Semiconductor Components Industries, LLC, 2000
June, 2000 – Rev. 3 1Publication Order Number:
MC33351A/D
MC33351A
Advanced Information
Lithium Battery Protection
Circuit for Three Battery
Packs
The MC33351A is a monolithic lithium battery protection circuit that is
designed to enhance the useful operating life of three cell rechargeable
battery packs. The MC33351A is specifically designed to be placed in a
lithium battery pack where the battery cells continuously power it. In order
to maintain cell operation within specified limits, the protection circuit
senses cell voltages, and discharge current, and correspondingly controls
the state of two P–channel MOSFET switches. These switches are
connected in series with the positive terminal of the third cell and the
positive terminal of the battery pack. During a fault condition, the
MC33351A open circuits the pack by turning off one of these MOSFET
switches.
Features
Selectable Char ge Interrupt Voltage Sensing Mode for Precise Cell
Voltage Measurements
Programmable Overvoltage Delay
Choice of Discharge Current Limit Sensing Elements consisting of
either Low–Side Resistor or High–Side MOSFET Switches
Programmable Dischar ge Current Limit Threshold and Shutdown Delay
Selectable Cell Voltage Balancing
Virtually Zero Current Sleepmode State when Cells are Discharged
Minimum External Components for Inclusion within the Battery Pack
Available in Low Profile Surface Mount Package
5
Low–Side
Current
Limit Input
4
Discharge
Current Limit
Shutdown Delay
Typical Three Cell Smart Battery Pack
Charge and
Discharge Gate
Drive Common
8
VCC/
High–Side
Discharge
Current Limit
16
MC33351A
2
Discharge
Inhibit
Input
Cell 3
Cell 2
Cell 1/VC 15
Ground 13
Overvoltage
Shutdown
Delay
3
20
10
Undervoltage
Fault Output
1
Charge
Inhibit
Input
Discharge Gate
Drive Output
7
Charge Gate
Drive Output
9
6
11
High–Side
Discharge Current
LimitThreshold
Charge
Interrupt
Mode Select
17
18
Balance 3
19
12
Balance 2
14
Balance 1
http://onsemi.com
PIN CONNECTIONS
20
1
120
17
16
15
14
13
3
4
5
6
7
8
(Top View)
Charge Inhibit Input
Overvoltage
Shutdown Delay
Charge Interrupt
Mode Select
Discharge
Gate Drive Output
Charge and Discharge
Gate Drive Common
Balance 1
Ground
Cell 1/VC
Balance 2
19
18
2
12
11
9
10
Balance 3
VCC/High Side
Discharge Current
Limit
Cell 2
High–Side
Discharge Current
Limit Threshold
Discharge Inhibit/
Test Input
Discharge Current Limit
Shutdown Delay
Low–Side Discharge
Current Limit Input
Charge
Gate Drive Output
Undervoltage
Fault Output
NC
Cell 3
TSSOP–20
DTB SUFFIX
CASE 948E
Device Package Shipping
ORDERING INFORMATION
MC33351ADTB–1 TSSOP–20 75 Units/Rail
MC33351ADTB–1R2 TSSOP–20 2500 Tape/Reel
MARKING
DIAGRAMS
MC35
1A1
ALYW
A = Assembly Location
WL, L = W afer Lot
YY, Y = Year
WW,W = Work Week
MC33351A
http://onsemi.com
2
Floating
Over/Under
Cell Voltage
Detector
&
Reference
Oscillator
Balance 3
Balance 2
Balance 1
Cell 3
Cell 2
Cell 1/VC
Ground
Over/Under
Data Latch
&
Control Logic
Cell
Selector
Cell Voltage
Balancing
Logic
R1
R2
R3
Discharge Current
Limit Detector Charge/Discharge
Gate Drivers Sense
Enable
5
Low–Side
Discharge Current
Limit Input
Discharge
Current Limit
Shutdown Delay
1
Charge
Inhibit Input
2
Discharge Inhibit Input
Rlim(LS)
Cdly
4
11
High–Side
Discharge Current
Limit Threshold
6
Charge Interrupt
Mode Select
Overvoltage
Shutdown
Delay
3
VCC
Cell 1
Control Logic Inputs from
Microcontroller Output Ports
10 k 10 k
VC
Undervoltage
Fault Output
10
Cell 2
Cell 3
13
20
15
14
12
19
18
17
16
VCC/
High–Side
Discharge
Current Limit
MC33351A
En
Ck
Ck
Charge and
Discharge Gate
Drive Common
8
Charge
Gate Drive
Output
9
Discharge
Gate Drive
Output
7
Discharge Switch Q2 Charge Switch Q1
10 k
10 k
10 k
4.7 M
Smart Battery Pack with Low–Side Discharge Current Sensing, Charge Interrupt Voltage Sensing, and Cell Voltage Balancing
CI
Contro
l
Logic
Out
p
utTo
M
icrocontro
ll
er
I
n
p
ut
P
ort
Figure 1.
