FN6085 Rev 10.00 Page 1 of 21
February 15, 2016
FN6085
Rev 10.00
February 15, 2016
ISL83080E/82E/83E/84E/85E/86E/88E
±15kV ESD, 5V, Full Fail-Safe, 1/8 Unit Load, RS-485/RS-422 Transceivers
DATASHEET
The ISL8308xE are BiCMOS, ESD protected, 5V powered,
single transceivers that meet both the RS-485 and RS-422
standards for balanced communication. Each driver output,
and receiver input, is protected against ±15kV ESD strikes
without latch-up, and unlike competitive products, this Intersil
family is specified for 10% tolerance supplies (4.5V to 5.5V).
These devices have very low bus currents (+125µA/-75µA),
so they present a true “1/8 unit load” to the RS-485 bus. This
allows up to 256 transceivers on the network without violating
the RS-485 specification’s 32 unit load maximum, and without
using repeaters. For example, in a remote utility meter reading
system, individual meter readings are routed to a concentrator
via an RS-485 network, so the high allowed node count
minimizes the number of repeaters required. Data for all
meters is then read out from the concentrator via a single
access port, or a wireless link.
Receiver (Rx) inputs feature a “Full Fail-Safe” design, which
ensures a logic high Rx output if Rx inputs are floating,
shorted, or terminated but undriven.
The ISL83080E, ISL83082E, ISL83083E, ISL83084E,
ISL83085E utilize slew rate limited drivers which reduce EMI,
and minimize reflections from improperly terminated
transmission lines, or unterminated stubs in multidrop and
multipoint applications. Slew rate limited versions also include
receiver input filtering to enhance noise immunity in the
presence of slow input signals.
Hot Plug circuitry ensures that the Tx and Rx outputs remain
in a high impedance state until the power supply has
stabilized, and the Tx outputs are fully short circuit protected.
The ISL83080E, ISL83083E, ISL83084E, ISL83086E are
configured for full duplex (separate Rx input and Tx output
pins) applications. The half duplex versions multiplex the Rx
inputs and Tx outputs to allow transceivers with output
disable functions in 8 Ld packages.
Features
Pb-Free Available (RoHS Compliant)
RS-485 I/O Pin ESD Protection . . . . . . . . . . ±15kV HBM
Class 3 ESD Protection (HBM) on all Pins. . . . . . . . >7kV
Tiny MSOP Packages Save 50% Board Space
Full Fail-Safe (Open, Short, Terminated and Floating)
Receivers
Hot Plug Circuitry (ISL83080E, ISL83082E, ISL83083E,
ISL83085E)
- Tx and Rx Outputs Remain Three-state During
Power-up/Power-down
True 1/8 Unit Load Allows up to 256 Devices on the Bus
Specified for Single 5V, 10% Tolerance, Supplies
High Data Rates. . . . . . . . . . . . . . . . . . . . . up to 10Mbps
Low Quiescent Supply Current . . . . . . . . . . . . . . . 530µA
Ultra Low Shutdown Supply Current . . . . . . . . . . . . 70nA
-7V to +12V Common Mode Input Voltage Range
Half and Full Duplex Pinouts
Three-State Rx and Tx Outputs (Except ISL83084E)
Current Limiting and Thermal Shutdown for driver
Overload Protection
Applications
Automated Utility Meter Reading Systems
High Node Count Systems
Factory Automation
Field Bus Networks
Security Camera Networks
Building Environmental Control Systems
Industrial/Process Control Networks
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 2 of 21
February 15, 2016
TABLE 1. SUMMARY OF FEATURES
PART NUMBER
HALF/FULL
DUPLEX
DATA
RATE
(Mbps)
SLEW-
RATE
LIMITED?
HOT
PLUG
#
DEVICES
ON BUS
Rx/Tx
ENABLE?
QUIESCEN
T ICC (µA)
LOW POWER
SHUTDOWN?
PIN
COUNT
ISL83080E Full 0.115 Yes Yes 256 Yes 530 Yes 10, 14
ISL83082E Half 0.115 Yes Yes 256 Yes 530 Yes 8
ISL83083E Full 0.5 Yes Yes 256 Yes 530 Yes 10, 14
ISL83084E
(No longer available
or supported)
Full 0.5 Yes No 256 No 530 No 8
ISL83085E Half 0.5 Yes Yes 256 Yes 530 Yes 8
ISL83086E Full 10 No No 256 Yes 530 Yes 10, 14
ISL83088E Half 10 No No 256 Yes 530 Yes 8
Pinouts
ISL83082E, ISL83085E, ISL83088E
(8 LD MSOP, SOIC)
TOP VIEW
ISL83084E
(8 LD SOIC)
TOP VIEW
ISL83080E, ISL83083E, ISL83086E
(10 LD MSOP)
TOP VIEW
ISL83080E, ISL83083E, ISL83086E
(14 LD SOIC)
TOP VIEW
RO
RE
DE
DI
1
2
3
4
8
7
6
5
VCC
B/Z
A/Y
GND
D
R
VCC
RO
DI
GND
1
2
3
4
8
7
6
5
A
B
Z
Y
D
R
NO LONGER AVAILABLE OR SUPPORTED
RO
RE
DE
DI
GND
VCC
A
B
Z
Y
1
2
3
4
5
10
9
8
7
6
D
R
NC
RO
RE
DE
DI
GND
GND
VCC
NC
A
B
Z
Y
NC
1
2
3
4
5
6
7
14
13
12
11
10
9
8
D
R
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 3 of 21
February 15, 2016
Ordering Information
PART NUMBER (Note 1) PART MARKING TEMP. RANGE (°C)
PACKAGE
(RoHS Compliant) PKG. DWG. #
ISL83080EIBZ (Note 2) 83080EIBZ -40 to +85 14 Ld SOIC M14.15
ISL83080EIUZ (Note 2) 3080Z -40 to +85 10 Ld MSOP M10.118
ISL83082EIBZ (Note 2) 83082 EIBZ -40 to +85 8 Ld SOIC M8.15
ISL83082EIUZ (Note 2) 3082Z -40 to +85 8 Ld MSOP M8.118
ISL83083EIBZ (Note 2) 83083EIBZ -40 to +85 14 Ld SOIC M14.15
ISL83083EIUZ (Note 2) 3083Z -40 to +85 10 Ld MSOP M10.118
ISL83084EIBZ (Note 2)
(No longer available or
supported, Recommended
Replacements ISL83080EIBZ
or ISL83088EIBZ)
83084 EIBZ -40 to +85 8 Ld SOIC M8.15
ISL83085EIBZ (Note 2) 83085 EIBZ -40 to +85 8 Ld SOIC M8.15
ISL83085EIUZ (Note 2) 3085Z -40 to +85 8 Ld MSOP M8.118
ISL83086EIBZ (Note 2) 83086EIBZ -40 to +85 14 Ld SOIC M14.15
ISL83086EIUZ (Note 2) 3086Z -40 to +85 10 Ld MSOP M10.118
ISL83088EIBZ (Note 2) 83088 EIBZ -40 to +85 8 Ld SOIC M8.15
ISL83088EIUZ (Note 2) 3088Z -40 to +85 8 Ld MSOP M8.118
NOTES:
1. Add “-T” suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-
020.
