Numerical Index 2N3856-2N3961 ale MAXIMUM RATINGS ELECTRICAL CHARACTERISTICS sie = a || REPLACE: | PAGE Py | El] | Vee | Vee | = lire @ Ie Vegan @ | Bl] y |= TYPE z 5 MENT _ | NUMBER USE = cB E 5 2 CEISAT) Cy n_ 18 2/5 =\a @25C | B| C | (alts) | (volts) |S | (min) (max) 5 (volts) 5 3 s/e 2N3856 | S| N] MPS6513 | 5-109] RFC} 0.2W/ AJ 150 18 18,0] 100] 200] 2.0M 140M | T 2N3856A4 | S| N | MPS6513 5-109] RFC 0.2W] A] 150 30 30] 07 100} 200 2,0M 140M | T 2N3857 | S| P AFA] 0.6W | A {| 200 45 45|0] 50] 200 1.0M O.1 10M 45/E |] 4,.0M}T 2N3858 S| N{ MPS6512 5-109| RFC O.2W| A | 125 30 3010 60 | 120 2.0M 90M | T 2N3858A | S| N | MPS6566 | 5-148] RFA} 200M] A | 100 60 60; 0] 45 1.0M 90M | T 2N3859 | S| N | MPS6513 5~109] RFC} O.2W] AJ 125 30 30} 01100} 200} 2.0M 90M | T 2N3859A | S| N| MPS6566 5~-148| AFA 200M | Aj 100 60 60] 0 75 1.0M 90M | T 2N3860 S] N| MPS6514 5-109] RFC 0O.2W] A] 125 30 30 | 0} 150] 300 2.0M 90M | T 2N3861 |S] N LPA} 2.0W|A]175| 530] 530)V] 30] 200 25M 1.5 25M 20] 50M | T 2N3862 | S| N HSS | 0,36W | A | 200 50 20; 0] 50] 150 1OM | 0.25 10M 600M | T 2N3863 | S| N |} 2N3715 7-125] PMS LL7W | C | 200 70 50/0] 30] 90} 3.0A 1.0] 3.0A 0.5M|T 2N3864 [| S{N | 2N3716 7-125] PMS 117W | c | 200 110 90} 0] 30] 90] 3.0A 1.0] 3.04 O.5MjT 2N3865 S|N PMS L17W | Cc } 200 160 150} 0 30 90 3.0A 1.0 3.0A O.5M/T 2N3866 | S| N 9-91 | HPA] 5.,0W] Cc } 200 55 30} Oj] 10} 200 50M 1.0] O.1A 250M | T 2N3867 | S| P HSS 1.0W | A } 200 40 40]0 7] 40] 200 1.5A | 0.75 1,54 60M | T 2N3868 |S] P HSS 1.0W | A | 200 60 60] 0} 30] 150 1.5A | 0.75 1.54 60M | T BN3869 SIN HPA] 2.5W]C } 175 40 20]0] 20] 150 30M 0.7] 0.454 0.4G]T N3870 thru Thyristors, see Table on Page 1-154 2N3873 2N3876 | SIN LPA| 150W {C1175 140 5070} 25 | 150 LOA 1.0 10A 86] E 50M | T 2N3877 S| N | 2N4410 5-45 | AFC) 0.2W] A | 150 70 70)}0] 20] 250] 2.0M 2N3877A | S| N { 2N4410 5-45 | AFC] 0.2W | A} 150 85 8510] 204250] 2.0M 2N3878 | S{[N HPA 35W | c {| 200 120 5010}; 40] 200] 0.54 2.04, 4.0A 40 |E 40M | T 2N3879 SyN PMS 35W | Cc | 200 120 7510 12 ] 100 4.0A 1.2 4.0A 40M | T 2N3880 A RFA 0.2W | A | 200 30 15} 0 30 | 200 3.0M 50 1E 1.26 |T 2N3881 {S| N RFA | 0.6W|A | 200 60 35 | 0 1.5] 0.154 S50 | E 70M | T 2N3882 Field Effect Transistor, see Table on Page 1-166 2N3883 | GP { | 8-282] Hss| 0.3w | A | 100 25 15] 0] 30 0.2A 0.5) 0.28 LOOM | T 2N3884 thru Thyristors, see Table on Page 1-154 2N3899 2N3900 S| N | 2N5088 5*59 AFC 0.2W | A] 125 18 18 | 0 | 250 | 500 2.0M 170 |E 2N3900A | S | N | 2N5088 5-59 | AFC| 0.2W)A | 125 18 18 }0 | 250} 500] 2.0M 170 | E 2N3901 | S| N | 2N5088 5-59 | AFC| O,.2W}A {125 18 18} 0 |350] 700} 2.0M 350] E 2N3902 S| N PMS LoOW | c | 150 400 400 | 0 20 | 100 LOA 2.5 2.5A 