IRFY Series Devices IRFY Series Data Sheet The IRFY Data Sheet describes 12 devices, 8 N-Channel and 4 P-Channel, all contained in the TO-257AB package. This data sheet is arranged to show common tabular and graphical information between devices. Absolute maximum ratings and parametric data are presented in tabular format with devices grouped according to generically shared parameters. For each parametric rating, devices are categorized by N and P channel and listed in alpha-numeric order. The conditions specified for a given parametric test are provided in the right hand column of each table. Graphical information is grouped by devices in alphabetical order. Where the information is device specific, we have assigned a numeric character for the graph type and an alpha character to a given device. (See Table A below). Where graphs are polarity specific as in figures 10, 12, 14 and 15, we have indicated N-Channel or P-Channel. The Thermal Impedance Graph (Fig. 11) is the only exception where a graph is common to both N- Channel and P-Channel devices since the thermal impedance is only dependent on the die size and package. In Table A below, a legend is provided cross referencing the part number to its assigned alpha code. A given device will retain this alpha code for each device specific graph. Table A ALPHA DEVICE DESIGNATION IRFY044 a IRFY120 b IRFY130 c IRFY140 d IRFY240 e IRFY340 f IRFY430 g IRFY440 h \RFY9120 IRFY9130 j IRFY9140 k IRFY9240 |-471IRFF Series Devices HEXFET, CECC Qualified Europe IaR 1T0257/HEXFET/N-Channel Level of Quality Basle Vos | Aps(on) CECC Issue | Issue Assessment and CECC Case Type W) (Ohms) Specification No. Date | 50 000 Screen Level Options Outline IRFYO44(M 60 0.03 50 012-062 E-,EA,EB,EC,ED IRFY120(M 100 0.31 50 012-060 E-,EA,EB,EC,ED TO;257AA IRFY130(M) 100 0.19 50 012-061 E-,EA,EB,EC,ED IRFY140(M) 100 0.092 50 012-062 E-,EA,EB,EC,ED IRFY240(M) 200 0.19 50 012-062 1 10/91 -,A,EB,EC,ED IRFY340(M) 400 0.55 50 012-062 E-,A,EB,EC,ED CHR IRFY430(M) 500 1.50 50 012-061 E-,EA,EB,EC,ED aC 3 IRFY440(M) 500 0.85 50 012-062 E-,EA,EB,EC,ED SS T0257/HEXFET/P-Channel Tl213 IRFY9120(M) | -100 0.60 50 012-063 E-,EA,EB,EC,ED IRFY__|G|O|5 IRFY9130(M) | -100 0.31 50 012-064 1 10/91 E-,EA,EB,EC,ED IRFYM) [D[S|G IRFY9140(M) | -100 0.21 50 012-065 E-,EA,EB,EC,ED IRFY9240(M) | -200 0.50 50 012-065 E-,EA,EB,EC,ED FOR OTHER GOVERNMENT/SPACE QUALIFIED PRODUCTS SEE SECTION E. 1-472INTERNATIONAL RECTIFIER Data Sheet No. PD-9.878 I6aR HEXFET TRANSISTORS D D G N-CHANNEL 6G $s $s Description IRFY SERIES IRFY044 THRU IRFY440 IRFY9120 THRU IRFY9240 P-CHANNEL Product Summary N-Channel The HEXFET technology is the key to International Rectifiers . advance line of power MOSFET transistors. The efficient Characteristic IRFY044 thru IRFY440 | Units geometry design achieves very low on-state resistance combined with high transconductance. BVpss 60 to 500 Vv The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast Rps(on) 0.035 to 1.6 Q switching, ease of paralleling and temperature stability of the electrical parameters. \ 37 to 20 A They are well suited for applications such as switching power D , supplies ability virtually any application where military and/or high reliability is required. The totally isolated package eliminates the need for additional Product Summary P-Channel isolating material between the device and the heatsink, this . improves the thermal efficiency and reduces drain Characteristic | IRFY9120 thru IRFY9240 | Units capacitance. BVDSss -100 to -200 Vv FEATURES RDS(on) 0.21 to 0.50 Q @ Isolated and Hermetically Sealed @ Alternative to TO-39 and TO-66 Packages \ 53 to -13 A @ Simple Drive Requirements D ~3.J 0 @ Ease of Paralleling Ceramic eyelet package used on all space level applications or on request 10.6 (0.417) 40.2 CASE STYLE AND DIMENSIONS ao os, 7 Loe 4.7 (0.185) +0.25 yt b> 0.8 (0.031) +0.2 2x freeones 10.6 (0.417) +0.2 16.5 (0.650) a 402 | 5.9 (0.232) $0.2 4.2.3 | 93.6 (0.142) | Co +04 13,7 (0.539) THICKNESS 4 OF PIN | 1.0 +0.05 DIA 2.54 (0.1 00-1 ! b= 2.7 (0,106) +0.2 2.54 (0.100) +0.2 ~ 16.5 (0.650) #02 F-esecosonsag ONT TERM IRFY.. IRFY.. 2M +0.2 @Corners removed to 1 GATE DRAIN indicate M option 2 DRAIN SOURCE 3 SOURCE GATE Conforms to JEDEC Outline TO-257AB Dimensions in Millimeters and (Inches) 1-473IRFY Series Devices IaR N-CHANNEL Absolute Maximum Ratings Parameter IRFYO44 | IRFY120 | IRFY130 | IRFY140 | Unit Ip @ To = 26C