Truth Tables
TRANSMITTING
INPUTS OUTPUTS
RE DE DI Z Y
X1101
X1010
0 0 X High-Z High-Z
1 0 X High-Z * High-Z*
NOTE: *Shutdown Mode (See Notes 10 and 13).
RECEIVING
INPUTS OUTPUT
RE DE
Half Duplex
DE
Full Duplex
A-B RO
00 X -0.05V 1
00 X -0.2V 0
0 0 X Inputs
Open/Shorted
1
10 0 XHigh-Z*
1 1 1 X High-Z
NOTE: *Shutdown Mode (See Notes 10 and 13).
Pin Descriptions
PIN FUNCTION
RO Receiver output: If A - B -50mV, RO is high; If A - B -200mV, RO is low; RO = High if A and B are unconnected (floating)
or shorted.
RE Receiver output enable. RO is enabled when RE is low; RO is high impedance when RE is high.
DE Driver output enable. The driver outputs, Y and Z, are enabled by bringing DE high. They are high impedance when DE is
low.
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 4 of 21
February 15, 2016
DI Driver input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
GND Ground connection.
A/Y ±15kV HBM ESD Protected RS-485/RS-422 level, noninverting receiver input and noninverting driver output. Pin is an input
if DE = 0; pin is an output if DE = 1.
B/Z ±15kV HBM ESD Protected RS-485/RS-422 level, Inverting receiver input and inverting driver output. Pin is an input if DE
= 0; pin is an output if DE = 1.
A ±15kV HBM ESD Protected RS-485/RS-422 level, noninverting receiver input.
B ±15kV HBM ESD Protected RS-485/RS-422 level, inverting receiver input.
Y ±15kV HBM ESD Protected RS-485/RS-422 level, noninverting driver output.
Z ±15kV HBM ESD Protected RS-485/RS-422 level, inverting driver output.
VCC System power supply input (4.5V to 5.5V).
NC No Connection.
Pin Descriptions (Continued)
PIN FUNCTION
Typical Operating Circuit
ISL83082E, ISL83085E, ISL83088E
0.1µF
+
D
R
7
6
8
1
2
3
4
5
VCC
GND
RO
RE
DE
DI
A/Y
B/Z
+5V
0.1µF +
D
R
6
7
8
1
2
3
4
5
VCC
GND
RO
RE
DE
DI
A/Y
B/Z
+5V
RTRT
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 5 of 21
February 15, 2016
ISL83080E, ISL83083E, ISL83086E
ISL83084E
Typical Operating Circuit (Continued)
0.1µF
+
D
R
12
11
10
9
14
2
3
4
5
6, 7
VCC
GND
RO
RE
DE
DI
A
B
Y
Z
+5V
0.1µF +
D
R
12
11
10
9
14
2
3
4
5
6, 7
VCC
GND
RO
RE
DE
DI
A
B
Y
Z
+5V
RT
RT
0.1µF
+
D
R
8
7
6
5
1
2
3
4
VCC
GND
RO
DI
A
B
Y
Z
+5V
0.1µF +
D
R
8
7
6
5
1
2
3
4
VCC
GND
RO
DI
A
B
Y
Z
+5V
RT
RT
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 6 of 21
February 15, 2016
Absolute Maximum Ratings Thermal Information
VCC to Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7V
Input Voltages
DI, DE, RE . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (VCC + 0.3V)
Input/Output Voltages
A, B, Y, Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -9V to +13V
A, B, Y, Z (Transient Pulse Through 100, Note 14) . . . . . . ±75V
RO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (VCC + 0.3V)
Short Circuit Duration
Y, Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . See Specification Table
Thermal Resistance (Typical, Note 3) JA (°C/W)
8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . 105
8 Ld MSOP Package . . . . . . . . . . . . . . . . . . . . . . . . 140
10 Ld MSOP Package . . . . . . . . . . . . . . . . . . . . . . . 190
14 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . 128
Maximum Junction Temperature (Plastic Package) . . . . . . +150°C
Maximum Storage Temperature Range . . . . . . . . . .-65°C to +150°C
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and
result in failures not covered by warranty.
NOTE:
3. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
Electrical Specifications Test Conditions: VCC = 4.5V to 5.5V; Unless Otherwise Specified. Typicals are at VCC = 5V, TA = +25°C
(Note 5).