RG RG
5.1 k RT
CT
+
22
m
fd
MC33351A
http://onsemi.com
3
Floating
Over/Under
Cell Voltage
Detector
&
Reference
Oscillator
Balance 3
Balance 2
Balance 1
Cell 3
Cell 2
Cell 1/VC
Ground
Over/Under
Data Latch
&
Control Logic
Cell
Selector
Cell Voltage
Balancing
Logic
R1
R2
R3
Discharge Current
Limit Detector Charge/Discharge
Gate Drivers Sense
Enable
5
Low–Side
Discharge Current
Limit Input
Discharge
Current Limit
Shutdown Delay
1
Charge
Inhibit Input
2
Discharge Inhibit Input
Cdly
4
11
High–Side
Discharge Current
Limit Threshold
6
Charge Interrupt
Mode Select
Overvoltage
Shutdown
Delay
3
VCC
Cell 1
Control Logic Inputs from
Microcontroller Output Ports
10 k 10 k
VC
Undervoltage
Fault Output
10
Cell 2
Cell 3
13
20
15
14
12
19
18
17
16
VCC/
High–Side
Discharge
Current Limit
MC33351A
En
Ck
Ck
Charge and
Discharge Gate
Drive Common
8
Charge
Gate Drive
Output
9
Discharge
Gate Drive
Output
7
Discharge Switch Q2 Charge Switch Q1
10 k
10 k
10 k
4.7 M
Smart Battery Pack with High–Side Discharge Current Sensing
CI
Contro
l
Logic
Out
p
utTo
M
icrocontro
ll
er
I
n
p
ut
P
ort
Rth(HS)
RG RG
Figure 2.
5.1 k RT
CT
+
22
m
fd
MC33351A
http://onsemi.com
4
MAXIMUM RATINGS
Ratings Symbol Value Unit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Voltage (Measured with respect to Ground, Pin 13)
ÁÁÁÁ
ÁÁÁÁ
VIR
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
V
Cell 1/Vc (Pin 15) 7.5
Cell 2 (Pin 12) 10
Cell 3 (Pin 18) 18
Vcc/ High Side Discharge Current Limit (Pin 16) 20
Charge Inhibit Input (Pin 1) 7.5
Discharge Inhibit Input (Pin 2) 7.5
Overvoltage Shutdown Delay (Pin 3) 7.5
Discharge Current Limit Shutdown Delay (Pin 4) 20
Low–Side Discharge Current Limit Input (Pin 5) 7.5
Voltage Sampling Mode Select (Pin 6) 7.5
Discharge Gate Drive Output (Pin 7) 18
Charge Gate Drive Common (Pin 8) 20
Charge Gate Drive Output (Pin 9) 18
Undervoltage Fault Output (Pin 10) 20
High–Side Current Limit Threshold (Pin 11) 7.5
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Cell Balancing Current (Note 1)
ÁÁÁÁ
ÁÁÁÁ
Ibal
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
mA
Balance 3, Source Current (Pin 19) 50
Balance 1, Balance 2 Sink Current (Pin 20, 14) 50
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Undervoltage Fault Output Sink Current (Pin 10)
ÁÁÁÁ
ÁÁÁÁ
Iflt
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
10
ÁÁÁ
ÁÁÁ
mA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Thermal Resistance, Junction–to–Air
ÁÁÁÁ
RθJA
ÁÁÁÁÁÁ
ÁÁÁ
°C/W
DTB Suffix, TSSOP Plastic Package, Case 948E 135
DW Suffix, SO–20L Plastic Package, Case 751D 105
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Operating Temperature (Note 1)
ÁÁÁÁ
ÁÁÁÁ
TJ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
–40 to 150
ÁÁÁ
ÁÁÁ
°C
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Storage Temperature
ÁÁÁÁ
ÁÁÁÁ
Tstg
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
–55 to 150
ÁÁÁ
ÁÁÁ
°C
ELECTRICAL CHARACTERISTICS (Vcell 3 (Pin 18) = 10.5V, Vcell 2 (Pin 12) = 7.0V, Vcell 1 (Pin 15) = 3.5V,
Cdly (Pin 4) = 1000 pF, TA = 25°C)
Characteristic Symbol Min Typ Max Unit
VOLTAGE SENSING
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Cell Charging Cutoff (Pin 15 to 13, 12 to 15, 18 to 12)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Overvoltage Threshold, VCell Increasing MC33351A–1 Vth(OV) 4.207 4.293 V
Overvoltage Hysteresis, VCell Decreasing VH50 125 200 mV
Delay tdly(OV)
One Overvoltage Sample (Pin 3 = Gnd) 0 1.2 s
Two Consecutive Overvoltage Samples (Pin 3 = Vc) 1.0 2.3 s
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Cell Discharging Cutoff MC33351A–1
ÁÁÁÁÁ
Vth(UV)
ÁÁÁÁ
2.185
2.3
ÁÁÁÁ
2.415
ÁÁÁ
V
Undervoltage Threshold, VCell Decreasing
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Input Bias Current During Cell Voltage Sampling
ÁÁÁÁÁ
ÁÁÁÁÁ
IIB
ÁÁÁÁ
ÁÁÁÁ
28
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
µA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Cell V oltage Sampling Rate
ÁÁÁÁÁ
ÁÁÁÁÁ
t(smpl)
ÁÁÁÁ
ÁÁÁÁ
1.0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
s
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Charge Interrupt
ÁÁÁÁÁ
ÁÁÁÁÁ
Vth(Intrrpt)
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
V
Input Voltage Range (Pin 6)
Enabled (Vc/2+0.2 to Vc)
Disabled (0 to Vc/2–0.2)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Enabled Charge Interrupt T ime
ÁÁÁÁÁ
ÁÁÁÁÁ
tIntrrp
ÁÁÁÁ
ÁÁÁÁ
20
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ms
NOTE: 1 Maximum package power dissipation limits must be observed.