Continuous Drain Current 20 7.3 1 18 A Ip @ Tc = 100C Continuous Drain Current 20 4.6 7.0 12 A IDM Pulsed Drain Current 128 29 44 72 A VG6s Gate-Source Voltage +20 Vv Pp @ Tc = 25G Maximum Power Dissipation 60 30 45 60 Ww Linear Derating Factor 0.48 0.24 0.36 0.48 WIK Ty Operating Junction Storage -55 to 150 C Tstg Temperature Range Weight 3.4 (typical) g Ip current limited by pin diameter N-CHANNEL Absolute Maximum Ratings (Continued) Parameter IRFY240 | IRFY340 | IRFY430 | IRFY440 | Unit Ip @ Tc = 26C Continuous Drain Current 12 6.9 3.7 5.5 A ID @ Tc = 100C Continuous Drain Current 7.8 44 2.4 3.5 A IDM Pulsed Drain Current 48 27 14 22 A Ves Gate-Source Voltage +20 Vv Pp @ Tc = 25C Maximum Power Dissipation 60 60 45 60 Ww Linear Derating Factor 0.48 0.48 0.36 0.48 Wik Ty Operating Junction Storage -55 to 150 C Tstg Temperature Range Weight 3.4 (typical) fe] P-CHANNEL Absolute Maximum Ratings Parameter IRFY9120 | IRFY9130 | IRFY9140 | IRFY9240 | Unit Ip @ Tc = 26C Continuous Drain Current -5.3 -9.3 -13 -7.7 A Ip @ To = 100C Continuous Drain Current -3.4 -5.8 -8.2 -4.9 A lpM Pulsed Drain Current -21 -37 -52 ~30 Vv Ves Gate-Source Voltage +20 v Pp @ Tc = 25C Maximum Power Dissipation 30 45 60 60 Ww Linear Derating Factor 0.24 0.36 0.48 0.48 WIK Tg Operating Junction Storage ~-55 to 150 C Tstg Temperature Range Weight 3.4 (typical) g 1-474Electrical Characteristics @ Tc = 25C (Unless otherwise specified) IRFY Series Devices Parameter Type Min. | Typ. | Max. | Units Test Conditions BVpss Drain-Source IRFY044 60 _ - Breakdown IRFY120 | 100 | Voltage IRFYi30 | 100 | | IRFY 140 100 = _ IRFY240 | 200 | Ip = 1.0mA, Vag = OV IRFY340 400 =- _- IRFY430 500 =- _- v IRFY440 500 _ _ IRFY9120 ; -100 _ _ IRFY9130 |-100 | _ Ip = -1.0mA, Vag = OV IRFY9140 | -100 _ _ IRFY9240 | -200 _ _ ABVpss/ATy Temperature IRFY044 - 0.68 _ Coefficient of IRFY120 _ 0.4 _ volage iRFyiz0_ | | o1 | IRFY140 _ 0.1 - IRFY240 _ 0.29 - Reference to 25C, Ip = 1.0mA {RFY340 _ 0.46 | vwPec IRFY430 - 0.78 IRFY440 _- 0.78 _ IRFY9120 _- -0.1 _ IRFY9130 | | -0.1 | Reference to 25C, Ip = -1.0mA IRFYS140 |-0.087| IRFY9240 - -0.20 _ Rps(on) Static IRFYO44 | [0.035 Ip = 20A Drain-Source inFyizo0 | | [0.31 Ip = 4.6A On-State Resistance = =| 0.36 ID = 7.3A IRFY130 - _ 0.19 Ip = 7.0A | 0.22 Ip = 11A IRFY140 - =~ 0.092 Ip = 12A ~ [o11 Ip = 18A IRFY240 | ~ | 0.19 Ip = 7.8A Ves = 10V ~ | 0.22 Ip = 12A IRFY340 _ => 0.55 Ip = 4.4A | 0.63 Ip = 6.9A IRFY430 - _ 1.6 2 Ip =2.4A ~ | 1.84 Ip = 3.7A IRFY440 _ _ 0.85 Ip = 3.5A | 0.98 Ip = 5.5A IRFY9120 _ ~_ 0.60 Ip = -3.4A ~ | 0.69 Ip = -5.3A IRFY9130 _ _ 0.31 ID = -5.B8A | 0.36 Ip = -9.3A IRFY9140 | | 021 Ip = -8.2A V@g = -10V | 0.24 Ip = -19A IRFY9240 | | 0.50 Ip = -4.9A _ | 0.58 Ip = -7.7A V@sith) Gate Threshold N-Channel | 2.0 ~ 4.0 Vv Vos = Vas. Ip = 250pA Voltage P-Channel | -2.0 _ -4.0 Vos = Ves. Ip = -250nA 1-475IRFY Series Devices Electrical Characteristics (Continued) Ie = Parameter Type Min. | Typ. | Max. | Units Test Conditions Offs Forward IRFY044 17 _ Ip = 20A Transconductance | jrry120 15 _ _ ip = 4.6A IRFY130 3.0 _ - ID = 7.0A IRFY140 9.1 _ _ Ip = 12A Vpg 2 15V IRFY240 6.1 _ > Ip = 7.8A IRFY340 4.9 - | SW) | Ip = 4.4A IRFY430 1.5 _ _ ID = 2.4A IRFY440 47 _ _ Ip = 3.5A IRFY9120 | 1.25 _ _ Ip = -3.4A IRFY9130 | 2.5 - _ Ip = -5.8A Vps = -15V IRFY9140 | 6.2 - _ Ip = -8.2A IRFY9240 | 4.0 _- _ Ip = -4.9A loss Zero Gate - _ 25 Vps = 0.8 x Max. Rating, Vas = 0V Voltage Drain N-Channel] _ | _ | 250 Vps = 0.8 x Max. Rating, Vag = OV, Current A Ty = 25C = _ -25 Vos = 0.8 x Max. Rating, Vag = OV P-Channel | _ |_| 280 Vps = 0.8 x Max. Rating, Veg = OV, Ty = 125C less Gate-Source N-Channel | _ 100 V6s = 20V Leakage Forward | p.channel| | |-100] na | VGsg = -20V lass Gate-Source N-Channel | _ -100 V@s = -20V Leakage Reverse | p.channel| | | 100 Veg = 20V Qg Total Gate IRFY044 39 _ 8&8 ID = 20A Charge IRFY120 | 7.7 | 17 Ip = 7.3A IRFY130 12.8 _ 28.5 Ip = 11A IRFY140 30 _ 59 Ip = 18A Vas = 10V, Guisbain plus TinFv240 | 32 | | 60 Ip = 112A Vpg = 0.5.x Vpg max. IRFY340 32 _ 65 nC |Ip = 6.9A IRFY430 19.8 - 29.5 Ip = 3.7A IRFY440 27.3 _ 68.5 Ip = 5.5A IRFY9120 | 4.3 _ 16.3 Ip = -5.3A IRFY9130 | 14.7 | 30 Ip = -9.3A Veg = -10V, IRFY9140 31 _ 60 Ip = -13A Vps = 0.5 x Vos max. IRFY9240 28 _ 60 ID = -7.7A Qgs Gate Source IRFY044 6.7 - 15 Ip = 20A Charge IRFY120 | 07 | | 40 Ip = 7.3A IRFY130 1.0 _ 6.3 Ip = 11A IRFY140 | 2.4 _ 12 Ip = 18A Vas = 10V, IRFY240 2.2 _ 10.6 Ip = 12A Vos = 0.5 x Vps