PARAMETER SYMBOL TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4) TYP
MAX
(Note 4) UNITS
DC CHARACTERISTICS
Driver Differential VOUT (no load) VOD1 Full - - VCC V
Driver Differential VOUT (with load) VOD2 RL = 100 (RS-422) (Figure 1A) Full 2 2.9 - V
RL = 54 (RS-485) (Figure 1A) Full 1.5 2.4 VCC V
RL = 60, -7V VCM 12V (Figure 1B) Full 1.5 2.6 - V
Change in Magnitude of Driver
Differential VOUT for
Complementary Output States
VOD RL = 54 or 100 (Figure 1A) Full - 0.01 0.2 V
Driver Common-Mode VOUT VOC RL = 54 or 100 (Figure 1A) Full - 2.85 3 V
Change in Magnitude of Driver
Common-Mode VOUT for
Complementary Output States
VOC RL = 54 or 100 (Figure 1A) Full - 0.01 0.1 V
Logic Input High Voltage VIH DE, DI, RE Full 2 - - V
Logic Input Low Voltage VIL DE, DI, RE Full - - 0.8 V
DI Input Hysteresis Voltage VHYS 25 - 100 - mV
Logic Input Current IIN1 DE, DI, RE Full -2 - 2 µA
Input Current (A, B) IIN2 DE = 0V, VCC = 0V or 5.5V VIN = 12V Full - 70 125 µA
VIN = -7V Full -75 55 - µA
Output Leakage Current (Y, Z) (Full
Duplex Versions Only)
IIN3 RE = 0V, DE = 0V, V CC = 0V
or 5.5V (Note 13)
VIN = 12V Full - 7 125 µA
VIN = -7V Full -75 11 - µA
Output Leakage Current (Y, Z)
in Shutdown Mode (Full Duplex)
IIN3 RE = VCC, DE = 0V,
VCC = 0V or 5.5V (Note 13)
VIN = 12V Full - 0 20 µA
VIN = -7V Full -20 9 - µA
Driver Short-Circuit Current,
VO = High or Low
IOSD1 DE = VCC, -7V VY or VZ 12V (Note 7) Full - - 250 mA
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 7 of 21
February 15, 2016
Receiver Differential Threshold
Voltage
VTH -7V VCM 12V Full -200 -90 -50 mV
Receiver Input Hysteresis VTH VCM = 0V 25 - 20 - mV
Receiver Output High Voltage VOH IO = -4mA, VID = -50mV Full VCC - 1 4.6 - V
Receiver Output Low Voltage VOL IO = -4mA, VID = -200mV Full - 0.2 0.4 V
Three-State (high impedance)
Receiver Output Current
IOZR 0.4V VO 2.4V (Note 13) Full -1 0.03 1 µA
Receiver Input Resistance RIN -7V VCM 12V Full 96 160 - k
Receiver Short-Circuit Current IOSR 0V VO VCC Full ±7 - ±85 mA
SUPPLY CURRENT
No-Load Supply Current (Note 6) ICC Half Duplex Versions, DE = VCC, RE = X,
DI = 0V or VCC
Full - 560 700 µA
All Versions, DE = 0V, RE = 0V, or Full Duplex
Versions, DE = VCC, RE = X. DI = 0V or VCC
Full - 530 650 µA
Shutdown Supply Current ISHDN DE = 0V, RE = VCC, DI = 0V or VCC (Note 13) Full - 0.07 2 µA
ESD PERFORMANCE
RS-485 Pins (A, Y, B, Z) Human Body Model (HBM), Pin to GND 25 - ±15-kV
All Other Pins HBM, per MIL-STD-883 Method 3015 25 - ±7 - kV
Machine Model 25 - ±250 - V
DRIVER SWITCHING CHARACTERISTICS (115kbps Versions; ISL83080E, ISL83082E)
Driver Differential Output Delay tPLH, tPHL RDIFF = 54, CL = 100pF (Figure 2) Full 500 780 1300 ns
Driver Differential Output Skew tSKEW RDIFF = 54, CL = 100pF (Figure 2) Full - 40 100 ns
Driver Differential Rise or Fall Time tR, tFRDIFF = 54, CL = 100pF (Figure 2) Full 667 1000 1500 ns
Maximum Data Rate fMAX CD = 820pF (Figure 4) (Note 15) Full 115 666 - kbps
Driver Enable to Output High tZH RL = 500, CL = 100pF, SW = GND (Figure 3),
(Note 8)
Full - 278 1500 ns
Driver Enable to Output Low tZL RL = 500, CL = 100pF, SW = VCC (Figure 3)
(Note 8)
Full - 35 1500 ns
Driver Disable from Output Low tLZ RL = 500, CL = 15pF, SW = VCC (Figure 3) Full - 67 100 ns
Driver Disable from Output High tHZ RL = 500, CL = 15pF, SW = GND (Figure 3) Full - 38 100 ns
Time to Shutdown tSHDN (Note 10) Full 60 160 600 ns
Driver Enable from Shutdown to
Output High
tZH(SHDN) RL = 500, CL = 100pF, SW = GND (Figure 3)
(Notes 10, 11)
Full - 400 2000 ns
Driver Enable from Shutdown to
Output Low
tZL(SHDN) RL = 500, CL = 100pF, SW = VCC (Figure 3)
(Notes 10, 11)
Full - 155 2000 ns
DRIVER SWITCHING CHARACTERISTICS (500kbps Versions; ISL83083E, ISL83084E, ISL83085E)
Driver Differential Output Delay tPLH, tPHL RDIFF = 54, CL = 100pF (Figure 2) Full 250 360 1000 ns
Driver Differential Output Skew tSKEW RDIFF = 54, CL = 100pF (Figure 2) Full - 20 100 ns
Driver Differential Rise or Fall Time tR, tFRDIFF = 54, CL = 100pF (Figure 2) Full 200 475 750 ns
Maximum Data Rate fMAX CD = 820pF (Figure 4) (Note 15) Full 500 1000 - kbps
Electrical Specifications Test Conditions: VCC = 4.5V to 5.5V; Unless Otherwise Specified. Typicals are at VCC = 5V, TA = +25°C
(Note 5). (Continued)
PARAMETER SYMBOL TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4) TYP
MAX
(Note 4) UNITS
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 8 of 21
February 15, 2016
Driver Enable to Output High tZH RL = 500, CL = 100pF, SW = GND (Figure 3),
(Notes 8, 13)
Full - 137 1000 ns
Driver Enable to Output Low tZL RL = 500, CL = 100pF, SW = VCC (Figure 3),
(Notes 8, 13)
Full - 35 1000 ns
Driver Disable from Output Low tLZ RL = 500, CL = 15pF, SW = VCC (Figure 3),
(Note 13)
Full - 65 100 ns
Driver Disable from Output High tHZ RL = 500, CL = 15pF, SW = GND (Figure 3),
(Note 13)
Full - 38 100 ns
Time to Shutdown tSHDN (Note 10) Full 60 160 600 ns
Driver Enable from Shutdown to
Output High
tZH(SHDN) RL = 500, CL = 100pF, SW = GND (Figure 3),
(Notes 10, 11, 13)
Full - 260 1500 ns
Driver Enable from Shutdown to
Output Low
tZL(SHDN) RL = 500, CL = 100pF, SW = VCC (Figure 3),
(Notes 10, 11, 13)
Full - 155 1500 ns
DRIVER SWITCHING CHARACTERISTICS (10Mbps Versions; ISL83086E, ISL83088E)
Driver Differential Output Delay tPLH, tPHL RDIFF = 54, CL = 100pF (Figure 2) Full - 20 60 ns
Driver Differential Output Skew tSKEW RDIFF = 54, CL = 100pF (Figure 2) Full - 1 10 ns
Driver Differential Rise or Fall Time tR, tFRDIFF = 54, CL = 100pF (Figure 2) Full - 13 25 ns
Maximum Data Rate fMAX CD = 470pF (Figure 4) (Note 15) Full 10 15 - Mbps
Driver Enable to Output High tZH RL = 500, CL = 100pF, SW = GND (Figure 3),
(Note 8)
Full - 35 150 ns
Driver Enable to Output Low tZL RL = 500, CL = 100pF, SW = VCC (Figure 3),
(Note 8)
Full - 30 150 ns
Driver Disable from Output Low tLZ RL = 500, CL = 15pF, SW = VCC (Figure 3) Full - 66 100 ns
Driver Disable from Output High tHZ RL = 500, CL = 15pF, SW = GND (Figure 3) Full - 38 100 ns
Time to Shutdown tSHDN (Note 10) Full 60 160 600 ns
Driver Enable from Shutdown to
Output High
tZH(SHDN) RL = 500, CL = 100pF, SW = GND (Figure 3),
(Notes 10, 11)
Full - 115 250 ns
Driver Enable from Shutdown to
Output Low
tZL(SHDN) RL = 500, CL = 100pF, SW = VCC (Figure 3),
(Notes 10, 11)
Full - 84 250 ns
RECEIVER SWITCHING CHARACTERISTICS (115kbps and 500kbps Versions; ISL83080E THRU ISL83085E)
Maximum Data Rate fMAX (Figure 5) (Note 15) Full 0.5 10 - Mbps
Receiver Input to Output Delay tPLH, tPHL (Figure 5) Full - 100 150 ns
Receiver Skew | tPLH - tPHL | tSKD (Figure 5) Full - 7 10 ns
Receiver Enable to Output Low tZL RL = 1k, CL = 15pF, SW = VCC (Figure 6),
(Notes 9, 13)
Full - 10 50 ns
Receiver Enable to Output High tZH RL = 1k, CL = 15pF, SW = GND (Figure 6),
(Notes 9, 13)
Full - 10 50 ns
Receiver Disable from Output Low tLZ RL = 1k, CL = 15pF, SW = VCC (Figure 6),
(Note 13)
Full - 10 50 ns
Receiver Disable from Output High tHZ RL = 1k, CL = 15pF, SW = GND (Figure 6),
(Note 13)
Full - 10 50 ns
Time to Shutdown tSHDN (Notes 10, 13) Full 60 160 600 ns
Electrical Specifications Test Conditions: VCC = 4.5V to 5.5V; Unless Otherwise Specified. Typicals are at VCC = 5V, TA = +25°C
(Note 5). (Continued)
PARAMETER SYMBOL TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4) TYP
MAX
(Note 4) UNITS
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 9 of 21
February 15, 2016
Receiver Enable from Shutdown to
Output High
tZH(SHDN) RL = 1k, CL = 15pF, SW = GND (Figure 6),
(Notes 10, 12, 13)
Full - 150 2000 ns
Receiver Enable from Shutdown to
Output Low
tZL(SHDN) RL = 1k, CL = 15pF, SW = VCC (Figure 6),
(Notes 10, 12, 13)
Full - 150 2000 ns
RECEIVER SWITCHING CHARACTERISTICS (10Mbps Versions; ISL83086E, ISL83088E)
Maximum Data Rate fMAX (Figure 5) (Note 15) Full 10 15 - Mbps
Receiver Input to Output Delay tPLH, tPHL (Figure 5) Full - 70 125 ns
Receiver Skew | tPLH - tPHL | tSKD (Figure 5) Full - 0 10 ns
Receiver Enable to Output Low tZL RL = 1k, CL = 15pF, SW = VCC (Figure 6)
(Note 9)
Full - 10 30 ns
Receiver Enable to Output High tZH RL = 1k, CL = 15pF, SW = GND (Figure 6)
(Note 9)
Full - 10 30 ns
Receiver Disable from Output Low tLZ RL = 1k, CL = 15pF, SW = VCC (Figure 6) Full - 10 30 ns
Receiver Disable from Output High tHZ RL = 1k, CL = 15pF, SW = GND (Figure 6) Full - 10 30 ns
Time to Shutdown tSHDN (Note 10) Full 60 160 600 ns
Receiver Enable from Shutdown to
Output High
tZH(SHDN) RL = 1k, CL = 15pF, SW = GND (Figure 6)
(Notes 10, 12)
Full - 150 2000 ns
Receiver Enable from Shutdown to
Output Low
tZL(SHDN) RL = 1k, CL = 15pF, SW = VCC (Figure 6)
(Notes 10, 12)
Full - 150 2000 ns
NOTES:
4. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization
and are not production tested.
5. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless
otherwise specified.
6. Supply current specification is valid for loaded drivers when DE = 0V.
7. Applies to peak current. See “Typical Performance Curves” beginning on page 13 for more information.
8. Keep RE = 0 to prevent the device from entering SHDN.
9. The RE signal high time must be short enough (typically <100ns) to prevent the device from entering SHDN.
10. Transceivers are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 60ns, the parts are guaranteed
not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are guaranteed to have entered shutdown. See “Low Power
Shutdown Mode” on page 13.
11. Keep RE = VCC, and set the DE signal low time >600ns to ensure that the device enters SHDN.
12. Set the RE signal high time >600ns to ensure that the device enters SHDN.
13. Does not apply to the ISL83084E.
14. Tested according to TIA/EIA-485-A, section 4.2.6 (±75V for 15µs at a 1% duty cycle).
15. Limits established by characterization and are not production tested.
Electrical Specifications Test Conditions: VCC = 4.5V to 5.5V; Unless Otherwise Specified. Typicals are at VCC = 5V, TA = +25°C
(Note 5). (Continued)
PARAMETER SYMBOL TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4) TYP
MAX
(Note 4) UNITS
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 10 of 21
February 15, 2016
Test Circuits and Waveforms
FIGURE 1A. VOD AND VOC FIGURE 1B. VOD WITH COMMON MODE LOAD
FIGURE 1. DC DRIVER TEST CIRCUITS
FIGURE 2A. TEST CIRCUIT FIGURE 2B. MEASUREMENT POINTS
FIGURE 2. DRIVER PROPAGATION DELAY AND DIFFERENTIAL TRANSITION TIMES
FIGURE 3A. TEST CIRCUIT FIGURE 3B. MEASUREMENT POINTS
FIGURE 3. DRIVER ENABLE AND DISABLE TIMES (DOES NOT APPLY TO THE ISL83084E)
D
DE
DI
VCC
VOD
VOC
RL/2
RL/2
Z
Y
D
DE
DI
VCC
VOD
375
375
Z
Y
RL = 60
VCM
-7V TO +12V
D
DE
DI
VCC
SIGNAL
GENERATOR
CL = 100pF
RDIFF
Z
YCL = 100pF
OUT (Z)
3V
0V
1.5V1.5V
VOH
VOL
OUT (Y)
tPLH tPHL
DIFF OUT (Y - Z)
tR
+VOD
-VOD
90% 90%
tF
10% 10%
DI
SKEW = |tPLH - tPHL|
D
DE
DI Z
Y
VCC
GND
SW
PARAMETER OUTPUT RE DI SW CL (pF)
tHZ Y/Z X 1/0 GND 15
tLZ Y/Z X 0/1 VCC 15
tZH Y/Z 0 (Note 8) 1/0 GND 100
tZL Y/Z 0 (Note 8) 0/1 VCC 100
tZH(SHDN) Y/Z 1 (Note 11) 1/0 GND 100
tZL(SHDN) Y/Z 1 (Note 11) 0/1 VCC 100
SIGNAL
GENERATOR
500
CL
OUT (Y, Z)
3V
0V
1.5V1.5V
VOH
0V
VOH - 0.5V
tHZ
OUT (Y, Z)
VCC
VOL
VOL + 0.5V
tLZ
DE
OUTPUT HIGH
OUTPUT LOW
tZL, tZL(SHDN)
tZH, tZH(SHDN)
NOTE 10
2.3V
2.3V
NOTES 8, 11
NOTES 8, 11
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 11 of 21
February 15, 2016
Application Information
RS-485 and RS-422 are differential (balanced) data
transmission standards for use in long haul or noisy
environments. RS-422 is a subset of RS-485, so RS-485
transceivers are also RS-422 compliant. RS-422 is a
point-to-multipoint (multidrop) standard, which allows only
one driver and up to 10 (assuming one unit load devices)
receivers on each bus. RS-485 is a true multipoint standard,
which allows up to 32 one unit load devices (any
combination of drivers and receivers) on each bus. To allow
for multipoint operation, the RS-485 specification requires
that drivers must handle bus contention without sustaining
any damage.
FIGURE 4A. TEST CIRCUIT FIGURE 4B. MEASUREMENT POINTS
FIGURE 4. DRIVER DATA RATE
FIGURE 5A. TEST CIRCUIT FIGURE 5B. MEASUREMENT POINTS
FIGURE 5. RECEIVER PROPAGATION DELAY AND DATA RATE
FIGURE 6A. TEST CIRCUIT FIGURE 6B. MEASUREMENT POINTS
FIGURE 6. RECEIVER ENABLE AND DISABLE TIMES (DOES NOT APPLY TO THE ISL83084E)
Test Circuits and Waveforms (Continued)
D
DE
DI
VCC
SIGNAL
GENERATOR
Z
Y
CDVOD
+
-
60
3V
0V
DIFF OUT (Y - Z) +VOD
-VOD
DI
0V
SIGNAL
GENERATOR
RRO
RE
A
B
0V
15pF
RO
+1.5V
-1.5V
tPLH
0V0V
VCC
0V
1.5V 1.5V
tPHL
A
1kVCC
GND
SW
PARAMETER DE A SW
tHZ 0 +1.5V GND
tLZ 0 -1.5V VCC
tZH (Note 9) 0 +1.5V GND
tZL (Note 9) 0 -1.5V VCC
tZH(SHDN) (Note 12) 0 +1.5V GND
tZL(SHDN) (Note 12) 0 -1.5V VCC
SIGNAL
GENERATOR
RRO
RE
A
B
GND
15pF
RO
3V
0V
1.5V1.5V
VOH
0V
1.5V
VOH - 0.5V
tHZ
RO
VCC
VOL
1.5V
VOL + 0.5V
tLZ
RE
OUTPUT HIGH
OUTPUT LOW
tZL, tZL(SHDN)
tZH, tZH(SHDN)
NOTE 10
NOTES 9, 12
NOTES 9, 12
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 12 of 21
February 15, 2016
Another important advantage of RS-485 is the extended
common mode range (CMR), which specifies that the driver
outputs and receiver inputs withstand signals that range from
+12V to -7V. RS-422 and RS-485 are intended for runs as
long as 4000’, so the wide CMR is necessary to handle
ground potential differences, as well as voltages induced in
the cable by external fields.
Receiver Featu r es
These devices utilize a differential input receiver for maximum
noise immunity and common mode rejection. Input sensitivity
is ±200mV, as required by the RS-422 and RS-485
specifications.
Receiver input resistance of 96k surpasses the RS-422
specification of 4k, and is eight times the RS-485 “Unit
Load (UL)” requirement of 12k minimum. Thus, these
products are known as “one-eighth UL” transceivers, and
there can be up to 256 of these devices on a network while
still complying with the RS-485 loading specification.
Receiver inputs function with common mode voltages as
great as ±7V outside the power supplies (i.e., +12V and
-7V), making them ideal for long networks where induced
voltages are a realistic concern.
All the receivers include a “full fail-safe” function that
guarantees a high level receiver output if the receiver inputs
are unconnected (floating) or shorted.
Receivers easily meet the data rates supported by the
corresponding driver, and all receiver outputs are
three-statable via the active low RE input (except for the
ISL83084E).
Driver Features
The RS-485/RS-422 driver is a differential output device that
delivers at least 1.5V across a 54 load (RS-485), and at
least 2V across a 100 load (RS-422). The drivers feature
low propagation delay skew to maximize bit width, and to
minimize EMI.
All drivers are three-statable via the active high DE input
(except for the ISL83084E).
The 115kbps and 500kbps driver outputs are slew rate
limited to minimize EMI, and to minimize reflections in
unterminated or improperly terminated networks. Outputs of
the ISL83086E, ISL83088E drivers are not limited, so faster
output transition times allow data rates of at least 10Mbps.
Hot Plug Function
When a piece of equipment powers up, there is a period of
time where the processor or ASIC driving the RS-485 control
lines (DE, RE) is unable to ensure that the RS-485 Tx and
Rx outputs are kept disabled. If the equipment is connected
to the bus, a driver activating prematurely during power-up
may crash the bus. To avoid this scenario, the ISL83080,
ISL83082, ISL83083, ISL83085 versions incorporate a “Hot
Plug” function. Circuitry monitoring VCC ensures that, during
power-up and power-down, the Tx and Rx outputs remain
disabled, regardless of the state of DE and RE, if VCC is less
than ~3.4V. This gives the processor/ASIC a chance to stabilize
and drive the RS-485 control lines to the proper states.
ESD Protection
All pins on these devices include class 3 Human Body
Model (HBM) ESD protection structures, but the RS-485
pins (driver outputs and receiver inputs) incorporate
advanced structures allowing them to survive ESD events
in excess of ±15kV HBM. The RS-485 pins are particularly
vulnerable to ESD damage because they typically connect
to an exposed port on the exterior of the finished product.
Simply touching the port pins, or connecting a cable, can
cause an ESD event that might destroy unprotected ICs.
These new ESD structures protect the device whether or
not it is powered up, protect without allowing any latchup
mechanism to activate, and without degrading the RS-485
common mode range of -7V to +12V. This built-in ESD
protection eliminates the need for board level protection
structures (e.g., transient suppression diodes), and the
associated, undesirable capacitive load they present.
Data Rate, Cables, and Terminations
RS-485/RS-422 are intended for network lengths up to
4000’, but the maximum system data rate decreases as the
transmission length increases. Devices operating at 10Mbps
are limited to lengths less than 100’, while the 115kbps
versions can operate at full data rates with lengths of several
1000’.
Twisted pair is the cable of choice for RS-485/RS-422
networks. Twisted pair cables tend to pick up noise and
other electromagnetically induced voltages as common
mode signals, which are effectively rejected by the
differential receivers in these ICs.
Proper termination is imperative (when using the 10Mbps
devices) to minimize reflections. Short networks using the
FIGURE 7. HOT PLUG PERFORMANCE (ISL83080E) vs
DEVICE WITHOUT HOT PLUG CIRCUITRY
(ISL83086E)
TIME (40µs/DIV)
VCC
RECEIVER OUTPUT (V)
DRIVER Y OUTPUT (V)
2.5
5.0
2.5
5.0
VCC (V)
RL = 1k
RO
0
2.5
5.0
0
0
A/Y
RL = 1k
ISL83080E
ISL83080E
3.2V
3.4V
DI = VCC
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 13 of 21
February 15, 2016
115kbps versions need not be terminated, but, terminations
are recommended unless power dissipation is an overriding
concern.
In point-to-point, or point-to-multipoint (single driver on bus)
networks, the main cable should be terminated in its
characteristic impedance (typically 120) at the end farthest
from the driver. In multi-receiver applications, stubs
connecting receivers to the main cable should be kept as
short as possible. Multipoint (multi-driver) systems require
that the main cable be terminated in its characteristic
impedance at both ends. Stubs connecting a transceiver to
the main cable should be kept as short as possible.
Built-In Driver Overload Protection
As stated previously, the RS-485 specification requires that
drivers survive worst case bus contentions undamaged.
These devices meet this requirement via driver output short
circuit current limits, and on-chip thermal shutdown circuitry.
The driver output stages incorporate short circuit current
limiting circuitry which ensures that the output current never
exceeds the RS-485 specification, even at the common
mode voltage range extremes. Additionally, these devices
utilize a foldback circuit which reduces the short circuit
current, and thus the power dissipation, whenever the
contending voltage exceeds either supply.
In the event of a major short circuit condition, devices also
include a thermal shutdown feature that disables the drivers
whenever the die temperature becomes excessive. This
eliminates the power dissipation, allowing the die to cool. The
drivers automatically re-enable after the die temperature
drops about +15°C. If the contention persists, the thermal
shutdown/re-enable cycle repeats until the fault is cleared.
Receivers stay operational during thermal shutdown.
Low Power Shutdown Mode
These CMOS transceivers all use a fraction of the power
required by their bipolar counterparts, but they also include a
shutdown feature (except for the ISL83084E) that reduces
the already low quiescent ICC to a 70nA trickle. These
devices enter shutdown whenever the receiver and driver
are simultaneously disabled (RE =V
CC and DE = GND) for
a period of at least 600ns. Disabling both the driver and the
receiver for less than 60ns guarantees that the transceiver
will not enter shutdown.
Note that receiver and driver enable times increase when
the transceiver enables from shutdown. Refer to Notes 8
thru 12, at the end of the “Electrical Specification Table” on
page 9, for more information.
Typical Performance Curves VCC = 5V, TA = +25°C; Unless Otherwise Specified
FIGURE 8. DRIVER OUTPUT CURRENT vs DIFFERENTIAL
OUTPUT VOLTAGE
FIGURE 9. DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs
TEMPERATURE
DIFFERENTIAL OUTPUT VOLTAGE (V)
DRIVER OUTPUT CURRENT (mA)
012345
0
10
20
30
40
50
60
70
80
90
-40 0 50 85
TEMPERATURE (°C)
DIFFERENTIAL OUTPUT VOLTAGE (V)
-25 25 75
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
RDIFF = 54
RDIFF = 100
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 14 of 21
February 15, 2016
FIGURE 10. DRIVER OUTPUT CURRENT vs SHORT CIRCUIT
VOLTAGE
FIGURE 11. SUPPLY CURRENT vs TEMPERATURE
FIGURE 12. DRIVER DIFFERENTIAL PROPAGATION DELAY
vs TEMPERATURE (ISL83080E, ISL83082E)
FIGURE 13. DRIVER DIFFERENTIAL SKEW vs
TEMPERATURE (ISL83080E, ISL83082E)
FIGURE 14. DRIVER DIFFERENTIAL PROPAGATION DELAY
vs TEMPERATURE (ISL83083E, ISL83084E,
ISL83085E)
FIGURE 15. DRIVER DIFFERENTIAL SKEW vs
TEMPERATURE (ISL83083E, ISL83084E,
ISL83085E)
Typical Performance Curves VCC = 5V, TA = +25°C; Unless Otherwise Specified (Continued)
OUTPUT VOLTAGE (V)
-7 -6 -4 -2 0 2 4 6 8 10 12
OUTPUT CURRENT (mA)
-50
0
50
100
150
200
-100
-150
Y OR Z = HIGH
Y OR Z = LOW
ISL8308xE
ISL83080E thru ISL83085E
ISL83086E/ISL83088E
-40 0 50 85
TEMPERATURE (°C)
ICC (µA)
-25 25 75
500
510
520
530
540
550
560
HALF DUPLEX, DE = VCC, RE = X
HALF DUPLEX, DE = GND, RE = GND
FULL DUPLEX, DE = X, RE = GND
-40 0 50 85
TEMPERATURE (°C)
-25 25 75
PROPAGATION DELAY (ns)
740
760
780
800
820
840
860
880
tPLH
tPHL
30
35
40
45
50
55
60
-40 0 50 85
TEMPERATURE (°C)
SKEW (ns)
-25 25 75
|CROSS PT. OF Y AND Z - CROSS PT. OF Y AND Z|
-40 0 50 85
TEMPERATURE (°C)
-25 25 75
PROPAGATION DELAY (ns)
340
350
360
370
380
390
400
tPLH
tPHL
-40 0 50 85
TEMPERATURE (°C)
SKEW (ns)
-25 25 75
17
18
19
20
21
22
23
24
25
26
27
|CROSS PT. OF Y AND Z - CROSS PT. OF Y AND Z|
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 15 of 21
February 15, 2016
FIGURE 16. DRIVER DIFFERENTIAL PROPAGATION DELAY
vs TEMPERATURE (ISL83086E, ISL83088E)
FIGURE 17. DRIVER DIFFERENTIAL SKEW vs
TEMPERATURE (ISL83086E, ISL83088E)
FIGURE 18. DRIVER AND RECEIVER WAVEFORMS,
LOW TO HIGH (ISL83080E, ISL83082E)
FIGURE 19. DRIVER AND RECEIVER WAVEFORMS,
HIGH TO LOW (ISL83080E, ISL83082E)
FIGURE 20. DRIVER AND RECEIVER WAVEFORMS,
LOW TO HIGH (ISL83083E, ISL83084E,
ISL83085E)
FIGURE 21. DRIVER AND RECEIVER WAVEFORMS,
HIGH TO LOW (ISL83083E, ISL83084E,
ISL83085E)
Typical Performance Curves VCC = 5V, TA = +25°C; Unless Otherwise Specified (Continued)
-40 0 50 85
TEMPERATURE (°C)
-25 25 75
PROPAGATION DELAY (ns)
tPLH
tPHL
15
16
17
18
19
20
-40 0 50 85
TEMPERATURE (°C)
SKEW (ns)
-25 25 75
|CROSS PT. OF Y AND Z - CROSS PT. OF Y AND Z|
0.50
0.55
0.60
0.65
0.70
0
3
4
1
2
TIME (400ns/DIV)
RECEIVER OUTPUT (V)
RDIFF = 54, CL = 100pF
0
5
DRIVER OUTPUT (V)
0
5
DRIVER INPUT (V)
DI
RO
A/Y
B/Z
0
3
4
1
2
TIME (400ns/DIV)
DI
RECEIVER OUTPUT (V)
DRIVER OUTPUT (V)
0
5
0
5
DRIVER INPUT (V)
RDIFF = 54, CL = 100pF
B/Z
A/Y
RO
0
3
4
1
2
TIME (200ns/DIV)
RECEIVER OUTPUT (V)
RDIFF = 54, CL = 100pF
0
5
DRIVER OUTPUT (V)
0
5
DRIVER INPUT (V)
DI
RO
A/Y
B/Z
0
3
4
1
2
TIME (200ns/DIV)
DI
RECEIVER OUTPUT (V)
DRIVER OUTPUT (V)
0
5
0
5
DRIVER INPUT (V)
RDIFF = 54, CL = 100pF
B/Z
A/Y
RO
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 16 of 21
February 15, 2016
FIGURE 22. DRIVER AND RECEIVER WAVEFORMS,
LOW TO HIGH (ISL83086E, ISL83088E)
FIGURE 23. DRIVER AND RECEIVER WAVEFORMS,
HIGH TO LOW (ISL83086E, ISL83088E)
FIGURE 24. RECEIVER OUTPUT CURRENT vs RECEIVER
OUTPUT VOLTAGE
Die Characteristics
SUBSTRATE POTENTIAL (POWERED UP):
GND
TRANSISTOR COUNT:
525
PROCESS:
Si Gate BiCMOS
Typical Performance Curves VCC = 5V, TA = +25°C; Unless Otherwise Specified (Continued)
0
3
4
1
2
TIME (20ns/DIV)
RECEIVER OUTPUT (V)
RDIFF = 54, CL = 100pF
0
5
DRIVER OUTPUT (V)
0
5
DRIVER INPUT (V)
DI
RO
A/Y
B/Z
0
3
4
1
2
TIME (20ns/DIV)
DI
RECEIVER OUTPUT (V)
DRIVER OUTPUT (V)
0
5
0
5
DRIVER INPUT (V)
RDIFF = 54, CL = 100pF
B/Z
A/Y
RO
RECEIVER OUTPUT VOLTAGE (V)
RECEIVER OUTPUT CURRENT (mA)
012345
0
5
10
15
20
25
30
35
40
VOH, +25°C
VOH, +85°C
VOL, +25°C
VOL, +85°C
FN6085 Rev 10.00 Page 17 of 21
February 15, 2016
ISL83080E/82E/83E/84E/85E/86E/88E
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
For additional products, see www.intersil.com/en/products.html
© Copyright Intersil Americas LLC 2004-2016. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.
About Intersil
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product
information page found at www.intersil.com.
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.
Reliability reports are also available from our website at www.intersil.com/support.
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make
sure that you have the latest revision.
DATE REVISION CHANGE
February 15, 2016 FN6085.10 Added Rev History and About Intersil verbiage.
Updated “Ordering Information” on page 3.
Updated POD M8.118 to current version with following changes:
Updated to new Intersil format by adding land pattern and moving dimensions from table onto drawing
Corrected lead width dimension in side view 1 from “0.25 - 0.036" to “0.25 - 0.36"
Updated POD M10.118 to current version with following change:
Updated to new POD template. Added land pattern
Updated POD M14.15 to current version with following change:
Added land pattern and moved dimensions from table onto drawing.
Updated POD M8.15 to current version with following changes:
Updated to new POD format by removing table and moving dimensions onto drawing and adding land
pattern.
Changed in Typical Recommended Land Pattern the following:
2.41(0.095) to 2.20(0.087)
0.76 (0.030) to 0.60(0.023)
0.200 to 5.20(0.205)
Changed Note 1 “1982” to “1994”
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 18 of 21
February 15, 2016
Package Outline Drawing
M8.118
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE
Rev 4, 7/11
DETAIL "X"
SIDE VIEW 2
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
PIN# 1 ID
0.25 - 0.36
DETAIL "X"
0.10 ± 0.05
(4.40)
(3.00)
(5.80)
H
C
1.10 MAX
0.09 - 0.20
3°±3°
GAUGE
PLANE 0.25
0.95 REF
0.55 ± 0.15
B
0.08 C A-B D
3.0±0.05
12
8
0.85±010
SEATING PLANE
A
0.65 BSC
3.0±0.05 4.9±0.15
(0.40)
(1.40)
(0.65)
D
5
5
SIDE VIEW 1
Dimensioning and tolerancing conform to JEDEC MO-187-AA
Plastic interlead protrusions of 0.15mm max per side are not
Dimensions in ( ) are for reference only.
Dimensions are measured at Datum Plane "H".
Plastic or metal protrusions of 0.15mm max per side are not
Dimensions are in millimeters.
3.
4.
5.
6.
NOTES:
1.
2.
and AMSEY14.5m-1994.
included.
included.
0.10 C
M
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 19 of 21
February 15, 2016
Package Outline Drawing
M10.118
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE
Rev 1, 4/12
DETAIL "X"
SIDE VIEW 2
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
PIN# 1 ID
0.18 - 0.27
DETAIL "X"
0.10 ± 0.05
(4.40)
(3.00)
(5.80)
H
C
1.10 MAX
0.09 - 0.20
3°±3°
GAUGE
PLANE 0.25
0.95 REF
0.55 ± 0.15
B
0.08 C A-B D
3.0±0.05
12
10
0.85±010
SEATING PLANE
A
0.50 BSC
3.0±0.05 4.9±0.15
(0.29)
(1.40)
(0.50)
D
5
5
SIDE VIEW 1
Dimensioning and tolerancing conform to JEDEC MO-187-BA
Plastic interlead protrusions of 0.15mm max per side are not
Dimensions in ( ) are for reference only.
Dimensions are measured at Datum Plane "H".
Plastic or metal protrusions of 0.15mm max per side are not
Dimensions are in millimeters.
3.
4.
5.
6.
NOTES:
1.
2.
and AMSEY14.5m-1994.
included.
included.
0.10 C
M
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 20 of 21
February 15, 2016
Package Outline Drawing
M14.15
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 1, 10/09
A
D
4
0.25 A-BMC
C
0.10 C
5B
D
3
0.10 A-BC
4
0.20 C 2X
2X
0.10 DC 2X
H
0.10 C
6
36
ID MARK
PIN NO.1 (0.35) x 4
SEATING PLANE
GAUGE PLANE
0.25
(5.40)
(1.50)
1.27
0.31-0.51
4° ± 4°
DETAIL"A" 0.22±0.03
0.10-0.25
1.25 MIN
1.75 MAX
(1.27) (0.6)
6.0
8.65
3.9
7
14 8
Dimensioning and tolerancing conform to AMSEY14.5m-1994.
Dimension does not include interlead flash or protrusions.
Dimensions in ( ) for Reference Only.
Interlead flash or protrusions shall not exceed 0.25mm per side.
Datums A and B to be determined at Datum H.
4.
5.
3.
2.
Dimensions are in millimeters.
NOTES:
1.
The pin #1 indentifier may be either a mold or mark feature.
6. Does not include dambar protrusion. Allowable dambar protrusion
7. Reference to JEDEC MS-012-AB.
shall be 0.10mm total in excess of lead width at maximum condition.
DETAIL "A"
SIDE VIEW
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
ISL83080E/82E/83E/84E/85E/86E/88E
FN6085 Rev 10.00 Page 21 of 21
February 15, 2016
Package Outline Drawing
M8.15
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 4, 1/12
DETAIL "A"
TOP VIEW
INDEX
AREA
123
-C-
SEATING PLANE
x 45°
NOTES:
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.
2. Package length does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006
inch) per side.
3. Package width does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
4. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
5. Terminal numbers are shown for reference only.
6. The lead width as measured 0.36mm (0.014 inch) or greater above the
seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not
necessarily exact.
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.
SIDE VIEW “A
SIDE VIEW “B”
1.27 (0.050)
6.20 (0.244)
5.80 (0.228)
4.00 (0.157)
3.80 (0.150)
0.50 (0.20)
0.25 (0.01)
5.00 (0.197)
4.80 (0.189)
1.75 (0.069)
1.35 (0.053)
0.25(0.010)
0.10(0.004)
0.51(0.020)
0.33(0.013)
0.25 (0.010)
0.19 (0.008)
1.27 (0.050)
0.40 (0.016)
1.27 (0.050)
5.20(0.205)
1
2
3
45
6
7
8
TYPICAL RECOMMENDED LAND PATTERN
2.20 (0.087)
0.60 (0.023)