHQ
9V
9
7
9V
'60
 '
60
9
7
9V
9V
*$3*&)7
Application information L99DZ100G, L99DZ100GP
110/197 DS11546 Rev 5
Figure 43. H-bridge open-load-detection (short to ground detected)
Figure 44. H-bridge open-load detection (short to VS detected)
Table 68. H-bridge monitoring in off-mode
Control bits Failure bits
Comments
Nb OL H1L2 OL H2L1 H OLTH High DSMON LS1 DSMON LS2
10 0 0 0 0 Drain-Source monitor
disabled
2 1 0 x 0 0 No open-load detected
3 1 0 0 0 1 Open-load SH2
4 1 0 0 1 1 Short to GND
5 1 0 1 1 1 Short to VS
6 0 1 x 0 0 No open-load detected
7 0 1 0 1 0 Open-load SH1
0
P
N
N
N
*1'
97 9V
'60
 '
60 
97 9V
*1'
6KRUW
9V
*$3*&)7
0
P
N
N
N
'60
 
'
60
979V
6KRUW
9V
9V 9V
97 9V
*$3*&)7
DS11546 Rev 5 111/197
L99DZ100G, L99DZ100GP Application information
196
4.29 Programmable cross current protection
The external PowerMOSFETs transistors in H-bridge (two half-bridges) configuration are
switched on with an additional delay time tCCP to prevent cross current in the halfbridge. The
cross current protection time tCCP can be programmed with the SPI bits COPT_x<3:0>
(CR 10). The timer is started when the gate driver is switched on in the device.
The PWMH module has 2 timers to configure locking time for high-side and freewheeling
low-side. The programmable time tCCP-TIM1 / tCCP-TIM2 is the same. Sequence for switching
in PWM mode is the following:
HS switch off after locking tCCP-TIM1
LS switch on after 2nd locking tCCP-TIM1
HS switch on after locking tCCP-TIM2 which starts with rising edge on PWM input
Figure 45. PWMH cross current protection time implementation
4.30 Power window H-bridge safety switch off block
The two LS Switches LS1_FSO and LS2_FSO are intended to be used to switch off the
gates of the external high-side MOSFETs in the power window h-bridge if a fatal error
happens. This block must work also in case the MOSFET driver and the according control
blocks on the chip are destroyed. Therefore it is necessary to have a complete separated
safety block on the device, which has it’s own supply and GND connection, separated from
the other supplies and GNDs. In the block is implemented an own voltage regulator and
oscillator.
The safety block is surrounded by a GND isolation ring realized by deep trench isolation.
The LS driver must work down to a lower voltage than the other circuits. The block has its
8 0 1 0 1 1 Short to GND
9 0 1 1 1 1 Short to VS
Table 68. H-bridge monitoring in off-mode (continued)
Control bits Failure bits
Comments
Nb OL H1L2 OL H2L1 H OLTH High DSMON LS1 DSMON LS2
W
&&37,0
W
&&37,0
W
SS
![W
FFS
3:0
,QSXW
+6/RJLF
/6/RJLF
W
&&37,0
W
&&37,0
W
SS
[W
FFS
3DVVLYH
)UHH:KHHOLQJ
$FWLYH
)UHH:KHHOLQJ
("1($'5
W
SS
W
FFS
W
&&37,0
W
&&37,0
W
&&37,0
3DVVLYH
)UHH:KHHOLQJ
W
&&37,0
W
&&37,0
Application information L99DZ100G, L99DZ100GP
112/197 DS11546 Rev 5
own internal supply and an own oscillator for monitoring the failure signals (WWD, V1 fail,
SPI fail & Tj) which are Manchester encoded and decoupled by high ohmic resistances. In
case of fail-safe event, both LS switches LS1_FSO and LS2_FSO are switched on.
In case of entering V1_standby mode or Vbat_standby mode both fail safe low-side
switches are switched on to minimize the current drawn by the fail safe block (e.g. oscillator
is switched off and Manchester Encoding is deactivated). Short circuit protection to VS is
active in both standby modes limiting the current to IOLimit for a filter of tSCF
.
After this filter time the fail-safe switches are switched off and LSxFSO_OC (SR 3) is set. To
reactivate the low-side functionality this bit has to be set back by a read and clear command.
In case of VS loss the fail safe switches are biased by their own output voltage to turn on the
low-side switches down to VOUT_max.
To allow verification of the Fail-Safe path, the low-side switches LS1_FSO and LS2_FSO
can be turned on by SPI (Configuration Register 0x3F bit 4: FS_FORCED)
Figure 46. LSx_FSO: low-side driver “passively” turned on, taking supply from output
pin (if main supply fails), can guarantee VLSx_FSO < VOUT_max
Figure 47. Safety concept
)LOWHUV
6WDWH
0DFKLQH
(QDEOH
/6B)62B2&
/6B)62B2&
&ORFN /6B)62B2&

/6B)62B2&
:DWFKGRJ)DLO
9)DLOXUHV
2YHU7HPS
76'
&/($5/6[B)62B2&
7[0DQFKHVWHU
(QFRGHG6LJQDOV
1RUPDOO\6ZLWFKLQJ
5[6LJQDO
95(*
*1'
6XSSO\
/RZ6LGH
'ULYHU
/RZ6LGH
'ULYHU
)DLO6DIH%ORFN
&RPSOHWH,&
/6B)62
/6B)62
7;6LJQDOV
("1($'5
7[6LJQDO
0DQFKHVWHU(QFRGHG
6LJQDOV
&ORFN
5[6LJQDO
1RUPDO2SHUDWLRQ )DLO6DIH &ORFN)DLOXUH 'DWD)DLOXUH
("1($'5
DS11546 Rev 5 113/197
L99DZ100G, L99DZ100GP Application information
196
4.31 Heater MOSFET Driver
The Heater MOSFET Driver stage is controlled by control bit GH (CR 5). The driver contains
two diagnosis features to indicate short-circuit in active mode (external MOSFET switched
on) and open-load in off state (External MOSFET switched off).
Short circuit detection in on state is realized by monitoring the drain source voltage of the
activated external MOSFET by a comparator to detect a short-circuit of SHheater to ground. If
the voltage-drop over the external MOSFET exceeds the programmed threshold voltage
VSCd_HE for longer than the drain-source monitor filter time tSCd_HE the gate driver switches
off the external MOSFET and the corresponding drain source monitoring flag
DSMON_HEAT (SR 4) is set. The drain source-monitoring bit has to be cleared by SPI to
reactivate the gate driver. The drain source monitoring is only active while the gate driver is
activated. If a drain source monitoring event is detected, the gate-driver remains activated
for the maximum filter time. The threshold voltage can be programmed by SPI bits GH_THx
(CR 10).
Open-load detection in off state is realized by monitoring the voltage difference between
SHheater and GND and supplying SHheater by a pull up current source that can be controlled
by SPI bit GH_OL_EN (CR 10). When no load is connected to the external MOSFET
source, the voltage will be pulled to VS and in case of exceeding the threshold VOLheater for
a time longer than the open-load filter time tOL_He the open-load bit GH_OL (SR 5) will be
set.
Figure 48. Heater MOSFET open-load and short-circuit to GND detection
63,
9V
92/KHDWHU
*+B2/
*DWH'ULYHU
+HDWHU026)(7
6++HDWHU
*++HDWHU
&3
,2/KHDWHU
97KUHV
'6021B+($7
("1($'5
Application information L99DZ100G, L99DZ100GP
114/197 DS11546 Rev 5
Note: RL = resistive low, L = active low, H = active high.
4.32 Controller of electro-chromic glass
The voltage of an electro-chromic element connected at pin ECV can be controlled to a
target value, which is set by the bits EC_x <5:0> (CR 11). Setting bit ECON (CR 11) enables
this function. An on-chip differential amplifier and an external MOS source follower, with its
gate connected to pin ECDR, and which drives the electro-chrome mirror voltage at pin
ECV, form the control loop. The drain of the external MOS transistor is supplied by OUT10.
A diode from pin ECV (anode) to pin ECDR (cathode) has been placed on the chip to
protect the external MOS source follower. A capacitor of at least 5 nF has to be added to pin
ECDR for loop-stability.
The target voltage is binary coded with a full-scale range of 1.5 V. If bit ECV_HV (Config
Reg) is set to 0, the maximum controller output voltage is clamped to 1.2 V without changing
the resolution of bits EC_x<5:0> (CR 11). When programming the ECV low-side driver
ECV_LS (CR 11) to on-state, the voltage at pin ECV is pulled to ground by a 1.6 low-side
switch until the voltage at pin ECV is less than dVECVhi higher than the target voltage (fast
discharge). The status of the voltage control loop is reported via SPI. Bit ECV_VHI (SR 6) is
set, if the voltage at pin ECV is higher, whereas Bit ECV_VNR (SR 6) is set, if the voltage at
pin ECV is lower than the target value. Both status bits are valid, if they are stable for at
least the filter time tFEC_VNR and tFEC_VHI. Since OUT10 is the output of a high-side driver, it
contains the same diagnose functions as the other high-side drivers (e.g. during an
overcurrent detection, the control loop is switched off). In electro-chrome mode, OUT10
cannot be controlled by PWM mode. For EMS reasons, the loop capacitor at pin ECDR as
well as the capacitor between ECV and GND has to be placed to the respective pins as
close as possible (seeFigure 49: Electro-chrome control block for details).
Pin ECDR is pulled resistively (RECDRDIS) to ground while not in electro-chrome mode.
EC glass control behavior in case of failure on OUT10:
Table 69. Heater MOSFET control truth table
Control bit Failure bits Output pin
Comment
Nb GH
ON/OFF CP_LOW VS_OV VS_UV DS TSD1 GHheater
1 x 1 x x x x RL Charge puump voltage too low
2 x 0 x x x 1 RL Thermal shutdown
3 x 0 1 x x 0 L Overload
4 1 0 0 x 1 0 L Short-circuit condition
5 x 0 0 1 0 0 L Undervoltage
6 1 0 0 0 0 0 H Heater MOFET driver enabled
7 0 0 0 0 0 0 L Heater MOFET driver enabled
DS11546 Rev 5 115/197
L99DZ100G, L99DZ100GP Application information
196
ECON (CR11) = 1 (EC glass control enabled)
OUT10 is turned ON
OUT10 settings in CR5 are ignored (PWM, DIRx, TIMERx)
OUT10 settings in CR5 are recovered when ECON is set to 0.
In case of a failure on OUT10 while ECON = 1 (overcurrent, VS overvoltage /undervoltage,
TSD1)
OUT10 is turned OFF (regardless of VS_OV_SD_EN and VS_UV_SD_EN in CR3)
DAC is reset: EC_x (CR11) set to ‘000000’
ECDR pin is pulled to GND
ECON (CR11) remains ‘1’
ECV_LS (CR11) remains as programmed
Re-start of EC control after OUT10 failure
Read&Clear or automatic restart (if CR3 Vs_LOCK_EN = 0)
Write EC_x (CR11)
Figure 49. Electro-chrome control block
4.33 Temperature warning and shutdown
If any of the cluster (see Section 4.34: Thermal clusters) junction temperatures rises above
the temperature warning threshold TW, the temperature warning flag TW (SR 2) is set after
the temperature warning filter time tjtft and can be read via SPI. If the junction temperature
increases above the temperature shutdown threshold (TSD1), the thermal shutdown bit
TSD1 (SR 1) is set and the power transistors of all output stages are switched off to protect
the device after the thermal shutdown filter time. The gates of the H-bridge and the heater
MOSFET are discharged by the ‘Resistive Low’ mode. After these bits have been cleared,
the output stages are reactivated. If the temperature is still above the thermal warning
threshold, the thermal warning bit is set after tjtft. Once this bit is set and the temperature is
above the temperature shutdown threshold, temperature shutdown is detected after tjtft and
("1($'5
*1'
/RJLF
63,
'$&
(&0LUURU
96
(&'5
9ROWDJHQRWUHDFKHG
2YHUFXUUHQW
287
(&9
9ROWDJHWRRKLJK
96FRPSDWLEOH
Q)
Q)
$OOFRPSRQHQWVPXVWEHSODFHGFORVH
WRJHWKHUDQGFRQQHFWHGZLWKDYHU\
ORZLPSHGDQFH



96FRPSDWLEOH
Application information L99DZ100G, L99DZ100GP
116/197 DS11546 Rev 5
the outputs are switched off. Therefore the minimum time after which the outputs are
switched off after the bits have been cleared in case the temperature is still above the
thermal shutdown threshold is twice the thermal warning/ thermal shutdown filter time tjtft.
4.34 Thermal clusters
In order to provide an advanced on-chip temperature control, the power outputs are
grouped in six clusters with dedicated thermal sensors. The sensors are suitably located on
the device (see Figure 50: Thermal clusters identification). In case the temperature of an
output cluster reaches the thermal shutdown threshold, the outputs assigned to this cluster
are shut down (all other outputs remain active). Each output cluster has a dedicated
temperature warning and shutdown flag (SR 6) and the cluster temperature can be read out
by SPI.
Hence, the thermal cluster concept allows to identify a group of outputs in which one or
more channels are in overload condition.
If thermal shutdown has occurred within an output cluster, or if temperature is rising within a
cluster, it may be desired to identify which of the output (s) is (are) determining the
temperature increase. An additional evaluation, based on current monitoring and cluster
temperature read-out, supports identification of the outputs mainly contributing to the
temperature increase. The cluster temperatures are available in SR 7, SR 8 and SR 9 and
can be calculated from the binary coded register value using the following formula:
Decimal code = (350 – Temp) / 0.488
Example:
T = -40 °C => decimal code is 799 (0x31F)
T = 25 °C => decimal code is 666 (0x29A)
Thermal clusters can be configured using bit TSD_CONFIG (Config Reg):
Standard mode (default): as soon as any cluster reaches thermal threshold the device
is switched off. V1 regulator remains on and is switched off reaching TSD2.
Cluster mode: only the cluster which reached shutdown temperature is switched off.
If Cluster Th_CL6 (global) or Cluster Th_CL5 (Voltage Regulators) reachTSD1, the whole
device is OFF (beside V1).
Note: Clusters related to power outputs (clusters 1 to 4, see Figure 50: Thermal clusters
identification) will be managed digitally only, by mean of the ADC conversion of related
thermal sensors, while clusters 5 and 6 will be managed in an analog way (comparators)
since ADC can be off, e.g. in V1_standby mode. Temperature reading provided by ADC may
differ from real junction temperature of a specific output due to spatial placement of thermal
sensor. Such an effect is more visible during fast thermal increases of junction temperature.
For some of the Power outputs, located between two different sensors, it may happen that
temperature raising also affects the adjacent Cluster.
DS11546 Rev 5 117/197
L99DZ100G, L99DZ100GP Application information
196
Figure 50. Thermal clusters identification
4.35 VS compensation (duty cycle adjustment) module
All stand-alone HS outputs can be programmed to calculate some internal duty cycle
adjustment to adapt the duty cycle to a changing supply voltage at VS. This feature is aimed
to avoid LED brightness flickering in case of alternating supply voltage. The correction of the
duty cycle is based on the following formula:
Equation 1: Duty cycle correction
Vth = Duty cycle reference voltage: defined as 10 V

6+
*+
*/
6+
*+
*/
&3
&33
&33
&30
&30
6+KHDWHU
*+KHDWHU
287
287
287
287
287
287
9B
96
287
287
287
287
287B+6
/,1
7['B/
5['B/1,17
&61
'2
',
&/.
',5+
5['B&
3:0+
7['B&
&0
',5
&$16XSSO\
&$1B+
6*1'
9B
(&9
287
96
96
3*1'
287 &$1B/
287
287
287
287
'HEXJ
',5
/6B)62
/6B)62
1,17
965(*
:8
(&'5
15(6(7
7KHUPDO&OXVWHU
7KHUPDO&OXVWHU
7KHUPDO&OXVWHU
7KHUPDO&OXVWHU
7KHUPDO&OXVWHU
287
*$3*&)7
Table 70. Thermal cluster definition
Th_CL1 Th_CL2 Th_CL3 Th_CL4 Th_CL5 Th_CL6
5 W Driver +
Mirror-y+OUT15
Door
lock+OUT_HS Folder+Mirror-x 10W driver high
ohmic channels
VREG 1
VREG 2 Global
TW & TSD1 Both
digitally managed
TW & TSD1 Both
digitally managed
TW & TSD1 Both
digitally managed
TW & TSD1 Both
digitally managed
TW digitally
managed
TSD1 & TSD2
Both analog
managed
TW digitally
managed
TSD1 Analog
managed
DutyCycle Vth VLED
VBat VLED
--------------------------------- DCnom
=
Application information L99DZ100G, L99DZ100GP
118/197 DS11546 Rev 5
VBat = Reference voltage: defined as voltage at pin VS
VLED = Voltage drop on the external LED
DCnom = Nominal Duty Cycle programmed by SPI< PWMx DCx>
To be compatible to different LED load characteristics the value for VLED can be
programmed for each output by a dedicated control register OUT7_VLED …
OUT_HS_VLED (CR 18 to CR 22). Auto compensation features can be activated for all HS
outputs each by setting OUTx_AUTOCOMP_EN (CR 18 to CR 22).
The programmed LED voltage (OUTx_V_LED (CR18 to CR22)) must be lower than Vth
(10 V).
Figure 51. Block diagram VS compensation (duty cycle adjustment) module
4.36 Analog digital converter
Voltage signals VS, VSREG
, VWU and TH_CL1..6 are read out sequentially. The voltage
signals are multiplexed to an ADC. The ADC is realized as a 10 Bit SAR, that is sampled
with the main clock fclk2 / fADC.
Each channel will be converted with a conversion time tcon, therefore an update of the ADC
value is available every tcon * 9. In case of WU is directly connected to Clamp 30, the input
must be protected by a series resistance of typical 1k to sustain reverse battery condition.
5HJLVWHU'XW\&\FOH+6
%LWDFFXUDF\ 1RPLQDO
9ROWDJH #9
63,
63,
+6$VVLJQPHQWDQG/RDG$GDSWLRQ 96&RPSHQVDWLRQ
&DOFXODWLRQ
 5HJLVWHUDGMXVWHG
'XW\&\FOH+6 %LWDFFXUDF\
+6
+6
+6
+6
$'&96
,QWHUQDO
$GMXVWPHQW
212))
%,79
/('
YROWDJHOHYHO
99
*$3*&)7
DS11546 Rev 5 119/197
L99DZ100G, L99DZ100GP Application information
196
Figure 52. Sequential ADC Read Out for VSREG
, VS, WU and THCL1 ..THCL6
9LQ
&KDQQHO
0X[
:8
965(*
96
7+&/
%LW
6$5
63,5HJLVWHU
S)
N
N
95() 9
9
7+&/
7+&/
7+&/
7+&/
7+&/
("1($'5
Serial Peripheral Interface (SPI) L99DZ100G, L99DZ100GP
120/197 DS11546 Rev 5
5 Serial Peripheral Interface (SPI)
A 32-bit SPI is used for bi-directional communication with the microcontroller.
The SPI is driven by a microcontroller with its SPI peripheral running in the following mode:
CPOL = 0 and CPHA = 0.
For this mode input data is sampled by the low to high transition of the clock CLK, and
output data is changed from the high to low transition of CLK. This device is not limited to
microcontroller with a built-in SPI. Only three CMOS-compatible output Pins and one input
Pin will be needed to communicate with the device. A fault condition can be detected by
setting CSN to low. If CSN = 0, the DO-Pin will reflect the global error flag (fault condition) of
the device.
Chip Select Not (CSN)
The input Pin is used to select the serial interface of this device. When CSN is high, the
output Pin (DO) is in high impedance state. A low signal activates the output driver and
a serial communication can be started. The state during CSN = 0 is called a
communication frame. If CSN = low for t > tCSNfail the DO output will be switched to
high impedance in order to not block the signal line for other SPI nodes.
Serial Data In (DI)
The input Pin is used to transfer data serial into the device. The data applied to the DI
will be sampled at the rising edge of the CLK signal and shifted into an internal 32-bit
shift register. At the rising edge of the CSN signal the content of the shift register will be
transferred to Data Input Register. The writing to the selected Data Input Register is
only enabled if exactly 32-bit are transmitted within one communication frame (i.e. CSN
low). If more or less clock pulses are counted within one frame the complete frame will
be ignored. This safety function is implemented to avoid an activation of the output
stages by a wrong communication frame.
Note: Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel
operation of the SPI bus by controlling the CSN signal of the connected IC's is
recommended.
Serial Data Out (DO)
The data output driver is activated by a logical low level at the CSN input and will go
from high impedance to a low or high level depending on the global error flag (fault
condition). The first rising edge of the CLK input after a high to low transition of the
CSN Pin will transfer the content of the selected status register into the data out shift
register. Each subsequent falling edge of the CLK will shift the next bit out.
Serial Clock (CLK)
The CLK input is used to synchronize the input and output serial bit streams. The data
input (DI) is sampled at the rising edge of the CLK and the data output (DO) will change
with the falling edge of the CLK signal. The SPI can be driven with a CLK Frequency up
to 4 MHz.
5.1 ST SPI 4.0
The ST-SPI is a standard used in ST Automotive ASSP devices.
DS11546 Rev 5 121/197
L99DZ100G, L99DZ100GP Serial Peripheral Interface (SPI)
196
This chapter describes the SPI protocol standardization. It defines a common structure of
the communication frames and defines specific addresses for product and status
information.
The ST-SPI allows usage of generic software to operate the devices while maintaining the
required flexibility to adapt it to the individual functionality of a particular product. In addition,
failsafe mechanisms are implemented to protect the communication from external
influences and wrong or unwanted usage.
The devices Serial Peripheral Interface are compliant to the ST SPI Standard Rev. 4.0.
5.1.1 Physical layer
Figure 53. SPI pin description
5.2 Signal description
Chip Select Not (CSN)
The communication interface is de-selected, when this input signal is logically high. A
falling edge on CSN enables and starts the communication while a rising edge finishes
the communication and the sent command is executed when a valid frame was sent.
During communication start and stop the Serial Clock (SCK) has to be logically low.
The Serial Data Out (SDO) is in high impedance when CSN is high or a communication
timeout was detected.
Serial Clock (SCK)
This SCK provides the clock of the SPI. Data present at Serial Data Input (SDI) is
latched on the rising edge of Serial Clock (SCK) into the internal shift registers while on
the falling edge data from the internal shift registers are shifted out to Serial Data Out
(SDO).
Serial Data Input (SDI)
This input is used to transfer data serially into the device. Data is latched on the rising
edge of Serial Clock (SCK).
Serial Data Output (SDO)
This output signal is used to transfer data serially out of the device. Data is shifted out
on the falling edge of Serial Clock (SCK).
&
63,0DVWHU
/'=*
&61
6&.
6',
6'2
("1($'5
Serial Peripheral Interface (SPI) L99DZ100G, L99DZ100GP
122/197 DS11546 Rev 5
Figure 54. SDO pin
5.2.1 Clock and Data Characteristics
The ST-SPI can be driven by a microcontroller with its SPI peripheral running in following
mode:
CPOL = 0
CPHA = 0
Figure 55. SPI signal description
The communication frame starts with the falling edge of the CSN (Communication Start).
SCK has to be low.
The SDI data is then latched at all following rising SCK edges into the internal shift registers.
After Communication Start the SDO will leave 3-state mode and present the MSB of the
data shifted out to SDO. At all following falling SCK edges data is shifted out through the
internal shift registers to SDO.
'LJLWDO
ORJLF
*1'
9
'DWD2XW
'DWD,Q
(QDEOH
*1'
(6'SURW
("1($'5
§§
&61
6&.
§§
§§
6',
6'2
06%
06%
/6%
/6%
("1($'5
DS11546 Rev 5 123/197
L99DZ100G, L99DZ100GP Serial Peripheral Interface (SPI)
196
The communication frame is finished with the rising edge of CSN. If a valid communication
took place (e.g. correct number of SCK cycles, access to a valid address), the requested
operation according to the Operating Code will be performed (Write or Clear operation).
5.2.2 Communication protocol
SDI Frame
The devices Data-In Frame consist of 32-bit (OpCode (2 bits) + Address (6 bits) + Data Byte
3 + Data Byte 2 + Data Byte 1). The first two transmitted bits (MSB, MSB-1) contain the
Operation Code which represents the instruction which will be performed. The following 6
bits (MSB-2 to MSB-7) represent the address on which the operation will be performed. The
subsequent bytes contain the payload.
Figure 56. SDI Frame
Operating code
The operating code is used to distinguish between different access modes to the registers of
the slave device.
A Write Operation will lead to a modification of the addressed data by the payload if a write
access is allowed (e.g. Control Register, valid data). Beside this a shift out of the content
(data present at Communication Start) of the registers is performed.
A Read Operation shifts out the data present in the addressed register at Communication
Start. The payload data will be ignored and internal data will not be modified. In addition a
Burst Read can be performed.
Table 71. Operation codes
OC1 OC0 Description
0 0 Write Operation
0 1 Read Operation
1 0 Read & Clear Operation
1 1 Read Device Information
2& 2& $ $ $ $ $ $
     