MC33351A
http://onsemi.com
5
ELECTRICAL CHARACTERISTICS (Vcell 3 (Pin 18) = 10.5V, Vcell 2 (Pin 12) = 7.0V, Vcell 1 (Pin 15) = 3.5V,
Cdly (Pin 4) = 1000 pF, TA = 25°C)
Characteristic UnitMaxTypMinSymbol
CELL VOLTAGE BALANCING
Internal Balancing MOSFET On–Resistance RDS(on)
W
Balance 3, (Pin 19) 100
Balance 1, Balance 2 (Pin 20, 14) 50
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
CURRENT SENSING
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
High–Side Discharge Current Limit (Pin 16 to Pin 8)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Threshold Voltage Vth(HSdschg)
Rpin 11 = 1.0 M
W
200 280 380 mV
Rpin 11 = 2.0 M
W
100 170 230 mV
Delay
Overcurrent Detect (Vsense = 250 mV) tdly(HSdschg) 2.5 6.0 ms
Short Circuit Detect (Vsense = 1.0 V) 0.0 2.5 ms
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Low–Side Discharge Current Limit (Pin 13 to Pin 5)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Threshold Voltage Vth(LSdschg) 48 59 mV
Delay
Overcurrent Detect (Vsense = 50 mV) tdly(LSdschg) 2.5 6.0 ms
Short Circuit Detect (Vsense = 200 mV) 0.3 0.4 ms
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
LOGIC
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Charge and Discharge Inhibit Inputs (Pin 1, 2)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Threshold Voltage Vth(inhbt) Vc/2 V
Propagation Delay to Respective Gate Drive Output tPL/H 100 µs
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Undervoltage Fault Output (Pin 10)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Low State Sink Resistance 100
W
Off State Leakage Current (Vdrain = 16V) 100 nA
Detection Delay T ime Before Discharge MOSFET Turn Off
(Note 2) 16 s
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Charge and Discharge Gate Drive Outputs (Pin 9, 7)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
High State Source Resistance RDS(source) 100
Low State Sink Resistance RDS(sink) 100
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
TOTAL DEVICE
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Average Cell Current
ÁÁÁÁÁ
ÁÁÁÁÁ
ICC
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Operating (VCC = 12 V) 15 20 µA
Sleepmode (VCC = 6.0 V) 500 nA
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Minimum Operating Cell Voltage
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
V
Cell 1 Voltage 1.5 1.8
Cell 2, or Cell 3 Voltage 0.7 0.8
NOTE: 2 Refer to “V oltage Sensing” text of Operating Description. Guaranteed by Design Only; NOT TESTED.
MC33351A
http://onsemi.com
6
Figure 3. Over Voltage Threshold versus
Temperature Figure 4. Charge ON Voltage Threshold versus
Temperature
Figure 5. Undervoltage Threshold versus
Temperature Figure 6. Discharge Current (Low Side) versus
Temperature
–40
4
.