40K [ E 2N3903 | S|N 5-11 | HSS | 0.31W] A | 135 60 40]0] 507150 10M 0.2 1OM 50}E |} 250M/T 2N3904 S| N 5-11 HSS | 0.31W] A | 135 60 40 | 0 | 100 | 300 10M 0.2 10M 100, E 300M | T 2N3905 |S] P 5-16 | HSS |] 0.31W] A | 135 40 40}0] 50/150 10M | 0.25 10M 50{E } 200M/T 2N3906 s]|P 5-16 HSS | 0.31W] A | 135 40 40 | O | 100 | 300 LOM 0.25 10M LOO JE 250M | T 2N3907 | S| N | 2N2915 11-27] DFA} 0.3W] A | 200 60 45 |0] 60] 300 10* | 0.35 1.0M 60M | T 2N3908 S| Nj 2N2916 11-27 | DFA 0.3W | A | 200 60 60 | 0 | 100 | 500 10* 0.35 1.0M 60M | T 2N3909 | Field Effect Transistor, see Table on Page 1-166 2N3910 | S| P CHP {| 0.5W | A | 200 60 50}0 4 40] 160 1.0M 0.3 10M 4.0M | T 2N3911 Ss) P CHP 0.5W )A ) 200 60 40) 0 60 | 240 L.0M 0.3 LOM 8.0M)T 2N3912 |S] P CHP | O.5W | A | 200 60 30]; 0] 90 L.OM 0.3 10M 10M | T 2N3913 Ss] P CHP 0.4W | A | 200 60 501, 0 40 | 160 1.0M 0.3 10M 4.0M/T 2N3914 | S|P CHP | 0,4W 1} A | 200 60 40} 0 | 60 | 240 1.0M 0.3 10M 8.0M|T 2N3915 S| P CHP O.4W] A 00 60 30] 0 90 , OM 0.3 10M 10M | T 2N3916 STN LPA 5.0W | | 150 150 5 0 40 | 200] 0.154 5,0] 0,154 30 50M | T 2N3917 S| N LPA 20W | C | 150 80 4010 30 | 120 1.0A 1.2 0A 15] E 30M {T 2N3918 S| N A 20W |] Cc} 150 80 40 | 0 | LOO | 300 L.OA 1.2 1,0A 30 | E 50M | T 2N3919 S| N PMS 15w jC} 150 120 60/0 40] 120 2,0A 1.2 10A 80M | T 2N3920 S|] N PMS 15W}] Cc} 150 120 60} 0} 100) 300 2.04 1.2 10A 80M | T aaa Field Effect Transistors, see Table on Page 1-166 2N3923 S| N VID 0.8wW | A | 200 150 150] 0 30} 120 25M 1.0 25M 20) E 40M | T 2N3924 | SIN 9-96 | HPA| 7.0W | c | 200 36 18 | 0 250M | T 2N3925 |S|N 9-96 | HPA 10W | C | 200 36 18 | 0 250M 1T 2N3926 S|N 9-96 HPA | 11.6W | C | 200 36 18 | 0 250M | T 2N3927 | S|N 9-96 | HPA | 23.2wW] Cc | 200 36 1840 200M | T 2N3928 }S] N PHS) 7.5W|C]175 80 40)0) 20}300]) 1.54 5.0} 1.54 200M | T 2N3929 S|N PHS 30W }C 1175 80 40] 0 20 | 300 1L.5A 5.0 1L.5A 200M | T 2N3930 |S] P AFA] 0.4W {A | 200 180 180 | O | 80 | 300 10M | 0.25 LOM | 100 40M | T 2N3931 |S|P AFA] 0.7W {| A | 200 180 180 | 0 | 80 | 300 10M | 0.25 10M | 100 40M | T 2N3932 S| N RFA 0.2W | A | 200 30 20)0 40 | 150 2.0M 50 750M | T 2N3933 Sy N RFA 0.2wW | A | 200 40 30] 0 60 | 200 2.0M 60 750M | T 3N3334 Field Effect Transistors, see Table on Page 1-166 2N3936 thru Thyristors, see Table on Page 1-154 2N3940 2N3941L_ [| S|N DFA | 0.75W | G | 200 60 45 | 0 | 400 10* 300 | E | 200M/T 2N3942 S|N DFA j 0.75W | Cc j 200 60 45 | 0 {400 10% 300 | E | 200M] T 2N3943 S|N DFA O.5W | c | 200 60 45 | 0 {400 10* 300] E 200M; T 2N3944 S| N DFA O.5W fc 7 200 60 45 | 0 | 400 1o* 300] 5 200M { T 2N3945 S| N MNS] 5.0W}C {200 70 50 ]0O] 40 | 250 | 0.154 0.5] 0.15A 60M | T 2N3946 S\N 8-286 | HSA 360M | A | 200 