23&2'( $''5(66
'$7$%\WH
'$7$%\WH
06%
/6%
WLPH
WLPH
WLPH
      
'$7$%\WH

WLPH
("1($'5
Serial Peripheral Interface (SPI) L99DZ100G, L99DZ100GP
124/197 DS11546 Rev 5
A Read & Clear Operation will lead to a clear of addressed status bits. The bits to be cleared
are defined first by address, second by payload bits set to ‘1’. Beside this a shift out of the
content (data present at Communication Start) of the registers is performed.
Note: Status registers which change status during communication could be cleared by the actual
Read & Clear Operation and are neither reported in actual communication nor in the
following communications. To avoid a loss of any reported status it is recommended just
clear status registers which are already reported in the previous communication (Selective
Bitwise Clear).
Advanced operation codes
To provide beside the separate write of all control registers and the bitwise clear of all status
registers, two Advanced Operation Codes can be used to set all control registers to the
default value and to clear all status registers. A ‘set all control registers to default’ command
is performed when an OpCode11 at address b111111 is performed.
Note: Please consider that potential device specific write protected registers cannot be cleared
with this command as therefore a device Power-on-Reset is needed.
A ‘clear all status registers’ command is performed when an OpCode ‘10’ at address
b111111 is performed.
Data-in payload
The Payload (Data Byte 1 to Data Byte 3) is the data transferred to the devices with every
SPI communication. The Payload always follows the OpCode and the Address bits. For
Write access the Payload represents the new data written to the addressed register. For
Read & Clear operations the Payload defines which bits of the adressed Status Register will
be cleared. In case of a ‘1’ at the corresponding bit position the bit will be cleared.
For a Read Operation the Payload is not used. For functional safety reasons it is
recommended to set unused Payload to ‘0’.
SDO frame
The data-out frame consists of 32-bit (GSB + Data Byte 1 to 3).
The first eight transmitted bits contain device related status information and are latched into
the shift register at the time of the Communication Start. These 8-bit are transmitted at every
SPI transaction. The subsequent bytes contain the payload data and are latched into the
shift register with the eighth positive SCK edge. This could lead to an inconsistency of data
between the GSB and Payload due to different shift register load times. Anyhow, no
unwanted Status Register clear should appear, as status information should just be cleared
with a dedicated bit clear after.
DS11546 Rev 5 125/197
L99DZ100G, L99DZ100GP Serial Peripheral Interface (SPI)
196
Figure 57. SDO frame
Global Status Byte (GSB)
The bits (Bit0 to Bit4) represent a logical OR combination of bits located in the Status
Registers. Therefore no direct Read & Clear can be performed on these bits inside the GSB.
Global Status Bit Not (GSBN)
The GSBN is a logically NOR combination of Bit 24 to Bit 30. This bit can also be used as
Global Status Flag without starting a complete communication frame as it is present directly
after pulling CSN low.
Reset Bit (RSTB)
The RSTB indicates a device reset. In case this bit is set, specific internal Control Registers
are set to default and kept in that state until the bit is cleared. The RSTB bit is cleared after
a Read & Clear of all the specific bits in the Status Registers which caused the reset event.
SPI Error (SPIE)
The SPIE is a logical OR combination of errors related to a wrong SPI communication.
Physical Layer Error (PLE)
The PLE is a logical OR combination of errors related to the LIN and HS CAN transceivers.
Functional Error (FE)
The FE is a logical OR combination of errors coming from functional blocks (e.g. High-side
overcurrent).
Device Error (DE)
The DE is a logical OR combination of errors related to device specific blocks (e.g. VS
overvoltage, overtemperature
Table 72. Global Status Byte
Bit 31 Bit 30 Bit 29 Bit 28 Bit 27 Bit 26 Bit 25 Bit 24
GSBN RSTB SPIE PLE FE DE GW FS
)( '( )6
     
*OREDO6WDWXV%\WH*6%
'$7$%\WH
'$7$%\WH
567% :*1%6*63,(3/(
06%
/6%
WLPH
WLPH
WLPH
      
'$7$%\WH

WLPH
("1($'5
Serial Peripheral Interface (SPI) L99DZ100G, L99DZ100GP
126/197 DS11546 Rev 5
Global Warning (GW)
The GW is a logical OR combination of warning flags (e.g. thermal warning).
Fail Safe (FS)
The FS bit indicates that the device was forced into a safe state due to mistreatment or
fundamental internal errors (e.g. Watchdog failure, Voltage regulator failure).
Data-Out Payload
The Payload (Data Bytes 1 to 3) is the data transferred from the slave device with every SPI
communication to the master device. The Payload always follows the OpCode and the
address bits of the actual shifted in data (In-frame-Response).
5.2.3 Address definition
Table 73. Device application access
Operating Code
OC1 OC0
00
01
10
Table 74. Device information read access
Operating Code
OC1 OC0
11
Table 75. RAM address range
RAM Address Description Access
3FH Configuration Register R/W
3CH Status Register 12 R/C
……
32H Status Register 2 R/C
31H Status Register 1 R/C
……
22H Control Register 34 R/W
1DH Control Register 29 R/W
……
02H Control Register 2 R/W
DS11546 Rev 5 127/197
L99DZ100G, L99DZ100GP Serial Peripheral Interface (SPI)
196
Information registers
The Device Information Registers can be read by using OpCode ‘11’. After shifting out the
GSB the 8-bit wide payload will be transmitted. By reading Device Information Registers a
communication width which is minimum 16-bit plus a multiple by 8 can be used. After
shifting out the GSB followed by the 8-bit wide payload a series of ‘0’ is shifted out at the
SDO.
01H Control Register 1 R/W
00H reserved
Table 76. ROM address range
ROM Address Description Access
3FH <Advanced Op.> W
3EH <GSB Options> R
20H <SPI CPHA test> R
16H <WD bit pos. 4> R
15H <WD bit pos. 3> R
14H <WD bit pos. 2> R
13H <WD bit pos. 1> R
12H <WD Type 2> R
11H <WD Type 1> R
10H <SPI mode> R
0AH <Silicon Ver.> R
06H <Device No.5> R
05H <Device No.4> R
04H <Device No.3> R
03H <Device No.2> R
02H <Device No.1> R
01H <Device Family> R
00H <Company Code> R
Table 75. RAM address range (continued)
RAM Address Description Access
Serial Peripheral Interface (SPI) L99DZ100G, L99DZ100GP
128/197 DS11546 Rev 5
Device Identification Registers
These registers represent a unique signature to identify the device and silicon version.
<Company Code>: 00H (STMicroelectronics)
<Device Family>: 01H (BCD Power Management)
<Device No. 1>: 55H
<Device No. 2>: 42H
<Device No. 3>: 46H
<Device No. 4>: 09H
<Device No. 5>: for L99DZ100G: 01H for L99DZ100GP: 00H
Table 77. Information Registers Map
ROM
Adress Description Access Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
3FH <Advanced Op.>
3EH <GSB Options> R 00000000
20H <SPI CPHA test> R 01010101
16H <WD bit pos. 4> R C0H
15H <WD bit pos. 3> R 7FH
14H <WD bit pos. 2> R C0H
13H <WD bit pos. 1> R 41H
12H <WD Type 2> R 91H
11H <WD Type 1> R 28H
10H <SPI mode> R B0H
0AH <Silicon Ver.> R major revision minor revision
06H <Device No.5> R L99DZ100G: 01H
L99DZ100GP: 00H
05H <Device No.4> R 09H
04H <Device No.3> R 46H
03H <Device No.2> R 42H
02H <Device No.1> R 55H
01H <Device Family> R 01H
00H <Company Code> R 00H
DS11546 Rev 5 129/197
L99DZ100G, L99DZ100GP Serial Peripheral Interface (SPI)
196
SPI modes
By reading out the <SPI mode> register general information of SPI usage of the Device
Application Registers can be read.
<SPI mode>: B0H (Burst mode read available, 32-bit, no data consistency check)
SPI Burst Read
The SPI Burst Read bit indicates if a burst read operation is implemented. The intention of a
Burst Read is e.g. used to perform a device internal memory dump to the SPI Master.
The start of the Burst Read is like a normal Read Operation. The difference is, that after the
SPI Data Length the CSN is not pulled high and the SCK will be continuously clocked. When
the normal SCK max count is reached (SPI Data Length) the consecutive addressed data
will be latched into the shift register. This procedure is performed every time when the SCK
payload length is reached.
In case the automatic incremented address is not used by the device, undefined data is
shifted out. An automatic address overflow is implemented when address 3FH is reached.
The SPI Burst Read is limited by the CSN low timeout.
SPI Data Length
The SPI Data Length value indicates the length of the SCK count monitor which is running
for all accesses to the Device Application Registers. In case a communication frame with an
SCK count not equal to the reported one will lead to a SPI Error and the data will be
rejected.
Table 78. SPI Mode Register
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BR DL2 DL1 DL0 0 0 S1 S0
10110000
Table 79. Burst Read Bit
Bit 7 Description
0 BR not available
1 BR available
Serial Peripheral Interface (SPI) L99DZ100G, L99DZ100GP
130/197 DS11546 Rev 5
Data Consistency Check (Parity/CRC)
N/A
Watchdog Definition
In case a watchdog is implemented the default settings can be read out via the Device
Information Registers.
Table 80. SPI Data Length
Bit 6 Bit 5 Bit 4 Description
DL2 DL1 DL0
0 0 0 invalid
0 0 1 16-bit SPI
0 1 0 24-bit SPI
0 1 1 32-bit SPI
1 1 1 64-bit SPI
Table 81. Data Consistency Check
Bit 1 Bit 0 Description
S1 S0
0 0 not used
0 1 Parity used
1 0 CRC used
1 1 Invalid
Table 82. WD Type/Timing
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
WD1 WD0
<WD Type 1/2> 0 0 Register is not used
<WD Type 1> 0 1 WT5WT4WT3WT2WT1WT0
1101000
Watchdog Timeout / Long Open Window WT[5:0] * 5ms
<WD Type 2> 1 0 OW2 OW1 OW0 CW2 CW1 CW0
10010001
Open Window OW[2:0] *
5ms
Closed Window CW[2:0] *
5ms
DS11546 Rev 5 131/197
L99DZ100G, L99DZ100GP Serial Peripheral Interface (SPI)
196
<WD Type 1>: 28H (Long Open Window: 200ms)
<WD Type 2>: 91H (Open Window. 10ms, Closed Window: 5ms)
<WD Type 1> indicates the Long Open Window (timeout) which is opened at the start of the
watchdog. The binary value of WT[5:0] times 5ms indicates the typical value of the Timeout
Time.
<WD Type 2> describes the default timing of the window watchdog.
The binary value of CW[2:0] times 5ms defines the typical Closed Window time and OW[2:0]
times 5ms defines the typical Open Window time.
Figure 58. Window watchdog operation
The watchdog trigger bit location is defined by the <WD bit pos. X> registers.
<WD Type 1/2> 1 1 Invalid
Table 82. WD Type/Timing (continued)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
W
/2:
W
&:
W
2:
W
&:
W
2:
W
&:
W
2:
W
/2:
W
&:
W
/2:
W
2:)
:'
7LJJHU
QRUPDO
RSHUDWLRQ
PLVVLQJ
WULJJHU
HDUO\
ZULWH WLPH
FRUUHFWWULJJHUWLPLQJ
HDUO\WULJJHUWLPLQJ
PLVVLQJWULJJHU
W
&:
FORVHGZLQGRZ
W
/2:
ORQJRSHQZLQGRZ
W
2:
RSHQZLQGRZ
W
&:
W
2:
RSHQZLQGRZIDLOW
2:)
("1($'5
Table 83. WD bit position
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
WB1 WB0
<WD bit pos. X> 0 0 Register is not used
<WD bit pos. X> 0 1 WBA5 WBA4 WBA3 WBA2 WBA1 WBA0
<WD bit pos. 1>01000001
<WD bit pos. 3>01111111
Defines the register addresses of the WD trigger bits
<WD bit pos. X> 1 0 WBA5 WBA4 WBA3 WBA2 WBA1 WBA0
Serial Peripheral Interface (SPI) L99DZ100G, L99DZ100GP
132/197 DS11546 Rev 5
<WD bit pos 1>: 41H;watchdog trigger bit located at address 01H (CR1)
<WD bit pos 2>: C0H; watchdog trigger bit location is bit0
<WD bit pos 3>: 7FH;watchdog trigger bit located at address 3FH (Config Register)
<WD bit pos 4>: C0H; watchdog trigger bit location is bit0
Device Application Registers (RAM)
The Device Application Registers are all registers accessible using OpCode ‘00’, ‘01’ and
‘10’. The functions of these registers are defined in the device specification.
5.2.4 Protocol failure detection
To realize a protocol which covers certain failsafe requirements a basic set of failure
detection mechanisms are implemented.
Clock monitor
During communication (CSN low to high phase) a clock monitor counts the valid SCK clock
edges. If the SCK edges do not correlate with the SPI Data Length an SPIE is reported with
the next command and the actual communication is rejected.
By accessing the Device Information Registers (OpCode = ‘11’) the Clock Monitor is set to a
minimum of 16 SCK edges plus a multiple by 8 (e.g. 16, 25, 32, …). Providing no SCK edge
during a CSN low to high phase is not recognized as an SPIE. For a SPI Burst Read also
the SPI Data Length plus multiple numbers of Payloads SCK edges are assumed as a valid
communication.
SCK Polarity (CPOL) check
To detect the wrong polarity access via SCK the internal Clock monitor is used. Providing
first a negative edge on SCK during communication (CSN low to high phase) or a positive
edge at last will lead to an SPI Error reported in the next communication and the actual data
is rejected.
SCK Phase (CPHA) check
To verify, that the SCK Phase of the SPI master is set correctly a special Device Information
Register is implemented. By reading this register the data must be 55H. In case AAH is read
Defines the stop address of the address range (previous
<WD bit pos. X> is a WB = ‘01’). The consecutive <WD bit
pos. X> has to be a WB = ‘11’
<WD bit pos. X> 1 1 0 WBP 4 WBP3 WBP2 WBP1 WBP0
<WD bit pos. 2>11000000
<WD bit pos. 4>11000000
Defines the binary bit position of the WD trigger
bit within the register
Table 83. WD bit position (continued)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DS11546 Rev 5 133/197
L99DZ100G, L99DZ100GP Serial Peripheral Interface (SPI)
196
the CPHA setting of the SPI master is wrong and a proper communication cannot be
guaranteed.
CSN timeout
By pulling CSN low the SDO is set active and leaves its 3-state condition. To ensure
communication between other SPI devices within the same bus even in case of CSN stuck
at low a CSN timeout is implemented. By pulling CSN low an internal timer is started. After
timer end is reached the actual communication is rejected and the SDO is set to 3-state
condition.
SDI stuck at GND
As a communication with data all-‘0’ and OpCode ‘00’ on address b’000000 cannot be
distinguished between a valid command and a SDI stuck at GND this communication is not
allowed. Nevertheless, in case a stuck at GND is detected the communication will be
rejected and the SPIE will be set with the next communication.
SDI stuck at HIGH
As a communication with data all-‘1’ and OpCode ‘11’ on address b’111111 cannot be
distinguished between a valid command and a SDI stuck at HIGH this communication is not
allowed. In case a stuck at HIGH is detected the communication will be rejected and the
SPIE will be set with the next communication.
SDO stuck @
The SDO stuck at GND and stuck at HIGH has to be detected by the SPI master. As the
definition of the GSB guarantees at least one toggle, a GSB with all-‘0’ or all –‘1’ reports a
stuck at error.
Application L99DZ100G, L99DZ100GP
134/197 DS11546 Rev 5
6 Application
Figure 59. Typical application diagram
("1($'5
'ULYHU,QWHUIDFH/RJLF'LDJQRVWLF
63,,QWHUIDFH
:LQGRZ
:DWFKGRJ
&61
&/.
'2
',
9B
&3
(&*ODVV
&RQWURO%ORFN
%,763,FRQWUROOHG
287
&30
&33
&30
&33 96
[
*/
'HEXJ
3*1'
&0
*+
6+
95(*
95(*
+6&$1
ZLWK31
,62