45
TEMPERATURE (°C)
4.40
4.30
4.25
4.20
4.15 –25 –10 5 20 35 50 80
OVER VOLTAGE THRESHOLD (VOLTS)
4.35
–40
2.305
TEMPERATURE (°C)
2.295
2.285
2.280
2.275
2.270
2.265 200 20406080
UNDERVOLTA
G
E
THRESHOLD
(VOLTS)
2.290
–40
60
TEMPERATURE (°C)
52
48
46
44
42
40 20 0 20406080
DISCHARGE CURRENT (LOW SIDE)
50
65 –40
4
.3
5
TEMPERATURE (°C)
4.30
4.20
4.15
4.10
4.05 –20 0 20 40 80
CHARGE ON THRESHOLD (VOLTS)
4.25
60
2.300
THRESHOLD IN MILLIVOLTS
58
54
56
Figure 7. Discharge Current (High Side) Threshold
versus Temperature (R11 = 1.5 mOhms) Figure 8. Discharge Current (High Side)
versus Resistance
–40
210
TEMPERATURE (°C)
205
195
190
185
180 200 20406080
D
I
SCHAR
G
E
CURRENT
(H
IG
H
S
I
DE)
200
0.7
350
RESISTANCE (m
W
)
270
230
210
190
170
150 0.9 1.1 1.3 1.5 2.1
DISCHARGE CURRENT THRESHOLD (mV)
250
1.7 1.9
330
290
310
THRESHOLD (MILLIVOL TS)
MC33351A
http://onsemi.com
7
Figure 9. VCC versus IEE (No Load) Figure 10. VCC versus IEE (Sleep–Mode)
9.5
4.0
VCC (V) (3 X Vcell)
3.8
3.6
3.4
3.2
3.0 10 10.5 11 11.5 12
IEE
(
A)
7.0
VCC (V) = (3 X Vcell)
4.6
4.2
3.8
3.4
3.0 7.5 8.0 8.5 9.0
IEE (nA)
5
.
0
4
.
2
µ
Figure 11. Discharge Current Limit Shutdown Delay
versus Capacitance
0
Capacitance (pF)
200
150
100
50
05000 10000 15000 20000
TIME DELAY (I senseV
250
th to Dgate) (ms)
MC33351A
http://onsemi.com
8
PIN FUNCTION DESCRIPTION
Pin
No. Function Description
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
1
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Charge Inhibit Input
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
A logic low level at this input will disable battery pack charging. A 10 k internal pull–up resistor
connects from this pin to VC.
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
2
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Discharge Inhibit Input
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
A logic low level at this input will disable battery pack discharging. A 10 k internal pull–up resistor
connects from this pin to VC. Also, connecting this pin to 3.0V above VC the internal logic is held in
reset state and both MOSFET switches are turned on.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
3
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Overvoltage Shutdown
Delay
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This input controls the required number of cell overvoltage events that must be detected before
charge switch Q1 is turned off. With a logic level low at this input, charge switch Q1 turns off after a
single overvoltage event is detected. With a logic level high, charge switch Q1 turns off after two
successive overvoltage events are detected.
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
4
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Discharge Current
Limit Shutdown Delay
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
A capacitor connects from this pin to ground and is used to program a time delay from when the
discharge current limit is exceeded to when discharge switch Q2 is turned off.
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
5
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Low–Side Discharge
Current Limit Input
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This pin is used to monitor the load induced voltage drop that appears across current sensing resistor
Rlim(LS). This voltage drop is sensed by pins 13 and 5.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
6
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Charge Interrupt Mode
Select
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
The logic level that is applied to this input determines if the charge current will be interrupted during
the cell voltage sampling period. The charge current is interrupted when this input is connected to VC,
and not interrupted when connected to ground, pin 13.
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
7
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Discharge Gate Drive
Output
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This output connects to the gate of discharge switch Q2 allowing it to enable or disable battery pack
discharging.
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
8
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Charge and Discharge
Gate Drive Common
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This pin provides a gate turn–off path for charge switch Q1. The charge switch source and the battery
pack positive terminal connect to this point.
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
9
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Charge Gate Drive
Output
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This output connects to the gate of charge switch Q1 allowing it to enable or disable battery pack
charging.
ÁÁÁÁ
ÁÁÁÁ
10
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Undervoltage Fault
Output
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This is an open drain output that is active low when an undervoltage fault limit has been exceeded.
Discharge switch Q2 will turn off 16 seconds after the Fault goes low.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
11
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
High–Side Discharge
Current Limit
Threshold
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
A resistor connects from this pin to ground and is used to program the high–side discharge current
limit threshold. The programmed threshold voltage is sensed by pins 16 and 8.
ÁÁÁÁ
ÁÁÁÁ
12
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Cell 2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This pin connects to a high impedance node of the Cell Selector where it is used to monitor the
positive terminal of Cell 2 and the negative terminal of Cell 3.
ÁÁÁÁ
ÁÁÁÁ
13
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Ground
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This is the protection IC ground and all voltage ratings are with respect to this pin.
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
14
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Balance 2
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This pin is used if cell balancing is desired. It connects to the drain of an internal N–channel MOSFET
and is active low during the balancing of Cell 2.
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
15
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Cell 1/VC
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This is a multi–function pin that connects to a high impedance node of the Cell Selector where it is
used to monitor the positive terminal of Cell 1 and the negative terminal of Cell 2. This pin also
provides bias for the internal logic.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
16
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
VCC/High–Side
Discharge Current
Limit
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This is a multi–function pin that connects to a high impedance node of the Cell Selector where it is
used to monitor the positive terminal of Cell 3 and to provide positive supply voltage for the protection
IC. This pin can also be used for high–side discharge current limit protection by monitoring the load
induced voltage drop that appears across the on–resistance of switches Q2 and diode of Q1. This
voltage drop is sensed by pins 16 and 8.