max. IRFY340 2.2 _ 10 ID = 6.9A IRFY430 2.2 _ 4.6 nc |Ip = 3.7A IRFY440 2.0 _ 12.5 ID = 5.5A IRFY9120 1.3 _ 47 Ip = -5.3A IRFY9130 | 1.0 7 Ip = -9.3A Veg = -10V, IRFY9140 | 3.7 _ 13 Ip = -13A Vos = 0.5 x Vos max. IRFY9240 | 3.0 _ 15 Ip = -7.7A 1-476IaR Electrical Characteristics (Continued) IRFY Series Devices Parameter Type Min. | Typ. | Max. | Units Test Conditions Qgd Gate Drain [IRFYO44 | 18 | | 52 Ip = 20A Cer) IRFY120 | 20] | 80 Ip = 7.3A ge IRFY130 | 38 | | 166 ip = 1A IRFY140 | 12 | | 30.7 Ip = 18A Vag = 10V, IRFY240 | 14.2 | | 37.6 Ip = 12A Vpsg = 0.5 x Vpg max. IRFY340 | 13.8 | | 40.5 | nC |Ip = 6.9A IRFY430 | 5.5 | | 19.7 Ip = 3.7A IRFY440 | 11.1 | | 42.4 ip = 5.5A IRFY9120| 1.0 |; | 9.0 Ip = -5.3A IRFY9130} 2.0 | | 21 Ip = -9.3A Vag = -10V, IRFY9140| 7.0 | | 35.2 Ip = -13A Vps = Vps max. x 0.8 IRFY9240/ 45 | | 38 ID = -7.7A td(on) Turn-on IRFY044 _ _ 23 Vop = 30V, Ip = 20A, Ra = 9.12 Delay Time JiRFYiz20 | | 15 Vpp = 50V, ip = 7.3A, RG = 7.50 IRFYi30 | | | 30 Vpop = 50V, Ip = 11A, Rg = 7.50 IRFY140 | | | 21 Vpp = 50V, Ip = 184, RG = 9.12 vgs = 10V IRFY240 | | | 20 Vpp = 100V, Ip = 12A, RG = 9.19 IRFY340 | | | 25 | ns |Vpp = 200V, Ip = 6.9A, Ag = 9.19 IRFY430 | | | 35 Vpp = 250V, Ip = 3.7A, RG = 7.50 IRFY440 | | | 21 Vpp = 250V, Ip = 5.54, AG = 9.19 IRFY9120; | | 60 Vpp = -50V, Ip = -5.3A, Aq = 7.50 IRFY9130| | | 60 Vpp = -50V, Ip = -9.3A, RG = 7.58 veg = -10V IRFY9140| | | 35 Vpp = -50V, Ip = -13A, Rg = 9.10 IRFry9240} | | 35 Vpop = -100V, Ip = -7.7A, Ag = 9.19 tr Rise Time IRFY044 _ > 130 Vpp = 30V, Ip = 20A, Ag = 9.12 iRFY120 | | | 70 Vpop = 50V, Ip = 7.3A, RG = 7.52 IRFY130 | | ~ | 75 Vpp = 50V, Ip = 11A, Rg = 7.50 IRFY140 | | | 145 Vop = S0V, Ip = 184, RG = 9-12 vgg = 10v IRFY240 | | | 152 Vpp = 100V, Ip = 12A, Rg = 9.19 IRFY340 | | | 92 | ns |{Vpp = 200V, Ip = 6.9A, Rg = 9.19 IRFY430 | | | 30 Vpp = 250V, Ip = 3.7A, Rg = 7.50 IRFY440 | | | 73 Vpp = 250V, Ip = 5.5A, RG = 9.10 IRFY9120| | | 100 Vpp = -50V, Ip = -5.3A, Rg = 7.50 IRFY9130| | | 140 Vop = -50V, Ip = -9.3A, RG _= 7.59 vag = -10V IRFY9140} | | 85 Vpp = -50V, Ip = -13A, Rg = 9.12 IRFY9240| | ~ | 285 Vpp = -100V, Ip = -7.7, Ra = 9.19 td(offy Turn-Off IRFY044 _ _ 81 Vpp = 30V, ID = 20A, Rg = 9.12 Delay Time |inFyi20 | | | 40 Vpp = 50V, Ip = 7.3A,RG = 7.52 IRFY130 | | | 40 Vpp = S0V, Ip = 11A, Rg = 7.50 IRFY140 | | | 64 Vpp = 50V, Ip = 184, RG = 9.19 vag = 10v IRFY240 | | | 58 Vpp = 100V, Ip = 12A, RG = 9.10 IRFY340 ~ ~ 79 ns |Vpp = 200V, Ip = 6.9A, RG = 9.10 IRFY430 | | ~ | 55 Vpp = 250V, Ip = 3.7A, AG = 7.50 IRFY440 | | | 72 Vpp = 250V, Ip = 5.5A, Rg = 9.10 IRFY9120} | ~ | 50 Vop = -50V, Ip = -5.3A, AG = 7.50 IRFY9130| ~ | ~ | 140 Vpp = ~50V, Ip = -9.3A, RG = 7.59 veg = -10v IRFY9140| | | a5 Vpp = ~-50V, Ip = -13A, RG = 9.10 IRFY9240| | ~ | 85 Vpp = -100V, Ip = -7.7, Rg = 9.19 |-477IRFY Series Devices Electrical Characteristics (Continued) IaR Parameter Type Min. | Typ. | Max. | Units Test Conditions tt Fall Time IRFY044 - _ 79 Vop = SOV, Ip = 20A, Rg = 9.19 IRFY120 | | | 70 Vop = 50V, Ip = 7.3A, Rg = 7.50 IRFYi30 | | | 45 Vpp = 50V, Ip = 11A, Rg = 7.50 IRFY140 _ _ | 105 Vpp = 50V, Ip = 18A,RG = 9.12 Vag = 10V iAFY2460 | | | 67 Vop = 100V, Ip = 12A, Rg = 9.10 IRFY340 _ _ 58 ns |Vpp = 200V, Ip = 6.9A, Rg = 9.18 IRFY430 | | | 30 Vop = 250V, ip = 3.7A, Rg = 7.50 IRFY440 - 51 Vop = 250V, Ip = 5.5A, Rg = 9.10 IRFY9120 | | | 70 Vpp = -50V, Ip = -5.3A, RG = 7.50 IRFY9130 | | | 140 Vpp = -50V, Ip = -9.3A, RG = 7.50 Vgg = -10V IRFY9140 | _ 65 Vpp = -50V, Ip = -13A, Rg = 9.10 IRFY9240 | | | 65 Vpp = -100V, Ip = -7.7A, Rg = 9.10 Lp Internal Measured from the drain Modified MOSFET Drain lead, 6 mm (0.25 in.) from symbol showing the Inductance N-Channel | 8.7 nH_ [package to center of die internal inductances. Lg _ Internal Meaured from the source . Source lead, 6 mm (0.25 in.) from Inductance package to center of source bonding pad $ Lo Internal Measured from the drain Modified MOSFET Drain lead, 6 mm (0.25 in.) from symbo! showing the Inductance P-Channel | 87 ~ nH_ |_package to center of die internal inductances. Ls Internal Meaured from the source : Source lead, 6 mm (0.25 in.) from . Inductance package to center of source bonding pad f Ciss Input IRFY044 |2400| Capacitance [ipnrFyi29 | | a50 | IRFY130 | 650 | IRFY140 {1660 | ~ IRFY240 |1300 | IRFY340 |1400}] IRFY430 {610 | pF Vas = OV, Vpg = 25V, f = 1.0 MHz IRFY440 - $1300 | See fig. 5 IRFY9120 | 380 - IRFY9130 | | 800 | IRFY9140 | |1400 | IRFY9240 | |1200 | Cogs Output IRFY044 [1100 | Capacitance |imryi20 | | 150 | IRFY130 | 240 | IRFY140 | 550 | IRFY240 | 400 | ~ lRFY340 | | 350 | | pF Vas = OV, Vpg = 25V,f = 1.0 MHz IRFY430 _ 135 _ See fig. 5 IRFY440 _ 310 _ IRFY9120 | 170 ~~ IRFY9130 | | 350 | IRFY9140 | 600 = IRFY9240 | | 570 | 1-478Electrical Characteristics (Continued) IRFY Series Devices Parameter Type Min. | Typ. | Max. | Units Test Conditions Crgs Reverse Transfer | IRFY044 _ 230 - Capacitance IRFY120 _ 24 IRFY130 _ 44 _ IRFY140 - 120 - IRFY240 _ 130 IRFY340 - 230 _ pF | Vas = OV, Vps = 25V, f = 1.0 MHz IRFY430 _ 65 _ See fig. 5 IRFY440 _ 120 _ IAFY9120 | 45 _ IRFY9130 | 125 _ IRFY9140 | 200 IRFY9240 | 81 Source-Drain Diode Rating and Characteristics Parameter Type Min. | Typ. | Max. | Units Test Conditions Is Continuous IRFY044 _- _ 20 Modified MOSFET symbol showing the Source Current IRFY120 _ _ 7.3 integral reverse p-n junction rectifier. (Body Diode) inFYi30 | | | 11 5 IRFY140 _- - 18 IRFY240 _ = 12 G IRFY340 _ - 6.9 A 5 IRFY430_ | | | 37 N-Channel IRFY440 - _ 5.5 IRFY$120 | - -5.3 a IRFY9130 | | -93 G P-Channel IRFY9140 | _ -13 IRFY9240} | | -7.7 s ISM Pulsed Source IRFY044 _ _ 128 Modified MOSFET symbol showing the Current IRFY120 _ 29 integral reverse p-n junction rectifier. (Body Diode) IRFY130 _ _ 43 5 IRFY140 - _ 73 IRFY240 _ - 49 G IRFY340 | 27 A s IRFY430 _ = 14 N-Channel IRFY440 - = 22 IRFY9120 | _ -21 0 IRFY9130 | _ -37 6 P-Channel IRFY9140 | _ ~-52 IRFY9240 | -30 sIRFY Series Devices Source-Drain Diode Ratings and Characteristics (Continued) IaR Parameter Type Min. | Typ. { Max. | Units Test Conditions Vsp Diode Forward IRFY044 _ =_ 2.5 Ig = 20A Voltage inFYi20 | | | 18 Is = 7.3A IRFY130 _ _ 1.5 Ig = 11A IRFY140, | | 15 Ig = 18A IRFY240 | | 15 Ig = 12A IRFY340 _ 1.5 Vig = 6.9A To = 25C, Veg = OV IRFY430 _ 1.4 Ig = 3.7A IRFY440 | | 15 Ig = 5.5A IRFY9120 - _ 4.8 Ig = -5.3A IRFY9130 - > 4.7 ig = -9.3A IRFY9140 _ _ 4.2 Ig = -13A IRFY9240 > _ 4.6 Ig = -7.7A ter Reverse Recovery | IRFY044 _ _ 220 lF = 20A Time IRFY120 | | | 240 Ig = 7.3A IRFY130. | | 300 Ig = 11A IRFY140 | ~ | | 400 Ig = 18A_ Ty = 25C, difdt < 100A/ps IRFY240 | ~ | 500 Ig = 12A Vpp = 50V IRFY340 | | | 600 | ns |Ig = 69A IRFY430 ~ baal 900 Ig = 3.7A IRFY440 > _ 700 Ig = 5.5A IRFY9120 -_ _ 200 Ig = -5.3A IRFY9130 | | | 250 Ig = -93A Ty = 25C, di/dt < -100A/ys IRFY9140 _ ~ 280 Ig = -13A Vpp = -50V IRFY9240 _ _ 440 Ig = -7.7A 1-480IeaR IRFY Series Devices Source-Drain Diode Ratings and Characteristics (Continued) Parameter Type Min. | Typ. | Max. | Units Test Conditions Orr Reverse IRFY044 _ _ 1.6 Ig = 20A Charge IRFY120 | | | 20 Ig = 7.3A IRFY130 _ _ 3.0 Ig = 11A IRFY140 _ _ 2.4 Ig = 18A Ty = 25C, di/dt < 100A/us IRFY240 - _ 5.3 Ig = 12A Vop = 50V IRFY340 _ _ 5.6 nC [ig = 6.9A IRFY430 | | 70 Ig = 3.7A IRFY440 _ _ 8.9 Ig = 5.5A IRFY9120 _ _ 3.1 Ig = -5.3A IAFY9130 | | | 3.0 Ig = -9.3A Ty = 25C, di/dt < -100A/ps IRFY9140 _ _ 3.6 Ig = -13A Vpp < -50V IRFY9240 | | 72 Ig = -7.7A 1-481IRFY Series Devices Thermal Resistance and Isolation Parameter Type Min. | Typ. | Max. | Units Test Conditions RthJC Junction-to-Case | IRFY044 _ - 2.1 IRFY120 _ _ 41 IRFY130 _ _ 28 IRFY140 _ _ 2.1 IRFY240 _ _ 2.1 IRFY340 _ - 2.1 | KW IRFY430 - _ 2.8 IRFY440 _ _ 2.1 IRFY9120 _ _ 4.1 IRFY9130 | _ 2.8 IRFY9140 | _ 2.1 IRFY9240 | _ 2.1 Rtncs Case-to-Sink ALL _ 0.21 _ | K/W | Mounting surface flat, smooth RthJA Junction-to- ALL - _ 80 | K/W | Typical socket mount Ambient 1-482IeaR IRFY Series Devices 102 a a i er a = = 5 5 & od a Oo Oo = Zz a a & Bot A a MT Veer u 4.5 20us PULSE WIDTH 20us PULSE WIDTH To = 25C To = 25C 107 107! 10 10! Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vps5 ORAIN-TO-SQUACE VOLTAGE (VOLTS) Fig. 1a - Typical Output Characteristics, Te = 25C Fig. 1b - Typical Output Characteristics, T, = 25C IRFY044 IRFY120 wn an ud) tu a a tu) Ww z = = bE Ee az Zz & ce a & wo Oo =z Zz em MH <= <= xc jon a a a a 4.5V Mt HW | 20us PULSE WIDTH 20us PULSE WIOTH To = 25C Te = 25C 1074 107 sot 101 Vos. DRAIN-TO-SOURCE VOLTAGE {VOLTS) Vos. ORAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 1c - Typical Output Characteristics, Te = 25C Fig. 1d - Typical Output Characteristics, T, = 25C IRFY130 IRFY140 @ @ tu 1 uu = 10 2 to! & & ea x iam a 3 3 Zz = =< a 5 & D av P 190 BV 107! 