(&9
(&'5
+6
+6
+6
+6
+6
+6
*+
KHDWHU
6+
KHDWHU
+6
3&KDQQHO
9B
15(6(7
/,1

&$16XSSO\
5['B&1,17
7['B&
&$1B+
&$1B/
5['B/1,17
7['B/
/,1
:8
',5
',5+
3:0+
+6
287
287
287
287
287
287
287
287
287
287
965(*
287B+6
287
*1'
6*1'
287
%XIIHUHG96
',5
287
1,17
)DLO6DIH
/6B)6
[
%LW
$'&6$5
965(*
96
[7M
&O
+6
3&KDQQHO
&KDUJH
3XPS
[7M
&O
0
0
;$GMXVWPHQW
0
0
<$GMXVWPHQW
/RFN
)ROG
0
6DIH/RFN
+6
287
Q)
Q)
&RXWSXW
&RXWSXW
:[:RU/('
:RU/('
&RQWDFW
6XSSO\
aQ)
aQ)
aQ)
&RXWSXW
&RXWSXW
&RXWSXW
&LQSXW
&LQSXW
0
/6B)6
Q)
Q)
9
%$7
&RXWSXW
&LQSXW
&RXWSXW
&LQSXW
7HVWSRLQW
'HEXJ0RGH
&LQSXW
/,1
&LQSXW
(6'3URWHFWLRQ
IRU(&8SLQV
Q)
Q)IRU287287B+6
9
%$7
N
9
3URWHFWHG
9
3URWHFWHG
)DLO6DIH
6ZLWFK2II
([W/RDGV
9
3URWHFWHG
&6XSSO\