60 40 |0 504,150 10M 0.3 50M 50 | E 250M | T 2N3947 S|] N 8-286] HSA 360M | A | 200 60 40 | 0 | 100 | 300 10M 0.3 50M 100] E 300M | T 2N3948 S| N 9-102 | HPA 1.0W | A | 200 36 207,0 15 50M 700M | T 2N3950 |S|N 9-106] HPA 70W | C | 200 65 35 | 0 150M | T 2N3953 S| N RFA 0.2W {A {200 15 12 10 30 | 360 2.0M 40] E 1,36, T 2N3954 thru Field Effect Transistors, see Table on Page 1-166 2N3958 2N3959 |S|N 8-292| HNS | 400M | A | 200 20 12} 01} 40 | 200 10M 0.3 30M 13; E 1.3G | T 2N3960 |) S)N 8-292} HNS |} 400M] A } 200 20 12} 0} 40 } 260 LOM 8.3 30M 16} E] 1.66)T 2N396L |S|N 9-74 | HPA 10W } c | 200 65 40,0 400M | T 1-144Switching and General Purpose Transistors 2N3724, 2N3725 2N4013, 2N4014 (continued) ELECTRICAL CHARACTERISTICS (1, = 25C unless otherwise noted) Characteristic Symbol | Min | Max | Unit ON CHARACTERISTICS (continued) Collector-Emitter Saturation Voltage* Vor(sat)* Vdc a, = 10 mAdc, Ig = 1.0 mAdc) - 0, 25 I. = mAdc, I, = mAdc N 2N - . Cc 100 B 10 mA 2N3724, 2N4013 0.20 2N3725, 2N4014 - 0.26 Mp = 300 mAdc, I3e 30 mAdc) 2N3724, 2N4013 - 0.32 2N3725, 2N4014 - 0.40 (lg = 500 mAdc, I, = 50 mAdc) 2N3724, 2N4013 - 0. 42 2N3725, 2N4014 - 0. 52 de = 800 mAdc, I, = 80 mAdc) 2N3724, 2N4013 - 0. 65 2N3725, 2N4014 - 0. 80 (I, = 1.0 Ade, I,, = 100 mAde) 2N3724, 2N4013 - 0.75 2N3725, 2N4014 - 0.95 Base-Emitter Saturation Voltage* Vv * Vdc (I, = 10 mAde, Tg = 1.0 mAde) BE(sat) - 0.76 (a mAdc, I, = mAdc - . c 100 B 10 mA 0. 86 Co = 300 mAdc, I, = 30 mAdc) - 11 Gy = 500 mAdc, Ip 50 mAdc) 0.9 1.2 dg = 800 mAdc, Int 80 mAdc) - 1.5 My = 1,0 Ade, 1, = 100 mAdc) - 1.7 SMALL-SIGNAL CHARACTERISTICS Current-GainBandwidth Product fp MHz a, = 50 mAdc, Vor = 10 Vdc, f = 100 MHz) 300 - Output Capacitance Cob pF (Vop = 10 Vdc, Ip = 0, f = 140 kHz) 2N3724, 2N4013 - 12 2N3725, 2N4014 - 10 Input Capacitance Ciy pF (Var = 0.5 Vdc, Ine 0, f = 140 kHz) - 55 SWITCHING CHARACTERISTICS Turn-On Time ton - 35 ns (Vaan = 30 Vde, Vip = 3,8 Vdc 5 cc > "BE (aff) ; _ Delay Time Ig = 500 mAde, I; = 50 mAdc) a *0 ns Rise Time (See Figure 1) t. - 30 ns Turn-Off Time tote - 60 ns (Vog = 30 Vde, I, = 500 mAdc, Storage Time ~ . t - 50 ns 31 =lp2 = 50 mAdc) s Fall Time (See Figure 1) 2N3724, 2N4013 te - 25 ns 2N3725, 2N4014 - 30 * Pulse Test: Pulse Width = 300 us, Duty Cycle = 1.0%. FIGURE 1 SWITCHING TIMES TEST CIRCUIT +30Vv < > 15 -3.8V > 1.0 PF ( (o TO SAMPLING OSCILLOSCOPE 1.0k e 4 7 | Zin & 100 k22 TL t< 1.0 ns Vin = 19-7 1.0 BF 100 PULSE GENERATOR . t,. tp < 1.0ns 62 PW. ~ 1.0 ps Zin = 80.Q + == D.C. < 2.0% - ~ 8-258 RF Transistors RF POWER TRANSISTORS (Listed in order of operating test frequency and power output) ALL SILICON NPN f Pout @ Pin Type MHz Ww Ww 2N3295 30 0.3 0.012 