20us PULSE WIDTH Tro = 25C Tc = 25C Vog. DRAIN-TO-SQURCE VOLTAGE (VOLTS) Vpg DRAIN-TO-SQUACE VOLTAGE. (VOLTS Fig. 1e - Typical Output Characteristics, Te = 25C Fig. 1f - Typical Output Characteristics, Te = 25C IRFY240 IRFY340 1-483IRFY Series Devices IaR 104 a a He # us Ww = = =a a B & ce te 5 s oO oO z = < =< cz xc a oO 2 2 5V 20us PULSE WIDTH 20us PULSE WIDTH Tc = 25C To = 26C 1o74 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vps. DRAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 19 - Typical Output Characteristics, T, = 25C Fig. 1h - Typical Output Characteristics, T, = 25C IRFY430 IRFY440 4, NEGATIVE Ip, ORAIN CURRENT (AMPERES) NEGATIVE Ip, ORAIN CURRENT (AMPERES) 20uS PULSE WIDTH 20us To = 25C Tc = 25C 101 NEGATIVE Voc, DRAIN-TO-SQURCE VOLTAGE (VOLTS) NEGATIVE Vpg, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 11 - Typical Output Characteristics, Te = 25C Fig. 1] - Typical Output Characteristics, T, = 25C IRFY9120 IRFY9130 404 -4.5V NEGATIVE Ip, DRAIN CURRENT (AMPERES) NEGATIVE Ip, DRAIN CURRENT (AMPERES) ~4,5 B0us PULSE WIDTH 20us PULSE WIDTH To = 25C To = 25C 10 io" 10 NEGATIVE Vnc, ORAIN-TO-SQURCE VOLTAGE (VOLT3) NEGATIVE Voc, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1k - Typical Output Characteristics, Te = 256C Fig. 11 - Typical Output Characteristics, T, = 25C IRFY9140 IRFY9240 1-484IeaR IRFY Series Devices Ip, DRAIN CURRENT (AMPERES) Ip. DRAIN CURRENT (AMPERES 20us PULSE WIDTH 20us PULSE WIDTH Te = 150C To = 150C 10" so-t 100 10! Vp, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vog. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 2a - Typical Output Characteristics, T, = 150C Fig. 2b - Typical Output Characteristics, T, = 150C IRFY044 IRFY120 a a rea th a = 401 a o z a e & & 3 3 Zz Zz = < & & a 3 me ba 20us PULSE WIDTH 20us PULSE WIDTH To = 150C Te = 150C 107! - 10! 10 10! Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 2c - Typical Output Characteristics, T, = 150C Fig. 2d - Typical Output Characteristics, T, = 150C IRFY130 IRFY140 a a vay ta a or e a = = = a 5 = = ray Lut & & QO Oo 4 4 <= = = Ee bk G Z a a Oo oO 4 4 << = & & a a he eH 2 = a = o Vos = S0V Oo Vos = 50V 2 20us PULSE WIDTH 20us PULSE 4 a 10 4 NEGATIVE Vgc, GATE-TO-SQUACE VOLTAGE (VOLTS) NEGATIVE Voc, GATE-TO-SOURCE VOLTAGE (VOL Fig. 3i ~ Typical Transfer Characteristics Fig. 3] - Typical Transfer Characteristics IRFY9120 IRFY9130 10! NEGATIVE Ip, ORAIN CURRENT (AMPERES) NEGATIVE Ip, ORAIN CURRENT (AMPERES) Vos = -50V Vps = -50V 20us PULSE WIDTH 20us PULSE WIDTH 4 8 10 NEGATIVE Vgc, GATE-TO-SQURCE VOLTAGE (VOLTS) NEGATIVE Voc, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 3k - Typical Transfer Characteristics Fig. 31 - Typical Transfer Characteristics IRFY9140 IRFY9240 |-488IGR 3.0 no o en (NOAMALIZED) DRAIN-TO-SOURCE ON RESISTANCE Ros (on)- Yes * Ty JUNCTION TEMPERATURE ( C) Fig. 4a - Normalized On-Resistance Vs. Temperature IRFY044 3.0 (NORMALIZED) s x ~ iw u Ros fon) ORAIN-TO SOURCE ON RESISTANCE a VG6S = 10V 0.0 60 -40 -20 0 20 40 60 80 100 120 140 160 Ty JUNCTION TEMPERATURE { C) Fig. 4c - Normalized On-Resistance Vs. Temperature IRFY130 ny (NORMAL IZED) . in Ags (onj ORAIN-TO-SOURCE ON RESISTANCE - Yes = 1 Ty. JUNCTION TEMPERATURE ( C) Fig. 4e - Normalized On-Resistance Vs. Temperature IRFY240 IRFY Series Devices 3.0 (NORMALIZED) ry 2 ny an in - a Pos (on): ORAIN-TO SOURCE ON RESISTANCE o a V6S = 10 0.0 ~60 -40 -20 0 20 40 6G 80 100 120 140 160 Ty JUNCTION TEMPERATURE ( C) Fig. 4b - Normalized On-Resistance Vs. Temperature iRFY120 DRAIN-TO SOURCE ON RESISTANCE (NORMAL IZED} PQs (on): VES = 10V -60 -40 -20 0 20 40 60 80 100 120 140 160 Ty JUNCTION TEMPERATURE ( C ) a 4d Normalized On-Resistance Vs. Temperature IRFY140 (NORMALT ZED) DARAIN-TO-SOURCE ON RESISTANCE o Fos (on): Ves = Ty. JUNCTION TEMPERATURE { C) Fig. 4f - Normalized On-Resistance Vs. Temperature IRFY340IRFY Series Devices TeaR 3.0 2.0 w a g 2 5 = & 2. a 2.5 a g c S 2.0 & 2.0 WwW Ww 3 51.5 851.5 of of - x 5s 22 zz Z 1.0 < 1.0 a a 5 9.5 6 0.5 & a & bo Vgg = 10V x ; Ves = 10 , ~40 - 100 120 140 160 - 50 -20 0 40 1 140 1 Ty, JUNCTION TEMPERATURE ( C) Ty JUNCTION TEMPERATURE { C) Fig. 4g - Normalized On-Resistance Vs. Temperature Fig. 4h - Normalized On-Resistance Vs. Temperature IRFY430 IRFY440 2.5 uw Ww z 3 = = 2 20 w a . mn 2.0 = ry a z & aif w ais a8 Zu an an woo Qu = a oO oF 7 B10 10 ae Z2 x z oO a - O85 - 5 0.5 a & * Veg = -10V Ves ~10V : 0.0 -60 -40 -20 0 20 40 GO 60 100 120 140 160 -60 -40 -20 0 20 40 60 80 100 120 140 160 Ty JUNCTION TEMPERATURE ( 8%) TH UUNCTION TEMPERATURE ( C) Fig. 41 - Normalized On-Resistance Vs. Temperature