&DSDFLWDQFHWREHGLPHQVLRQHGDFFRUGLQJORDGFXUUHQWUXOHRIWKXPE)HDFK$

&DSDFLWDQFHWREHGLPHQVLRQHGHJDFFRUGLQJYROWDJHGURSRXWUHTXLUHPHQWV

2(0UHTXLUHPHQWVDQGH[WHUQDOFRPSRQHQWVIRU/,1UHVS&$1WREHIXOOILOOHG 

)RU(0&RSWLPL]DWLRQSXUSRVHVFDSDFLWDQFHVFRXOGEHUHGLPHQVLRQHG)UHFRPPHQGHG
&RXWSXW
&RXWSXW


67'1)/





N
DS11546 Rev 5 135/197
L99DZ100G, L99DZ100GP SPI Registers
196
7 SPI Registers
7.1 Global Status Byte GSB
Table 84. Global Status Byte (GSB)
31 30 29 28 27 26 25 24
Bit name GSBN RSTB SPIE PLE FE DE GW FS
Reset 1 0 0 0 0000
Access R
Table 85. GSB signals description
Bit Name Description
31 GSBN
Global Status Bit Inverted
The GSBN is a logically NOR combination of GSB Bits 24 to Bit 30(1).
This bit can also be used as Global Status Flag without starting a complete
communication frame as it is present at SDO directly after pulling CSN low.
0: error detected (1 or several GSB bits from 24 to 30 are set)
1: no error detected (default after Power-on)
Specific failures may be masked in the Configuration Register 0x3F. A
masked failure will still be reported in the GSB by the related failure flag,
however it is not reflected in the GSBN (bit 31).
30 RSTB
Reset
The RSTB indicates a device reset and it is set in case of the following
events:
VPOR (SR1 - 0x31)
WDFAIL (SR1 - 0x31)
V1UV (SR1 - 0x31)
FORCED_SLEEP_TSD2/V1SC (SR1 - 0x31)
0: no reset signal has been generated (default)
1: Reset signal has been generated
RSTB is cleared by a Read & Clear command to all bits in Status Register 1
causing the Reset event.
29 SPIE(2)
SPI Error Bit
The SPIE indicates errors related to a wrong SPI communication.
SPI_INV_CMD (SR2 - 0x32)
SPI_SCK_CNT (SR2 - 0x32)
The bit is also set in case of an SPI CSN Time-out detection
0: no error (default)
1: error detected
SPIE is cleared by a valid SPI command.
SPI Registers L99DZ100G, L99DZ100GP
136/197 DS11546 Rev 5
28 PLE(2)
Physical Layer Error
The PLE is a logical OR combination of errors related to the LIN and CAN
transceivers.
LIN_PERM_DOM (SR2 - 0x32)
LIN_TXD_DOM (SR2 - 0x32)
LIN_PERM_REC (SR2 - 0x32)
CAN_RXD_REC (SR2 - 0x32)
CAN_PERM_REC (SR2 - 0x32)
CAN_PERM_DOM (SR2 - 0x32)
CAN_TXD_DOM (SR2 - 0x32)
SYSERR (SR12 - 0x3C)
OSC_FAIL (SR12 - 0x3C)
FDERR (SR12 - 0x3C)
0: no error (default)
1: error detected
PLE is cleared by a Read & Clear command to all related bits in Status
Registers 2 and 12.
27 FE
Functional Error Bit
The FE is a logical OR combination of errors coming from functional blocks.
V2SC (SR2 - 0x32)
DSMON_HSx (SR2 - 0x32)
DSMON_LSx (SR2 - 0x32)
OUTxHS_OC TH EX (SR3 - 0x33)
OUTxLS_OC TH EX (SR3 - 0x33)
OUTHS_OC TH EX (SR3 - 0x33)
OUTx_OC (SR3 - 0x33)
LSxFS_OC (SR3 - 0x33)
ECV_OC (SR4 - 0x34)
DSMON_HEAT (SR4 - 0x34)
OUTxHS_OL (SR5 - 0x35)(3)
OUTxLS_OL (SR5 - 0x35)
OUTx_OL (SR5 - 0x35)
OUTHS_OL (SR5 - 0x35)
GH_OL (SR5 - 0x35)
ECV_OL (SR5 - 0x35)
0: no error (default)
1: error detected
FE is cleared by a Read & Clear command to all related bits in Status
Registers 2, 3, 4, 5
Table 85. GSB signals description (continued)
Bit Name Description
DS11546 Rev 5 137/197
L99DZ100G, L99DZ100GP SPI Registers
196
26 DE
Device Error Bit
DE is a logical OR combination of global errors related to the device.
VS_OV (SR2 - 0x32)
VS_UV (SR2 - 0x32)
VSREG_OV (SR2 - 0x32)
VSREG_UV (SR2 - 0x32)
CP_LOW (SR2 - 0x32)
TSD1_CLx (SR6 - 0x36)
0: no error (default)
1: error detected
DE is cleared by a Read & Clear command to all related bits in Status
Registers 2 and 6
25 GW (2)
Global Warning Bit
GW is a logical OR combination of warning flags. Warning bits do not lead to
any device state change or switch off of functions.
VSREG_EW (SR2 - 0x32)
V1_FAIL (SR2 - 0x32)
V2_FAIL (SR2 - 0x32)
CAN_SUP_LOW (SR2 - 0x32)
–TW
(3) (SR2 - 0x32)
SPI_INV_CMD (SR2 - 0x32)
SPI_SCK_CNT (SR2 - 0x32)
0: no error (default)
1: error detected
GW is cleared by a Read & Clear command to all related bits in Status
Register 2.
Table 85. GSB signals description (continued)
Bit Name Description
SPI Registers L99DZ100G, L99DZ100GP
138/197 DS11546 Rev 5
24 FS
Fail Safe
The FS bit indicates the device was forced into a safe state due to the
following failure conditions:
WDFAIL (SR1 - 0x31)
V1UV (SR1 - 0x31)
TSD2 (SR1 - 0x31)
FORCED_SLEEP_TSD/V1SC (SR1 - 0x31)
All Control Registers are set to default except the following bits:
SWEN (CR1 - 0x01)
CR23 (0x17) to CR29 (0x1D); Configuration of CAN Selective Wake-up
functionality
Control Registers are blocked for WRITE access except the following bits:
TRIG (CR1 - 0x01)
V2_0 (CR1 - 0x01)
V2_1 (CR1 - 0x01)
GoTRXRDY (CR1 - 0x01)
Timer settings (bits 8…23) (CR2 - 0x02)
OUTHS_x (bits 0…3) (CR5 - 0x05)
OUT15_x (bits 0…3) (CR6 - 0x06)
CR12 (0x0C) to CR17 (0x11); PWM frequency and duty cycles
0: Fail Safe inactive (default)
1: Fail Safe active
FS is cleared upon exit from Fail-Safe mode (refer to chapter ‘Fail-Safe
mode’)
1. Individual failure flags may be masked in the Configuration Register (0x3F).
2. Bit may be masked in the Configuration Register (0x3F), i.e. the bit will not be included in the Global Status
Bit (GSBN).
3. Open-load status flags may be masked in the Configuration register (0x3F), i.e. the open-load flag will be
included in the FE flag, but will not set the GSBN. TW failure status flags may be masked in the
Configuration register (0x3F), i.e. the TW flag will be included in the GW flag, but will not set the GSBN.
Table 85. GSB signals description (continued)
Bit Name Description
DS11546 Rev 5 139/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.2 Control register overview
Table 86. Control register overview
Bit
Access
Addr. Reg. 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
0x00 reserved
0x01 CR1
Reserved
WU_EN
Reserved
WU_PU
Reserved
WU_FILT_1
WU_FILT_0
TIMER_NINT_WAKE_SEL
TIMER_NINT_EN
LIN_WU_EN
CAN_WU_EN
CANTO_IRQ_EN
CAN_RXEN
CAN_TXEN
CAN_Go_TRX_RDY
SWEN
HEN
V2_1
V2_0
PARITY
STBY_SEL
GO_STBY
TRIG
R/W
0x02 CR2
T1_RESTART
T1_DIR
T1_ON_2
T1_ON_1
T1_ON_0
T1_PER_2
T1_PER_1
T1_PER_0
T2_RESTART
T2_DIR
T2_ON_2
T2_ON_1
T2_ON_0
T2_PER_2
T2_PER_1
T2_PER_0
LIN_REC_ONLY
LIN_TXD_TOUT_EN
CAN_LOOP_EN
PNW_EN
V1_RESET_1
V1_RESET_0
WD_TIME_1
WD_TIME_0
R/W
0x03 CR3
VSREG_LOCK_EN
VS_LOCK_EN
VSREG_OV_SD_EN
VSREG_UV_SD_EN
VS_OV_SD_EN
VS_UV_SD_EN
Reserved
VSREG_EWTH_9
VSREG_EWTH_8
VSREG_EWTH_7
VSREG_EWTH_6
VSREG_EWTH_5
VSREG_EWTH_4
VSREG_EWTH_3
VSREG_EWTH_2
VSREG_EWTH_1
VSREG_EWTH_0
R/W
0x04 CR4
Reserved
OUT1_HS
OUT1_LS
Reserved
OUT2_HS
OUT2_LS
Reserved
OUT3_HS
OUT3_LS
Reserved
OUT4_HS
OUT4_LS
Reserved
OUT5_HS
OUT5_LS
Reserved
OUT6_HS
OUT6_LS
R/W
0x05 CR5
OUT7_3
OUT7_2
OUT7_1
OUT7_0
OUT8_3
OUT8_2
OUT8_1
OUT8_0
Reserved
OUT10_3
OUT10_2
OUT10_1
OUT10_0
Reserved
GH
OUTHS_3
OUTHS_2
OUTHS_1
OUTHS_0
R/W
0x06 CR6
OUT9_3
OUT9_2
OUT9_1
OUT9_0
OUT11_3
OUT11_2
OUT11_1
OUT11_0
OUT12_3
OUT12_2
OUT12_1
OUT12_0
OUT13_3
OUT13_2
OUT13_1
OUT13_0
OUT14_3
OUT14_2
OUT14_1
OUT14_0
OUT15_3
OUT15_2
OUT15_1
OUT15_0
R/W
0x07 CR7
OUT1_OCR
OUT2_OCR
OUT3_OCR
OUT4_OCR
OUT5_OCR
OUT6_OCR
OUT7_OCR
OUT8_OCR
OUTHS_OCR
Reserved
HB_TON_1
HB_TON_0
HS_TON_1
HS_TON_0
OCR_FREQ
OUT5_OC1
OUT5_OC0
CM_EN
Reserved
CM_SEL_3
CM_SEL_2
CM_SEL_1
CM_SEL_0
R/W
SPI Registers L99DZ100G, L99DZ100GP
140/197 DS11546 Rev 5
0x08 CR8
OUT1_OCR_THX_EN
OUT2_OCR_THX_EN
OUT3_OCR_THX_EN
OUT4_OCR_THX_EN
OUT5_OCR_THX_EN
OUT6_OCR_THX_EN
OUT7_OCR_THX_EN
OUT8_OCR_THX_EN
OUTHS_OCR_THX_EN
Reserved
R/W
0x09 CR9
OUT7_RDSON
OUT8_RDSON
Reserved
OUTHS_OL
OUT15_OL
OUT14_OL
OUT13_OL
OUT12_OL
OUT11_OL
OUT10_OL
OUT9_OL
OUTHS_OC
OUT15_OC
OUT14_OC
OUT13_OC
OUT12_OC
OUT11_OC
OUT10_OC
OUT9_OC
R/W
0x0A CR10
DIAG_2
DIAG_1
DIAG_0
GH_OL_EN
Reserved
GH_TH_2
GH_TH_1
GH_TH_0
Reserved
SD
SDS
COPT_3
COPT_2
COPT_1
COPT_0
H_OLTH_HIGH
OL_H1L2
OL_H2L1
SLEW_4
SLEW_3
SLEW_2
SLEW_1
SLEW_0
R/W
0x0B CR11 Reserved
ECV_LS
ECV_OCR
Reserved
ECON
Reserved
EC_5
EC_4
EC_3
EC_2
EC_1
EC_0
R/W
0x0C CR12
PMW1_FREQ_1
PMW1_FREQ_0
PMW2_FREQ_1
PMW2_FREQ_0
PMW3_FREQ_1
PMW3_FREQ_0
PMW4_FREQ_1
PMW4_FREQ_0
PMW5_FREQ_1
PMW5_FREQ_0
PMW6_FREQ_1
PMW6_FREQ_0
PMW7_FREQ_1
PMW7_FREQ_0
PMW8_FREQ_1
PMW8_FREQ_0
PMW9_FREQ_1
PMW9_FREQ_0
PMW10_FREQ_1
PMW10_FREQ_0
Reserved
R/W
0x0D CR13
Reserved
PWM1_DC_9
PWM1_DC_8
PWM1_DC_7
PWM1_DC_6
PWM1_DC_5
PWM1_DC_4
PWM1_DC_3
PWM1_DC_2
PWM1_DC_1
PWM1_DC_0
Reserved
PWM2_DC_9
PWM2_DC_8
PWM2_DC_7
PWM2_DC_6
PWM2_DC_5
PWM2_DC_4
PWM2_DC_3
PWM2_DC_2
PWM2_DC_1
PWM2_DC_0
R/W
0x0E CR14
Reserved
PWM3_DC_9
PWM3_DC_8
PWM3_DC_7
PWM3_DC_6
PWM3_DC_5
PWM3_DC_4
PWM3_DC_3
PWM3_DC_2
PWM3_DC_1
PWM3_DC_0
Reserved
PWM4_DC_9
PWM4_DC_8
PWM4_DC_7
PWM4_DC_6
PWM4_DC_5
PWM4_DC_4
PWM4_DC_3
PWM4_DC_2
PWM4_DC_1
PWM4_DC_0
R/W
0x0F CR15
Reserved
PWM5_DC_9
PWM5_DC_8
PWM5_DC_7
PWM5_DC_6
PWM5_DC_5
PWM5_DC_4
PWM5_DC_3
PWM5_DC_2
PWM5_DC_1
PWM5_DC_0
Reserved
PWM6_DC_9
PWM6_DC_8
PWM6_DC_7
PWM6_DC_6
PWM6_DC_5
PWM6_DC_4
PWM6_DC_3
PWM6_DC_2
PWM6_DC_1
PWM6_DC_0
R/W
Table 86. Control register overview (continued)
Bit
Access
Addr. Reg. 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
DS11546 Rev 5 141/197
L99DZ100G, L99DZ100GP SPI Registers
196
0x10 CR16
Reserved
PWM7_DC_9
PWM7_DC_8
PWM7_DC_7
PWM7_DC_6
PWM7_DC_5
PWM7_DC_4
PWM7_DC_3
PWM7_DC_2
PWM7_DC_1
PWM7_DC_0
Reserved
PWM8_DC_9
PWM8_DC_8
PWM8_DC_7
PWM8_DC_6
PWM8_DC_5
PWM8_DC_4
PWM8_DC_3
PWM8_DC_2
PWM8_DC_1
PWM8_DC_0
R/W
0x11 CR17
Reserved
PWM9_DC_9
PWM9_DC_8
PWM9_DC_7
PWM9_DC_6
PWM9_DC_5
PWM9_DC_4
PWM9_DC_3
PWM9_DC_2
PWM9_DC_1
PWM9_DC_0
Reserved
PWM10_DC_9
PWM10_DC_8
PWM10_DC_7
PWM10_DC_6
PWM10_DC_5
PWM10_DC_4
PWM10_DC_3
PWM10_DC_2
PWM10_DC_1
PWM10_DC_0
R/W
0x12 CR18
Reserved
OUT7_AUTOCOMP_EN
OUT7_VLED_9
OUT7_VLED_8
OUT7_VLED_7
OUT7_VLED_6
OUT7_VLED_5
OUT7_VLED_4
OUT7_VLED_3
OUT7_VLED_2
OUT7_VLED_1
OUT7_VLED_0
Reserved
OUT8_AUTOCOMP_EN
OUT8_VLED_9
OUT8_VLED_8
OUT8_VLED_7
OUT8_VLED_6
OUT8_VLED_5
OUT8_VLED_4
OUT8_VLED_3
OUT8_VLED_2
OUT8_VLED_1
OUT8_VLED_0
R/W
0x13 CR19
Reserved
OUT9_AUTOCOMP_EN
OUT9_VLED_9
OUT9_VLED_8
OUT9_VLED_7
OUT9_VLED_6
OUT9_VLED_5
OUT9_VLED_4
OUT9_VLED_3
OUT9_VLED_2
OUT9_VLED_1
OUT9_VLED_0
Reserved
OUT10_AUTOCOMP_EN
OUT10_VLED_9
OUT10_VLED_8
OUT10_VLED_7
OUT10_VLED_6
OUT10_VLED_5
OUT10_VLED_4
OUT10_VLED_3
OUT10_VLED_2
OUT10_VLED_1
OUT10_VLED_0
R/W
0x14 CR20
Reserved
OUT11_AUTOCOMP_EN
OUT11_VLED_9
OUT11_VLED_8
OUT11_VLED_7
OUT11_VLED_6
OUT11_VLED_5
OUT11_VLED_4
OUT11_VLED_3
OUT11_VLED_2
OUT11_VLED_1
OUT11_VLED_0
Reserved
OUT12_AUTOCOMP_EN
OUT12_VLED_9
OUT12_VLED_8
OUT12_VLED_7
OUT12_VLED_6
OUT12_VLED_5
OUT12_VLED_4
OUT12_VLED_3
OUT12_VLED_2
OUT12_VLED_1
OUT12_VLED_0
R/W
Table 86. Control register overview (continued)
Bit
Access
Addr. Reg. 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
SPI Registers L99DZ100G, L99DZ100GP
142/197 DS11546 Rev 5
0x15 CR21
Reserved
OUT13_AUTOCOMP_EN
OUT13_VLED_9
OUT13_VLED_8
OUT13_VLED_7
OUT13_VLED_6
OUT13_VLED_5
OUT13_VLED_4
OUT13_VLED_3
OUT13_VLED_2
OUT13_VLED_1
OUT13_VLED_0
Reserved
OUT14_AUTOCOMP_EN
OUT14_VLED_9
OUT14_VLED_8
OUT14_VLED_7
OUT14_VLED_6
OUT14_VLED_5
OUT14_VLED_4
OUT14_VLED_3
OUT14_VLED_2
OUT14_VLED_1
OUT14_VLED_0
R/W
0x16 CR22
Reserved
OUT15_AUTOCOMP_EN
OUT15_VLED_9
OUT15_VLED_8
OUT15_VLED_7
OUT15_VLED_6
OUT15_VLED_5
OUT15_VLED_4
OUT15_VLED_3
OUT15_VLED_2
OUT15_VLED_1
OUT15_VLED_0
Reserved
OUTHS_AUTOCOMP_EN
OUTHS_VLED_9
OUTHS_VLED_8
OUTHS_VLED_7
OUTHS_VLED_6
OUTHS_VLED_5
OUTHS_VLED_4
OUTHS_VLED_3
OUTHS_VLED_2
OUTHS_VLED_1
OUTHS_VLED_0
R/W
0x17 CR23 Reserved
EXT_ID_17
EXT_ID_16
EXT_ID_15
EXT_ID_14
EXT_ID_13
EXT_ID_12
EXT_ID_11
EXT_ID_10
EXT_ID_9
EXT_ID_8
EXT_ID_7
EXT_ID_6
EXT_ID_5
EXT_ID_4
EXT_ID_3
EXT_ID_2
EXT_ID_1
EXT_ID_0
R/W
0x18 CR24
Reserved
CAN_IDE
BR_1
BR_0
SAMPLE_3
SAMPLE_2
SAMPLE_1
SAMPLE_0
DLC_3
DLC_2
DLC_1
DLC_0
Reserved
ID_10
ID_9
ID_8
ID_7
ID_6
ID_5
ID_4
ID_3
ID_2
ID_1
ID_0
R/W
0x19 CR25 Reserved
EXT_ID_MASK_17
EXT_ID_MASK_16
EXT_ID_MASK_15
EXT_ID_MASK_14
EXT_ID_MASK_13
EXT_ID_MASK_12
EXT_ID_MASK_11
EXT_ID_MASK_10
EXT_ID_MASK_9
EXT_ID_MASK_8
EXT_ID_MASK_7
EXT_ID_MASK_6
EXT_ID_MASK_5
EXT_ID_MASK_4
EXT_ID_MASK_3
EXT_ID_MASK_2
EXT_ID_MASK_1
EXT_ID_MASK_0
R/W
0x1A CR26 Reserved
ID_MASK_10
ID_MASK_9
ID_MASK_8
ID_MASK_7
ID_MASK_6
ID_MASK_5
ID_MASK_4
ID_MASK_3
ID_MASK_2
ID_MASK_1
ID_MASK_0
R/W
0x1B CR27
DATA_BYTE3_7
DATA_BYTE3_6
DATA_BYTE3_5
DATA_BYTE3_4
DATA_BYTE3_3
DATA_BYTE3_2
DATA_BYTE3_1
DATA_BYTE3_0
DATA_BYTE2_7
DATA_BYTE2_6
DATA_BYTE2_5
DATA_BYTE2_4
DATA_BYTE2_3
DATA_BYTE2_2
DATA_BYTE2_1
DATA_BYTE2_0
DATA_BYTE1_7
DATA_BYTE1_6
DATA_BYTE1_5
DATA_BYTE1_4
DATA_BYTE1_3
DATA_BYTE1_2
DATA_BYTE1_1
DATA_BYTE1_0
R/W
Table 86. Control register overview (continued)
Bit
Access
Addr. Reg. 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
DS11546 Rev 5 143/197
L99DZ100G, L99DZ100GP SPI Registers
196
Note: All reserved bits (RES) are read-only (R) and will be read as ‘0’. Writing ‘1’ to a reserved bit
is ignored and does not cause an SPI error.
0x1C CR28
DATA_BYTE6_7
DATA_BYTE6_6
DATA_BYTE6_5
DATA_BYTE6_4
DATA_BYTE6_3
DATA_BYTE6_2
DATA_BYTE6_1
DATA_BYTE6_0
DATA_BYTE5_7
DATA_BYTE5_6
DATA_BYTE5_5
DATA_BYTE5_4
DATA_BYTE5_3
DATA_BYTE5_2
DATA_BYTE5_1
DATA_BYTE5_0
DATA_BYTE4_7
DATA_BYTE4_6
DATA_BYTE4_5
DATA_BYTE4_4
DATA_BYTE4_3
DATA_BYTE4_2
DATA_BYTE4_1
DATA_BYTE4_0
R/W
0x1D CR29 Reserved
DATA_BYTE8_7
DATA_BYTE8_6
DATA_BYTE8_5
DATA_BYTE8_4
DATA_BYTE8_3
DATA_BYTE8_2
DATA_BYTE8_1
DATA_BYTE8_0
DATA_BYTE7_7
DATA_BYTE7_6
DATA_BYTE7_5
DATA_BYTE7_4
DATA_BYTE7_3
DATA_BYTE7_2
DATA_BYTE7_1
DATA_BYTE7_0
R/W
0x22 CR34 Reserved
CP_OFF
ICMP
WD_EN
R/W
0x3F Conf
Reg
WU_CONFIG
LIN_WU_CONFIG
LIN_HS_EN
TSD_CONFIG
ECV_HV
DM
ICMP_CONFIG_EN
WD_CONFIG_EN
MASK_OL_HS1
MASK_OL_LS1
MASK_TW
MASK_EC_OL
MASK_OL
MASK_SPIE
MASK_PLE
MASK_GW
CP_OFF_EN
CP_LOW_CONFIG
CP_DITH_DIS
FS_FORCED
CAN_SUP_5V2_EN
Reserved
TRIG
R/W
Table 86. Control register overview (continued)
Bit
Access
Addr. Reg. 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
SPI Registers L99DZ100G, L99DZ100GP
144/197 DS11546 Rev 5
7.3 Status register overview
Table 87. Status register overview
Bit
Access
Addr.Reg.23222120191817161514131211109876543210
0x31 SR1
Reserved
WU_STATE
Reserved
WU_WAKE
WAKE_CAN
WAKE_LIN
WAKE_TIMER
DEBUG_ACTIVE
V1UV
V1_RESTART_2
V1_RESTART_1
V1_RESTART_0
WDFAIL_CNT_3
WDFAIL_CNT_2
WDFAIL_CNT_1
WDFAIL_CNT_0
DEVICE_STATE_1
DEVICE_STATE_0
TSD2
TSD1
FORCED_SLEEP_TSD2/V1SC
FORCED_SLEEP_WD
WDFAIL
VPOR
R
0x32 SR2
LIN_PERM_DOM
LIN_TXD_DOM
LIN_PERM_REC
CAN_RXD_REC
CAN_PERM_REC
CAN_PERM_DOM
CAN_TXD_DOM
CAN_SUP_LOW
DSMON_HS2
DSMON_HS1
DSMON_LS2
DSMON_LS1
SPI_INV_CMD
SPI_SCK_CNT
CP_LOW
TW
V2SC
V2FAIL
V1FAIL
VSREG_EW
VSREG_OV
VSREG_UV
VS_OV
VS_UV
R
0x33 SR3
OUT1_HS_OC_TH_EX
OUT1_LS_OC_TH_EX
OUT2_HS_OC_TH_EX
OUT2_LS_OC_TH_EX
OUT3_HS_OC_TH_EX
OUT3_LS_OC_TH_EX
OUT4_HS_OC_TH_EX
OUT4_LS_OC_TH_EX
OUT5_HS_OC_TH_EX
OUT5_LS_OC_TH_EX
OUT6_HS_OC_TH_EX
OUT6_LS_OC_TH_EX
OUT7_OC_TH_EX
OUT8_OC_TH_EX
OUT9_OC
OUT10_OC
OUT11_OC
OUT12_OC
OUT13_OC
OUT14_OC
OUT15_OC
OUTHS_OC_TH_EX
LS2FSO_OC
LS1FSO_OC
R
0x34 SR4
OUT1_HS_OCR_ALERT
OUT1_LS_OCR_ALERT
OUT2_HS_OCR_ALERT
OUT2_LS_OCR_ALERT
OUT3_HS_OCR_ALERT
OUT3_LS_OCR_ALERT
OUT4_HS_OCR_ALERT
OUT4_LS_OCR_ALERT
OUT5_HS_OCR_ALERT
OUT5_LS_OCR_ALERT
OUT6_HS_OCR_ALERT
OUT6_LS_OCR_ALERT
OUT7_OCR_ALERT
OUT8_OCR_ALERT
Reserved
OUTHS_OCR_ALERT
DSMON_HEAT
ECV_OC
R
0x35 SR5
OUT1_HS_OL
OUT1_LS_OL
OUT2_HS_OL
OUT2_LS_OL
OUT3_HS_OL
OUT3_LS_OL
OUT4_HS_OL
OUT4_LS_OL
OUT5_HS_OL
OUT5_LS_OL
OUT6_HS_OL
OUT6_LS_OL
OUT7_OL
OUT8_OL
OUT9_OL
OUT10_OL
OUT11_OL
OUT12_OL
OUT13_OL
OUT14_OL
OUT15_OL
OUTHS_OL
GH_OL
ECV_OL
R
DS11546 Rev 5 145/197
L99DZ100G, L99DZ100GP SPI Registers
196
0x36 SR6
WD_TIMER_STATE_1
WD_TIMER_STATE_0
Reserved
ECV_VNR
ECV_VHI
Reserved
TW_CL6
TW_CL5
TW_CL4
TW_CL3
TW_CL2
TW_CL1
Reserved
TSD1_CL6
TSD1_CL5
TSD1_CL4
TSD1_CL3
TSD1_CL2
TSD1_CL1
R
0x37 SR7
Reserved
TEMP_CL2_9
TEMP_CL2_8
TEMP_CL2_7
TEMP_CL2_6
TEMP_CL2_5
TEMP_CL2_4
TEMP_CL2_3
TEMP_CL2_2
TEMP_CL2_1
TEMP_CL2_0
Reserved
TEMP_CL1_9
TEMP_CL1_8
TEMP_CL1_7
TEMP_CL1_6
TEMP_CL1_5
TEMP_CL1_4
TEMP_CL1_3
TEMP_CL1_2
TEMP_CL1_1
TEMP_CL1_0
R
0x38 SR8
Reserved
TEMP_CL4_9
TEMP_CL4_8
TEMP_CL4_7
TEMP_CL4_6
TEMP_CL4_5
TEMP_CL4_4
TEMP_CL4_3
TEMP_CL4_2
TEMP_CL4_1
TEMP_CL4_0
Reserved
TEMP_CL3_9
TEMP_CL3_8
TEMP_CL3_7
TEMP_CL3_6
TEMP_CL3_5
TEMP_CL3_4
TEMP_CL3_3
TEMP_CL3_2
TEMP_CL3_1
TEMP_CL3_0
R
0x39 SR9
Reserved
TEMP_CL6_9
TEMP_CL6_8
TEMP_CL6_7
TEMP_CL6_6
TEMP_CL6_5
TEMP_CL6_4
TEMP_CL6_3
TEMP_CL6_2
TEMP_CL6_1
TEMP_CL6_0
Reserved
TEMP_CL5_9
TEMP_CL5_8
TEMP_CL5_7
TEMP_CL5_6
TEMP_CL5_5
TEMP_CL5_4
TEMP_CL5_3
TEMP_CL5_2
TEMP_CL5_1
TEMP_CL5_0
R
0x3A SR10
Reserved
VSREG_9
VSREG_8
VSREG_7
VSREG_6
VSREG_5
VSREG_4
VSREG_3
VSREG_2
VSREG_1
VSREG_0
Reserved R
0x3B SR11
Reserved
VS_9
VS_8
VS_7
VS_6
VS_5
VS_4
VS_3
VS_2
VS_1
VS_0
Reserved
VWU_9
VWU_8
VWU_7
VWU_6
VWU_5
VWU_4
VWU_3
VWU_2
VWU_1
VWU_0
R
0x3C SR12
Reserved
FECNT_4
FECNT_3
FECNT_2
FECNT_1
FECNT_0
Reserved
SWRD_CR29
SWRD_CR28
SWRD_CR27
SWRD_CR26
SWRD_CR25
SWRD_CR24
SWRD_CR23
SYSERR
OSC_FAIL
CAN_SILENT
TX_SYNC
CANTO
WUP
WUF
FDERR
R
Table 87. Status register overview
Bit
Access
Addr.Reg.23222120191817161514131211109876543210
SPI Registers L99DZ100G, L99DZ100GP
146/197 DS11546 Rev 5
7.4 Control registers
7.4.1 Control Register CR1 (0x01)
Table 88. Control Register CR1