ÁÁÁÁ
ÁÁÁÁ
17
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
NC
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
No Connection
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
18
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Cell 3
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This pin connects to a high impedance node of the Cell Selector where it is used to monitor the
positive terminal of Cell 3 and VCC.
ÁÁÁÁ
ÁÁÁÁ
19
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Balance 3
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This pin is used if cell balancing is desired. It connects to the drain of an internal P–channel MOSFET
and is active high during the balancing of Cell 3.
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
20
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Balance 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This pin is used if cell balancing is desired. It connects to the drain of an internal N–channel MOSFET
and is active low during the balancing of Cell 1.
MC33351A
http://onsemi.com
9
PROTECTION CIRCUIT OPERATING MODE TABLE
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
Outputs
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
MOSFET Switches
(Note 3)
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
Cell
Balancing
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Input Conditions
Cell Status
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Circuit Operation
Battery Pack Status Charge
Q1
ÁÁÁÁÁ
ÁÁÁÁÁ
Discharge
Q2
ÁÁÁÁ
ÁÁÁÁ
Balancing
Outputs
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
CELL CHARGING/DISCHARGING
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Storage or Nominal Operation:
No current or voltage faults
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Both Charge MOSFET Q1 and Discharge MOSFET
Q2 are on. The battery pack is available for charging
or discharging.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
On
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
On
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
Active
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
CELL CHARGING FAULT/RESET
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Charge V oltage Limit Fault:
VCell Vth(OV) for tdly(OV)
tdly(OV) =
0 to 1.2 s, Pin 3 to 13
1.0 to 2.1 s, Pin 3 to 15
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Charge MOSFET Q1 is latched off and the cells are
disconnected from the charging source. An internal
hysteresis voltage is generated when the overvoltage
cell is sensed. The shutdown delay is programmable
for either one or two successive overvoltage events
by the state of Pin 3. The battery pack is available for
discharging.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
On to Off
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
On
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
Active
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Charge V oltage Limit Reset:
VCell < (Vth(OV) – VH) for 1.2 s
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Charge MOSFET Q1 will turn on when the voltage
across the overvoltage cell falls sufficiently to overcome
the internal hysteresis voltage. This can be
accomplished by applying a load to the battery pack.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
Off to On
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
On
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
Active
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
CELL DISCHARGING FAULT/RESET
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Discharge Current Limit Fault:
VPin 16 (VPin 8 + Vth(HS dschg)
for tdly(HS dschg) or
VPin 5 (VPin 13 + Vth(LS dschg)
for tdly(LS dschg)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Discharge MOSFET Q2 is latched off and the cells
are disconnected from the load. Q2 will remain in
the off state as long as VPin 16 exceeds VPin 8 by
VTH(HSdschrg). A discharge current limit fault can be
activated by either high–side or a low–side current
sensing methods. The battery pack is available for
charging.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
On
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
On to Off
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
Active
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Discharge Current Limit Reset:
VPin 16 – VPin 8 < VTH(HSdschrg)
VPin 5 – VPin 13 < VTH(LSdschrg)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
The Sense Enable circuit will reset and turn on
discharge MOSFET Q2 when VPin 16 no longer
exceeds VPin 8 by 2.0 V. This can be accomplished
by either disconnecting the load from the battery
pack, or by connecting the battery pack to the
charger.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
On
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Off to On
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
Active
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Discharge V oltage Limit Fault:
VCell Vth(UV) for 2.1 s
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Undervoltage Fault Output (Pin 10) is driven low
after two successive undervoltage events are
detected. After a 16 second delay, discharge
MOSFET Q2 is latched off, the cells are
disconnected from the load, and the protection
circuit enters a low current sleepmode state. The
battery pack is available for charging.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
On
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
On to Off
after 16 s
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
Disabled
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Discharge V oltage Limit Reset:
VPin 8 > (VPin 16 + 0.6 V)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
The Sense Enable circuit will reset and turn on
discharge MOSFET Q2 when VPin 8 exceeds VPin 16
by 0.6 V. This can be accomplished by connecting
the battery pack to the charger.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
On
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Off to On
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
Active
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
FAULTY CELL
ÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁ
Simultaneous Charge and
Discharge V oltage Limit Faults
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
This condition can happen if there is a defective cell
in the battery pack. The protection circuit will remain
in the sleepmode state until the battery pack is
connected to a charger. If Cell 2, or 3 is faulty and a
charger is connected, the protection circuit will cycle
in and out of sleepmode. If Cell 1 is faulty (<1.5 V)
the protection circuit logic will not function and the
battery pack cannot be charged.