Fig. 4j - Normalized On-Resistance Vs. Temperature IRFY9120 IRFY9130 2.5 3.0 w Ww g z z = 2 4 2.0 4 25 wl w y Zz & 2.0 yiots we za cw aN 3 N ow aw Wo am 31.5 oF 4 = * 1.0 ia} ia) Zz z2 < =< 1.0 5 a 0.5 = 0.8 & 3 0 VGS = -10V Vgg = -10V 60 -40 -20 0 20 40 60 80 100 120 140 160 9.05 = -20 0 20 40 60 80 100 120 140 160 Ty, JUNCTION TEMPERATURE { C | Tj, JUNCTION TEMPERATURE ( C Fig. 4k - Normalized On-Resistance Vs. Temperature Fig. 4t - Normalized On-Resistance Vs. Temperature IRFY9140 IRFY9240 1-490IaR IRFY Series Devices 4000 Cas + C, CAPACITANCE (pf} 8 8 Cys + Cgq Cys Coa Capacitance (pF) orgs 101 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos. Drain-to-Source Voltage (volts) Fig. 5a - Typical Capacitance Vs. Drain-to-Source Voltage Fig. 5b - Typical Capacitance Vs. Drain-to-Source Voltage C, CAPACITANCE (pf) 1200 IRFY044 IRFY120 00 Veg = OV, f = IMHz * Ciss = gs + Cga Cys SHOR Cgs + Cgg. Cgg SHORTED Crss = Cgg Cgc = + & i 1800 Zz =a Ee Q & 1200 << G a Coss orgs 0 10 10! 104 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos: DRAIN-TO-SOURCE VOLTAGE (VOLTS) IRFY130 IRFY140 Fig. 5c - Typical Capacitance Vs. Drain-to-Source Voltage Fig. 5d - Typical Capacitance Vs. Drain-to-Source Voltage a Cag + Coq Cas C, gd + & 5 i J 4600 2 2 = = cand Ww Qo Q =z <= a Qa << << oO oO o Coss os Coss, Cogs Crss 1 104 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vos. ORAIN~TO-SQURCE VOLTAGE (VOLTS) Fig. 5e - Typical Capacitance Vs. Drain-to-Source Voltage Fig. 5f - Typical Capacitance Vs. Drain-to-Source Voltage IRFY240 IRFY340 1-491IRFY Series Devices I2R Cgs + Cog. Cas Coq + 2 1000 s ty Lu 1800 8 B = 750 = g 3 z 500 S a Coss Co LIh 500 250 Coss 0 10! 10 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vos, DRAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 5g - Typical Capacitance Vs. Drain-to-Source Voltage Fig. 5h - Typical Capacitance Vs. Drain-to-Source Voltage IRFY430 IRFY440 800 1800 Vou = OV, f = 1MHz Ves = OV. f= fgs + fgg Cgs Ciss = fgg + Cg Cas Cga Crss = Cgq ooo 1500 + Liss Cress n a 3 \ : s Br209 ud ly oO oO Zz Zz at at = avo 900 ti ba a OQ aT at a a -t at oO 600 S 200 G 300 Cres 08 10! 100 103 NEGATIVE Voc, ORAIN-TO-SQUACE VOLTAGE {YOLTS) Vpg. DRAIN-TO-SOUACE VOLTAGE (VOLTS) Fig. 5i - Typical Capacitance Vs. Drain-to-Source Voltage Fig. 5j - Typical Capacitance Vs. Drain-to-Source Voltage IRFY9120 IRFY9130 3000 Ge 7 OV, = 2500 iss ~ Cgs + Cgq. Cgg SHORTED ~ Cag 2500 = + 2000 S aoo0 S Wy 4 1500 Zz =z = 1500 = Q Go a 1000 << << 1000 oO oo oO Coss 500 Cres fpss 0 10! 10! Vpg. DRAIN-TO-SQURCE VOLTAGE (VOLTS) NEGATIVE Vg, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 5k - Typical Capacitance Vs. Drain-to-Source Voltage Fig. 5! - Typical Capacitance Vs. Drain-to-Source Voltage IRFY9140 IRFY9240 1-492IcaR IRFY Series Devices 20 20 e a e a be nN i nm @ GATE-TO-SOURCE VOLTAGE (VOLTS) @ + Ygg. SATE-TO-SOURCE VOLTAGE (VOLTS) cy Ves: FOR TEST CIRCUIT SEE FIGURE 14a & b CIRCUIT SEE FIGURE 14a & b 2 4 6 8 10 Qg, TOTAL GATE CHARGE (nC) Q, TOTAL GATE CHARGE (nC) Ig: Fig. 6a - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6b ~ Typical Gate Charge Vs. Gate-to-Source Voltage IRFY044 IRFY120 20 20 a a rey no eS wo o a GATE-TO-SQUACE VOLTAGE (VOLTS) a Ves: GATE-TO-SOURCE VOLTAGE (VOLTS) & i | oO > FOR CIRCUIT 0 0 SEE FIGURE 14a & b 4 40 Qg. TOTAL GATE CHARGE (nC) Gg, TOTAL GATE CHARGE (nC) Fig. 6c - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6d - Typical Gate Charge Vs. Gate-to-Source Voltage IRFY130 IRFY140 20 i i o ny a Veg. GATE-TO-SOURCE VOLTAGE (VOLTS) & Vgg. GATE~TO-SOURCE VOLTAGE (VOLTS) FOR TEST CIRCUIT SEE FIGURE 14a & b FOR TEST CIRCUIT SEE FIGURE 14a & b 1 45 75 8 4 30 75 Q. TOTAL GATE CHARGE (nC) Qg. TOTAL GATE CHARGE (nC) Fig. 6e - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6f - Typical Gate Charge Vs. Gate-to-Source Voltage IRFY240 IRFY340 1-493IRFY Series Devices TaR 20 20 Ip = 3.7A oe n on ~ nm wy ao @ ab Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) & Veg. GATE-~TO-SOURCE VOLTAGE (VOLTS) FOR TEST CIRCUIT SEE FIGURE 14a & b FOR TEST CIRCUIT SEE FIGURE 14a & b 1 24 40 1 TOTAL GATE CHARGE (nc) GQ Q TOTAL GATE CHARGE (nC) Ig Fig. 6g - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6h - Typical Gate Charge Vs. Gate-to-Source Voitage RFY430 IRFY440 ge 20 h GATE-TO-SQURCE VOLTAGE (VOLTS) a NEGATIVE Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) rn Oo > wu 4 4 > a q % FOR TEST CIRCUIT wl 0 SEE