23222120191817161514131211109876543210
Bit name
Reserved
WU_EN
Reserved
WU_PU
Reserved
WU_FILT_1
WU_FILT_0
TIMER_NI0NT_WAKE_SEL
TIMER_NINT_EN
LIN_WU_EN(1)
CAN_WU_EN(1)
CANTO_ IRQ_EN
CAN_RXEN
CAN_TXEN
CAN_ Go_TRX_RDY
SWEN
HEN
V2_1
V2_0
PARITY
STBY_SEL
GO_STBY
TRIG
Reset 0 1 0 0 00000011100000000000
Access R R/W R R/W R R/W
1. Either LIN or CAN must be enabled as wake-up source. Setting both bits 12 and 13 to '0' is an invalid setting. In this case,
both bits will be set to '1' (wake-up enabled; default) and the SPI Error Bit (SPIE) in the Global Status Byte will be set.
Table 89. CR1 signals description
Bit Name Description
23 Reserved
22 WU_EN
Wake-up Input 1 (WU) enable(1)
0: WU disabled
1: WU enabled (default)
21 Reserved
20 WU_PU
Wake-up Input1 Pull-up/down configuration: configuration of internal current
source(1)
0: pull-down (default)
1: pull-up
19
Reserved
18
17 WU_FILT_1 Wake-up Input1 Filter configuration Bits: configuration of input filter(1)
See Table 90: Wake-up input1 filter configuration
16 WU_FILT_0
15 TIMER_NINT_WAKE_SEL
Select Timer for NINT / Wake: select timer for periodic interrupt in standby
modes
0: Timer 2 (default)
1: Timer 1
DS11546 Rev 5 147/197
L99DZ100G, L99DZ100GP SPI Registers
196
14 TIMER_NINT_EN
Timer NINT enable: enable timer interrupt in standby modes
0: timer interrupt disabled (default)
1: timer interrupt enabled
V1_standby mode: periodic NINT pulse generated by timer (NINT pulse
at start of timer on-phase)
Vbat_standby mode: device wakes up after timer expiration and
generates NReset
13 LIN_WU_EN (2)
LIN Wake-up enable: enable wake-up by LIN(3)
0: disabled
1: enabled (default)
12 CAN_WU_EN (2)
CAN Wake-up enable: enable wake-up by CAN(4)
0: disabled
1: enabled (default)
11 CANTO_ IRQ_EN
CANTO Interrupt enable: enables interrupt signal in case of CAN timeout
0: CAN TO interrupt disabled
1: CAN TO interrupt enabled (default)
10 CAN_ RXEN CAN transceiver configuration
See Table 91: CAN transceiver mode
9CAN_TXEN
8 CAN_Go_TRX_RDY
CAN Transceiver transition into TRX READY mode.
0: CAN transceiver in TRX BIAS mode (default)
1: CAN transceiver is sent into TRX READY mode
At Exit from TRX READY mode, this bit is set to '0' automatically.
CAN Flash mode: CAN Go TRX RDY is set to '1' automatically
After power-on, this bit should be set to ’0’ and a clear command should be
sent to status registers.
7SWEN
CAN Selective Wake-up enable: enable selective wake-up for CAN(5)
0: No Selective Wakeup (default)
1: Selective Wakeup enabled
6HEN
Enable H-bridge
0: H-bridge disabled (default)
1: H-bridge enabled
Refer to chapter H-bridge Control for details
5V2_1
Voltage Regulator V2 Configuration
See Table 92: Voltage regulator V2 configuration
4V2_0
Table 89. CR1 signals description (continued)
Bit Name Description
SPI Registers L99DZ100G, L99DZ100GP
148/197 DS11546 Rev 5
3 PARITY PARITY: Standby Command Parity Bit
STBY SEL: Select Standby mode
GO_STBY: Execute transition into Standby mode
The STBY_SEL and GO_STBY bits are protected by a parity check.
The bits STBY_SEL, GO_STBY and PARITY must represent an even
number of '1', otherwise the command is ignored and the SPI_INV_CMD bit
is set.
Table 93: Standby transition configuration shows the valid settings.
All other settings are invalid; command will be ignored and SPI_INV_CMD
will be set. The GO_STBY bit is not cleared automatically after wake-up.
2 STBY_SEL
1 GO_STBY
0 TRIG Watchdog Trigger Bit
1. Setting is only valid if input is configured as wake-up input in Configuration Register (0x3F).
2. Either LIN or CAN must be enabled as wake-up source. Setting both bits 12 and 13 to '0' is an invalid setting. All wake-up
sources will be configured according to default setting; SPI Error Bit (SPIE) in Global Status Byte will be set.
3. The wake-up behavior is configurable in the Configuration Register (0x3F).
4. Wake-up occurs at a wake –up event according to ISO 11898-5:2007 (default) Wake-up according ISO 11898-6:2013
(selective wake-up) is configurable (refer to chapter High Speed CAN Bus Transceiver).
5. A dedicated procedure must be followed to set SWEN (CR 1) = 1 (refer to chapter High Speed CAN Bus Transceiver).
Table 89. CR1 signals description (continued)
Bit Name Description
Table 90. Wake-up input1 filter configuration
WU_FILT_1 WU_FILT_0
0 0 Wake-up inputs monitored in static mode (filter time twu_stat) (default)
01
Wake- up inputs monitored in cyclic mode with Timer2 (filter time:
tWU_cyc; blanking time 80% of timer ON time)
10
Wake- up inputs monitored in cyclic mode with Timer1 (filter time:
tWU_cyc; blanking time 80% of timer ON time)
1 1 Invalid setting; command will be ignored and SPI INV CMD will be set
Table 91. CAN transceiver mode
CAN_RXEN CAN_TXEN
0x
TRX Standby: Receiver disabled, Transmitter disabled
0x
1 0 TRX Listen: Receiver enabled, Transmitter disabled
11TRX Normal
(1): Receiver enabled, Transmitter enabled
1. CAN Flash mode: TRX Normal Mode functionality is configured automatically but SPI registers are not
updated.
DS11546 Rev 5 149/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.4.2 Control Register CR2 (0x02)
Table 92. Voltage regulator V2 configuration
V2_1 V2_0
0 0 V2 OFF in all modes (default)
0 1 V2 ON in Active mode; OFF in Standby modes
1 0 V2 ON in Active and V1_standby mode; OFF in Vbat_standby mode
1 1 V2 ON in all modes(1)
1. This configuration will not be taken into account if CAN_SUP_5V2_EN = 1.
Table 93. Standby transition configuration
PARITY STBY_SEL GO_STBY
0 1 1 Go to V1 standby
1 0 1 Go to Vbat_standby
000
No transition to standby
110
Table 94. Control Register CR2
23222120191817161514131211109876543210
Bit name
T1_RESTART
T1_DIR
T1_ON_2
T1_ON_1
T1_ON_0
T1_PER_2
T1_PER_1
T1_PER_0
T2_RESTART
T2_DIR
T2_ON_2
T2_ON_1
T2_ON_0
T2_PER_2
T2_PER_1
T2_PER_0
LIN_REC_ONLY
LIN_TXD_TOUT_EN
CAN_LOOP_EN
PNW_EN
V1_RESET_1
V1_RESET_0
WD_TIME_1
WD_TIME_0
Reset 0 0 0 0 00000000000001000000
Access R/W
Table 95. CR2 signals description
Bit Name Description
23 T1_RESTART
Timer 1 Restart: Restart of Timer 1
0: timer is running with period and on-time according to configuration (default)
1: restart of timer at CSN low to high transition; starting with ON phase(1)
Bit is automatically reset with next SPI frame.
22 T1_DIR1
T1_DIR1: Timer 1 Direct Drive by DIR1
T1_ON_x: Timer 1 On-Time Bits
Configuration of Timer 1 on-time, for details see Table 96 and Figure 60
21 T1_ON_2
20 T1_ON_1
19 T1_ON_0
SPI Registers L99DZ100G, L99DZ100GP
150/197 DS11546 Rev 5
18 T1_PER_2 Configuration of Timer 1 Period
000: T1 (default)
001: T2
010: T3
011: T4
100: T5
101: T6
110: T7
111: T8
17 T1_PER_1
16 T1_PER_0
15 T2_RESTART
Timer 2 Restart: restart of timer 2
0: timer is running with period and on-time according to configuration (default)
1: restart of timer at CSN low to high transition; starting with ON phase(1)
Bit is automatically reset with next SPI frame.
14 T2_DIR1
T2_DIR1: Timer 2 Direct Drive by DIR1
T2_ON_x: Timer 2 On-Time Bits
Configuration of Timer 2 on-time, for details see Table 96 and Figure 60
13 T2_ON_2
12 T2_ON_1
11 T2_ON_0
10 T2_PER_2 Configuration of Timer 2 Period
000: T1 (default)
001: T2
010: T3
011: T4
100: T5
101: T6
110: T7
111: T8
9 T2_PER_1
8 T2_PER_0
7LIN_REC_ONLY
LIN Transceiver Receive Only mode
0: LIN receive only mode disabled (default)
1: LIN receive only mode enabled
6 LIN_TXD_TOUT_EN
LIN TxD Timeout Enable
0: LIN TxD timeout detection disabled
1: LIN TxD timeout detection enabled (default)
5 CAN_LOOP_EN
CAN Loop Enable: CAN Looping of TxDC to RxDC
0: CAN looping disabled (default)
1: CAN looping enabled
Table 95. CR2 signals description (continued)
Bit Name Description
DS11546 Rev 5 151/197
L99DZ100G, L99DZ100GP SPI Registers
196
4PNW_EN
CAN Pretented Networking mode
A WUP leads to transition into TRX Bias mode and an interrupt is generated.
0: pretended networking disabled (default)
1: pretended networking enabled
This bit can only be set to '1' if:
SWEN = 0 (selective wake-up disabled)
CAN RXEN = 1
The bit is automatically reset to '0' if selective wake-up is enabled (SWEN = 1)
device enters Vbat_standby mode
3 V1_RESET_1 Voltage Regulator V1 Reset Threshold
00: Vrt4 (default)
01: Vrt3
10: Vrt2
11: Vrt1
thresholds are monitored in Active mode and V1_standby mode
2 V1_RESET_0
1 WD_TIME_1 Watchdog Trigger Time
00: TSW1 (default)
01: TSW2
10: TSW3
11: TSW4
Writing to WD_TIME_x is blocked unless WD CONFIG EN = 1.
The modified WD Trigger Time is valid immediately after the Write command (CSN
transition low-high).
The watchdog timer is reset when the trigger time is modified (restart at CSN
transition low-high).
0WD_TIME_0
1. Timer restart behavior:
Write to CR2 when Tx_ON_x and Tx_PERx remain unchanged:
Tx_RESTART = 1: timers restart at end of SPI frame, starting with ON time
Tx_RESTART = 0: write operation to CR2 has no effect on timers
Write to CR2 when Tx_ON_x and Tx_PERx are modified
Tx_RESTART = 1: timers restart at end of SPI frame, starting with ON time and according to new setting (ON time and
period)
Tx_RESTART = 0: behavior is not defined; if a predictable behavior is needed, it is recommended to set Tx_RESTART = 1
Table 95. CR2 signals description (continued)
Bit Name Description
Table 96. Configuration of Timer x on-time
Tx_DIR1 Tx_ON_2 Tx_ON_1 Tx_ON_0
0 0 0 0 ton1 (default)
0001ton2
0010ton3
0011ton4
0100ton5
0101
Invalid setting; command will be ignored and SPI
INV CMD will be set
0110
0111
SPI Registers L99DZ100G, L99DZ100GP
152/197 DS11546 Rev 5
Figure 60. Timer_x controlled by DIR1
7.4.3 Control Register CR3 (0x03)
1(1) 0 0 0 ton1 controlled by DIR1 input signal (logical AND)
1(1) 0 0 1 ton2 controlled by DIR1 input signal (logical AND)
1(1) 0 1 0 ton3 controlled by DIR1 input signal (logical AND)
1(1) 0 1 1 ton4 controlled by DIR1 input signal (logical AND)
1(1) 1 0 0 ton5 controlled by DIR1 input signal (logical AND)
1(1) 101
Invalid setting; command will be ignored and SPI
INV CMD will be set
1(1) 110
1(1) 111
1. Tx_DIR1 = 1 is only valid for OUT7-OUT15 and OUT_HS control; the DIR1 signal has no influence for WU
monitoring if WU is monitored by timer.
Table 96. Configuration of Timer x on-time (continued)
Tx_DIR1 Tx_ON_2 Tx_ON_1 Tx_ON_0
7[',5 
7[
WRQ[
7LPHU;
',5
287[
("1($'5
Table 97. Control Register CR3
23222120191817161514131211109876543210
Bit name
VSREG_LOCK_EN
VS_LOCK_EN
VSREG_OV_SD_EN
VSREG_UV_SD_EN
VS_OV_SD_EN
VS_UV_SD_EN
Reserved
VSREG_EWTH_9
VSREG_EWTH_8
VSREG_EWTH_7
VSREG_EWTH_6
VSREG_EWTH_5
VSREG_EWTH_4
VSREG_EWTH_3
VSREG_EWTH_2
VSREG_EWTH_1
VSREG_EWTH_0
Reset 1 1 1 1 11000000000000000000
Access R/W
DS11546 Rev 5 153/197
L99DZ100G, L99DZ100GP SPI Registers
196
Table 98. CR3 signals description
Bit Name Description
23 VSREG_LOCK_EN
VSREG lockout enable: Lockout of VSREG related outputs after VSREG overvoltage/
undervoltage shutdown
0: VSREG related Outputs are turned on automatically and status bits
(VSREG_UV, VSREG_OV) are cleared
1: VSREG related Outputs remain turned off until status bits (VSREG_UV,
VSREG_OV) are cleared (default)
Lockout is always disabled in standby modes in order to ensure supply of external
contacts and detect wake-up conditions
22 VS_LOCK_EN
VS lockout enable: Lockout of VS related outputs after VS over/undervoltage
shutdown
0: VS related Outputs are turned on automatically and status bits (VS_UV,
VS_OV) are cleared
1: VS related Outputs remain turned off until status bits (VS_UV, VS_OV) are
cleared (default)
Lockout is always disabled in standby modes in order to ensure supply of external
contacts and detect wake-up conditions
21 VSREG_OV_SD_EN
VSREG overvoltage shutdown enable: shutdown of VSREG related outputs in case
of VSREG overvoltage
0: no shutdown of VSREG related outputs in case of VSREG overvoltage
1: shutdown of VSREG related outputs in case of VSREG overvoltage (default)
20 VSREG_UV_SD_EN
VSREG undervoltage shutdown enable: shutdown of VSREG related outputs in
case of VSREG undervoltage
0: no shutdown of VSREG related outputs in case of VSREG undervoltage
1: shutdown of VSREG related outputs in case of VSREG undervoltage (default)
In case of V1 undervoltage due to VSREG_UV, the device enters Fail-Safe mode
and the outputs are turned off
19 VS_OV_SD_EN
VS overvoltage shutdown enable: shutdown of VS related outputs in case of VS
overvoltage
0: no shutdown of VS related outputs in case of VS overvoltage if charge pump
output voltage is still sufficient (until CPLOW threshold is reached)
1: shutdown of VS related outputs in case of VS overvoltage (default)
18 VS_UV_SD_EN
VS undervoltage shutdown enable: shutdown of VS related outputs in case of VS
undervoltage
0: no shutdown VS related of outputs in case of VS undervoltage
1: shutdown of VS related outputs in case of VS undervoltage (default)
In case of V1 undervoltage due to VS_UV, the device enters Fail-Safe mode and
the outputs are turned off
17:10 Reserved Reserved
SPI Registers L99DZ100G, L99DZ100GP
154/197 DS11546 Rev 5
7.4.4 Control Register CR4 (0x04)
9 VSREG_EW_TH_9
VSREG early warning threshold.
At VSREG < VSREG_EW_TH, an interrupt is generated at NINT and status bit
VSREG_EW in SR2 is set (in Active mode)
0000000000: 0 V (default) feature deactivated
...
1111111111: VAINVS
8 VSREG_EW_TH_8
7 VSREG_EW_TH_7
6 VSREG_EW_TH_6
5 VSREG_EW_TH_5
4 VSREG_EW_TH_4
3 VSREG_EW_TH_3
2 VSREG_EW_TH_2
1 VSREG_EW_TH_1
0 VSREG_EW_TH_0
Table 98. CR3 signals description (continued)
Bit Name Description
Table 99. Control Register CR4
23222120191817161514131211109876543210
Bit name
Reserved
OUT1_HS
OUT1_LS
Reserved
OUT2_HS
OUT2_LS
Reserved
OUT3_HS
OUT3_LS
Reserved
OUT4_HS
OUT4_LS
Reserved
OUT5_HS
OUT5_LS
Reserved
OUT6_HS
OUT6_LS
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 100. CR4 signals description
Bit Name Description
23:22 Reserved Reserved
21 OUT1_HS
OUT1 High-Side Driver control
0: OUT1_HS is turned off (default)
1: OUT1_HS is turned on
An internal cross-current protection prevents, that both the low- and high-side
drivers of the half-bridge OUT1 are switched on simultaneously.
20 OUT1_LS
OUT1 Low-Side Driver control
0: OUT1_LS is turned off (default)
1: OUT1_LS is turned on
An internal cross-current protection prevents, that both the low- and high-side
drivers of the half-bridge OUT1 are switched on simultaneously.
19:18 Reserved Reserved
DS11546 Rev 5 155/197
L99DZ100G, L99DZ100GP SPI Registers
196
17 OUT2_HS
OUT2 High-Side Driver control
0: OUT2_HS is turned off (default)
1: OUT2_HS is turned on
An internal cross-current protection prevents, that both the low- and high-side
drivers of the half-bridge OUT2 are switched on simultaneously.
16 OUT2_LS
OUT2 Low-Side Driver control
0: OUT2_LS is turned off (default)
1: OUT2_LS is turned on
An internal cross-current protection prevents, that both the low- and high-side
drivers of the half-bridge OUT2 are switched on simultaneously.
15:14 Reserved Reserved
13 OUT3_HS
OUT3 High-Side Driver control
0: OUT3_HS is turned off (default)
1: OUT3_HS is turned on
An internal cross-current protection prevents, that both the low- and high-side
drivers of the half-bridge OUT3 are switched on simultaneously.
12 OUT3_LS
OUT3 Low-Side Driver control
0: OUT3_LS is turned off (default)
1: OUT3_LS is turned on
An internal cross-current protection prevents, that both the low- and high-side
drivers of the half-bridge OUT3 are switched on simultaneously.
11:10 Resrved Reserved
9 OUT4_HS
OUT4 High-Side Driver control
0: OUT4_HS is turned off (default)
1: OUT4_HS is turned on
An internal cross-current protection prevents, that both the low- and high-side
drivers of the half-bridge OUT4 are switched on simultaneously.
8 OUT4_LS
OUT4 Low-Side Driver control
0: OUT4_LS is turned off (default)
1: OUT4_LS is turned on
An internal cross-current protection prevents, that both the low- and high-side
drivers of the half-bridge OUT4 are switched on simultaneously.
7:6 Reserved Reserved
5 OUT5_HS
OUT5 High-Side Driver control
0: OUT5_HS is turned off (default)
1: OUT5_HS is turned on
An internal cross-current protection prevents, that both the low- and high-side
drivers of the half-bridge OUT5 are switched on simultaneously.
4 OUT5_LS
OUT5 Low-side Driver control
0: OUT5_LS is turned off (default)
1: OUT5_LS is turned on
An internal cross-current protection prevents, that both the low- and high-side
drivers of the half-bridge OUT5 are switched on simultaneously.
Table 100. CR4 signals description (continued)
Bit Name Description
SPI Registers L99DZ100G, L99DZ100GP
156/197 DS11546 Rev 5
7.4.5 Control Register CR5 (0x05)
3:2 Reserved Reserved
1 OUT6_HS
OUT6 High-side Driver control
0: OUT6_HS is turned off (default)
1: OUT6_HS is turned on
An internal cross-current protection prevents, that both the low-side and high-side
drivers of the half-bridge OUT6 are switched on simultaneously.
0 OUT6_LS
OUT6 Low-side Driver control
0: OUT6_LS is turned off (default)