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
Cycles
Cell 1 Good
Disabled
Cell 1 Faulty
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Cycles
Cell 1 Good
Disabled
Cell 1 Faulty
ÁÁÁÁ
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
Á
ÁÁ
Á
ÁÁÁÁ
Cycles
Cell 1 Good
Disabled
Cell 1 Faulty
NOTE: 3 Charge switch Q1 and discharge switch Q2 can be selectively turned of f via the appropriate inhibit input except during the sleepmode state.
MC33351A
http://onsemi.com
10
OPERATING DESCRIPTION
INTRODUCTION
The demand for smaller lightweight portable electronic
equipment has dramatically increased the requirements of
battery performance. Today’s most attractive chemistries
include lithium–polymer, lithium–ion, and lithium–metal.
Each of these chemistries require electronic protection in
order to constrain cell operation to within the manufacturers
limits.
Rechargeable lithium–based cells require precise charge
and discharge termination limits for both voltage and current
in order to maximize cell capacity, cycle life, and to protect
the end user from a catastrophic event.
The MC33351A features internally–fixed cell voltage
limits, programmable cell voltage balancing, low operating
current, a virtually zero current sleepmode state, and
requires few external components.
OPERATING DESCRIPTION
The MC33351A is specifically designed to be placed in
the battery pack where it can be continuously powered from
three lithium cells. In order to maintain cell operation within
specified limits, the protection circuit senses both cell
voltage and discharge current, and correspondingly controls
the state of two P–channel MOSFET switches. These
switches, Q1 and Q2, are placed within the series path of the
positive terminal of cell 3 and the positive terminal of the
battery pack. For lowside current limit sense, a resistor is
placed within the series path of the negative terminal of Cell
1 and the negative terminal of the battery pack. This
configuration allows the protection circuit to interrupt the
appropriate charge or discharge path FET in the event that
a programmed voltage or current limit for any cell has been
exceeded.
A functional description of the protection circuit blocks
follows. Refer to the detailed block diagram shown in
Figure 1.
Voltage Sensing
Individual cell voltage sensing is accomplished by the use
of the Cell Selector in conjunction with the Floating
Over/Under Voltage Detector and Reference block. The Cell
Selector applies the voltage of each cell across an internal
resistor divider string. The voltage at each of the tap points
is sequentially polled and compared to an internal reference.
If a limit has been exceeded, the result is stored in the
Over/Under Data Latch and Control Logic block. The Cell
Selector is gated on for a 4.0 ms period at a fixed one second
repetition rate. This low duty cycle sampling technique
reduces the average load current that the divider presents
across each cell, thus extending the useful battery pack
capacity.
Figure 12. Simplified Smart Battery Pack
4512
9
16
17
10
MC33351A
Cell 3 18
19
12
14
Cell 2
Cell 1 15
20
13
3
6
1
7 8
Cell Sensing Sequence
ÁÁÁÁÁ
ÁÁÁÁÁ
Polling
Sequence
ÁÁÁÁ
ÁÁÁÁ
Time
(ms)
ÁÁÁÁÁ
ÁÁÁÁÁ
Cell
Sensed
ÁÁÁÁÁ
ÁÁÁÁÁ
Tested
Limit
ÁÁÁÁÁ
ÁÁÁÁÁ
1
ÁÁÁÁ
ÁÁÁÁ
0.25
ÁÁÁÁÁ
ÁÁÁÁÁ
Cell 1
ÁÁÁÁÁ
ÁÁÁÁÁ
Overvoltage
ÁÁÁÁÁ
ÁÁÁÁÁ
2
ÁÁÁÁ
ÁÁÁÁ
0.25
ÁÁÁÁÁ
ÁÁÁÁÁ
Cell 2
ÁÁÁÁÁ
ÁÁÁÁÁ
Overvoltage
ÁÁÁÁÁ
ÁÁÁÁÁ
3
ÁÁÁÁ
ÁÁÁÁ
0.25
ÁÁÁÁÁ
ÁÁÁÁÁ
Cell 3
ÁÁÁÁÁ
ÁÁÁÁÁ
Overvoltage
ÁÁÁÁÁ
ÁÁÁÁÁ
4
ÁÁÁÁ
ÁÁÁÁ
0.25
ÁÁÁÁÁ
ÁÁÁÁÁ
Cell 1
ÁÁÁÁÁ
ÁÁÁÁÁ
Undervoltage
ÁÁÁÁÁ
ÁÁÁÁÁ
5
ÁÁÁÁ
ÁÁÁÁ
0.25
ÁÁÁÁÁ
ÁÁÁÁÁ
Cell 2
ÁÁÁÁÁ
ÁÁÁÁÁ
Undervoltage
ÁÁÁÁÁ
ÁÁÁÁÁ
6
ÁÁÁÁ
ÁÁÁÁ
0.25
ÁÁÁÁÁ
ÁÁÁÁÁ
Cell 3
ÁÁÁÁÁ
ÁÁÁÁÁ
Undervoltage
By incorporating this polling technique with a single
floating comparator and voltage divider, a significant
reduction of circuitry and trim elements is achieved. This
results in a smaller die size, lower cost, and reduced
operating current.
MC33351A
http://onsemi.com
11
Figure 13. Cell Voltage Limit
Sampling
vs. Programming
From
Cell
Selector
Floating
Over/Under
Cell Voltage
Detector
&
Reference
Discharge V oltage
Threshold
Charge V oltage
Threshold
Cell Voltage
Return
Cell Voltage
+
Cell
Voltage
R1
R2
R3
To
Cell
Selector
The cell charge and discharge voltage limits are controlled
by the values selected for the internal resistor divider string.
As the battery pack reaches full charge, the Cell Voltage
Detector will sense an overvoltage fault condition on the
first cell that exceeds the pre–set overvoltage limit. The fault
information is stored in a data latch and charge MOSFET Q1
is turned off, disconnecting the battery pack from the
charging source. An internal current source pull–up is then
applied to the lower tap of the divider when the overvoltage
cell is again sensed. This creates an input hysteresis voltage
with divider resistors R1 and R2. As a result of an
overvoltage fault, the battery pack is available for
discharging only.
The overvoltage fault is reset by applying a load to the
battery pack. As the voltage across the highest voltage cell
falls below the hysteresis level, charge MOSFET Q1 will
turn on and the current source pull–up will turn off. The
battery pack will now be available for charging or
discharging.
As the load eventually depletes the battery pack charge,
the Cell Voltage Detector will sense an undervoltage fault
condition on the first cell that falls below the designed
undervoltage limit. After an undervoltage cell is detected,
undervoltage fault output goes low and discharge MOSFET
Q2 is turned off, disconnecting the battery pack from the
load after 16 seconds. The protection circuit will now enter
a low current sleepmode state drawing less than 15.0 nA
typically, thus preventing any further cell discharging. As a
result of the undervoltage fault, the battery pack is available
for charging only. An alternate method of turning discharge
MOSFET Q2 can be employed using RT and CT as shown
in Figures 1 and 2. Recommended value of RT and CT of
5.1 k
W
and 22
m
fd respectively generates a time delay of 110
±10% milliseconds.
The undervoltage fault is reset by applying charge current
to the battery pack. When the voltage on Pin 8 exceeds
Pin 16 by 0.6 V, discharge MOSFET Q2 will be turned on.
The battery pack will now be available for charging or
discharging.
Cell Voltage Balancing
With series connected cells, successive charge and
discharge cycles can result in a significant dif ference in cell
voltage with a corresponding degradation of battery pack
capacity. Figure 13 illustrates the operation of an
unbalanced three cell pack. As the cells become unbalanced,
the full battery pack capacity is not realized. This is due to
the requirement that charging must terminate when the
highest voltage cell reaches the overvoltage limit, and
discharging must terminate when the lowest voltage cell
reaches the undervoltage limit. By employing a method of
keeping the cell voltages equal, each of the cells can be
charged and discharged to their specified limits, thus
attaining the maximum possible capacity.
Figure 14. Unbalanced Battery Pack Operation
Disharge
4.0 V
4.2 V
Overvoltage
Limit
Charged
2.5 V
Undervoltage
Limit
2.7 V
Charge
Cell 3
Cell 1
Cell 2
Discharged
Cell 3
Cell 1
Cell 2
The MC33351A contains a Cell Voltage Balancing Logic
circuit that controls three internal MOSFETs. These
MOSFETs are connected to an external transistor and
resistor combination across the individual cells. The circuit
samples the voltage of each cell during the polling period. If
all of the cells are below the programmed overvoltage fault
limit, no cell balancing takes place. If one or more cells reach
the overvoltage fault limit, a specific latch is set for each cell.
At the end of the polling period, charge MOSFET Q1 is
turned off and the latches are interrogated. If all of the
latches were set, no cell balancing takes place. If one, two,
or three latches were set, the required cell balancing
MOSFETs are then activated. The overvoltage cells are
discharged to the pre–set level. As each cell attains this level,
the balancing MOSFETs successively turn off. Upon
completion of cell balancing, charge MOSFET Q1 is turned
on. Cell voltage balancing can be active during charging and
discharging, but is disabled during the low current
sleepmode state.
Test Mode
A test option is provided to speed up device and battery
pack testing. By connecting Pin 2 to 3.0 V above VC the
internal logic is held in a reset state and both MOSFET
switches are turned on. Upon release, the Control Logic
becomes active and the cell are polled within 4.0 ms.
MC33351A
http://onsemi.com
12
Discharge Current Sensing
Discharge current limit protection can be selectively
added to the battery pack with the addition of a sense resistor
Rlim(dschg) on the Low–Side or by monitoring the voltage
drop across the series FETs on the High–Side.
Sense resistor – low–side
The sense resistor Rlim(dschg) is placed in series with the
negative terminal of Cell 1 and the negative terminal of the
battery pack, Refer to Figure 1.
As the battery pack discharges, Pins 5 and 13 sense the
voltage drop across RLim(dschg).
A discharge current limit fault is detected if the voltage at
Pin 5 is greater than Pin 13 by 50 mV for more than 3.0 ms.
The fault information is stored in a data latch and discharge
MOSFET Q2 is turned off, disconnecting the battery pack
from the load. As a result of the discharge current fault, the
battery pack is available for charging only. The discharge
current limit is given by:
ILim(dschg)
+
Vth(dschg)
RLim(dschg)
+
50 mV
RLim(dschg)
Voltage across FETs – high–side
A 1M or 2M resistor connected from pin# 11 to ground
is used to program the high–side discharge current limit
threshold.
The discharge current fault is reset by either disconnecting
the load from the battery pack, or by connecting the battery
pack to the charger. When the voltage on Pin 16 no longer
exceeds Pin 8 by approximately 2.0 V, the Sense Enable
circuit will turn on discharge MOSFET Q2. Discharge
current sensing can be disabled by connecting Pin 16 to
Pin 8.
The discharge current protection circuit contains a built
in response delay of 3.0 ms. This helps to prevent fault
activation when the battery pack is subjected to pulsed
currents during charging or discharging.
Battery Pack Application
Each of the application figures show a capacitor labeled
CI that connects directly across the battery pack terminals,
and two resistors labeled Rg that are placed in series with the
charge and discharge gate drive outputs. These components
prevent excessive currents from flowing into the
MC33351A when the battery pack terminals are shorted or
arced and are mandatory. Capacitor CI is a 1.0 µF ±20%
ceramic leaded or surface mount type. It must be placed
directly across the battery pack plus and minus terminals
with extremely short lead lengths (1/16”) and as close to
the IC as possible. The gate drive output resistors for both Q1
and Q2 are 10 k ±5.o% carbon film type.
In applications where inordinately low leakage
MOSFETs are used, the protection circuit may take several
seconds to reset from an overcurrent fault after the load is
removed. If desired, this situation can be remedied by
providing a small leakage path for charging CI, thus allowing
Pin 8 to rapidly rise, so that it no longer exceeds Pin 16 by
approximately 2.0 V. A 4.7 M resistor placed across the
MOSFET switches accomplishes this task with a minimum
increase in cell discharge current when the battery pack is
connected to the load.
Upon assembly of the battery pack, it is imperative that Cell 1 be connected first so that V
C
is properly biased. The
remaining cells can then be connected in any order . This assembly method prevents forward biasing the protection IC
substrate which can result in overheating and non–functionality.
MC33351A
http://onsemi.com
13
ANY
CELL
VOLTAGE
4.25 V
2.30 V
ON
OFF
Connected
Disconnected
High
(Inactive)
Low
(Active)
16 sec (not resetable)
CHARGER
DISCHARGE
FET
FAULT
(pin 10)
FAULT remains active
No FAULT
1 sec + (0 – 1 sec)
MC33351A – Cell Voltage versus Undervoltage Fault
MC33351A
http://onsemi.com
14
PACKAGE DIMENSIONS
TSSOP–20
DTB SUFFIX
PLASTIC PACKAGE
CASE 948E–02
ISSUE A
DIM
AMIN MAX MIN MAX
INCHES
6.60 0.260
MILLIMETERS
B4.30 4.50 0.169 0.177
C1.20 0.047
D0.05 0.15 0.002 0.006
F0.50 0.75 0.020 0.030
G0.65 BSC 0.026 BSC
H0.27 0.37 0.011 0.015
J0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L6.40 BSC 0.252 BSC
M0 8 0 8
____
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS. MOLD
FLASH OR GATE BURRS SHALL NOT EXCEED
0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT
EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE –W–.
ÍÍÍ
ÍÍÍ
ÍÍÍ
110
1120
PIN 1
IDENT
A
B
–T–0.100 (0.004)
C
DGH
SECTION N–N
K
K1
JJ1
N
N
M
F
–W–
SEATING
PLANE
–V–
–U–
S
U
M
0.10 (0.004) V S
T
20X REFK
L
L/2
2X
S
U0.15 (0.006) T
DETAIL E
0.25 (0.010)
DETAIL E
6.40 0.252
––– –––
S
U0.15 (0.006) T
MC33351A
http://onsemi.com
15
Notes
MC33351A
http://onsemi.com
16
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “T ypicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly , any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Af firmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor , Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2745
Email: r14525@onsemi.com
ON Semiconductor Website : http://onsemi.com
For additional information, please contact your local
Sales Representative.
MC33351A/D
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver , Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich T ime)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy , England, Ireland