MUR120 Series Preferred Devices SWITCHMODE Power Rectifiers MUR105, MUR110, MUR115, MUR120, MUR130, MUR140, MUR160 http://onsemi.com . . . designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features: * * * * * * Ultrafast 25, 50 and 75 Nanosecond Recovery Times 175C Operating Junction Temperature Low Forward Voltage Low Leakage Current High Temperature Glass Passivated Junction Reverse Voltage to 600 Volts ULTRAFAST RECTIFIERS 1.0 AMPERE 50-600 VOLTS Mechanical Characteristics: * Case: Epoxy, Molded * Weight: 0.4 gram (approximately) * Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable * Lead and Mounting Surface Temperature for Soldering Purposes: * * * * 220C Max. for 10 Seconds, 1/16 from case Shipped in plastic bags, 1000 per bag Available Tape and Reeled, 5000 per reel, by adding a "RL'' suffix to the part number Polarity: Cathode Indicated by Polarity Band Marking: MUR105, MUR110, MUR115, MUR120, MUR130, MUR140, MUR160 MAXIMUM RATINGS AXIAL LEAD CASE 59-10 PLASTIC MARKING DIAGRAM MUR1xx MUR1 = Device Code xx = Specific Device Code Please See the Table on the Following Page ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. Preferred devices are recommended choices for future use and best overall value. Semiconductor Components Industries, LLC, 2002 August, 2002 - Rev. 6 1 Publication Order Number: MUR120/D MUR120 Series MAXIMUM RATINGS MUR Symbol 105 110 115 120 130 140 160 Unit Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage VRRM VRWM VR 50 100 150 200 300 400 600 Volts Average Rectified Forward Current (Square Wave Mounting Method #3 Per Note 1.) IF(AV) Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz) IFSM 35 Amps TJ, Tstg 65 to +175 C RJA See Note 1. C/W Rating Operating Junction Temperature and Storage Temperature 1.0 @ TA = 130C 1.0 @ TA = 120C Amps THERMAL CHARACTERISTICS Maximum Thermal Resistance, Junction to Ambient ELECTRICAL CHARACTERISTICS Maximum Instantaneous Forward Voltage (Note 1) (iF = 1.0 Amp, TJ = 150C) (iF = 1.0 Amp, TJ = 25C) vF Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, TJ = 150C) (Rated dc Voltage, TJ = 25C) iR Maximum Reverse Recovery Time (IF = 1.0 Amp, di/dt = 50 Amp/s) (IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 A) trr Maximum Forward Recovery Time (IF = 1.0 A, di/dt = 100 A/s, IREC to 1.0 V) 1. Pulse Test: Pulse Width = 300 s, Duty Cycle 2.0%. Volts 0.710 0.875 1.05 1.25 50 2.0 150 5.0 35 25 75 50 25 50 A ns tfr ORDERING INFORMATION Device Marking Package MUR105 MUR105 Axial Lead 1000 Units/Bag MUR105RL MUR105 Axial Lead 5000 Units/Tape & Reel MUR110 MUR110 Axial Lead 1000 Units/Bag MUR110RL MUR110 Axial Lead 5000 Units/Tape & Reel MUR115 MUR115 Axial Lead 1000 Units/Bag MUR115RL MUR115 Axial Lead 5000 Units/Tape & Reel MUR120 MUR120 Axial Lead 1000 Units/Bag MUR120RL MUR120 Axial Lead 5000 Units/Tape & Reel MUR130 MUR130 Axial Lead 1000 Units/Bag MUR130RL MUR130 Axial Lead 5000 Units/Tape & Reel MUR140 MUR140 Axial Lead 1000 Units/Bag MUR140RL MUR140 Axial Lead 5000 Units/Tape & Reel MUR160 MUR160 Axial Lead 1000 Units/Bag MUR160RL MUR160 Axial Lead 5000 Units/Tape & Reel http://onsemi.com 2 Shipping ns MUR120 Series MUR105, MUR110, MUR115, MUR120 100 10 TJ = 175C IR, REVERSE CURRENT ( A) 7.0 5.0 TJ = 175C 2.0 100C 25C 1.0 1.0 100C 0.1 0.01 0.001 0.7 25C 0 20 40 0.5 60 100 80 120 140 160 180 200 VR, REVERSE VOLTAGE (VOLTS) Figure 2. Typical Reverse Current* 0.3 * The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR. 0.2 0.1 0.07 0.05 0.03 0.02 0.01 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 IF(AV) , AVERAGE FORWARD CURRENT (AMPS) i , INSTANTANEOUS FORWARD CURRENT (AMPS) F 3.0 10 5.0 4.0 RATED VR RJA = 50C/W 3.0 dc 2.0 SQUARE WAVE 1.0 0 vF, INSTANTANEOUS VOLTAGE (VOLTS) 0 50 100 150 200 250 TA, AMBIENT TEMPERATURE (C) Figure 1. Typical Forward Voltage 50 5.0 TJ = 175C 4.0 I (CAPACITIVELOAD) PK 20 I AV TJ = 25C 10 30 C, CAPACITANCE (pF) PF(AV) , AVERAGE POWER DISSIPATION (WATTS) Figure 3. Current Derating (Mounting Method #3 Per Note 1) 5.0 3.0 2.0 dc 1.0 0 0.5 1.0 1.5 2.0 10 7.0 SQUARE WAVE 0 20 5.0 2.5 0 10 20 30 40 IF(AV), AVERAGE FORWARD CURRENT (AMPS) VR, REVERSE VOLTAGE (VOLTS) Figure 4. Power Dissipation Figure 5. Typical Capacitance http://onsemi.com 3 50 MUR120 Series MUR130, MUR140, MUR160 400 10 IR, REVERSE CURRENT ( A) 7.0 5.0 100C TJ = 175C 2.0 25C 1.0 TJ = 175C 40 10 4.0 100C 1.0 0.4 0.1 25C 0.04 0.01 0.004 0.7 0 100 200 0.5 300 400 500 600 700 VR, REVERSE VOLTAGE (VOLTS) Figure 7. Typical Reverse Current* 0.3 * The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR. 0.2 IF(AV) , AVERAGE FORWARD CURRENT (AMPS) i , INSTANTANEOUS FORWARD CURRENT (AMPS) F 3.0 100 0.1 0.07 0.05 0.03 0.02 0.01 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 5.0 4.0 RATED VR RJA = 50C/W 3.0 2.0 dc 1.0 0 vF, INSTANTANEOUS VOLTAGE (VOLTS) SQUARE WAVE 0 50 100 150 200 250 TA, AMBIENT TEMPERATURE (C) Figure 6. Typical Forward Voltage 20 5.0 TJ = 175C 4.0 TJ = 25C 5.0 3.0 (CAPACITIVE LOAD) I I 2.0 C, CAPACITANCE (pF) PF(AV) , AVERAGE POWER DISSIPATION (WATTS) Figure 8. Current Derating (Mounting Method #3 Per Note 1) 10 PK 20 dc AV SQUARE WAVE 1.0 0 10 7.0 5.0 3.0 0 0.5 1.0 1.5 2.0 2.0 2.5 0 10 20 30 40 IF(AV), AVERAGE FORWARD CURRENT (AMPS) VR, REVERSE VOLTAGE (VOLTS) Figure 9. Power Dissipation Figure 10. Typical Capacitance http://onsemi.com 4 50 MUR120 Series NOTE 1. -- AMBIENT MOUNTING DATA Data shown for thermal resistance junction to ambient (RJA) for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured. TYPICAL VALUES FOR RJA IN STILL AIR Mounting Method 1 2 RJA Lead Length, L 1/4 1/2 1/8 52 65 72 67 80 87 Units C/W C/W 50 C/W 3 MOUNTING METHOD 1 EEEEEEEEEEE EEEEEEEEEEE L L MOUNTING METHOD 2 EEEEEEEEEEEE EEEEEEEEEEEE L L Vector Pin Mounting EE EE EE EE EE EE EE MOUNTING METHOD 3 L = 3/8 Board Ground Plane P.C. Board with 1-1/2 X 1-1/2 Copper Surface http://onsemi.com 5 MUR120 Series PACKAGE DIMENSIONS MINI MOSORB CASE 59-10 ISSUE S B K D F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 59-04 OBSOLETE, NEW STANDARD 59-09. 4. 59-03 OBSOLETE, NEW STANDARD 59-10. 5. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY 6. POLARITY DENOTED BY CATHODE BAND. 7. LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION. DIM A B D F K A F INCHES MIN MAX 0.161 0.205 0.079 0.106 0.028 0.034 --0.050 1.000 --- K http://onsemi.com 6 MILLIMETERS MIN MAX 4.10 5.20 2.00 2.70 0.71 0.86 --1.27 25.40 --- MUR120 Series Notes http://onsemi.com 7 MUR120 Series SWITCHMODE is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800-282-9855 Toll Free USA/Canada http://onsemi.com 8 MUR120/D