1: OUT6_LS is turned on
An internal cross-current protection prevents, that both the low-side and high-side
drivers of the half-bridge OUT6 are switched on simultaneously.
Table 100. CR4 signals description (continued)
Bit Name Description
Table 101. Control Register CR5
23222120191817161514131211109876543210
Bit name
OUT7_3
OUT7_2
OUT7_1
OUT7_0
OUT8_3
OUT8_2
OUT8_1
OUT8_0
Reserved
OUT10_3
OUT10_2
OUT10_1
OUT10_0
Reserved
GH
OUTHS_3
OUTHS_2
OUTHS_1
OUTHS_0
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 102. CR5 signals description
Bit Name Description
23 OUT7_3
OUT7 Configuration Bits: High-Side Driver OUT7 Configuration
For OUT7 bits configuration see Table 103: OUTx Configuration bits
22 OUT7_2
21 OUT7_1
20 OUT7_0
19 OUT8_3
OUT8 Configuration Bits: High-Side Driver OUT8 Configuration
For OUT8 bits configuration see Table 103: OUTx Configuration bits
18 OUT8_2
17 OUT8_1
16 OUT8_0
15:12 Reserved
11 OUT10_3
OUT10 Configuration Bits: High-Side Driver OUT10 Configuration
For OUT10 bits configuration see Table 103: OUTx Configuration bits
10 OUT10_2
9 OUT10_1
8 OUT10_0
DS11546 Rev 5 157/197
L99DZ100G, L99DZ100GP SPI Registers
196
7:5 Reserved
4GH
Gate Heater Control: Control of gate driver for external heater MOSFET
0: GH_heater is turned off (default)
1: GH_heater is turned on
3 OUTHS_3
OUTHS Configuration Bits: High-side Driver OUTHS Configuration
For OUTHS bits configuration see Table 103: OUTx Configuration bits
2 OUTHS_2
1 OUTHS_1
0 OUTHS_0
Table 102. CR5 signals description (continued)
Bit Name Description
Table 103. OUTx Configuration bits
OUTx_3 OUTx_2 OUTx_1 OUTx_0 Description
0 0 0 0 Off (default)
0001On
0 0 1 0 Timer1
0 0 1 1 Timer2
0100PWM1
0101PWM2
0110PWM3
0111PWM4
1000PWM5
1001PWM6
1010PWM7
1011PWM8
1100PWM9
1101PWM10
1 1 1 0 DIR1
1 1 1 1 DIR2
SPI Registers L99DZ100G, L99DZ100GP
158/197 DS11546 Rev 5
7.4.6 Control Register CR6 (0x06)
Table 104. Control Register CR6
23222120191817161514131211109876543210
Bit name
OUT9_3
OUT9_2
OUT9_1
OUT9_0
OUT11_3
OUT11_2
OUT11_1
OUT11_0
OUT12_3
OUT12_2
OUT12_1
OUT12_0
OUT13_3
OUT13_2
OUT13_1
OUT13_0
OUT14_3
OUT14_2
OUT14_1
OUT14_0
OUT15_3
OUT15_2
OUT15_1
OUT15_0
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 105. CR6 signals description
Bit Name Description
23 OUT9_3
OUT9 Configuration Bits: High-Side Driver OUT9 Configuration
For OUT9 bits configuration see Table 103: OUTx Configuration bits
22 OUT9_2
21 OUT9_1
20 OUT9_0
19 OUT11_3
OUT11 Configuration Bits: High-Side Driver OUT11 Configuration
For OUT11 bits configuration see Table 103: OUTx Configuration bits
18 OUT11_2
17 OUT11_1
16 OUT11_0
15 OUT12_3
OUT12 Configuration Bits: High-Side Driver OUT12 Configuration
For OUT12 bits configuration see Table 103: OUTx Configuration bits
14 OUT12_2
13 OUT12_1
12 OUT12_0
11 OUT13_3
OUT13 Configuration Bits: High-Side Driver OUT13 Configuration
For OUT13 bits configuration see Table 103: OUTx Configuration bits
10 OUT13_2
9 OUT13_1
8 OUT13_0
7 OUT14_3
OUT14 Configuration Bits: High-Side Driver OUT14 Configuration
For OUT14 bits configuration see Table 103: OUTx Configuration bits
6 OUT14_2
5 OUT14_1
4 OUT14_0
3 OUT15_3
OUT15 Configuration Bits: High-side Driver OUT15 Configuration
For OUT15 bits configuration see Table 103: OUTx Configuration bits
2 OUT15_2
1 OUT15_1
0 OUT15_0
DS11546 Rev 5 159/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.4.7 Control Register CR7 (0x07)
Table 106. Control Register CR7
23222120191817161514131211109876543210
Bit name
OUT1_OCR
OUT2_OCR
OUT3_OCR
OUT4_OCR
OUT5_OCR
OUT6_OCR
OUT7_OCR
OUT8_OCR
OUTHS_OCR
Reserved
HB_TON_1
HB_TON_0
HS_TON_1
HS_TON_0
OCR_FREQ
OUT5_OC1
OUT5_OC0
CM_EN
Reserved
CM_SEL_3
CM_SEL_2
CM_SEL_1
CM_SEL_0
Reset 0 0 0 0 00000000000000100000
Access R/W
Table 107. CR7 signals description
Bit Name Description
23 OUT1_OCR
Overcurrent recovery for OUTx
0: overcurrent recovery is turned off (default)
1: overcurrent recovery is turned on
22 OUT2_OCR
21 OUT3_OCR
20 OUT4_OCR
19 OUT5_OCR
18 OUT6_OCR
17 OUT7_OCR
16 OUT8_OCR
15 OUTHS_OCR
Overcurrent recovery for OUTHS
0: overcurrent recovery is turned off (default)
1: overcurrent recovery is turned on
14:13 Reserved
12 HB_TON_1 Half-bridge minimum ON time and related overcurrent recovery frequency
For details see Table 108: Half-bridge minimum ON time and related overcurrent
recovery frequency
11 HB_TON_0
10 HS_TON_1 High-side minimum ON time and related overcurrent recovery frequency
For details see Table 109: High-side minimum ON time and related overcurrent
recovery frequency
9HS_TON_0
8OCR_FREQ
Overcurrent recovery frequency
See Table 108: Half-bridge minimum ON time and related overcurrent recovery
frequency and Table 109: High-side minimum ON time and related overcurrent
recovery frequency
7 OUT5_OC1 Overcurrent Threshold for OUT5
00: IOC5_3 overcurrent threshold 3 (default)
01: IOC5_1 overcurrent threshold 1
10: IOC5_2 overcurrent threshold 2
11: IOC5_3 overcurrent threshold 3
6 OUT5_OC0
SPI Registers L99DZ100G, L99DZ100GP
160/197 DS11546 Rev 5
5CM_EN
Current monitor:
0: off (3-state)
1: on (default)
4 Reserved
3 CM_SEL_3 Current Monitor Select Bits.
A current image of the selected binary coded output is multiplexed to the CM
output. If a corresponding output does not exist, the current monitor is deactivated.
0000: OUT1
0001: OUT2
0010: OUT3
0011: OUT4
0100: OUT5
0101: OUT6
0110: OUT7
0111: OUT8
1000: OUT9
1001: OUT10
1010: OUT11
1011: OUT12
1100: OUT13
1101: OUT14
1110: OUT15
1111: OUT_HS
2 CM_SEL_2
1 CM_SEL_1
0 CM_SEL_0
Table 107. CR7 signals description (continued)
Bit Name Description
Table 108. Half-bridge minimum ON time and related overcurrent recovery frequency
HB_TON_1 HB_TON_ OCR_FREQ TON_min (recovery frequency)
0 0 0 104 µs (1.7 kHz)
0 0 1 104 µs (3 kHz)
0 1 0 88 µs (2.2 kHz)
0 1 1 88 µs (3.8 kHz)
1 0 0 80 µs (2.6 kHz)
1 0 1 80 µs (4.4 kHz)
1 1 0 72 µs (3 kHz)
1 1 1 72 µs (5 kHz)
Table 109. High-side minimum ON time and related overcurrent recovery frequency
HS_TON_1 HS_TON_ OCR_FREQ TON_min (recovery frequency)
0 0 0 104 µs (1.7 kHz)
0 0 1 104 µs (3 kHz)
DS11546 Rev 5 161/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.4.8 Control Register CR8 (0x08)
0 1 0 88 µs (2.2 kHz)
0 1 1 88 µs (3.8 kHz)
1 0 0 80 µs (2.6 kHz)
1 0 1 80 µs (4.4 kHz)
1 1 0 72 µs (3 kHz)
1 1 1 72 µs (5 kHz)
Table 109. High-side minimum ON time and related overcurrent recovery frequency
HS_TON_1 HS_TON_ OCR_FREQ TON_min (recovery frequency)
Table 110. Control Register CR8
23222120191817161514131211109876543210
Bit name
OUT1_OCR_THX_EN
OUT2_OCR_THX_EN
OUT3_OCR_THX_EN
OUT4_OCR_THX_EN
OUT5_OCR_THX_EN
OUT6_OCR_THX_EN
OUT7_OCR_THX_EN
OUT8_OCR_THX_EN
OUTHS_OCR_THX_EN
Resrved
Reset 1 1 1 1 11111000000000000000
Access R/W
Table 111. CR8 signals description
Bit Name Description
23 OUT1_OCR_THX_EN
Enable Overcurrent Recovery with Thermal Expiration for OUTx.
0: Overcurrent Recovery with Thermal Expiration is off
1: Overcurrent Recovery with Thermal Expiration is on (default)
The output is turned off after Thermal Expiration.
22 OUT2_OCR_THX_EN
21 OUT3_OCR_THX_EN
20 OUT4_OCR_THX_EN
19 OUT5_OCR_THX_EN
18 OUT6_OCR_THX_EN
17 OUT7_OCR_THX_EN
16 OUT8_OCR_THX_EN
SPI Registers L99DZ100G, L99DZ100GP
162/197 DS11546 Rev 5
7.4.9 Control Register CR9 (0x09)
15 OUTHS_OCR_THX_EN
Enable Overcurrent Recovery with Thermal Expiration for OUTHS.
0: Overcurrent Recovery with Thermal Expiration is off
1: Overcurrent Recovery with Thermal Expiration is on (default)
The output is turned off after Thermal Expiration.
14:0 Reserved
Table 111. CR8 signals description (continued)
Bit Name Description
Table 112. Control Register CR9
23222120191817161514131211109876543210
Bit name
OUT7_RDSON
OUT8_RDSON
Reserved
OUTHS_OL
OUT15_OL
OUT14_OL
OUT13_OL
OUT12_OL
OUT11_OL
OUT10_OL
OUT9_OL
OUTHS_OC
OUT15_OC
OUT14_OC
OUT13_OC
OUT12_OC
OUT11_OC
OUT10_OC
OUT9_OC
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 113. CR9 signals description
Bit Name Description
23 OUT7_RDSON
Select Rdson for OUT7
0: ron_low (default)
1: ron_high
22 OUT8_RDSON
Select Rdson for OUT8
0: ron_low (default)
1: ron_high
21:16 Reserved
15 OUTHS_OL
Open-load Threshold for OUTx
0: IOLD1 ; high-current mode (default)
1: IOLD1; low-current mode
14 OUT15_OL
13 OUT14_OL
12 OUT13_OL
11 OUT12_OL
10 OUT11_OL
9 OUT10_OL
8OUT9_OL
DS11546 Rev 5 163/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.4.10 Control Register CR10 (0x0A)
7 OUTHS_OC
Overcurrent Threshold for OUTx
0: IOC; high-current mode (default)
1: IOC; low-current mode
6 OUT15_OC
5 OUT14_OC
4 OUT13_OC
3 OUT12_OC
2 OUT11_OC
1 OUT10_OC
0 OUT9_OC
Table 113. CR9 signals description (continued)
Bit Name Description
Table 114. Control Register CR10
23222120191817161514131211109876543210
Bit name
DIAG_2
DIAG_1
DIAG_0
GH_OL_EN
Reserved
GH_TH_2
GH_TH_1
GH_TH_0
Reserved
SD
SDS
COPT_3
COPT_2
COPT_1
COPT_0
H_OLTH_HIGH
OL_H1L2
OL_H2L1
SLEW_4
SLEW_3
SLEW_2
SLEW_1
SLEW_0
Reset 1 1 1 0 01110000111100000000
Access R/W
Table 115. CR10 signals description
Bit Name Description
23 DIAG_2 Drain-source monitoring threshold for external H-bridge
000: VSCd1_HB
001: VSCd2_HB
010: VSCd3_HB
011: VSCd4_HB
100: VSCd5_HB
101: VSCd6_HB
110: VSCd7_HB
111: VSCd7_HB (default)
22 DIAG_1
21 DIAG_0
20 GH_OL_EN
Control open-load diagnosis for Gate Heater output
0: open-load diagnosis off (default)
1: open-load diagnosis on
19 Reserved
SPI Registers L99DZ100G, L99DZ100GP
164/197 DS11546 Rev 5
18 GH_TH_2 Drain source monitoring threshold voltage for external heater MOSFET
000: VSCd1_HE
001: VSCd2_HE
010: VSCd3_HE
011: VSCd4_HE
100: VSCd5_HE
101: VSCd6_HE
110: VSCd7_HE
111: VSCd8_HE (default)
17 GH_TH_1
16 GH_TH_0
15:14 Reserved
13 SD Slow decay
12 SDS Slow decay single
11 COPT_3 Cross current protection time
0000: not allowed
0001: tccp0001
0010: tccp0010
0011: tccp0011
0100: tccp0100
0101: tccp0101
0110: tccp0110
0111: tccp0111
1000: tccp1000
1001: tccp1001
1010: tccp1010
1011: tccp1011
1100: tccp1100
1101: tccp1101
1110: tccp1110
1111: tccp1111 (default)
10 COPT_2
9COPT_1
8COPT_0
7 H_OLTH_HIGH H-bridge OL high threshold (5/6 * VS) select
6 OL_H1L2 Test open-load condition between H1 and L2
5 OL_H2L1 Test open-load condition between H2 and L1
4SLEW_4
Binary coded slew rate of H-bridge (bit0 = LSB; bit4 = MSB)
00000: Control disabled (default)
11111: IGHxmax
3SLEW_3
2SLEW_2
1SLEW_1
0SLEW_0
Table 115. CR10 signals description (continued)
Bit Name Description
DS11546 Rev 5 165/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.4.11 Control Register CR11 (0x0B)
Table 116. Control Register CR11
23222120191817161514131211109876543210
Bit name Reserved
ECV_LS
ECV_OCR
Reserved
ECON
Reserved
EC_5
EC_4
EC_3
EC_2
EC_1
EC_0
Reset 0 0 0 0 00000000000000100000
Access R/W
Table 117. CR11 signals description
Bit Name Description
23:14 Reserved
13 ECV_LS
Control of ECV low-side switch
0: ECV low-side switch off (default)
1: ECV low-side switch on
12 ECV_OCR
Overcurrent recovery for output ECV
0: overcurrent recovery is turned off (default)
1: overcurrent recovery is turned on
11:9 Reserved
8ECON
Electro-chrome Control
The electro-chrome control enables the driver at pin ECDR and switches
OUT10 directly on ignoring the control bits OUT10_x in CR5
0: Electro-chrome control off (default)
1: Electro-chrome control on
7:6 Reserved
5EC_5
EC Reference Voltage Bits
The reference voltage for the electro-chrome voltage controller at pin ECV
is binary coded.
(bit0 = LSB; bit5 = MSB)
00 0000: VECV = 0 V
xx xxxx: VECV = VCTRLmax/63 x register value
11 1111: VECV = VCTRLmax
For ECV_HV (Configuration Register) = 0, the maximum EC control
voltage is clamped at lower value (see Section 3.4.20: Electro-chrome
mirror driver)
4EC_4
3EC_3
2EC_2
1EC_1
0EC_0
SPI Registers L99DZ100G, L99DZ100GP
166/197 DS11546 Rev 5
7.4.12 Control Register CR12 (0x0C)
Table 118. Control Register CR12
23222120191817161514131211109876543210
Bit name
PMW1_FREQ_1
PMW1_FREQ_0
PMW2_FREQ_1
PMW2_FREQ_0
PMW3_FREQ_1
PMW3_FREQ_0
PMW4_FREQ_1
PMW4_FREQ_0
PMW5_FREQ_1
PMW5_FREQ_0
PMW6_FREQ_1
PMW6_FREQ_0
PMW7_FREQ_1
PMW7_FREQ_0
PMW8_FREQ_1
PMW8_FREQ_0
PMW9_FREQ_1
PMW9_FREQ_0
PMW10_FREQ_1
PMW10_FREQ_0
Reserved
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 119. CR12 signals description
Bit Name Description
23 PMW1_FREQ_1 Frequency of PWM channel PWM1
00: fPWMx(00) (default)
01: fPWMx(01)
10: fPWMx(10)
11: fPWMx(11)
22 PMW1_FREQ_0
21 PMW2_FREQ_1 Frequency of PWM channel PWM2
00: fPWMx(00) (default)
01: fPWMx(01)
10: fPWMx(10)
11: fPWMx(11)
20 PMW2_FREQ_0
19 PMW3_FREQ_1 Frequency of PWM channel PWM3
00: fPWMx(00) (default)
01: fPWMx(01)
10: fPWMx(10)
11: fPWMx(11)
18 PMW3_FREQ_0
17 PMW4_FREQ_1 Frequency of PWM channel PWM4
00: fPWMx(00) (default)
01: fPWMx(01)
10: fPWMx(10)
11: fPWMx(11)
16 PMW4_FREQ_0
15 PMW5_FREQ_1 Frequency of PWM channel PWM5
00: fPWMx(00) (default)
01: fPWMx(01)
10: fPWMx(10)
11: fPWMx(11)
14 PMW5_FREQ_0
DS11546 Rev 5 167/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.4.13 Control Register CR13 (0x0D) to CR17 (0x11)
Where:
x = 1 + (z * 2), z = 0 to 4
13 PMW6_FREQ_1 Frequency of PWM channel PWM6
00: fPWMx(00) (default)
01: fPWMx(01)
10: fPWMx(10)
11: fPWMx(11)
12 PMW6_FREQ_0
11 PMW7_FREQ_1 Frequency of PWM channel PWM7
00: fPWMx(00) (default)
01: fPWMx(01)
10: fPWMx(10)
11: fPWMx(11)
10 PMW7_FREQ_0
9 PMW8_FREQ_1 Frequency of PWM channel PWM8
00: fPWMx(00) (default)
01: fPWMx(01)
10: fPWMx(10)
11: fPWMx(11)
8 PMW8_FREQ_0
7 PMW9_FREQ_1 Frequency of PWM channel PWM9
00: fPWMx(00) (default)
01: fPWMx(01)
10: fPWMx(10)
11: fPWMx(11)
6 PMW9_FREQ_0
5 PMW10_FREQ_1 Frequency of PWM channel PWM10
00: fPWMx(00) (default)
01: fPWMx(01)
10: fPWMx(10)
11: fPWMx(11)
4 PMW10_FREQ_0
3:0 Reserved
Table 119. CR12 signals description (continued)
Bit Name Description
Table 120. Control Register CR13 to CR17
23222120191817161514131211109876543210
Bit name
Reserved
PWMx_DC_9
PWMx_DC_8
PWMx_DC_7
PWMx_DC_6
PWMx_DC_5
PWMx_DC_4
PWMx_DC_3
PWMx_DC_2
PWMx_DC_1
PWMx_DC_0
Reserved
PWMy_DC_9
PWMy_DC_8
PWMy_DC_7
PWMy_DC_6
PWMy_DC_5
PWMy_DC_4
PWMy_DC_3
PWMy_DC_2
PWMy_DC_1
PWMy_DC_0
Reset 0 0 0 0 00000000000000000000
Access R/W
SPI Registers L99DZ100G, L99DZ100GP
168/197 DS11546 Rev 5
y = 2 + (z * 2), z = 0 to 4
7.4.14 Control Register CR18 (0x12) to CR22 (0x16)
Table 121. CR13 to CR17 signals description
Bit Name Description
23:22 Reserved
21 PWMx_DC_9
Binary coded on-dutycycle of PWM channel PWMx (bit12 = LSB; bit21 = MSB)
00 0000 0000: duty cycle 0% (default)
xx xxxx xxxx: duty cycle 100%/1023 x register value
11 1111 1111. duty cycle 100%
20 PWMx_DC_8
19 PWMx_DC_7
18 PWMx_DC_6
17 PWMx_DC_5
16 PWMx_DC_4
15 PWMx_DC_3
14 PWMx_DC_2
13 PWMx_DC_1
12 PWMx_DC_0
11:10 Reserved
9 PWMy_DC_9
Binary coded on-dutycycle of PWM channel PWMy (bit0 = LSB; bit9 = MSB)
00 0000 0000: duty cycle 0% (default)
xx xxxx xxxx: duty cycle 100%/1023 x register value
11 1111 1111. Duty cycle 100%
Binary coded on-dutycycle of PWM channel PWMy
8 PWMy_DC_8
7 PWMy_DC_7
6 PWMy_DC_6
5 PWMy_DC_5
4 PWMy_DC_4
3 PWMy_DC_3
2 PWMy_DC_2
1 PWMy_DC_1
0 PWMy_DC_0
Table 122. Control Register CR18
23222120191817161514131211109876543210
Bit name
Reserved
OUTx_AUTOCOMP_EN
OUTx_VLED_9
OUTx_VLED_8
OUTx_VLED_7
OUTx_VLED_6
OUTx_VLED_5
OUTx_VLED_4
OUTx_VLED_3
OUTx_VLED_2
OUTx_VLED_1
OUTx_VLED_0
Reserved
OUTy_AUTOCOMP_EN
OUTy_VLED_9
OUTy_VLED_8
OUTy_VLED_7
OUTy_VLED_6
OUTy_VLED_5
OUTy_VLED_4
OUTy_VLED_3
OUTy_VLED_2
OUTy_VLED_1
OUTy_VLED_0
DS11546 Rev 5 169/197
L99DZ100G, L99DZ100GP SPI Registers
196
Where:
x = 7 + (z * 2), z = 0 to 4
y = 8 + (z * 2), z = 0 to 4
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 122. Control Register CR18 (continued)
23222120191817161514131211109876543210
Table 123. CR18 to CR22 signals description
Bit Name Description
23 Reserved
22 OUTx_AUTOCOMP_EN Setting this bit to ‘1’ enables the automatic VS compensation for OUTx
21 OUTx_VLED_9
Binary coded nominal LED voltage of OUTx (bit12 = LSB; bit21 = MSB)
00 0000 0000: VLED = 0 V (default)
xx xxxx xxxx: VLED = VAINVS /1023 x register value
01 1101 0000: VLED = VAINVS
VLED is clamped at 10 V (0x1D0h)
20 OUTx_VLED_8
19 OUTx_VLED_7
18 OUTx_VLED_6
17 OUTx_VLED_5
16 OUTx_VLED_4
15 OUTx_VLED_3
14 OUTx_VLED_2
13 OUTx_VLED_1
12 OUTx_VLED_0
11 Reserved
10 OUTy_AUTOCOMP_EN Setting this bit to ‘1’ enables the automatic VS compensation for OUTy
9 OUTy_VLED_9
Binary coded nominal LED voltage of OUTy (bit0 = LSB; bit9 = MSB)
00 0000 0000: VLED = 0 V (default)
xx xxxx xxxx: VLED = VAINVS /1023 x register value
01 1101 0000: VLED = VAINVS
VLED is clamped at 10 V (0x1D0h)
8 OUTy_VLED_8
7 OUTy_VLED_7
6 OUTy_VLED_6
5 OUTy_VLED_5
4 OUTy_VLED_4
3 OUTy_VLED_3
2 OUTy_VLED_2
1 OUTy_VLED_1
0 OUTy_VLED_0
SPI Registers L99DZ100G, L99DZ100GP
170/197 DS11546 Rev 5
7.4.15 Control Register CR23 (0x17)
7.4.16 Control Register CR24 (0x18)
Table 124. Control Register CR23
23222120191817161514131211109876543210
Bit name Reserved
EXT_ID_17
EXT_ID_16
EXT_ID_15
EXT_ID_14