FIGURE 14c & d 4 16 20 9 i @g, TOTAL GATE CHARGE (nC) @,. TOTAL GATE CHARGE (nc) g Fig. 6i - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6j - Typical Gate Charge Vs. Gate-to-Source Voltage IRFY9120 IRFY9130 0 oO 20 be ro a @ GATE-TO-SOURCE VOLTAGE (VOLTS) NEGATIVE Vee, GATE~TO-SOURCE VOLTAGE (VOLTS) 8 w 4 4 3 FOR TEST CIRCUIT wy SEE FIGURE 14c & d SEE FIGURE 14c & d 9 10 40 60 Gg. TOTAL GATE CHARGE (nC) Gg, TOTAL GATE CHARGE nC) Fig. 6k - Typical Gate Charge Vs. Gate-to-Source Voltage Fig. 6! - Typical Gate Charge Vs. Gate-to-Source Voltage IRFY9140 IRFY9240 1-494IaR IRFY Series Devices Igp, REVERSE DRAIN CURRENT (AMPERES) 5. Igp, REVERSE DRAIN CURRENT (AMPERES) Ves = OV Veg = OV 0. , , : 0 100 0.4 0.8 1. 16 0 Ven, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Vgp, SOQURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7a - Typical Source-Drain Diode Forward Voltage Fig. 7b - Typical Source-Drain Diode Forward Voltage IRFY044 IRFY120 a a ay & ff $ = a & S # ce 3 3 4a 4 <= a & & ra tu & a > = a & B Ves = OV B Veg = OV 0.4 0.9 1.4 4. - 8 0.4 : 1. : 6 Vgp. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Vgp, SQURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 7d Typical Source-Drain Diode Forward Voltage IRFY130 IRFY140 401 3 Isp, REVERSE DRAIN CURRENT (AMPERES) Igp, REVERSE DRAIN CURRENT (AMPERES) Veg = OV Vog = OV 0.4 . . : 1, 1, 6 07 0 4. 1.6 Vep, SQURCE-TO-DRAIN VOLTAGE (VOLTS) Vgp. SOURCE-TO-ORAIN VOLTAGE (VOLTS) Fig. 7e ~ Typical Source-Drain Diode Forward Voltage Fig. 7f - Typical Source-Drain Diode Forward Voltage IRFY240 IRFY340 |-495IRFY Series Devices ITeaR # 1o! g = = & & uw Qa a oa Oo a z 4 & & Ww # 2 s S a B Veg = OV B Ves = OV Q. . 2 . . . . 2 Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Ven, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7g - Typical Source-Drain Diode Forward Voltage Fig. 7h - Typical Source-Drain Diode Forward Voitage tRFY430 IRFY440 101 Vgg = OV Vgg = OV 0-1 " 1 to-} . : 3.0 4.0 5.0 NEGATIVE Vop, SOURCE-TO-DAAIN VOLTAGE (VOLTS) 1.0 2.0 0 4. . 0 NEGATIVE Yop, SQURCE-TO-DRAIN VOLTAGE (VOLTS) NEGATIVE Isp, REVERSE OAAIN CURRENT (AMPERES) NEGATIVE Isp, REVERSE DRAIN CURRENT (AMPERES) x Fig. 71 - Typical Source-Drain Diode Forward Voltage Fig. 7j Typical Source-Drain Diode Forward Voltage IRFY9120 IRFY9130 sot 10! Top, REVERSE OAAIN CURRENT (AMPERES) V6sg = OV Vgg = OV 105 oh : : : 0 NEGATIVE Von, SOURCE-TO-DAAIN VOLTAGE (VOLTS) NEGATIVE Ign, REVERSE DRAIN CURRENT (AMPERES) : . : 4, -0 Vcop. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7k - Typicat Source-Drain Diode Forward Voltage Fig. 71 - Typical Source-Drain Diode Forward Voltage IRFY9140 IRFY9240 1-496IaR Ip. DRAIN CURRENT (AMPERES) ORAIN CURRENT (AMPERES) Ip. (AMPERES) DRAIN CURRENT TION IN THIS AREA LIMITEO BY Ros (oN) T Ty=150C SINGLE 1? 1 10 ? Vpg. DAAIN-TO-SOURCE VOLTAGE Fig. 8a - Maximum Safe Operating Area IRFY044 10? 2 103 (VOLTS) on OPERATION IN THIS AREA LIMITED Ros (ON) 1 Ty=150C SINGLE OTT TS 9 FF ae eat Vos. ORAIN-TG-SOURCE VOLTAGE (VOLTS) Fig. 8c - Maximum Safe Operating Area IRFY130 GPERATION IN THIS AREA LIMITED Fos (ON) T Ty=1500C SINGLE 4 2 5 40 2 8 4102 2 5 107 Vpg. ORAIN-TO-SQURCE VOLTAGE (VOLTS Fig. 8e - Maximum Safe Operating Area (RFY240 1-497 IRFY Series Devices OPERATION IN THIS AREA LIMITED Ros (oN Ip, DRAIN CURRENT (AMPERES) Te=25C Ty=1500C SINGLE 1 ? 5 10 ? 5 10? 2 5 103 Vpg. ORAIN-TO-SQUACE VOLTAGE (VOLTS) Fig. 8b - Maximum Safe Operating Area IRFY120 OPERATION IN THIS AREA LIMITED Y ADs (ON QORAIN CURRENT (AMPERES) Ip 450C 1 2 5 4 2 5 492 2 5 493 Vos. DRAIN-TO-SOURCE VOLTAGE {VOLTS) Fig. 8d - Maximum Safe Operating Area IRFY140 OPERATION IN THIS AREA LIMITED Ros (ON) Ip. DRAIN CURRENT (AMPERES) nese = 150C INGLE 1 2 5 10 ? 5 10? 2 5 108 Vgg. ORAIN-TO-SQUACE VOLTAGE (VOLTS) Fig. 8f - Maximum Safe Operating Area IRFY340IRFY Series Devices OPERATION IN THIS AREA LIMITED Pos (ON) Ip, ORAIN CURRENT (AMPERES) T TJ=150C SINGLE 402 2 S 1 2 5 10? 5 103 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 8g - Maximum Safe Operating Area IRFY430 103 5 OPERATION IN THIS AREA LIMITED Y Alps (ON) Tp=25C 2 Tjo1509C SINGLE 10 2 5 NEGATIVE Ip, ORAIN CURRENT (AMPERES) 3 ot 2 5 4 2 8 10? 2 DRAIN-TO-SQUACE VOLTAGE 5 403 NEGATIVE Vos, (VOLTS) Fig. 8i - Maximum Safe Operating Area IRFY9120 OPERATION IN THIS AREA LIMITED BY Abs (oN) NEGATIVE Ip, ORAIN CURRENT (AMPERES) 3 Te =289C Ty=1500C O14 SINGLE 1? 5 10 S10? 2 S103 NEGATIVE Vpg, DAAIN-TO-SOURCE VOLTAGE (VOLTS Fig. 8k - Maximum Safe Operating Area IRFY9140 1-498 DRAIN CUARENT {AMPERES) Ip. NEGATIVE Ip, DRAIN CURRENT (AMPERES) NEGATIVE Ip, ORAIN CURRENT (AMPERES) oC. IaR 103 5 OPERATION IN THIS AREA LIMITED BY ADs (ON) 102 725C 2|Ty=150C PULSE 4 2 5 410 2 5 Vpg. ORAIN-TO-SOURCE VOLTAGE (VOLTS) 1 402 2 5 107 Fig. 8h - Maximum Safe Operating Area IRFY440 5 OPERATION IN THIS AREA LIMITED BY ADs (oN. To=25C 2 Tye 150C SINGLE 410 2 5 NEGATIVE Vpg, DAAIN-TO-SOURCE VOLTAGE 102 2 3 103 (VOLTS) ae 5 4 2 s Fig. 8j - Maximum Safe Operating Area IRFY9130 OPERATION IN THIS AREA LIMITED BY Pos (oN) 410 t Ty=150C SINGLE 4 2 5 40 2 5 we 108 2 5 103 NEGATIVE Vps, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 81 - Maximum Safe Operating Area IRFY9240IaR IRFY Series Devices UMITED Ip, DRAIN CURRENT (AMPERES) Ip, DAAIN CURRENT (AMPERES) 28 50 75 100 125 150 28 50 75 100 125 150 To, CASE TEMPERATURE ( C) Teo, CASE TEMPERATURE ( C) Fig. 9a Maximum Drain Current Vs. Case Temperature Fig. 9b - Maximum Drain Current Vs. Case Temperature IRFY044 IRFY120 a a WwW wi ac r a 2 = 8 = s = a b&b @ a 6 c a a 2 ~ Oo uo z Zz a 4 < c a a a a a Po s Q 25 50 75 100 125 150 2s 50 75 100 125 150 Tg, CASE TEMPERATURE [ C) Tc, CASE TEMPERATURE [ oc) Fig. 9 - Maximum Drain Current Vs. Case Temperature Fig. 9d - Maximum Drain Current Vs. Case Temperature IRFY130 IRFY140 Ip, ORAIN CURRENT (AMPERES) Ip. DRAIN CUARENT (AMPERES) 0 25 50 75 100 125 150 "25 50 75 100 125 150 Tc. CASE TEMPERATURE ( C) Tc, CASE TEMPERATURE ( SC) Fig. 9e - Maximum Drain Current Vs. Case Temperature Fig. 9f - Maximum Drain Current Vs. Case Temperature IRFY240 IRFY340 1-499IRFY Series Devices IaR Tp. DRAIN CURRENT (AMPERES) Ip. GRAIN CURRENT (AMPERES) w , 25 50 75 100 125 150 25 50 75 100 125 150 Tc, CASE TEMPERATURE ( OC) Tc, CASE TEMPERATURE ( C) Fig. 9g - Maximum Drain Current Vs. Case Temperature Fig. 9h - Maximum Drain Current Vs. Case Temperature IRFY430 IRFY440 NEGATIVE I), ORAIN CURRENT {AMPERES) NEGATIVE I, DAAIN CURRENT (AMPERES) 25 50 76 100 125 150 25 50 75 100 125 150 Te, CASE TEMPERATURE ( OC) Tc. CASE TEMPERATURE [( 9C) Fig. 91 - Maximum Drain Current Vs. Case Temperature Fig. 9j - Maximum Drain Current Vs. Case Temperature IRFY9120 IRFY9130 8.0 wy Ww 3 : = = 6.0 5 = q z g 5 oO a Zz Zz 4.0 a g P a 3 w 2.0 5 c 5 5 2 2 0.0 25 50 75 100 125 150 25 50 75 100 126 150 co. CASE TEMPERATURE { C) To, CASE TEMPERATURE ( C) Fig. 9k - Maximum Drain Current Vs. Case Temperature Fig. 91 - Maximum Drain Current Vs. Case Temperature IRFY9140 IRFY9240 1-500IaR R D Vos>]"Wae D.U.T. 5 He T. Yoo Pulse Width <1ps Duty Factor <0.1% 1H Fig. 10a - Switching Time Test Circuit N-Chanhel Pulse Width < 1ps Duty Factor <0.1% 1H Fig. 10c - Switching Time Test Circult P-Channel 1-501 IRFY Series Devices A! | tacony ty taco Fig. 10b - Switching Time Waveforms N-Channel taony br taron tt Ves | 10% | | | | | | | | 90% Vos J/\ FL Fig. 10d Switching Time Waveforms 1 P-ChannelIRFY Series Devices THERMAL RESPONSE Zeno) THERMAL RESPONSE (2,, } } THERMAL RESPONSE (Zenje! 10 nn o a 10 SINGLE PULSE (THERMAL RESPONSE) my LI & pera NOTES: 4. DUTY FACTOR, D=ti/t2 2. PEAK Ty=Ppm x Ztnjc + Te 105 1074 103 10? 0.1 1 10 t4, RECTANGULAR PULSE DURATION (SECONDS) Fig. 11a - Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration IRFY120, IRFY9120 SINGLE PULSE (THEAMAL RESPONSE) TF LI rr eal NOTES: 4. DUTY FACTOR, D=t1/t2 2. PEAK Ty=Pom x Zenjc * Te 10 105 1074 109 10 O.1 1 10 ty, RECTANGULAR PULSE DURATION (SECONDS) Fig. 11b Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration IRFY130, IRFY9130 10 i LE Fon SINGLE PULSE (THERMAL RESPONSE) NOTES: 4. DUTY FACTOR, O=t1/t2 2. PEAK Ty=Ppm * Zenje + Tc 105 104 109 190? 0.4 4 10 t4, RECTANGULAA PULSE DURATION (SECONDS) Fig. 11c Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration IRFY044, IRFY140, IRFY240, IRFY340, IRFY440, IRFY9140, IRFY9240 1-502 IaRIaR IRFY Series Devices __ Current Regulator [ Same Type | as D.U.T. | | SSS ~ | $s=== ' D.U.T. T. Vos 10Vv 4) be Qe, Q, a Ves 14 / ama []. G bn Io F 5 Charge Current Sampling Resistors Fig. 12a Gate Charge Test Circuit Fig. 12b Basic Gate Charge Waveform N-Channel N-Channel __ Gurrent Regulator Same Type | | as D.U.T. . | PASE) [| 0.2 $ V, 410v-- > th out. [+ ov md) p Ses Oe Ves Ve -amAt Lf tN 0 lg Ip Charge Current Sampling Resistors Fig. 12c Gate Charge Test Circuit Fig. 12d Basic Gate Charge Waveform P-Channel P-Channel |-503