2N3296 30 3.0 0.075 2N3297 30 12 1.2 2N2948 30 15 2.0 2N2951, 52 50 0.6 O.1 2N2949, 50 50 3.5 0.35 2N2947 50 15 2.0 2N3950 50 50 4.5 2N3298 30 0.1 - 2N3375 100 7.5 1.0 2N3818 100 15 3.0 2N3553 175 2.5 0.25 2N3961 175 4.0 0.5 2N3924 175 4.0 1.0 2N3925 175 5.0 1.3 2N3926 175 7.0 2.0 2N3927 175 12 4.0 2N3632 175 13.5 3.5 2N3137 250 0.7 0.1 2N3664 250 2.2 0.4 2N3866 400 1.0 0.1 2N3948 400 1.0 90.25 2N4012 400 3.0 (typ) 1.0 2N3375 400 3. 0 (min) 1.0 2N3733 400 10 4.0 HIGH-VOLTAGE TRANSISTORS fp (MHz) @ Ic Type Vcro min max mA 2N4924 100 100 500 20 2N4925 150 100 500 20 2N4926 200 30 300 10 2N4927 250 30 300 10 9-7 BCWwWC WW. KL)[N XQ ,' $)p0D0) 'DYi MWiwyWV BWwiwyisXsiidd;i WM WW RF Transistors 2N3950 (siticon) Vero =35 V Ill=3.3A Pp = 2.8 WwW NPN silicon RF power transistor designed for high-power RF amplifier applications in military and industrial equipment. CASE 36 Emitter common to stud and case (TO-60) MAXIMUM RATINGS (Ta = 25C unless otherwise noted) Rating Symbol Value Unit Collector-Emitter Voltage Vo EO 35 Vdc Collector-Base Voltage Vop 65 Vde Emitter-Base Voltage Ven 4 Vdc Collector-Current Continuous lo 3.3 Amp Total Device Dissipation @ T Az 25C Py 2.8 Watts Derate above 25C 16 mw/C Total Device Dissipation @ To= 25C Py 70 Watts Derate above 25C 0.4 w/Cc Operemorature Rave Junction Ty, Tyg | ~88 to +200 C THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction to Ambient 6 TA 62.5 c/w Thermal Resistance, Junction to Case 80 2.5 C/W 9-106 RF Transistors 2N3950 (continued) ELECTRICAL CHARACTERISTICS (tz = 25C unless otherwise noted) Characteristic | Symbol | Min | Typ I Max | Unit | OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage* BV, * Vde (ig = 200 mAde, Ip = 0) CEO(sus) 35 _ _ Collector-Emitter Breakdown Voltage BVogs Vde lg = 10 mAde, Vor= 0) 65 _ _ Emitter-Base Breakdown Voltage BV EBO Vde Up = 10 mAdc, Ig = 0) 4 _ _- Collector Cutoff Current lopo mAdc Vop = 65 Vdc, I = 0) _ _ 10 Wop = 28 Vdc, I, =0, Ty = 150C) _ _ 10 DYNAMIC CHARACTERISTICS Current-Gain Bandwidth Product fp MHz (I, = 500 mAdc, V,, = 28 Vdc, f = 50 MHz) _ 150 oon Output Capacitance c ob pF (op = 28 Vde, 1, = 0, f = 1 MHz) - 80 120 FUNCTIONAL TEST Power Gain Test Circuit Figure 1, Gop 8 _ _ dB Pout = 50 W, Vog = 28 Vae, Collector- Efficiency Rg = 50 ohms, f = 50 MHz 60 _ _ % *Pulsed through a 25 mH inductor; Duty factor = 50%, Rep. Rate < 60 Hz. FIGURE 1 50 MHz TEST CIRCUIT FIGURE 2 50 MHz POWER GAIN RL =50Q Rs = 509 & 7100 Veg = 28 Vde = 5 = 3 Z 3 a * AIR VARIABLE CAPACITORS O Veo = L, = 2 TURNS 18 TINNED WIRE, 44 1.D., AIR WOUND, WINDING LENGTH 14. 1 Ly = 5 TURNS 416 TINNED WIRE, 34 I.D., AIR WOUND, 6 i 2 3 4 5 WINDING LENGTH %4. Pi POWER INPUT (WATTS) 9-107Pout (WATTS) R,,, (OHMS) RF Transistors 2N3950 (continued) CLASS C DESIGN DATA FOR V..= 28 Vdc, Tco= 25C (EMITTER GROUNDED DIRECTLY TO THE CHASSIS NO TUNED-EMITTER TECHNIQUES USED} FIGURE 3 POWER OUTPUT FIGURE 4 PARALLEL EQUIVALENT GUTPUT CAPACITANCE 700 600 500 Pout = 30 W & 400 3 > 300 200 100 0 10 20 30 50 70 100 10 20 30 50 70 100 f, FREQUENCY (MHz) f, FREQUENCY (MHz) FIGURE 5 PARALLEL EQUIVALENT (INPUT RESISTANCE FIGURE 6 PARALLEL EQUIVALENT INPUT CAPACITANCE 10 9 : Pour = 30 W 7 50W 6 5 4 3 2 1 0 10 20 30 50 70 100 10 20 30 50 0 100 , FREQUENCY (MHz) f, FREQUENCY (MHz) DESIGN NOTES For Class-C power-amplifier designs, the small-signal parameters are not applicable. Figures 4 thru 6 and 8 thru 10 give the parallel equivalent output capacitance and input capacitance and resistance for Class-C power-amplifier operation. The parailel resistive portion of the collector load impedance for a power amplifier, Ru may be com- puted by assuming a peak voltage swing equal to Vcc, and using the expression Ri = Vcc?/2P where P = RF power output. The computed Ri may then be combined with the data in Figures 4 through LO to comprise complete device impedance data for Class-C power-amplifier design. - Due to the high performance capabilities of the 2N3950, care should be exercised during initial tuning of prototype circuits. Input power should be increased gradually, while stopping at intermediate levels to tune. If tuning difficulties are experienced, or if the power or collector current are abnormal at any intermediate power input Jevel, the difficulties should be resolved before increasing power levels further. The 2N3950 is designed to provide maximum ruggedness commensurate with its high perfor- mance. Operation at loads with high SWR may produce dangerous voltage and current excursions, a condition which should be avoided. tn addition, disconnecting the load at full power output could in- crease device dissipation to over 70 watts which could result in device failure due to dissipation beyond safe limits set by the junction to ambient thermal resistance, regardless of the internal construction and safe area of the device. 9-108 RF Transistors 2N3950 (continued) CLASS C DESIGN DATA FOR Va=13.6 Vde, Te=25C (EMITTER GROUNDED DIRECTLY TO THE CHASSIS NO TUNED-EMITTER TECHNIQUES USED) FIGURE 7 POWER OUTPUT FIGURE 8 PARALLEL EQUIVALENT OUTPUT CAPACITANCE 700 Pour (WATTS) Cont (DFP 200 10 20 30 50 70 100 10 20 30 50 0 10 , FREQUENCY (MHz) f, FREQUENCY (MHz) FIGURE 9 PARALLEL EQUIVALENT INPUT RESISTANCE FIGURE 10 PARALLEL EQUIVALENT INPUT CAPACITANCE R,, (OHMS) 10 20 30 50 70 100 10 20 30 50 100 f, FREQUENCY (MHz) f, FREQUENCY (MHz) 9-109