EXT_ID_13
EXT_ID_12
EXT_ID_11
EXT_ID_10
EXT_ID_9
EXT_ID_8
EXT_ID_7
EXT_ID_6
EXT_ID_5
EXT_ID_4
EXT_ID_3
EXT_ID_2
EXT_ID_1
EXT_ID_0
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 125. CR23 signals description
Bit Name Description
23:18 Reserved
17:0 EXT_ID_x
Extended CAN Identifier
Definition of Extended CAN Identifier which will cause a wake-up (WUF)
To enable wake-up frame detection on Extended CAN Identifier also CAN_IDE (Control
Register 24, bit 22) must be set
ID Bits are maskable in CR25
Table 126. Control Register CR24
23222120191817161514131211109876543210
Bit name
Reserved
CAN_IDE
BR_1
BR_0
SAMPLE_3
SAMPLE_2
SAMPLE_1
SAMPLE_0
DLC_3
DLC_2
DLC_1
DLC_0
Reserved
ID_10
ID_9
ID_8
ID_7
ID_6
ID_5
ID_4
ID_3
ID_2
ID_1
ID_0
Reset 0 0 0 0 10100000000000000000
Access R/W
Table 127. CR24 signals description
Bit Name Description
23 Reserved
22 CAN_IDE
Enable CAN wake-up frame detection on Extended Identifier
0: CAN Identifier matching based on CAN Standard Message Format (default)
1: CAN Identifier Matching based on CAN Extended Message Format
DS11546 Rev 5 171/197
L99DZ100G, L99DZ100GP SPI Registers
196
21 BR_1 Bit Rate for CAN wake-up frame detection
00: 500 kbit/s (default)
01: 250 kbit/s
10: 500 kbit/s
11: 125 kbit/s
20 BR_0
19 SAMPLE_3 Sample Point for CAN wake-up frame detection
0000: 65.625 %
0001: 67.1875 %
0010: 67.75 %
...
1010: 81.25 % (default)
...
1110: 87.5 %
1111: 89.065 %
18 SAMPLE_2
17 SAMPLE_1
16 SAMPLE_0
15 DLC_3
CAN Data Length Code
Defines the amount of Data Bytes used for the CAN wake-up frame detection.
Possible values up to 8 Byte according to CAN message format
14 DLC_2
13 DLC_1
12 DLC_0
11 Reserved
10 ID_10
CAN Identifier
Definition of CAN Identifier which will cause a wake-up (WUF)
ID Bits are maskable in CR26
9ID_9
8ID_8
7ID_7
6ID_6
5ID_5
4ID_4
3ID_3
2ID_2
1ID_1
0ID_0
Table 127. CR24 signals description (continued)
Bit Name Description
SPI Registers L99DZ100G, L99DZ100GP
172/197 DS11546 Rev 5
7.4.17 Control Register CR25 (0x19)
7.4.18 Control Register CR26 (0x1A)
The extended ID and extended ID mask are composed as follows (mask is composed by
equivalent bits in CR25 and CR26:
Table 128. Control Register CR25
23222120191817161514131211109876543210
Bit name Reserved
EXT_ID_MASK_17
EXT_ID_MASK_16
EXT_ID_MASK_15
EXT_ID_MASK_14
EXT_ID_MASK_13
EXT_ID_MASK_12
EXT_ID_MASK_11
EXT_ID_MASK_10
EXT_ID_MASK_9
EXT_ID_MASK_8
EXT_ID_MASK_7
EXT_ID_MASK_6
EXT_ID_MASK_5
EXT_ID_MASK_4
EXT_ID_MASK_3
EXT_ID_MASK_2
EXT_ID_MASK_1
EXT_ID_MASK_0
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 129. CR25 signals description
Bit Name Description
23:18 Reserved
17:0 EXT_ID_MASK_x
Masking Bits for Extended CAN Identifier
0: Extended CAN Identifier Bit will be matched (default)
1: Extended CAN Identifier Bit will be ignored for matching
Table 130. Control Register CR26
23222120191817161514131211109876543210
Bit name Reserved
ID_MASK_10
ID_MASK_9
ID_MASK_8
ID_MASK_7
ID_MASK_6
ID_MASK_5
ID_MASK_4
ID_MASK_3
ID_MASK_2
ID_MASK_1
ID_MASK_0
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 131. CR26 signals description
Bit Name Description
23:11 Reserved
10:0 ID_MASK_x
Masking Bits Standard CAN Identifier
0: CAN Identifier Bit will be matched (default)
1: CAN Identifier Bit will be ignored for matching
DS11546 Rev 5 173/197
L99DZ100G, L99DZ100GP SPI Registers
196
Figure 61. Extended ID and extended ID mask
7.4.19 Control Register CR27 (0x1B)
7.4.20 Control Register CR28 (0x1C)
E E E E E E E E E E E
,' B
67','
&5ELW
,'B
E E E E E E E E E E E
,'B
&5ELW
,'B
(;7,'
E E E E E E E E E E EE E E EE E E655 ,'(
(; ,' B
&5ELW«
(;,'B
("1($'5
Table 132. Control Register CR27
23222120191817161514131211109876543210
Bit name
DATA_BYTE3_7
DATA_BYTE3_6
DATA_BYTE3_5
DATA_BYTE3_4
DATA_BYTE3_3
DATA_BYTE3_2
DATA_BYTE3_1
DATA_BYTE3_0
DATA_BYTE2_7
DATA_BYTE2_6
DATA_BYTE2_5
DATA_BYTE2_4
DATA_BYTE2_3
DATA_BYTE2_2
DATA_BYTE2_1
DATA_BYTE2_0
DATA_BYTE1_7
DATA_BYTE1_6
DATA_BYTE1_5
DATA_BYTE1_4
DATA_BYTE1_3
DATA_BYTE1_2
DATA_BYTE1_1
DATA_BYTE1_0
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 133. CR27 signals description
Bit Name Description
23:16 DATA_BYTE3
Data field for data matching15:8 DATA_BYTE2
7:0 DATA_BYTE1
Table 134. Control Register CR28
23222120191817161514131211109876543210
Bit name
DATA_BYTE6_7
DATA_BYTE6_6
DATA_BYTE6_5
DATA_BYTE6_4
DATA_BYTE6_3
DATA_BYTE6_2
DATA_BYTE6_1
DATA_BYTE6_0
DATA_BYTE5_7
DATA_BYTE5_6
DATA_BYTE5_5
DATA_BYTE5_4
DATA_BYTE5_3
DATA_BYTE5_2
DATA_BYTE5_1
DATA_BYTE5_0
DATA_BYTE4_7
DATA_BYTE4_6
DATA_BYTE4_5
DATA_BYTE4_4
DATA_BYTE4_3
DATA_BYTE4_2
DATA_BYTE4_1
DATA_BYTE4_0
Reset 0 0 0 0 00000000000000000000
Access R/W
SPI Registers L99DZ100G, L99DZ100GP
174/197 DS11546 Rev 5
7.4.21 Control Register CR29 (0x1D)
7.4.22 Control Register CR34 (0x22)
Table 135. CR28 signals description
Bit Name Description
23:16 DATA_BYTE6
Data field for data matching15:8 DATA_BYTE5
7:0 DATA_BYTE4
Table 136. Control Register CR29
23222120191817161514131211109876543210
Bit name Reserved
DATA_BYTE8_7
DATA_BYTE8_6
DATA_BYTE8_5
DATA_BYTE8_4
DATA_BYTE8_3
DATA_BYTE8_2
DATA_BYTE8_1
DATA_BYTE8_0
DATA_BYTE7_7
DATA_BYTE7_6
DATA_BYTE7_5
DATA_BYTE7_4
DATA_BYTE7_3
DATA_BYTE7_2
DATA_BYTE7_1
DATA_BYTE7_0
Reset 0 0 0 0 00000000000000000000
Access R/W
Table 137. CR29 signals description
Bit Name Description
23:16 Reserved
15:8 DATA_BYTE8
Data field for data matching
7:0 DATA_BYTE7
Table 138. Control Register CR34
23222120191817161514131211109876543210
Bit name Reserved
CP_OFF
ICMP
WD_EN
Reset 0 0 0 0 00000000000000000001
Access R/W
DS11546 Rev 5 175/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.4.23 Configuration Register (0x3F)
Table 139. CR34 signals description
Bit Name Description
23:3 Reserved
2CP_OFF
Charge pump control
0: Enabled; charge pump on in active mode (default)
1: Disabled; charge pump off in active mode
setting CP_OFF = 1 is only possible when CP_OFF_EN = 1
1ICMP
V1 load current supervision
0: Enabled; Watchdog is disabled in V1 Standby when Iv1< ICMP (default)
1: Disabled; watchdog is disabled upon transition into V1_standby mode
setting ICMP = 1 is only possible when ICMP_config_en = 1
0WD_EN
Watchdog Enable
0: Watchdog disabled
1: Watchdog enabled (default)
Writing to this bit is only possible during CAN Flash mode (VTxDL > Vflash)
Table 140. Configuration Register
23222120191817161514131211109876543210
Bit name
WU_CONFIG
LIN_WU_CONFIG
LIN_HS_EN
TSD_CONFIG
ECV_HV
DM
ICMP_CONFIG_EN
WD_CONFIG_EN
MASK_OL_HS1
MASK_OL_LS1
MASK_TW
MASK_EC_OL
MASK_OL
MASK_SPIE
MASK_PLE
MASK_GW
CP_OFF_EN
CP_LOW_CONFIG
CP_DITH_DIS
FS_FORCED
CAN_SUP_5V2_EN
Reserved
TRIG
Reset 1 0 0 0 00000000000000000001
Access R/W
Table 141. CR signals description
Bit Name Description
23 WU_CONFIG
Configuration of input pin WU
Input configured as wake-up input
0: WU configured as wake-up input
1: WU configured for input voltage measurement (default)
22 LIN_WU_CONFIG
Configuration of LIN wake-up behaviour
0: wake up at recessive - dominant - recessive with tdom > tdom_LIN (default)
(according to LIN 2.2a and Hardware Requirements for Transceivers version
1.3)
1: wake up at recessive - dominant transition
SPI Registers L99DZ100G, L99DZ100GP
176/197 DS11546 Rev 5
21 LIN_HS_EN
Configuration of LIN transceiver bit rate
0: LIN transceiver in normal communication mode (20kbit/s) (default)
1: LIN transceiver in high speed mode for fast Flashing (115kbit/s)
20 TSD_CONFIG
Configuration of thermal shutdown behaviour
0: in case of TSD1 all power stages are switched off (default)
1: selective shut down of power stage cluster
19 ECV_HV
Configuration of maximum voltage of electrochrome controller (see electrical
parameter VCTRLmax)
0: maximum electrochrome controller voltage clamped to 1.2V (typ); (default)
1: maximum electrochrome controller voltage set to 1.5V (typ)
18 DM
H-bridge configuration
0: single motor mode (default)
1: dual motor mode
17 ICMP_CONFIG_EN
ICMP configuration Enable
0: writing ICMP = 1 is blocked (writing ICMP=0 is possible); (default)
1: writing ICMP = 1 is possible with next SPI command
bit is automatically reset to 0 after next SPI command
16 WD_CONFIG_EN
Watchdog configuration Enable
0: writing to WD Configuration (CR2 [0:1] is blocked (default)
1: writing to WD Configuration Bits is possible with next SPI command
bit is automatically reset to 0 after next SPI command
15 MASK_OL_HS1
Mask Open-load HS1
0: Open-load condition at HS1 is not masked (default)
1: Open-load condition at HS1 is masked
i.e. it is reported as a Functional Error (GSB bit 3) but not as a Global Error
(GSB bit 7)
14 MASK_OL_LS1
Mask Open-load LS1
0: Open-load condition at LS1 is not masked (default)
1: Open-load condition at LS1 is masked
i.e. it is reported as a Functional Error (GSB bit 3) but not as a Global Error
(GSB bit 7)
13 MASK_TW
Mask Thermal Warning
0: Thermal warning is not masked (default)
1: Thermal warning is masked
i.e. it is reported as a Global Warning (GSB bit 1) but not as a Global Error
(GSB bit 7)
12 MASK_EC_OL
Mask Electro-chrome Open-load
0: Open-load condition at ECV and OUT10 is not masked (default)
1: Open-load condition at ECV and OUT10 is masked
i.e. it is reported as a Functional Error (GSB bit 3) but not as a Global Error
(GSB bit 7)
Table 141. CR signals description (continued)
Bit Name Description
DS11546 Rev 5 177/197
L99DZ100G, L99DZ100GP SPI Registers
196
11 MASK_OL
Mask open-load
0: Open-load condition at all outputs are not masked (default)
1: Open-load condition at all outputs are masked
i.e. it is reported as a Functional Error (GSB bit 3) but not as a Global Error
(GSB bit 7)
10 MASK_SPIE
Mask SPI error
0: SPI errors are not masked (default)
1: SPI errors are masked
i.e. reported as am SPI Error (GSB bit 5) but not as a Global Error (GSB bit 7)
9 MASK_PLE
Mask physical layer error
0: Physical Layer Errors are not masked (default)
1: Physical Layer Errors are masked
i.e. reported as a Physical Layer Error (GSB bit 4) but not as a Global Error
(GSB bit 7)
8 MASK_GW
Mask global warning
0: Global Warning conditions are not masked (default)
1: Global Warning conditions are masked
i.e. reported as a Global Warning (GSB bit 1) but not as a Global Error (GSB
bit 7)
7 CP_OFF_EN
Charge pump control enable
0: writing CP_OFF = 1 is blocked (writing CP OFF = 0 is possible); (default)
1: writing CP_OFF = 1 is possible with next SPI command
Bit is automatically reset to 0 after next SPI command
6 CP_LOW_CONFIG
Charge pump low configuration
0: CP_low (SR 2, bit 9) is latched and outputs are off until R&C; (default)
1: CP_low (SR 2, bit 9) is a ‘live’ bit; outputs are re-activated automatically
upon recovery of the charge pump output voltage
5CP_DITH_DIS
Charge pump clock dithering
0: CP clock dithering is enabled; (default)
1: CP clock dithering is disabled
4 FS_FORCED
Force LSx_FSO ON
LSx_FSO low-side outputs are forced ON (to allow diagnosis of the fail-safe
path)
0: LSx_FSO outputs are controlled by the Fail-safe logic (default)
1: LSx_FSO outputs are forced ON and the device enters Fail-Safe mode; no
NReset is generated
3 CAN_SUP_5V2_EN
CAN supplied by V2 enable (to allow CAN Partial Networking in V1stdby)
0: CAN supplied by V1; (default)
1: CAN supplied by V2; in this case the configuration CR1<5:4> = 11 is
ignored
2:1 Reserved
0 TRIG Watchdog Trigger bit
Table 141. CR signals description (continued)
Bit Name Description
SPI Registers L99DZ100G, L99DZ100GP
178/197 DS11546 Rev 5
7.5 Status Registers
7.5.1 Status Register SR1 (0x31)
Table 142. Status Register SR1 (0x31)
23222120191817161514131211109876543210
Bit name
Reserved
WU_STATE
Reserved
WU_WAKE
WAKE_CAN
WAKE_LIN
WAKE_TIMER
DEBUG_ACTIVE
V1UV
V1_RESTART_2
V1_RESTART_1
V1_RESTART_0
WDFAIL_CNT_3
WDFAIL_CNT_2
WDFAIL_CNT_1
WDFAIL_CNT_0
DEVICE_STATE_1
DEVICE_STATE_0
TSD2
TSD1
FORCED_SLEEP_TSD2/V1SC
FORCED_SLEEP_WD
WDFAIL
VPOR
Access R/C R R/C R R/C
Table 143. SR1 signals description
Bit Name Description
23 Reserved
22 WU_STATE
State of WU input
0: input level is low
1: input level is high
The bit shows the momentary status of WU and cannot be cleared (“Live bit”)
Note: The status is only valid if WU is configured as wake-up input in
Configuration Register (0x3F). Otherwise this bit is read at its previous logic
state
21 Reserved
20 WU_WAKE
Wake-up by WU: shows wake up source
1: wake-up
Bits are latched until a “Read and clear” command
19 WAKE_CAN
Wake-up by CAN: shows wake up source
1: wake-up
Bits are latched until a “Read and clear” command
18 WAKE_LIN
Wake-up by LIN: shows wake up source
1: wake-up
Bits are latched until a “Read and clear” command
17 WAKE_TIMER
Wake-up by Timer: shows wake up source
1: wake-up
Bits are latched until a “Read and clear” command
DS11546 Rev 5 179/197
L99DZ100G, L99DZ100GP SPI Registers
196
16 DEBUG_ACTIVE
Debug Mode Active: indicates Device is in Debug mode
1: Debug mode
The bit shows the momentary status and cannot be cleared (“Live bit”)
15 V1UV
Indicates undervoltage condition at voltage regulator V1 (V1 < VRTx)
1: undervoltage
Bit is latched until a “Read and clear” command
14 V1_RESTART_2 Indicates the number of TSD2 events which caused a restart of voltage
regulator V1
Bits cannot be cleared; counter will be cleared automatically if no additional
TSD2 event occurs within 1 minute.
13 V1_RESTART_1
12 V1_RESTART_0
11 WDFAIL_CNT_3
Indicates number of subsequent watchdog failures.
Bits cannot be cleared; will be cleared with a valid watchdog trigger
10 WDFAIL_CNT_2
9 WDFAIL_CNT_1
8 WDFAIL CNT_0
7 DEVICE_STATE_1 State from which the device woke up
00: Active mode, after Read&Clear command or after Flash mode state
01: Active mode after wake-up from V1_standby mode (before Read&Clear
command)
10: in Active mode after Power-on or after wake-up from Vbat_standby mode
(before Read&Clear command)
11: Flash mode (LIN Flash or CAN Flash mode)
Bit is latched until a “Read and clear” command
After a “read and clear access”, the device state will be updated
6 DEVICE_STATE_0
5TSD2
Thermal Shutdown 2 was reached
Bit is latched until a "Read and clear" command
4TSD1
Thermal Shutdown 1 was reached (Logical Or combination of all TSD1_CLx;
see status register SR6).
This bit cannot be cleared directly. It is reset if the corresponding TSD1_CLx
bits in SR6 are cleared.
3FORCED_SLEEP_
TSD2/V1SC
Device entered Forced Vbat_standby mode due to:
Thermal shutdown or
Short circuit on V1 during startup
Bit is latched until a "Read and clear" command
2 FORCED_SLEEP_WD Device entered Forced Vbat_standby mode due to multiple watchdog failures
Bit is latched until a "Read and clear" command
1WDFAIL
Watchdog failure
Bit is latched until a "Read and clear" command
0 VPOR VS Power-on Reset threshold (VPOR) reached
Bit is latched until a "Read and clear" command
Table 143. SR1 signals description (continued)
Bit Name Description
SPI Registers L99DZ100G, L99DZ100GP
180/197 DS11546 Rev 5
7.5.2 Status Register SR2 (0x32)
Table 144. Status Register SR2 (0x32)
23222120191817161514131211109876543210
Bit name
LIN_PERM_DOM
LIN_TXD_DOM
LIN_PERM_REC
CAN_RXD_REC
CAN_PERM_REC
CAN_PERM_DOM
CAN_TXD_DOM
CAN_SUP_LOW
DSMON_HS2
DSMON_HS1
DSMON_LS2
DSMON_LS1
SPI_INV_CMD
SPI_SCK_CNT
CP_LOW
TW
V2SC
V2FAIL
V1FAIL
VSREG_EW
VSREG_OV
VSREG_UV
VS_OV
VS_UV
Access R/C R R/C
Table 145. SR2 signals description
Bit Name Description
23 LIN_PERM_DOM LIN bus signal is dominant for t > tdom(bus)
Bit is latched until a “Read and clear” command
22 LIN_TXD_DOM
TxDL pin is dominant for t > tdom(TXDL)
The LIN transmitter is disabled until the bit is cleared
Bit is latched until a “Read and clear” command
21 LIN_PERM_REC
LIN bus signal does not follow TxDL within tLIN
The LIN transmitter is disabled until the bit is cleared
Bit is latched until a “Read and clear” command
20 CAN_RXD_REC
RxDC has not followed TxDC for 4 times
The CAN transmitter is disabled until the bit is cleared
Bit is latched until a “Read and clear” command
19 CAN_PERM_REC
CAN bus signal did not follow TxDC for 4 times
The CAN transmitter is disabled until the bit is cleared
Bit is latched until a “Read and clear” command
18 CAN_PERM_DOM CAN bus signal is dominant for t > tCAN
Bit is latched until a “Read and clear” command
17 CAN_TXD_DOM
TxDC pin is dominant for t > tdom(TXDC)
The CAN transmitter is disabled until the bit is cleared
Bit is latched until a “Read and clear” command
16 CAN_SUP_LOW
Voltage at CAN supply pin reached the CAN supply low warning threshold
VCANSUP < VCANSUPlow
Bit is latched until a “Read and clear” command
15 DSMON_HS2
Drain-Source Monitoring
‘1’ indicates a short-circuit or open-load condition was detected
Bit is latched until a “Read and clear” command
14 DSMON_HS1
13 DSMON_LS2
12 DSMON_LS1
DS11546 Rev 5 181/197
L99DZ100G, L99DZ100GP SPI Registers
196
11 SPI_INV_CMD
Invalid SPI command
‘1’ indicates one of the following conditions was detected:
access to undefined address
Write operation to Status Register
DI stuck at '0' or '1'
CSN timeout
Parity failure
invalid or undefined setting
The SPI frame is ignored
Bit is latched until a “Read and clear” command
10 SPI_SCK_CNT
SPI clock counter
‘1’ indicates an SPI frame with wrong number of CLK cycles was detected
Bit is latched until a valid SPI frame
9CP_LOW
Charge pump voltage low
‘1’ indicates that the charge pump voltage is too low
Bit is latched until a “Read and clear” command
8TW
Thermal warning
‘1’ indicates the temperature has reached the thermal warning threshold (logical
OR combination of bits TW_CLx in SR6)
Bit is latched until a “Read and clear” command
7V2SC
V2 short circuit detection
‘1’ indicates a short circuit to GND condition of V2 at turn-on of the regulator
(V2 < V2_fail for t > tv2_short)
Bit is latched until a “Read and clear” command
6V2FAIL
V2 failure detection
‘1’ indicates a V2 fail event occurred since last readout
(V2 < V2_fail for t > tv2_fail)
Bit is latched until a “Read and clear” command
5V1FAIL
V1 failure detection
‘1’ indicates a V1 fail event occurred since last readout
(V1 < V1_fail for t > tv1_fail)
Bit is latched until a “Read and clear” command
4 VSREG_EW
VSREG early warning
‘1’ indicates the voltage at VSREG has reached the early warning threshold
(configured in CR3)
In Active mode, an interrupt pulse is generated at NINT
Bit is latched until a “Read and clear” command.
Bit needs a "Read and clear" command after wake-up from standby modes
3 VSREG_OV
VSREG overvoltage
‘1’ indicates the voltage at VSREG has reached the overvoltage threshold
Bit is latched until a “Read and clear” command
Table 145. SR2 signals description (continued)
Bit Name Description
SPI Registers L99DZ100G, L99DZ100GP
182/197 DS11546 Rev 5
7.5.3 Status Register SR3 (0x33)
2 VSREG_UV
VSREG undervoltage
‘1’ indicates the voltage at VSREG has reached the undervoltage threshold
Bit is latched until a “Read and clear” command
1VS_OV
VS overvoltage
‘1’ indicates the voltage at VS has reached the overvoltage threshold
Bit is latched until a “Read and clear” command
0 VS_UV
VS undervoltage
‘1’ indicates the voltage at VS has reached the undervoltage threshold
Bit is latched until a “Read and clear” command
Table 145. SR2 signals description (continued)
Bit Name Description
Table 146. Status Register SR3 (0x33)
23222120191817161514131211109876543210
Bit name
OUT1_HS_OC_TH_EX
OUT1_LS_OC_TH_EX
OUT2_HS_OC_TH_EX
OUT2_LS_OC_TH_EX
OUT3_HS_OC_TH_EX
OUT3_LS_OC_TH_EX
OUT4_HS_OC_TH_EX
OUT4_LS_OC_TH_EX
OUT5_HS_OC_TH_EX
OUT5_LS_OC_TH_EX
OUT6_HS_OC_TH_EX
OUT6_LS_OC_TH_EX
OUT7_OC_TH_EX
OUT8_OC_TH_EX
OUT9_OC
OUT10_OC
OUT11_OC
OUT12_OC
OUT13_OC
OUT14_OC
OUT15_OC
OUTHS_OC_TH_EX
LS2FSO_OC
LS1FSO_OC
Access R/C
DS11546 Rev 5 183/197
L99DZ100G, L99DZ100GP SPI Registers
196
Table 147. SR3 signals description
Bit Name Description
23 OUT1_HS_OC_TH_EX
Overcurrent shutdown
‘1’ indicates the output was shut down due to overcurrent condition.
If Overcurrent Recovery is disabled (CR7: OUTx_OCR = 0):
Bit is set upon overcurrent condition and output is turned off.
If Overcurrent Recovery is enabled (CR7: OUTx_OCR = 1):
In case of overcurrent condition this bit is not set. The output goes into
Overcurrent Recovery mode and OUTx_OCR_alert in SR4 is set to '1'
In case of Thermal Expiration enabled (CR8: OUTx_OCR_THx_en = 1):
Bit is set after thermal expiration and output is turned off
Bit is latched until a “Read and clear” command
22 OUT1_LS_OC_TH_EX
21 OUT2_HS_OC_TH_EX
20 OUT2_LS_OC_TH_EX
19 OUT3_HS_OC_TH_EX
18 OUT3_LS_OC_TH_EX
17 OUT4_HS_OC_TH_EX
16 OUT4_LS_OC_TH_EX
15 OUT5_HS_OC_TH_EX
14 OUT5_LS_OC_TH_EX
13 OUT6_HS_OC_TH_EX
12 OUT6_LS_OC_TH_EX
11 OUT7_OC_TH_EX
10 OUT8_OC_TH_EX
9OUT9_OC
Overcurrent shutdown
‘1’ indicates the output was shut down due to overcurrent condition.
Bit is latched until a “Read and clear” command
8 OUT10_OC
7OUT11_OC
6 OUT12_OC
5 OUT13_OC
4 OUT14_OC
3 OUT15_OC
2 OUTHS_OC_TH_EX
Overcurrent shutdown
‘1’ indicates the output was shut down due to overcurrent condition.
If Overcurrent Recovery is disabled (CR7: OUTx_OCR = 0):
Bit is set upon overcurrent condition and output is turned off.
If Overcurrent Recovery is enabled (CR7: OUTx_OCR = 1):
In case of overcurrent condition this bit is not set. The output goes into
Overcurrent Recovery mode and OUTx_OCR_alert in SR4 is set to '1'
In case of Thermal Expiration enabled (CR8: OUTx_OCR_THx_en = 1):
Bit is set after thermal expiration and output is turned off
Bit is latched until a “Read and clear” command
1 LS2FSO_OC Overcurrent shutdown
‘1’ indicates the output was shut down due to overcurrent condition.
Bit is latched until a “Read and clear” command
0 LS1FSO_OC
SPI Registers L99DZ100G, L99DZ100GP
184/197 DS11546 Rev 5
7.5.4 Status Register SR4 (0x34)
Table 148. Status Register SR4 (0x34)
23222120191817161514131211109876543210
Bit name
OUT1_HS_OCR_ALERT
OUT1_LS_OCR_ALERT
OUT2_HS_OCR_ALERT
OUT2_LS_OCR_ALERT
OUT3_HS_OCR_ALERT
OUT3_LS_OCR_ALERT
OUT4_HS_OCR_ALERT
OUT4_LS_OCR_ALERT
OUT5_HS_OCR_ALERT
OUT5_LS_OCR_ALERT
OUT6_HS_OCR_ALERT
OUT6_LS_OCR_ALERT
OUT7_OCR_ALERT
OUT8_OCR_ALERT
Reserved
OUTHS_OCR_ALERT
DSMON_HEAT
ECV_OC
Access R R/C R R/C
Table 149. SR4 signals description
Bit Name Description
23 OUT1_HS_OCR_ALERT
Autorecovery Alert
‘1’ indicates that the output reached the overcurrent threshold and is in
autorecovery mode
Bit is not latched and cannot be cleared.
22 OUT1_LS_OCR_ALERT
21 OUT2_HS_OCR_ALERT
20 OUT2_LS_OCR_ALERT
19 OUT3_HS_OCR_ALERT
18 OUT3_LS_OCR_ALERT
17 OUT4_HS_OCR_ALERT
16 OUT4_LS_OCR_ALERT
15 OUT5_HS_OCR_ALERT
14 OUT5_LS_OCR_ALERT
13 OUT6_HS_OCR_ALERT
12 OUT6_LS_OCR_ALERT
11 OUT7_OCR_ALERT
10 OUT8_OCR_ALERT
9:3 Reserved
2 OUTHS_OCR_ALERT
Autorecovery Alert
‘1’ indicates that the output reached the overcurrent threshold and is in
autorecovery mode
Bit is not latched and cannot be cleared.
DS11546 Rev 5 185/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.5.5 Status Register SR5 (0x35)
1 DSMON_HEAT
Drain-Source Monitoring Heater output
‘1’ indicates a short-circuit condition was detected
Bit is latched until a “Read and clear” command
0ECV_OC
Overcurrent shutdown
‘1’ indicates the output was shut down due to overcurrent condition.
Bit is latched until a “Read and clear” command
Table 149. SR4 signals description (continued)
Bit Name Description
Table 150. Status Register SR5 (0x35)
23222120191817161514131211109876543210
Bit name
OUT1_HS_OL
OUT1_LS_OL
OUT2_HS_OL
OUT2_LS_OL
OUT3_HS_OL
OUT3_LS_OL
OUT4_HS_OL
OUT4_LS_OL
OUT5_HS_OL
OUT5_LS_OL
OUT6_HS_OL
OUT6_LS_OL
OUT7_OL
OUT8_OL
OUT9_OL
OUT10_OL
OUT11_OL
OUT12_OL
OUT13_OL
OUT14_OL
OUT15_OL
OUTHS_OL
GH_OL
ECV_OL
Access R/C
SPI Registers L99DZ100G, L99DZ100GP
186/197 DS11546 Rev 5
Table 151. SR5 signals description
Bit Name Description
23 OUT1_HS_OL
Open-load
‘1’ indicates an open-load condition was detected at the output
Bit is latched until a “Read and clear” command
22 OUT1_LS_OL
21 OUT2_HS_OL
20 OUT2_LS_OL
19 OUT3_HS_OL
18 OUT3_LS_OL
17 OUT4_HS_OL
16 OUT4_LS_OL
15 OUT5_HS_OL
14 OUT5_LS_OL
13 OUT6_HS_OL
12 OUT6_LS_OL
11 OUT7_OL
10 OUT8_OL
9OUT9_OL
8 OUT10_OL
7OUT11_OL
6 OUT12_OL
5 OUT13_OL
4 OUT14_OL
3 OUT15_OL
2 OUTHS_OL
1GH_OL
0ECV_OL
DS11546 Rev 5 187/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.5.6 Status Register SR6 (0x36)
Table 152. Status Register SR6 (0x36)
23222120191817161514131211109876543210
Bit name
WD_TIMER_STATE_1
WD_TIMER_STATE_0
Reserved
ECV_VNR
ECV_VHI
Reserved
TW_CL6
TW_CL5
TW_CL4
TW_CL3
TW_CL2
TW_CL1
Reserved
TSD1_CL6
TSD1_CL5
TSD1_CL4
TSD1_CL3
TSD1_CL2
TSD1_CL1
Access R R/C R R/C
Table 153. SR6 signals description
Bit Name Description
23 WD_TIMER_STATE_1 Watchdog timer status
00: 0 - 33%
01: 33 - 66%
11: 66 - 100%
22 WD_TIMER_STATE_0
21:18 Reserved
17 ECV_VNR
Electrochrome voltage
not reached: electrochrome voltage status
'1' indicates the electrochrome voltage is not reached
Bit is not latched
16 ECV_VHI
Electrochrome voltage high: electrochrome voltage status
'1' indicates the electrochrome voltage is not reached
Bit is not latched
15:14 Resrved
13 TW_CL6
Thermal warning for Cluster x
‘1’ indicates Cluster x has reached the thermal warning threshold
Bit is latched until a “Read and clear” command
12 TW_CL5
11 TW_CL4
10 TW_CL3
9TW_CL2
8TW_CL1
7:6 Reserved
SPI Registers L99DZ100G, L99DZ100GP
188/197 DS11546 Rev 5
7.5.7 Status Register SR7 (0x37) to SR9 (0x39)
Where:
x = 2 + (z * 2), z = 0 to 2
y = 1 + (z * 2), z = 0 to 2
5TSD1_CL6
Thermal shutdown of Cluster x
‘1’ indicates Cluster x has reached the thermal shutdown threshold (TSD1) and
the output cluster was shut down
Bit is latched until a “Read and clear” command
4TSD1_CL5
3TSD1_CL4
2TSD1_CL3
1TSD1_CL2
0TSD1_CL1
Table 153. SR6 signals description (continued)
Bit Name Description
Table 154. Status Register SR7 (0x37) to SR9 (0x39)
23222120191817161514131211109876543210
Bit name
Reserved
TEMP_CLx_9
TEMP_CLx_8
TEMP_CLx_7
TEMP_CLx_6
TEMP_CLx_5
TEMP_CLx_4
TEMP_CLx_3
TEMP_CLx_2
TEMP_CLx_1
TEMP_CLx_0
Reserved
TEMP_CLy_9
TEMP_CLy_8
TEMP_CLy_7
TEMP_CLy_6
TEMP_CLy_5
TEMP_CLy_4
TEMP_CLy_3
TEMP_CLy_2
TEMP_CLy_1
TEMP_CLy_0
Access R/C R R/C R
Table 155. SR7 to SR9 signals description
Bit Name Description
23:22 Reserved
21 TEMP_CLx_9
Temperature Cluster x: Binary coded voltage of temperature diode for cluster x
(bit12 = LSB; bit21 = MSB) (see Section 4.34: Thermal clusters)
Bits cannot be cleared.
20 TEMP_CLx_8
19 TEMP_CLx_7
18 TEMP_CLx_6
17 TEMP_CLx_5
16 TEMP_CLx_4
15 TEMP_CLx_3
14 TEMP_CLx_2
13 TEMP_CLx_1
12 TEMP_CLx_0
11:10 Reserved
DS11546 Rev 5 189/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.5.8 Status Register SR10 (0x3A)
9 TEMP_CLy_9
Temperature Cluster y: binary coded voltage of temperature diode for cluster y
(bit0 = LSB; bit9 = MSB) (see Section 4.34: Thermal clusters)
Bits cannot be cleared.
8 TEMP_CLy_8
7 TEMP_CLy_7
6 TEMP_CLy_6
5 TEMP_CLy_5
4 TEMP_CLy_4
3 TEMP_CLy_3
2 TEMP_CLy_2
1 TEMP_CLy_1
0 TEMP_CLy_0
Table 155. SR7 to SR9 signals description (continued)
Bit Name Description
Table 156. Status Register SR10 (0x3A)
23222120191817161514131211109876543210
Bit name
Reserved
VSREG_9
VSREG_8
VSREG_7
VSREG_6
VSREG_5
VSREG_4
VSREG_3
VSREG_2
VSREG_1
VSREG_0
Reserved
Access R/C R R/C
Table 157. SR10 signals description
Bit Name Description
23:22 Reserved
21 VSREG_9
Binary coded voltage at VSREG pin (bit12 = LSB; bit21 = MSB)
00 0000 0000: 0V
xx xxxx xxxx: VAINVS/1023 x register value
11 1111 1111: VAINVS
Bits cannot be cleared.
20 VSREG_8
19 VSREG_7
18 VSREG_6
17 VSREG_5
16 VSREG_4
15 VSREG_3
14 VSREG_2
13 VSREG_1
12 VSREG_0
11:0 Reserved
SPI Registers L99DZ100G, L99DZ100GP
190/197 DS11546 Rev 5
7.5.9 Status Register SR11 (0x3B)
Table 158. Status Register SR11 (0x3B)
23222120191817161514131211109876543210
Bit name
Reserved
VS_9
VS_8
VS_7
VS_6
VS_5
VS_4
VS_3
VS_2
VS_1
VS_0
Reserved
VWU_9
VWU_8
VWU_7
VWU_6
VWU_5
VWU_4
VWU_3
VWU_2
VWU_1
VWU_0
Access R/C R R/C R
Table 159. SR11 signals description
Bit Name Description
23 Reserved
21 VS_9
Binary coded voltage at VS pin (bit12 = LSB; bit21 = MSB)
00 0000 0000: 0V
xx xxxx xxxx: VAINVS/1023 x register value
11 1111 1111: VAINVS
Bits cannot be cleared.
20 VS_8
19 VS_7
18 VS_6
17 VS_5
16 VS_4
15 VS_3
14 VS_2
13 VS_1
12 VS_0
11:10 Reserved
9VWU_9
Binary coded voltage at WU pin (bit0 = LSB; bit9 = MSB)
00 0000 0000: 0V
xx xxxx xxxx: VAINVS/1023 x register value
11 1111 1111: VAINVS
Bits cannot be cleared.
8VWU_8
7VWU_7
6VWU_6
5VWU_5
4VWU_4
3VWU_3
2VWU_2
1VWU_1
0VWU_0
DS11546 Rev 5 191/197
L99DZ100G, L99DZ100GP SPI Registers
196
7.5.10 Status Register SR12 (0x3C)
Table 160. Status Register SR12 (0x3B)
23222120191817161514131211109876543210
Bit name
Reserved
FECNT_4
FECNT_3
FECNT_2
FECNT_1
FECNT_0
Reserved
SWRD_CR29
SWRD_CR28
SWRD_CR27
SWRD_CR26
SWRD_CR25
SWRD_CR24
SWRD_CR23
SYSERR
OSC_FAIL
CAN_SILENT
TX_SYNC
CANTO
WUP
WUF
FDERR
Access R/C R R/C R
Table 161. SR12 signals description
Bit Name Description
23:21 Reserved
20 FECNT_4 CAN Frame Detect Error Counter
This counter is increased by 1 in case a frame was not received/decoded correctly
(CRC error, stuff-bit error, form error).
The counter is decreased by 1 with every frame which is decoded correctly
If FECNT = 31, the next erroneous frame will wake-up the device, set FDERR = 1
and reset FECNTx = 0
‘Live’ Bit Updated after each sent CAN Frame
19 FECNT_3
18 FECNT_2
17 FECNT_1
16 FECNT_0
15 Reserved
14 SWRD_CR29
Status flag for Read operation to Selective Wakeup relevant Registers
0: Read not done
1: Read done
All bits must be ‘1’ in order to allow activation of selective wake-up (set SWEN = 1)
Bits are automatically cleared if the configuration of the respective Control Register
is modified
13 SWRD_CR28
12 SWRD_CR27
11 SWRD_CR26
10 SWRD_CR25
9 SWRD_CR24
8 SWRD_CR23
7 SYSERR
CAN System Error
Bit is a logical OR combination of:
NOT(SWRD_x) OR OSC_Fail OR FD_ERR
If SWRD_x are all 1, OSC_Fail is 0 and FD_ERR is 0, this bit is 0, otherwise this bit
is 1.
The selective wake feature cannot be enabled
(SW_EN = 1) if SYS_ERR = 1
In case of a SYS_ERR the selective wake-up feature is
disabled (SW_EN = 0)
Live bit; will be updated upon change of SWRD_x, OSC_Fail and FD_ERR
6 OSC_FAIL
CAN selective wake oscillator failure
OSC Failure Flag (used device internally)
Bit is latched until a read and clear access
SPI Registers L99DZ100G, L99DZ100GP
192/197 DS11546 Rev 5
5 CAN_SILENT
Online monitoring bit to see if there is silence on the bus for longer than tSilence
This flag shows the actual status of the CAN bus (activity/silence). A microcontroller
in Stop mode may check this flag priodically
4 TX_SYNC
Status flag for synchronous reference oscillator of the CAN transceiver. Indicates
that the last received frame was decoded correctly
0: Not synchronous
1: Synchronous
‘Live’ Bit Updated after each sent CAN Frame
3CANTO
CAN communication timeout
Bit is set if there is no communication on the bus for t > tSilence
CANTO indicates that there was a transition from TRX BIAS to TRX Sleep
Bit is latched until a read and clear access
2WUP
Wake up flag for Wake up Pattern
Bit is latched until a read and clear access
1WUF
Wake up flag for Wake up Frame
Bit is latched until a read and clear access
0 FDERR
Frame Detect Error
This bit is set at overflow of the Frame Error Counter (FECNT) in SR12
In case of a Frame Detect Error, the device will wake up from TRX BIAS mode
Bit is latched until a read and clear access
Table 161. SR12 signals description (continued)
Bit Name Description
DS11546 Rev 5 193/197
L99DZ100G, L99DZ100GP Package information
196
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
8.1 LQFP-64 package information
Figure 62. LQFP-64 package dimension
Table 162. LQFP-64 mechanical data
Symbol
Millimeters
Min. Typ. Max.
3.5°
1 12°
2 1 12° 13°
3 1 12° 13°
("1($'5
Package information L99DZ100G, L99DZ100GP
194/197 DS11546 Rev 5
A 1.60
A1 0.05 0.15
A2 1.35 1.40 1.45
b 0.27
b1 0.17 0.20 0.23
c 0.09 0.20
c1 0.09 0.127 0.16
D 12.00 BSC
D1 10.00 BSC
D2 6.85
D3 5.7
e 0.50 BSC
E 12.00 BSC
E1 10.00 BSC
E2 4.79
E3 3.3
L 0.45 0.60 0.75
L1 1.00
N64
R1 0.08
R2 0.08 0.20
S0.20
Tolerance of form and position
aaa 0.20
bbb 0.20
ccc 0.08
ddd 0.08
Table 162. LQFP-64 mechanical data (continued)
Symbol
Millimeters
Min. Typ. Max.
DS11546 Rev 5 195/197
L99DZ100G, L99DZ100GP Package information
196
Figure 63. LQFP-64 footprint
8.2 LQFP-64 marking information
Figure 64. LQFP-64 marking information
Parts marked as ES are not yet qualified and therefore not approved for use in production.
ST is not responsible for any consequences resulting from such use. In no event will ST be
liable for the customer using any of these engineering samples in production. ST’s Quality
department must be contacted to run a qualification activity prior to any decision to use
these engineering samples.
("1($'5
4QFDJBMGVODUJPOEJHJUT
&4&OHJOFFSJOHTBNQMF
CMBOL$PNNFSDJBMTBNQMF
-2'15017*&8
OPUJOTDBMF
.BSLJOHBSFB
.BSLJOHBSFB
("%(."(
PS
Revision history L99DZ100G, L99DZ100GP
196/197 DS11546 Rev 5
9 Revision history
Table 163. Document revision history
Date Revision Changes
16-Mar-2016 1 Initial release.
01-Sep-2016 2
Updated Table 3: Absolute maximum ratings;
Updated Table 12: Reset output;
Updated Table 15: Charge pump electrical
characteristics;
Updated Table 17: Power outputs switching times;
Updated Table 18: Current monitoring;
Updated Table 20: H-bridge driver;
Updated Section 4.7.2: Non-recoverable failures
forced Vbat_standby mode;
Updated Table 115: CR10 signals description;
Updated Table 143: SR1 signals description;
Added Section 8.2: LQFP-64 marking information
12-Sep-2016 3 Updated Table 4: ESD protection.
29-Sep-2016 4 Added AEC Q100 compliant qualified
Updated Section 8.2: LQFP-64 marking information
11-Mar-2019 5
Moved “Device summary” table in cover page.
Added the "Sustainable Technology" logo to the
datasheet in cover page.
DS11546 Rev 5 197/197
L99DZ100G, L99DZ100GP
197
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved