Freescale Semiconductor
Data Sheet: Technical Data
Document Number: IMX28CEC
Rev. 2, 03/2012
© 2012 Freescale Semiconductor, Inc. All rights reserved.
i.MX28
Package Information
Plastic package
Case MAPBGA-289, 14 x 14 mm, 0.8 mm pitch
Ordering Information
See Ta b le 1 on page 3 for ordering information.
1 Introduction
The i.MX28 is a low-power, high-performance
applications processor optimized for the general
embedded industrial and consumer markets. The core of
the i.MX28 is Freescale's fast, power-efficient
implementation of the ARM926EJ-S™ core, with
speeds of up to 454 MHz.
The device is suitable for a wide range of applications,
including the following:
Human-machine interface (HMI) panels:
industrial, home
Industrial drive, PLC, I/O control display, factory
robotics display, graphical remote controls
Handheld scanners and printers
Patient-monitoring, portable medical devices
Smart energy meters, energy gateways
Media phones, media gateways
The integrated power management unit (PMU) on the
i.MX28 is composed of a triple output DC-DC switching
converter and multiple linear regulators. These provide
power sequencing for the device and its I/O peripherals
i.MX28 Applications
Processors for Consumer
Products
Silicon Version 1.2
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Device Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Ordering Information and Functional Part Differences
3
1.3. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1. Special Signal Considerations . . . . . . . . . . . . . . . 11
3. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1. i.MX28 Device-Level Conditions . . . . . . . . . . . . . . 11
3.2. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . 18
3.3. I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4. I/O AC Timing and Parameters . . . . . . . . . . . . . . 23
3.5. Module Timing and Electrical Parameters . . . . . . 27
4. Package Information and Contact Assignments . . . . . . 59
4.1. Case MAPBGA-289, 14 x 14 mm, 0.8 mm Pitch . 59
4.2. Ground, Power, Sense, and Reference Contact
Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3. Signal Contact Assignments . . . . . . . . . . . . . . . . 61
4.4. i.MX280 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5. i.MX283 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6. i.MX286 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7. i.MX287 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 69
5. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
i.MX28 Applications Processors for Consumer Products, Rev. 2
2Freescale Semiconductor
Introduction
such as memories and SD cards, as well as provide battery charging capability for Li-Ion batteries.
The i.MX28 processor includes an additional 128-Kbyte on-chip SRAM to make the device ideal for
eliminating external RAM in applications with small footprint RTOS.
The i.MX28 supports connections to various types of external memories, such as mobile DDR, DDR2 and
LV-DDR2, SLC and MLC NAND Flash.
The i.MX28 can be connected to a variety of external devices such as high-speed USB2.0 OTG, CAN,
10/100 Ethernet, and SD/SDIO/MMC.
1.1 Device Features
The following lists the features of the i.MX28:
ARM926EJ-S CPU running at 454 MHz:
16-Kbyte instruction cache and 32-Kbyte data cache
ARM embedded trace macrocell (CoreSight™ ETM9™)
Parallel JTAG interface
128 KBytes of integrated low-power on-chip SRAM
128 KBytes of integrated mask-programmable on-chip ROM
1280 bits of on-chip one-time-programmable (OCOTP) ROM
16-bit mobile DDR (mDDR) (1.8 V), DDR2 (1.8 V) and LV-DDR2 (1.5 V), up to 205 MHz DDR
clock frequency with voltage overdrive
Support for up to eight NAND Flash memory devices with up to 20-bit BCH ECC
Four synchronous serial ports (SSP) for SDIO/MMC/MS/SPI: SSP0, SSP1, SSP2, and SSP3. SSP0
and SSP1 can support three modes,1-bit, 4-bit, and 8-bit, whereas SSP2 and SSP3 can support only
1-bit and 4-bit modes.
10/100-Mbps Ethernet MAC compatible with IEEE Std 802.3™:
Single 10/100 Ethernet with GMII/RMII or Dual 10/100 Ethernet with RMII interface
Supporting IEEE Std 1588™-compatible hardware timestamp
Supporting 50-MHz/25-MHz clock output for external Ethernet PHY
Two 2.0B protocol-compatible Controller Area Network (CAN) interfaces
One USB2.0 OTG device/host controller and PHY
One USB2.0 host controller and PHY
LCD controller, up to 24-bit RGB (DOTCK) modes and 24-bit system-mode
Pixel-processing pipeline (PXP) supports full path from color-space conversion, scaling,
alpha-blending to rotation without intermediate memory access.
SPDIF transmitter
Dual serial audio interface (SAIF) to support full-duplex transmit and receive operations; each
SAIF supports three stereo pairs
Five application Universal Asynchronous Receiver-Transmitters (UARTs), up to 3.25 Mbps with
hardware flow control
Introduction
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 3
One debug UART operating at up to 115 Kb/s using programmed I/O
•Two I
2C master/slave interfaces, up to 400 kbps
Four 32-bit timers and a rotary decoder
Eight Pulse Width Modulators (PWMs)
Real-time clock (RTC)
GPIO with interrupt capability
Power Management Unit (PMU) supports a triple output DC-DC switching converter, multiple
linear regulators, battery charger, and detector.
16-channel Low-Resolution A/D Converter (LRADC). There are 16 physical channels but they can
only be mapped to 8 virtual channels at a time.
Single channel High Speed A/D Converter (HSADC), up to 2 Msps data rate
4/5-wire touchscreen controller
Up to 8X8 keypad matrix with button-detect circuit
Security features:
Read-only unique ID for Digital Rights Management (DRM) algorithms
Secure boot using 128-bit AES hardware decryption
SHA-1 and SHA256 hashing hardware
High assurance boot (HAB4)
Offered in 289-pin Ball Grid Array (BGA)
1.2 Ordering Information and Functional Part Differences
Table 1 provides the ordering information for the i.MX28.
Table 1. Ordering Information
Part Number Projected Temperature Range (°C) Package
MCIMX280DVM4B –20 to +70 14 x 14 mm, 0.8mm pitch, MAPBGA-289
MCIMX280CVM4B 40 to +85 14 x 14 mm, 0.8mm pitch, MAPBGA-289
MCIMX283DVM4B –20 to +70 14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX283CVM4B –40 to +85 14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX286DVM4B –20 to +70 14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX286CVM4B –40 to +85 14 x 14 mm, 0.8 mm pitch, MAPBGA-289
MCIMX287CVM4B –40 to +85 14 x 14 mm, 0.8 mm pitch, MAPBGA-289
i.MX28 Applications Processors for Consumer Products, Rev. 2
4Freescale Semiconductor
Introduction
Table 2 provides the functional differences between the i.MX280, i.MX283, i.MX286, and i.MX287.
Table 2. i.MX28 Functional Differences
Function i.MX280 i.MX283 i.MX286 i.MX287
Application UART x5 x5 x5 x5
Debug UART x1 x1 x1 x1
CAN x2 x2
Ethernet x1 x1 x1 x2
High-speed ADC x1 x1 x1 x1
L2 Switch Yes
LCD Interface Yes Yes Yes
LRADC1
1There are 16 physical channels but they can only be mapped to 8 virtual channels at a time.
x8 x8 x8 x8
PWM x8 x8 x8 x8
S/PDIF Tx Yes Yes
SD/SDIO/MMC2
2For SD/SDIO/MMC, four synchronous serial ports (SSP) are available: SSP0, SSP1, SSP2, and SSP3. SSP0 and SSP1 can
support three modes,1-bit, 4-bit, and 8-bit, whereas SSP2 and SSP3 can support only 1-bit and 4-bit modes.
x4 x4 x4 x4
S e c u r i t y Ye s Ye s Ye s Ye s
SPI x4 x4 x4 x4
Touch Screen Yes Yes Yes
USB 2.0 OTG HS with
HS PHY x1
OTG HS with HS PHY x1 OTG HS with HS PHY x1 OTG HS with HS PHY x1
HS Host with
HS PHY x1
HS Host with HS PHY x1 HS Host with HS PHY x1 HS Host with HS PHY x1
Introduction
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 5
1.3 Block Diagram
Figure 1 shows the simplified interface block diagram.
Figure 1. i.MX28 Simplified Interface Block Diagram
i.MX28 Applications Processors for Consumer Products, Rev. 2
6Freescale Semiconductor
Features
2Features
Table 3 shows the device functions.
Table 3. i.MX28 Functions
Function BGA289
External Memory Interface (EMI)
(1.5 V LV-DDR2, 1.8 V DDR2, 1.8 V LP-DDR1)
Ye s
General-Purpose Media Interface (GPMI):
NAND data width
Number of external NANDs supported
8-bit
4 dedicated / 8 with muxing
Pulse Width Modulator (PWM) 5 dedicated / 8 with muxing
Application UART (AUART): Interfaces supported 4 dedicated / 5 with muxing
Synchronous Serial Port (SSP): Supported through dedicated pins 3 dedicated / 4 with muxing
I2C1 dedicated / 2 with muxing
SPDIF 1
SAIF 2
FlexCAN 2
LCD interface 24 bits
High-speed ADC Yes
LRADC (touchscreen, keypad...) Yes
Ethernet MAC and switch Up to 2 MACs with switch
Universal Serial Bus (USB) 2
Features
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 7
Table 4 describes the digital and analog modules of the device.
Table 4. i.MX28 Digital and Analog Modules
Block
Mnemonic Block Name Subsystem Brief Description
APBHDMA AHB to APBH
Bridge with
DMA
System control The AHB to APBH bridge with DMA includes the AHB-to-APB PIO bridge for
memory-mapped I/O to the APB devices, as well a central DMA facility for
devices on this bus. The bridge provides a peripheral attachment bus running
on the AHB’s HCLK. (The ‘H’ in APBH denotes that the APBH is synchronous
to HCLK, as compared to APBX, which runs on the crystal-derived XCLK.)
The DMA controller transfers read and write data to and from each peripheral
on APBH bridge.
APBXDMA AHB to APBX
Bridge with
DMA
System control The AHB-to-APBX bridge includes the AHB-to-APB PIO bridge for
memory-mapped I/O to the APB devices, as well a central DMA facility for
devices on this bus. The AHB-to-APBX bridge provides a peripheral
attachment bus running on the AHB’s XCLK. (The ‘X’ in APBX denotes that
the APBX runs on a crystal-derived clock, as compared to APBH, which is
synchronous to HCLK.) The DMA controller transfers read and write data to
and from each peripheral on APBX bridge.
ARM9 or
ARM926
ARM926EJ-S
CPU
ARM®The ARM926 Platform consists of the ARM926EJ-S™ core and the ETM
real-time debug modules. It contains the 16-Kbyte L1 instruction cache,
32-Kbyte L1 data cache, 128-Kbyte ROM and 128-Kbyte RAM.
AUART(5) Application
UART
interface
Connectivity
peripherals
Each of the UART modules supports the following serial data
transmit/receive protocols and configurations:
7- or 8-bit data words, one or two stop bits, programmable parity (even,
odd, or none)
Programmable baud rates up to 3.25 MHz. This is a higher maximum
baud rate than the 1.875 MHz specified by the TIA/EIA-232-F standard
and previous Freescale UART modules. 16-byte FIFO on Tx and 16-byte
FIFO on Rx supporting auto-baud detection
BCH Bit-correcting
ECC
accelerator
Connectivity
peripherals
The Bose, Ray-Chaudhuri, Hocquenghem (BCH) Encoder and Decoder
module is capable of correcting from 2 to 20 single bit errors within a block of
data no larger than about 900 bytes (512 bytes is typical) in applications such
as protecting data and resources stored on modern NAND Flash devices.
BSI Boundary
Scan Interface
Connectivity
peripherals
The boundary scan interface is provided to enable board level testing.
There are five pins on the device which is used to implement the IEEE Std
1149.1™ boundary scan protocol.
CLKCTRL Clock control
module
Clocks The clock control module, or CLKCTRL, generates the clock domains for all
components in the i.MX28 system. The crystal clock or PLL clock are the two
fundamental sources used to produce most of the clock domains. For lower
performance and reduced power consumption, the crystal clock is selected.
The PLL is selected for higher performance requirements but requires
increased power consumption. In most cases, when the PLL is used as the
source, a Phase Fractional Divider (PFD) can be programmed to reduce the
PLL clock frequency by up to a factor of 2.
DCP Data
co-processor
Security This module provides support for general encryption and hashing functions
typically used for security functions. Because its basic job is moving data
from memory to memory, it also incorporates a memory-copy (memcopy)
function for both debugging and as a more efficient method of copying data
between memory blocks than the DMA-based approach.
i.MX28 Applications Processors for Consumer Products, Rev. 2
8Freescale Semiconductor
Features
DFLPT Default
first-level page
table
System control The DFLPT provides a unique method of implementing the ARM MMU
first-level page table (L1PT) using a hardware-based approach.
DIGCTL Digital control
and on-chip
RAM
System control The digital control module includes sections for controlling the SRAM, the
performance monitors, high-entropy pseudo-random number seed,
free-running microseconds counter, and other chip control functions.
DUART Debug UART Connectivity
peripherals
The Debug UART performs the following data conversions:
Serial-to-parallel conversion on data received from a peripheral device
Parallel-to-serial conversion on data transmitted to the peripheral device
EMI External
memory
interface
Connectivity
peripherals
The i.MX28 supports off-chip DRAM storage through the EMI controller,
which is connected to the four internal AHB/AXI busses. The EMI supports
multiple external memory types, including:
1.8-V Mobile DDR1 (LP-DDR1)
Standard 1.8-V DDR2
Low Voltage 1.5-V DDR2 (LV-DDR2)
ENET Ethernet MAC
Controller
Connectivity
peripherals
Ethernet MAC controller connected to the uDMA (unified DMA). Supports
10/100 Mbps with TCP/UDP/IP Acceleration and IEEE 1588 Functions; also
supports RMII or MII connectivity.
FlexCAN(2) Controller
area network
module
Connectivity
peripherals
The Controller Area Network (CAN) protocol is a message based protocol
used for serial data. It was designed specifically for automotive but is also
used in industrial control and medical applications. The serial data bus runs
at 1 Mbps.
GPMI General-pur-
pose media
interface
Connectivity
peripherals
The General-Purpose Media Interface (GPMI) controller is a flexible NAND
Flash controller with 8-bit data width, up to 50-MBps I/O speed and individual
chip select and DMA channels for up to 8 NAND devices. It also provides a
interface to 20-bit BCH for ECC.
HSADC High-speed
ADC
Connectivity
peripherals
The high-speed ADC block is designed to sample an analog input with 12-bit
resolution and a sample rate of up to 2 Msps. The output of the HSADC block
can be moved to the external memory through APBH-DMA. A typical user
case of the HSADC is to work with the PWM block to drive an external linear
image scanner sensor.
I2C(2) I2C module Connectivity
peripherals
The I2C is a standard two-wire serial interface used to connect the chip with
peripherals or host controllers. The I2C operates up to 400 kbps in either I2C
master or I2C slave mode. Each I2C has a dedicated DMA channel and can
also controlled by CPU in PIO or PIO queue modes. It supports both 7-bit and
10-bit device address in master mode, and has programmable 7-bit address
in slave mode.
ICOLL Interrupt
Collector
System control The ARM9 CPU core has two interrupt input lines, IRQ and FIQ. The interrupt
collector (ICOLL) can steer any of 128 interrupt sources to either the FIQ or
IRQ line of the ARM9 CPU.
L2 Switch 3-Port L2
Switch
Network Control Programmable 3-Port Ethernet Switch with QOS
Table 4. i.MX28 Digital and Analog Modules (continued)
Block
Mnemonic Block Name Subsystem Brief Description
Features
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 9
LCDIF LCD Interface Multimedia
peripherals
The LCDIF provides display data for external LCD panels from simple
text-only displays to WVGA, 16/18/24 bpp color TFT panels. The LCDIF
supports all of these different interfaces by providing fully programmable
functionality and sharing register space, FIFOs, and ALU resources at the
same time. The LCDIF supports RGB (DOTCLK) modes as well as system
mode including both VSYNC and WSYNC modes.
LRADC Low resolution
ADC module
Connectivity
peripherals
The sixteen-channel 12-bit low-resolution ADC (LRADC) block is used for
voltage measurement. Channels 0 – 6 measure the voltage on the seven
application-dependent LRADC pins. The auxiliary channels can be used for
a variety of uses, including a resistor-divider-based wired remote control,
external temperature sensing, touch-screen, and other measurement
functions.
OCOTP
Controller
On-chip OTP
controller
Security The on-chip one-time-programmable (OCOTP) ROM serves the functions of
hardware and software capability bits, Freescale operations and unique-ID,
the customer-programmable cryptography key, and storage of various ROM
configuration bits.
PINCTRL Pin control
and GPIO
System control
peripherals
Used for general purpose input/output to external ICs. Each GPIO bank
supports 32 bits of I/O.
PMU Power
management
Unit (DC-DC)
Power
management
system
The i.MX28 integrates a comprehensive power supply subsystem, including
the following features:
One integrated DC-DC converter that supports Li-Ion battery.
Four linear regulators directly power the supply rails from 5-V.
Linear battery charger for Li-Ion cells.
Battery voltage and brownout detection monitoring for VDDD, VDDA,
VDDIO, VDD4P2 and 5-V supplies.
Integrated current limiter from 5-V power source.
Reset controller.
System monitors for temperature and speed.
Generates USB-Host 5-V from Li-Ion battery (using PWM).
Support for on-the-fly transitioning between 5-V and battery power.
VDD4P2, a nominal 4.2-V supply, is available when the i.MX28 is
connected to a 5-V source and allows the DCDC to run from a 5-V source
with a depleted battery.
The 4.2-V regulated output also allows for programmable current limits:
Battery Charge current + DCDC input current < the 5-V current limit
DCDC input current (which ultimately provides current to the on-chip
and off-chip loads) as the priority and battery charge current is
automatically reduced if the 5-V current limit is reached
PWM(8) Pulse width
modulation
Connectivity
peripherals
There are eight PWM output controllers that can be used in place of GPIO
pins. Applications include HSADC driving signals and LED & backlight
brightness control. Independent output control of each phase allows 0, 1, or
high-impedance to be independently selected for the active and inactive
phases. Individual outputs can be run in lock step with guaranteed
non-overlapping portions for differential drive applications.
PXP Pixel Pipeline Multimedia The pixel pipeline (PXP) is used to perform alpha blending of graphic or video
buffers with graphics data before sending to an LCD display. The PXP also
supports image rotation for hand-held devices that require both portrait and
landscape image support.
Table 4. i.MX28 Digital and Analog Modules (continued)
Block
Mnemonic Block Name Subsystem Brief Description
i.MX28 Applications Processors for Consumer Products, Rev. 2
10 Freescale Semiconductor
Features
RTC Real-time
clock, alarm,
watchdog
Clocks The real-time clock (RTC) and alarm share a one-second pulse time domain.
The watchdog reset and millisecond counter run on a one-millisecond time
domain. The RTC, alarm, and persistent bits reside in a special power
domain (crystal domain) that remains powered up even when the rest of the
chip is in its powered-down state.
SAIF(2) Serial audio
interface
Connectivity
peripherals
SAIF provides a half-duplex serial port for communication with a variety of
serial devices, including industry-standard codecs and DSPs. It supports a
continuous range of sample rates from 8 kHz–192 kHz using a
high-resolution fractional divider driven by the PLL. Samples are transferred
to/from the FIFO through the APBX DMA interface, a FIFO service interrupt,
or software polling.
SPDIF SPDIF Connectivity
peripherals
The Sony-Philips Digital Interface Format (SPDIF) transmitter module
transmits data according to the SPDIF digital audio interface standard
(IEC-60958).
SSP(4) Synchronous
serial port
Connectivity
peripherals
The synchronous serial port is a flexible interface for inter-IC and removable
media control and communication. The SSP supports master operation of
SPI, Texas Instruments SSI; 1-bit, 4-bit, and 8-bit SD/SDIO/MMC and 1-bit
and 4-bit MS modes.
The SPI mode has enhancements to support 1-bit legacy MMC cards. SPI
master dual (2-bit) and quad (4-bit) mode reads are also supported. The SSP
also supports slave operation for the SPI and SSI modes. The SSP has a
dedicated DMA channel in the bridge and can also be controlled directly by
the CPU through PIO registers. Each of the four SSP modules is
independent of the other and can have separate SSPCLK frequencies.
TIMROT Timers and
Rotary
Decoder
Timer
peripherals
This module implements four timers and a rotary decoder. The timers and
decoder can take their inputs from any of the pins defined for PWM, rotary
encoders, or certain divisions from the 32-kHz clock input. Thus, the PWM
pins can be inputs or outputs, depending on the application.
USBOTG
USBHOST
High-speed
USB
on-the-go
Connectivity
peripherals
The USB module provides high-performance USB On-The-Go (OTG) and
host functionality (up to 480 Mbps), compliant with the USB 2.0 specification
and the OTG supplement. The module has DMA capabilities for handling
data transfer between internal buffers and system memory.
When the OTG controller works in device mode, it can only work in FS or HS
mode. Two USB2.0 PHYs are also integrated (one for the OTG port, another
for the host port.)
USBPHY Integrated
USB PHY
Connectivity
peripherals
The integrated USB 2.0 PHY macrocells are capable of connecting to USB
host/device systems at the USB low-speed (LS) rate of 1.5 Mbps, full-speed
(FS) rate of 12 Mbps or at the USB 2.0 high-speed (HS) rate of 480 Mbps.
The integrated PHYs provide a standard UTM interface. The USB_DP and
USB_DN pins connect directly to a USB connector.
Table 4. i.MX28 Digital and Analog Modules (continued)
Block
Mnemonic Block Name Subsystem Brief Description
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 11
2.1 Special Signal Considerations
Special signal considerations are listed in Table 5. The package contact assignment is found in Section 4,
“Package Information and Contact Assignments.” Signal descriptions are provided in the reference
manual.
3 Electrical Characteristics
This section provides the device-level and module-level electrical characteristics for the i.MX28.
3.1 i.MX28 Device-Level Conditions
This section provides the device-level electrical characteristics for the IC.
3.1.1 DC Absolute Maximum Ratings
Table 6 provides the DC absolute maximum operating conditions.
CAUTION
Stresses beyond those listed under Table 6 may cause permanent
damage to the device.
Table 5. Signal Considerations
Signal Descriptions
PSWITCH The pin is used for chip power on or recovery. VDDIO can be applied to PSWITCH through a 10 kΩ
resistor. This is necessary in order to enter the chip’s firmware recovery. The on-chip circuitry
prevents the actual voltage on the pin from exceeding acceptable levels.
VDDXTAL This pin is an output of i.MX28. Should be coupled to ground with a 0.1 uF capacitor. User should
not supply external power to this pin.
BATTERY This pin should be connected to the battery with minimal resistance. It provides charging current to
the battery.
See the “Power Supply” section of the reference manual for details.
DCDC_BATTERY This pin is an input of i.MX28 that provides supply to the DCDC converter. It should be connected
to the battery with minimal resistance. See the “Power Supply” section of the reference manual for
details.
XTALI
XTALO
These analog pins are connected to an external 24 MHz crystal circuit. This crystal provides the
clock source for on-chip PLLs.
RTC_XTALO
RTC_XTALI
These analog pins are connected to an external 32.768/32.0 kHz crystal circuit. This crystal
provides clock source to the on-chip real-time counter circuits.
RESETN This pin resets the chip if it is low. This pin is pulled up to VDDIO33 with an internal 10 kΩ resistor.
No external pull up resistors are needed.
DEBUG This pin is used for JTAG interface.
DEBUG=0: JTAG interface works for boundary scan.
DEBUG=1: JTAG interface works for ARM debugging.
TESTMODE For Freescale factory use only. Must be externally connected to GND for normal operation.
i.MX28 Applications Processors for Consumer Products, Rev. 2
12 Freescale Semiconductor
Electrical Characteristics
Exposure to absolute-maximum-rated conditions for extended periods
may affect device reliability.
Table 6 gives stress ratings only—functional operation of the device is
not implied beyond the conditions indicated in Table 8.
Table 7 shows the electrostatic discharge immunity.
Table 6. DC Absolute Maximum Ratings
Parameter Symbol Min. Max. Unit
Battery Pin BATT, VDD4P2V –0.3 4.242 V
5-Volt Source Pin - transient, t<30ms, duty cycle <0.05% VDD5V –0.3 7.00 V
5 Volt Source Pin - static VDD5V –0.3 6.00 V
Analog Supply Voltage VDDA –0.3 2.10 V
Digital Core Supply Voltage VDDD –0.3 1.575 V
Non-EMI Digital I/O Supply VDDIO –0.3 3.63 V
EMI Digital I/O Supply VDDIO.EMI –0.3 3.63 V
DC-DC Converter1
1Application should include a Schottky diode between BATT and VDD4P2.
DCDC_BATT –0.3 BATT V
Input Voltage on Any Digital I/O Pin Relative to Ground –0.3 VDDIO+0.3 V
Input Voltage on USB_DP and USB_DN Pins Relative to Ground2
2USB_DN and USB_DP can tolerate 5V for up to 24 hours. Note that while 5V is applied to USB_DN or USB_DP, LRADC
readings can be corrupted.
—–0.33.63V
Analog I/O absolute maximum ratings (exceptions: XTALI, XTALO,
RTC_XTALI, RTC_XTALO)
–0.3 VDDIO+0.3 V
Storage Temperature –40 125 °C
Table 7. Electrostatic Discharge Immunity
289-Pin BGA Package Tested Level
Human Body Model (HBM)1
1HBM and CDM pass ESD testing per AEC-Q100.
2kV
Charge Device Model (CDM)1500 V
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 13
3.1.2 DC Operating Conditions
Table 8 provides the DC recommended operating conditions.
Table 9 provides the DC operating temperature conditions.
Table 8. Recommended Power Supply Operating Conditions
Parameter Symbol Min Typ Max Unit
Analog Core Supply Voltage VDDA 1.62 2.10 V
Digital Core Supply Voltage
Specification dependent on frequency.1, 2
1For optimum USB jitter performance, VDDD = 1.35 V or greater.
2VDDD supply minimum voltage includes 75 mV guardband.
VDDD 1.35 1.55 V
Digital Supply Voltages:
VDDIO33/VDDIO33_EMI
VDDIO18
VDDIO33/VDDIO33_EMI/VDDI
O18 3.0
1.7
3.6
1.9
V
EMI Digital I/O Supply Voltage:
DDR2/mDDR
LVDDR2
VDDIO.EMI/VDDIO_EMIQ
1.7
1.425
1.8
1.5
1.9
1.625
V
Battery / DCDC Input Voltage—BATT, DCDC_BATT BATT
DCDC_BATT
3.103
3Tested with only the i.MX28 processor loading the MX28 PMU output rails during start up. With external loadings (for example,
one DDR2 device and SD Card/NAND Flash), MX28 PMU was tested at BATT/DCDC_BATT > 3.30 V.
—4.242 V
VDD5V Supply Voltage 4.75 5.00 5.25 V
Offstate Current:4
4When the real-time clock is enabled, the chip consumes additional current in the OFF state to keep the crystal oscillator and
the real-time clock running.
32-kHz RTC off, BATT = 4.2 V 21 47 µA
32-kHz RTC on, BATT = 4.2 V 23 51 µA
Table 9. Operating Temperature Conditions
Parameter1, 2, 3
1In most portable systems designs, battery and display specifications limits the operating range to well within these
specifications. Most battery manufacturers recommend enabling battery charge only when the ambient temperature is
between 0°C and 40°C. To ensure that battery charging does not occur outside the recommended temperature range, the
system ambient temperature may be monitored by connecting a thermistor to the LRADC0 or LRADC6 pin on the i.MX28.
2For applications powered by external 5V only, the Maximum Ambient Operating Temperature specified in Ta b l e 9 may not be
achieved. Application developers need to do the worst-case power consumption estimation, and then calculate the Total
On-chip Power Dissipation based on the equations specified in note 3 below.
Symbol Min Typ Max Unit
Commercial Ambient Operating Temperature Range TA–20 70 °C
Commercial Junction Temperature Range TJ–20 85 °C
Industrial Ambient Operating Temperature Range TA–40 85 °C
Industrial Junction Temperature Range TJ–40 105 °C
i.MX28 Applications Processors for Consumer Products, Rev. 2
14 Freescale Semiconductor
Electrical Characteristics
Table 10 provides the recommended analog operating conditions.
Table 11 shows the PSWITCH input characteristics. See the reference schematics for the recommended
PSWITCH button circuitry.
Table 12 shows the power consumption.
Table 13 illustrates the power supply characteristics.
3Maximum Ambient Operating Temperature may be limited due to on-chip power dissipation. TA (MAX) TJ - (ΘJA x PD) where:
TJ = Maximum Junction Temperature
ΘJA = Package Thermal Resistance. See Section 3.2, “Thermal Characteristics.”
PD = Total On-chip Power Dissipation =PVDD4P2 + PBatteryCharger + PDCDC + PLinearRegulators + PInternal. Depending
on the application, some of these power dissipation terms may not apply.
PVDD4P2 = VDD4P2 On-Chip Power Dissipation = (VDD5V - VDD4P2) x IDD4P2
PBatteryCharger = Battery Charger On-Chip Power Dissipation = (VDD5V - BATT) x ICHARGE
PDCDC = DC-DC Converter On-Chip Power Dissipation = (BATT x DCDC Input Current) x (1 - efficiency)
PLinearRegulators = Linear Regulator On-Chip Power Dissipation = (VDD5V - VDDIO) x (IDDIO + IDDA + IDDD + IDD1P5) +
(VDDIO - VDDA) x (IDDA + IDDD) + (VDDA - VDDD) x IDDD + (VDDA - VDD1P5) x IDD1P5
PInternal = Internal Digital On-Chip Power Dissipation = ~VDDD x IDDD
Table 10. Recommended Analog Operating Conditions
Parameter Min Typ Max Unit
Low Resolution ADC Input Impedance (CH0 - CH5) >1 MΩ
Table 11. PSWITCH Input Characteristics
Parameter HW_PWR_STS_PSWITCH Min Max Unit
PSWITCH LOW LEVEL 0x00 0.00 0.30 V
PSWITCH MID LEVEL & STARTUP1
1A MID LEVEL PSWITCH state can be generated by connecting the VDDXTAL output of the SOC to PSWITCH through a
switch.
0x01 0.65 1.50 V
PSWITCH HIGH LEVEL2
2PSWITCH acts like a high impedance input (>300 kΩ) when the voltage applied to it is less than 1.5V. However, above 1.5V
it becomes lower impedance. To simplify design, it is recommended that a 10 kΩ resistor to VDDIO be applied to PSWITCH
to set the HIGH LEVEL state (the PSWITCH input can tolerate voltages greater than 2.45 V as long as there is a 10 kΩ resistor
in series to limit the current).
0x11 (1.1 * VDDXTAL) +
0.58
2.45 V
Table 12. Power Consumption
Parameter Min Typ Max Unit
Power Consumption: Conditions - TBD TBD mW
Table 13. Power Supply Characteristics
Parameter Min Typ Max Unit
Linear Regulators
Output Voltage Accuracy (VDDIO, VDDA, VDDM, VDDD)1–3 +3 %
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 15
3.1.2.1 Recommended Operating Conditions for Specific Clock Targets
Table 14 through Table 17 provide the recommended operating conditions for specific clock targets.
VDDIO Maximum Output Current (VDDIO = 3.30 V, VDD5V =4.75V)
2, 3270 mA
VDDM Maximum Output Current (VDDM = 1.5 V)2160 mA
VDDA Maximum Output Current (VDDA =1.8V)
2, 3 225 mA
VDDD Maximum Output Current (VDDD =1.2V)
2, 3 200 mA
DCDC Converters
Output Voltage Accuracy (DCDC_VDDIO, DCDC_VDDA,
DCDC_VDDD)1
–3 +3 %
DCDC_VDDD Maximum Output Current (VDDD = 1.55 V)4, 5250 mA
DCDC_VDDA Maximum Output Current (VDDA =1.8V)
4, 5200 mA
DCDC_VDDIO Maximum Output Current (VDDIO = 3.15 V, 3.3 V < BATT
< 4.242 V)4, 5, 6
250 mA
VDD4P2 Regulated Output
VDD4P2 Output Voltage Accuracy (TARGET=4.2V)1–3 +3 %
VDD4P2 Output Current Limit Accuracy (VDD5V = 4.75 V,
ILIMIT=480 mA)7
480 500 520 mA
VDD4P2 Output Current Limit Accuracy (VDD5V=4.75 V,
ILIMIT=100 mA)7
100 120 140 mA
Battery Charger
Final Charge Voltage Accuracy (TARGET=4.2 V) -2 +1 %
1No load.
2Maximum output current measured when output voltage droops 100 mV from the programmed target voltage with no load
present.
3Because the internal linear regulators are cascaded, it is not possible to simultaneously operate the VDDIO, VDDA, VDDM, and
VDDD linear regulators at the maximum specified load current. For example, the VDDIO linear regulator provides current to both
the VDDIO 3.3 V supply rail as well as the VDDM and VDDA linear regulator inputs. Likewise, the VDDA linear regulator provides
current to both the 1.8 V supply rail as well as the VDDD linear regulator input. The application designer should ensure the
following two conditions are met:
(VDDIO Load Current + VDDM Load Current + VDDA Load Current) < VDDIO Maximum Output Current
(VDDA Load Current + VDDD Load Current) < VDDA Maximum Output Current
4DCDC Double FETs Enabled, Inductor Value = 15 μH.
5The DCDC Converter is a triple output buck converter. The maximum output current capability of each output of the converter
is dependent on the loads on the other two outputs. For a given output, it may be possible to achieve a maximum output current
higher than that specified by ensuring the load on the other outputs is well below the maximum.
6Assumes simultaneous load of IDDD = 250 mA@ 1.55 V and IDDA = 200 mA@1.8 V.
7Untuned.
Table 13. Power Supply Characteristics (continued)
Parameter Min Typ Max Unit
i.MX28 Applications Processors for Consumer Products, Rev. 2
16 Freescale Semiconductor
Electrical Characteristics
Table 14. Recommended Operating States—289-Pin BGA Package
VDDD
(V)
VDDD
Brown-out
(V)
HW_
DIGCTRL
ARMCACH
E1
1All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.
CPUCLK
/ clk_p
Frequency
(MHz)
HW_
CLKCTRL
CPU_DIV_CP
U
HW_
CLKCTRL
FRAC_
CPUFRC
/ PFD
AHBCLK
/ clk_h
Frequency
(MHz)
HW_
CLKCTRL
HBUS_DI
V
EMICLK
/ clk_emi
Frequency
(MHz)
HW_
CLKCTRL
EMI_
DIV_EMI
HW_
CLKCTRL
FRAC_
EMIFRAC
Supported
DRAM
1.300 1.200 00 64 5 27 64 1 130.91 2 33 DDR2
mDDR
1.350 1.250 00 261.81 1 33 130.91 2 130.91 2 33 DDR2
mDDR
1.350 1.250 00 360 1 24 120.00 3 130.91 2 33 DDR2
mDDR
1.450 1.350 00 392.72 1 22 130.91 3 160.00 2 27 DDR2
mDDR
1.550 1.450 00 454.73 1 19 151.57 3 205.71 2 21 DDR2
mDDR
Table 15. Recommended Operating Conditions—CPU Clock (clk_p)
VDDD (V) VDDDBrown-out (V) HW_DIGCTRL
ARMCACHE1
1All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.
HW_CLKCTRL
FRAC_CPUFRC / PFD
CPUCLK / clk_p
Frequency max (MHz)
1.350 1.250 00 18 - 35 360
1.450 1.350 00 18 - 35 392.72
1.550 1.450 00 18 - 35 454.73
Table 16. Recommended Operating Conditions—AHB Clock (clk_h)
VDDD (V) VDDDBrown-out (V) HW_DIGCTRL
ARMCACHE1
1All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.
HW_CLKCTRL
FRAC_CPUFRC / PFD
AHBCLK / clk_h
Frequency max (MHz)
1.350 1.250 00 18 - 35 160
1.450 1.350 00 18 - 35 196
1.550 1.45 00 18 - 35 206
Table 17. Frequency vs. Voltage for EMICLK—289-Pin BGA Package
VDDD (V) VDDDBrownout (V)
EMICLK Fmax (MHz)
DDR2 mDDR
1.550 1.450 205.71 205.71
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 17
3.1.3 Fusebox Supply Current Parameters
Table 18 lists the fusebox supply current parameters.
3.1.4 Interface Frequency Limits
Table 19 provides information for interface frequency limits.
3.1.5 Power Modes
Table 20 describes the core, clock, and module settings for the different power modes of the processor.
1.450 1.350 196.36 196.36
1.350 1.250 196.36 196.36
Table 18. Fusebox Supply Current Parameters
Parameter Symbol Min Typ Max Unit
eFuse Program Current1
Current to program one eFuse bit
efuse_vddq=2.5V
1The current Iprogram is during program time.
Iprogram 21.39 25.05 33.54 mA
eFuse Read Current2
Current to read an 8-bit eFuse word
vdd_fusebox = 3.3 V
2The current Iread is present for approximately 10 ns of the read access to the 8-bit word.
Iread 4.07 mA
Table 19. Interface Frequency Limits
Parameter Min. Typ. Max. Unit
JTAG: TCK Frequency of Operation 10 MHz
OSC24M_XTAL Oscillator 24.000 MHz
OSC32K_XTAL Oscillator 32.768/32.0 kHz
Table 20. Power Mode Settings
Core/Clock/Module Offstate Standby Run
ARM Core Off Off On
USB0 PLL (System PLL) Off Off On
OSC24M Off On On
OSC32K On On On
Table 17. Frequency vs. Voltage for EMICLK—289-Pin BGA Package (continued)
VDDD (V) VDDDBrownout (V)
EMICLK Fmax (MHz)
DDR2 mDDR
i.MX28 Applications Processors for Consumer Products, Rev. 2
18 Freescale Semiconductor
Electrical Characteristics
3.1.6 Supply Power-Up/Power-Down Requirements
There is no special power-up sequence. After applying 5 V or battery in any order, the rest of the power
supplies are internally generated and automatically come up in a safe way.
There is no special power-down sequence. 5 V or the battery can be removed at any time.
3.1.7 Reset Timing
Because the i.MX28 is a PMU and an SoC, power-on reset is generated internally and there is no timing
requirement on external pins.
The i.MX28 can be reset by asserting the external pin RESETN for at least 100 mS and later deasserting
RESETN.
If the reset occurs while the device is only powered by the battery, then the reset kills all of the power
supplies and the system reboots on the assertion of PSWITCH. If auto-restart is set up ahead of time, the
system reboots immediately.
If the chip is powered by 5 V, then the reset serves to reset the digital sections of the chip. If the DCDC is
operating at the time of the reset, then power switches back to the default linear regulators powered by 5 V.
Figure 2. RESETN Timing
3.2 Thermal Characteristics
The thermal resistance characteristics for the device are given in Table 21. These values are measured
under the following conditions:
Two layer Substrate
Substrate solder mask thickness: 0.025 mm
Substrate metal thicknesses: 0.016 mm
Substrate core thickness: 0.160 mm
Core via I.D: 0.068 mm, Core via plating 0.016 mm
DCDC Off On On
RTC On On On
Other Modules Off On/Off On/Off
Table 20. Power Mode Settings (continued)
Core/Clock/Module Offstate Standby Run
RESETN
At least 100ms
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 19
Flag: trace style with ground balls under the die connected to the flag
Die Attach: 0.033 mm non-conductive die attach, k = 0.3 W/m K
Mold Compound: generic mold compound, k = 0.9 W/m K
3.3 I/O DC Parameters
This section includes the DC parameters of the following I/O types:
DDR I/O: Mobile DDR (LPDDR1), standard 1.8 V DDR2, and low-voltage 1.5 V DDR2
(LVDDR2)
General purpose I/O (GPIO)
3.3.1 DDR I/O DC Parameters
Table 22 shows the EMI digital pin DC characteristics.
NOTE
The current values and the I-V curves of the I/O DC characteristics are
estimated based on an overly conservative device model. They are updated
upon the measurement results of the first silicon.
Table 21. Thermal Resistance Data
Rating Value Unit
Junction to ambient1 natural convection
1Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-2 and JESD51-6. Thermal test board meets
JEDEC specification for this package.
Single layer board
(1s)
RθJA 62 °C/W
Junction to ambient1 natural convection Four layer board (2s2p) RθJA 36 °C/W
Junction to ambient1 (@200 ft/min) Single layer board
(1s)
RθJMA 53 °C/W
Junction to ambient1 (@200 ft/min) Four layer board
(2s2p)
RθJMA 33 °C/W
Junction to boards2
2Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification
for the specified package.
RθJB 24 °C/W
Junction to case (top)3
3Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is
used for the case temperature. Reported value includes the thermal resistance of the interface layer.
RθJCtop 15 °C/W
Junction to package top4
4Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
Natural Convection ΨJT C/W
i.MX28 Applications Processors for Consumer Products, Rev. 2
20 Freescale Semiconductor
Electrical Characteristics
Table 23 shows the ON impedance of EMI drivers for different drive strengths.
Table 24 shows the external devices supported by the EMI.
Table 22. EMI Digital Pin DC Characteristics
Parameter Symbol Min. Max. Unit
Input voltage high (dc) VIH VREF + 0.125 VDDIO_EMI + 0.3 V
Input voltage low (dc) VIL 0.3 VREF – 0.125 V
Output voltage high (dc) VOH 0.8 * VDDIO_EMI V
Output voltage low (dc) VOL - 0.2 * VDDIO_EMI V
Output source current (dc)
LVDDR2 Mode
IOH1—Low
1IOH is the output current at which the VOH specification is met.
-6.2 mA
IOH—Medium -7.2 mA
IOH—High -9.7 mA
Output sink current (dc)
LVDDR2 Mode
IOL2—Low
2IOL is the output current at which the VOL specification is met.
5.7 mA
IOL—Medium 7.3 mA
IOL—High 10.0 mA
Output source current (dc)
mDDR, DDR2 Mode
IOH—Low -5.7 mA
IOH—High -7.5 mA
Output sink current (dc)
mDDR, DDR2 Mode
IOL—Low 5.4 mA
IOL—High 8.8 mA
Table 23. ON Impedance of EMI Drivers for Different Drive Strengths
Mode Drive Min. (Ω)Typ. (Ω)Max. (Ω)
1.5
LVDDR2
Low TBD TBD TBD
Medium TBD TBD TBD
High TBD TBD TBD
1.8
DDR2/mDDR
Low TBD TBD TBD
Medium TBD TBD TBD
High TBD TBD TBD
Table 24. External Devices Supported by the EMI
DRAM Device Max Load1, 2Pad Voltage
DDR2 15 pF 1.8 V
mDDR 15 pF 1.8 V
LVDDR2 15 pF 1.5 V
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 21
3.3.2 GPIO I/O DC Parameters
Max load includes capacitive load due to PCB traces, pad capacitance and driver self-loading. For the
internal pull up setting of each pad, see the “Pin Control and GPIO” section of the reference manual.
Table 25 shows the digital pin DC characteristics for GPIO in 3.3-V mode. Measurements are valid for
eight pins loaded using the 4mA driver, four pins loaded using the 8mA driver, and two pins loaded using
either the 12mA or 16mA driver.
1Max load includes capacitive load due to PCB traces, pad capacitance and driver self-loading.
2Setting is for worst case. Freescale’s EMI interface uses less powerful drivers than those typically used in mDDR devices. A
possible transmission-line effect on the PC board must be suppressed by minimizing the trace length combined with
Freescale’s slower edge-rate drivers. The i.MX28 provides up to 16 mA programmable drive strength. However, the 16-mA
mode is an experimental mode. With the 16-mA mode, the EMI function may be impaired by Simultaneous Switching Output
(SSO) noise. In general, the stronger the driver mode, the noisier the on-chip power supply. Freescale recommends not using
a stronger driver mode than is required. Because on-chip power and ground noise is proportional to the inductance of its return
path, users should make their best effort to reduce inductance between the EMI power and ground balls and the PC board
power and ground planes.
Table 25. Digital Pin DC Characteristics for GPIO in 3.3-V Mode
Parameter Symbol Min Max Unit
Input voltage high (dc) VIH 2 VDDIO V
Input voltage low (dc) VIL 0.8 V
Output voltage high (dc) VOH 0.8 × VDDIO V
Output voltage low (dc) VOL 0.4 V
Output source current1 (dc)
gpio
IOH – Low -5.0 mA
IOH – Medium -9.5 mA
IOH – High -11.4 mA
Output sink current (dc)
gpio
IOL – Low 3.8 mA
IOL – Medium 7.7 mA
IOL – High 9.0 mA
Output source current (dc)
gpio_clk
IOH – Low -9.2 mA
IOH – High -15.2 mA
Output sink current (dc)
gpio_clk
IOL – Low 7.6 mA
IOL – High 12.0 mA
10-K pull-up resistance2Rpu10k 812 kΩ
47-K pull-up resistance Rpu47k 39 56 kΩ
i.MX28 Applications Processors for Consumer Products, Rev. 2
22 Freescale Semiconductor
Electrical Characteristics
Table 26 shows the digital pin DC characteristics for GPIO in 1.8 V mode.
1The conditions of the current measurements for all different drives are as follows:
IOL: at 0.4 V
IOH: at VDDIO * 0.8 V
Maximum corner for 3.3 V mode: 3.6 V, -40°C, fast process.
Minimum corner for 3.3 V mode: 3.0 V, 105°C, slow process.
8 gpio pins (LCD_D0-D7) and 2 gpio_clk pins (LCD_DOTCLK and LCD_WR_RWN) simultaneously loaded.
2See the i.MX28 reference manual for detailed pull-up configuration of each I/O.
Table 26. Digital Pin DC Characteristics for GPIO in 1.8 V Mode
Symbol Min Max Unit
Input voltage high (DC) VIH 0.7 × VDDIO18 VDDIO18 V
Input voltage low (DC) VIL 0.3 × VDDIO18 V
Output voltage high (DC) VOH 0.8 * VDDIO18 V
Output voltage low (DC) VOL 0.2 × VDDIO18 V
Output source current1
(DC)
gpio
1The condition of the current measurements for all different drives are as follows:
Maximum corner for 1.8 V mode: 1.9 V, -40°C, Fast process.
Minimum corner for 1.8 V mode: 1.7 V, 105°C, Slow process.
1 gpio pin (GPMI_D0) and 1 gpio_clk pin (GPMI_WRN) simultaneously loaded.
IOH – low -2.2 mA
IOH – medium -3.5 mA
IOH – high -4.0 mA
Output sink current (DC)
gpio
IOL – low 3.3 mA
IOL – medium 7.0 mA
IOL – high 7.5 mA
Output source current
(DC)
gpio_clk
IOH – low -4.2 mA
IOH – high -6.0 mA
Output sink current (DC)
gpio_clk
IOL – low 6.8 mA
IOL – high 11.5 mA
10-K pull-up resistance2
2See the i.MX28 reference manual for detailed pull-up configuration of each I/O.
Rpu10k 812 kΩ
47-K pull-up resistance Rpu47k 39 56 kΩ
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 23
3.4 I/O AC Timing and Parameters
Figure 3 and Figure 4 show the Driver Used for AC Simulation Testpoint and the Output Pad Transition
Waveform.
Figure 3. Driver Used for AC Simulation Testpoint
Figure 4. Output Pad Transition Waveform
Table 27 shows the base GPIO AC timing and parameters.
Table 27. Base GPIO
Parameters Symbol Test Voltage Test Capacitance Min
Rise/Fall MaxRise/Fall Unit Notes
Duty cycle Fduty %
Output pad transition
times (maximum drive)
tpr 1.7~1.9V 10 pF 0.82 0.91 1.93 1.97 ns
1.7~1.9V 20 pF 1.18 1.22 2.69 2.71
1.7~1.9V 50 pF 2.11 2.03 4.62 4.44
3.0~3.6V 10 pF 1.04 1.08 2.46 2.18
3.0~3.6V 20 pF 1.42 1.5 3.29 3
3.0~3.6V 50 pF 2.46 2.61 5.34 5.12
Driver Us ed for AC s imu latio n
Testpoint
Driver Us ed for AC s imu latio n
Testpoint
Output Pad Transition Waveform
VDDIO
20%
80%
Output Pad Transition Waveform
VDDIO
20%
80%
i.MX28 Applications Processors for Consumer Products, Rev. 2
24 Freescale Semiconductor
Electrical Characteristics
Output pad transition
times (medium drive)
tpr 1.7~1.9V 10 pF 1.02 1.08 2.34 2.38 ns
1.7~1.9V 20 pF 1.51 1.5 3.34 3.28
1.7~1.9V 50 pF 2.91 2.62 6.24 5.67
3.0~3.6V 10 pF 1.26 1.29 2.9 2.6
3.0~3.6V 20 pF 1.8 1.88 4 3.67
3.0~3.6V 50 pF 3.3 3.46 6.91 6.64
Output pad transition
times (low drive)
tpr 1.7~1.9V 10 pF 1.62 1.68 3.65 3.68 ns
1.7~1.9V 20 pF 2.55 2.45 5.59 5.37
1.7~1.9V 50 pF 5.42 4.62 11.46 10.01
3.0~3.6V 10 pF 1.95 2.12 4.43 4.25
3.0~3.6V 20 pF 2.96 3.21 6.36 6.25
3.0~3.6V 50 pF 5.89 6.39 12.02 12.18
Output pad slew rate
(maximum drive)
tps 1.7~1.9V 10 pF 1.39 1.25 0.53 0.52 V/ns
1.7~1.9V 20 pF 0.97 0.93 0.38 0.38
1.7~1.9V 50 pF 0.54 0.56 0.22 0.23
3.0~3.6V 10 pF 2.08 2.00 0.73 0.83
3.0~3.6V 20 pF 1.52 1.44 0.55 0.60
3.0~3.6V 50 pF 0.88 0.83 0.34 0.35
Output pad slew rate
(medium drive)
tps 1.7~1.9V 10 pF 1.12 1.06 0.44 0.43 V/ns
1.7~1.9V 20 pF 0.75 0.76 0.31 0.31
1.7~1.9V 50 pF 0.39 0.44 0.16 0.18
3.0~3.6V 10 pF 1.71 1.67 0.62 0.69
3.0~3.6V 20 pF 1.20 1.15 0.45 0.49
3.0~3.6V 50 pF 0.65 0.62 0.26 0.27
Output pad slew rate
(low drive)
tps 1.7~1.9V 10 pF 1.17 1.13 0.47 0.46 V/ns
1.7~1.9V 20 pF 0.75 0.78 0.30 0.32
1.7~1.9V 50 pF 0.35 0.41 0.15 0.17
3.0~3.6V 10 pF 1.11 1.02 0.41 0.42
3.0~3.6V 20 pF 0.73 0.67 0.28 0.29
3.0~3.6V 50 pF 0.37 0.34 0.15 0.15
Input pad average
hysteresis
tih 1.7 V–1.9 V 100 75 mV
3.0 V–3.6 V 100 50
Table 27. Base GPIO (continued)
Parameters Symbol Test Voltage Test Capacitance Min
Rise/Fall MaxRise/Fall Unit Notes
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 25
Table 28 shows the F-type GPIO AC timing and parameters.
Table 28. F-type GPIO
Parameters Symbol Test Voltage Test Capacitance Min Rise/Fall Max Rise/Fall Unit Notes
Duty cycle Fduty %
Output pad transition
times (maximum
drive)
tpr 1.7~1.9V 10 pF 0.58 0.61 1.29 1.33 ns
1.7~1.9V 20 pF 0.89 0.88 1.94 1.88
1.7~1.9V 50 pF 1.83 1.59 3.88 3.39
3.0~3.6V 10 pF 0.71 0.68 1.47 1.34
3.0~3.6V 20 pF 1.02 1.04 2.11 1.99
3.0~3.6V 50 pF 1.98 2.09 3.97 3.96
Output pad transition
times (medium drive)
tpr 1.7~1.9V 10 pF 0.76 0.76 1.68 1.61 ns
1.7~1.9V 20 pF 1.23 1.13 2.63 2.38
1.7~1.9V 50 pF 2.66 2.18 5.61 4.6
3.0~3.6V 10 pF 0.9 0.88 1.84 1.7
3.0~3.6V 20 pF 1.36 1.4 2.76 2.67
3.0~3.6V 50 pF 2.85 3.02 5.59 5.67
Output pad transition
times (low drive)
tpr 1.7~1.9V 10 pF 1.32 1.26 2.88 2.72 ns
1.7~1.9V 20 pF 2.27 1.98 4.84 4.23
1.7~1.9V 50 pF 5.23 4.13 10.95 8.8
3.0~3.6V 10 pF 1.46 1.55 3.05 3
3.0~3.6V 20 pF 2.46 2.62 4.92 5.02
3.0~3.6V 50 pF 5.56 5.96 10.78 11.22
Output pad slew rate
(maximum drive)
tps 1.7~1.9V 10 pF 1.97 1.87 0.79 0.77 ns
1.7~1.9V 20 pF 1.28 1.30 0.53 0.54
1.7~1.9V 50 pF 0.62 0.72 0.26 0.30
3.0~3.6V 10 pF 3.04 3.18 1.22 1.34
3.0~3.6V 20 pF 2.12 2.08 0.85 0.90
3.0~3.6V 50 pF 1.09 1.03 0.45 0.45
Output pad slew rate
(medium drive)
tps 1.7~1.9V 10 pF 1.50 1.50 0.61 0.63 ns
1.7~1.9V 20 pF 0.93 1.01 0.39 0.43
1.7~1.9V 50 pF 0.43 0.52 0.18 0.22
3.0~3.6V 10 pF 2.40 2.45 0.98 1.06
3.0~3.6V 20 pF 1.59 1.54 0.65 0.67
3.0~3.6V 50 pF 0.76 0.72 0.32 0.32
i.MX28 Applications Processors for Consumer Products, Rev. 2
26 Freescale Semiconductor
Electrical Characteristics
Table 29 shows the CLK-type GPIO AC timing and parameters.
Output pad slew rate
(low drive)
tps 1.7~1.9V 10 pF 1.44 1.51 0.59 0.63 ns
1.7~1.9V 20 pF 0.84 0.96 0.35 0.40
1.7~1.9V 50 pF 0.36 0.46 0.16 0.19
3.0~3.6V 10 pF 1.48 1.39 0.59 0.60
3.0~3.6V 20 pF 0.88 0.82 0.37 0.36
3.0~3.6V 50 pF 0.39 0.36 0.17 0.16
Input pad average
hysteresis
tih 1.7 V–1.9 V 100 75 mV
3.0 V–3.6 V 100 50
Table 29. CLK-Type GPIO
Parameters Symbol Test Voltage Test Capacitance Min Rise/Fall Max Rise/Fall units Notes
Duty cycle Fduty %
Output pad transition
times (maximum
drive)
tpr 1.7~1.9V 10 pF 0.48 0.52 1.08 1.12 ns
1.7~1.9V 20 pF 0.72 0.74 1.56 1.56
1.7~1.9V 50 pF 1.41 1.28 3.04 2.7
3.0~3.6V 10 pF 0.61 0.57 1.25 1.12
3.0~3.6V 20 pF 0.85 0.85 1.73 1.63
3.0~3.6V 50 pF 1.56 1.63 3.13 3.08
Output pad transition
times (medium drive)
tpr 1.7~1.9V 10 pF 0.76 0.76 1.67 1.62 ns
1.7~1.9V 20 pF 1.22 1.14 2.64 2.41
1.7~1.9V 50 pF 2.66 2.2 5.61 4.62
3.0~3.6V 10 pF 0.9 0.89 1.83 1.72
3.0~3.6V 20 pF 1.37 1.41 2.77 2.69
3.0~3.6V 50 pF 2.85 3.03 5.59 5.72
Output pad slew rate
(maximum drive)
tps 1.7~1.9V 10 pF 2.38 2.19 0.94 0.91 ns
1.7~1.9V 20 pF 1.58 1.54 0.65 0.65
1.7~1.9V 50 pF 0.81 0.89 0.34 0.38
3.0~3.6V 10 pF 3.54 3.79 1.44 1.61
3.0~3.6V 20 pF 2.54 2.54 1.04 1.10
3.0~3.6V 50 pF 1.38 1.33 0.58 0.58
Table 28. F-type GPIO (continued)
Parameters Symbol Test Voltage Test Capacitance Min Rise/Fall Max Rise/Fall Unit Notes
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 27
3.5 Module Timing and Electrical Parameters
3.5.1 ADC Electrical Specifications
This section describes the electrical specifications, including DC and AC information, of Low-Resolution
ADC (LRADC) and High-Speed ADC (HSADC).
3.5.1.1 LRADC Electrical Specifications
Table 30 shows the electrical specifications for the LRADC.
Output pad slew rate
(medium drive)
tps 1.7~1.9V 10 pF 1.50 1.50 0.61 0.63 ns
1.7~1.9V 20 pF 0.93 1.00 0.39 0.42
1.7~1.9V 50 pF 0.43 0.52 0.18 0.22
3.0~3.6V 10 pF 2.40 2.43 0.98 1.05
3.0~3.6V 20 pF 1.58 1.53 0.65 0.67
3.0~3.6V 50 pF 0.76 0.71 0.32 0.31
Input pad average
hysteresis
tih 1.7 V–1.9 V 100 75 mV
3.0 V–3.6 V 100 50
Table 30. LRADC Electrical Specifications
Parameter Conditions Min. Typ. Max. Unit
AC Electrical Specification
Input capacitance (Cp) No pin/pad capacitance included 0.5 pF
Resolution 12 bits
Maximum sampling rate1
(fs)
1There is no sample and hold circuit in LRADC, so it is only for DC input voltage or ones with very small slope.
428 kHz
Power-up time2
2This comprises only the required initial dummy conversion cycle, NOT including the Analog part power-up time.
1 sample
cycles
DC Electrical Specification
DC input voltage 0 1.85 V
Current consumption3
VDDA
——10μA
Touchscreen Interface
Expected plate resistance 200 50000 Ω
Table 29. CLK-Type GPIO (continued)
Parameters Symbol Test Voltage Test Capacitance Min Rise/Fall Max Rise/Fall units Notes
i.MX28 Applications Processors for Consumer Products, Rev. 2
28 Freescale Semiconductor
Electrical Characteristics
3.5.1.2 HSADC Electrical Specification
Table 31 shows the electrical specifications for the HSADC
3This value only includes the ADC and the driver switches, but it does not take into account the current consumption in the
touchscreen plate. For example, if the plate resistance is 200 ohm, the total current consumption is about 11 mA.
Table 31. HSADC Electrical Specification
Parameter Conditions Min. Typ. Max. Unit
AC Electrical Specification
Input sampling
capacitance (Cs)
No pin/pad capacitance included 0.5 pF
Resolution 12 bits
Maximum sampling rate
(fs)
——2MHz
Power-up time 1 sample
cycles
DC Electrical Specification
DC input voltage 0.5 VDDA-0.5 V
Current Consumption
VDDA
——10μA
DNL fin = 1 kHz 0.5 1.2 LSB
INL fin = 1kHz 0.5 1.2 LSB
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 29
3.5.2 DPLL Electrical Specifications
This section includes descriptions of the USB PLL electrical specifications and Ethernet PLL electrical
specifications.
3.5.2.1 USB PLL Electrical Specifications
The i.MX28 integrates a high-frequency USB PLL that provides the 480-MHz clock for the USB and other
system blocks.
Table 32 lists the USB PLL output electrical specifications.
3.5.2.2 Ethernet PLL Electrical Specifications
i.MX28 provides a 50-MHz/25-MHz output clock, called the Ethernet PLL output.
Table 33 lists the Ethernet PLL output electrical specifications.
Table 32. USB PLL Specifications
Parameter Test Conditions Min Typ Max Unit
PLL lock time 10 µs
Table 33. Ethernet PLL Specifications
Parameter Test Conditions Min Typ Max Unit
Output Duty Cycle 45 50 55 %
PLL lock time 10 µs
Cycle to cycle jitter 25 ps
Clock output frequency tolerance1
1This Ethernet output clock tolerance specification is the contribution from the PLL only and assumes a perfect 24 MHz
clock/crystal source with 0 ppm deviation. The 24 MHz crystal frequency tolerance/deviation should be added to this number
for the total Ethernet clock output frequency tolerance.
——+/-20ppm
i.MX28 Applications Processors for Consumer Products, Rev. 2
30 Freescale Semiconductor
Electrical Characteristics
3.5.3 EMI AC Timing
This section includes descriptions of the electrical specifications of EMI module which interfaces
external DDR2 and Mobile-DDR1 (LP-DDR1) memory devices.
3.5.3.1 EMI Command and Address AC Timing
Figure 5 and Table 34 specify the timing related to the address and command pins that interfaces DDR2
and Mobile-DDR1 memory devices.
Figure 5. EMI Command/Address AC Timing
Table 34. EMI Command/Address AC Timing
ID Description Symbol Min. Max. Unit
DDR1 CK cycle time tCK 4.86 ns
DDR2 CK high level width tCH 0.5 tCK
–0.5
0.5 tCK
+ 0.5
ns
DDR3 CK low level width tCL 0.5 tCK
–0.5
0.5 tCK
+ 0.5
ns
EMI_CLK
EMI_CLKN
EMI_CE0N
EMI_RASN
EMI_CASN
EMI_WEN
bank
row bank
column
EMI_ADDR
DDR1
DDR2 DDR3
DDR4 DDR5
DDR4 DDR5
DDR4
DDR5
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 31
3.5.3.2 DDR Output AC Timing
Figure 6 and Table 35 show the DDR output AC timing defined for all DDR types: LPDDR1, standard
DDR2 (1.8 V), and LVDDR2 (1.5 V)
Figure 6. DDR Output AC Timing
DDR4 Address and control output setup time tIS 0.5 tCK – 1 0.5 tCK
+ 0.5
ns
DDR5 Address and control output hold time tIH 0.5 tCK – 1 0.5 tCK
+ 0.5
ns
Table 35. DDR Output AC Timing
ID Description Symbol Min Max Unit
DDR10 Positive DQS latching edge to associated CK edge tDQSS 0.5 0.5 ns
DDR11 DQS falling edge from CK rising edge—hold time tDSH 0.5 tCK
–0.5
0.5 tCK
+ 0.5
ns
DDR12 DQS falling edge to CK rising edge—setup time tDSS 0.5 tCK
–0.5
0.5 tCK
+ 0.5
ns
DDR13 DQS output high pulse width tDQSH 0.5 tCK
–0.5
0.5 tCK
+ 0.5
ns
DDR14 DQS output low pulse width tDQSL 0.5 tCK
–0.5
0.5 tCK
+ 0.5
ns
Table 34. EMI Command/Address AC Timing (continued)
ID Description Symbol Min. Max. Unit
EMI_CLK
EMI_CLKN
EMI_DQS
DDR13 DDR14
d0
DDR10
d1 d2 d3EMI_DQ & EMI_DQM
DDR11 DDR12
DDR15
DDR16
EMI_DQSN
i.MX28 Applications Processors for Consumer Products, Rev. 2
32 Freescale Semiconductor
Electrical Characteristics
3.5.3.3 DDR2 Input AC Timing
Figure 7 and Table 36 show input AC timing for standard DDR2 and LVDDR2.
Figure 7. DDR2 Input AC Timing
DDR15 DQ & DQM output setup time relative to DQS tDS 1/4 tCK
–0.8
1/4 tCK
–0.5
ns
DDR16 DQ & DQM output hold time relative to DQS tDH 1/4 tCK
–0.8
1/4 tCK
–0.5
ns
Table 36. DDR2 Input AC Timing
ID Description Symbol Min Max Unit
DDR20 Positive DQS latching edge to associated CK edge tDQSCK –0.5 0.5 ns
DDR21
DQS to DQ input skew
tDQSQ 0.25 tCK
–0.85
0.25 tCK
–0.5
ns
DDR22 DQS to DQ input hold time tQH 0.25 tCK
+0.75
0.25 tCK
+ 1
ns
Table 35. DDR Output AC Timing (continued)
ID Description Symbol Min Max Unit
EMI_CLK
EMI_CLKN
EMI_DQS
DDR21
DDR22
d0
DDR20
d1 d2 d3EMI_DQ
EMI_DQSN
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 33
3.5.3.4 LPDDR1 Input AC Timing
Figure 8 and Table 37 show input AC timing for LPDDR1.
Figure 8. LPDDR1 Input AC Timing
3.5.4 Ethernet MAC Controller (ENET) Timing
The ENET is designed to support both 10- and 100-Mbps Ethernet networks compliant with IEEE 802.3.
An external transceiver interface and transceiver function are required to complete the interface to the
media. The ENET supports 10/100-Mbps MII (18 pins altogether), 10/100-Mbps RMII (10 pins, including
serial management interface), for connection to an external Ethernet transceiver. All signals are compatible
with transceivers operating at a voltage of 3.3 V.
The following subsections describe the timing for MII and RMII modes.
Table 37. DDR2 Input AC Timing
ID Description Symbol Min Max Unit
DDR20 Positive DQS latching edge to associated CK edge tDQSCK 2 6 ns
DDR21 DQS to DQ input skew tDQSQ 0.25 tCK
–0.85
0.25 tCK
–0.5
ns
DDR22 DQS to DQ input hold time tQH 0.25 tCK
+0.75
0.25 tCK
+ 1
ns
EMI_CLK
EMI_CLKN
EMI_DQS
DDR21
DDR22
d0
DDR20
d1 d2 d3EMI_DQ
EMI_DQSN
i.MX28 Applications Processors for Consumer Products, Rev. 2
34 Freescale Semiconductor
Electrical Characteristics
3.5.4.1 ENET MII Mode Timing
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal
timings.
3.5.4.1.1 MII Receive Signal Timing (ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER,
and ENET0_RX_CLK)
The receiver functions correctly up to an ENET0_RX_CLK maximum frequency of 25 MHz + 1%. There
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the
ENET0_RX_CLK frequency.
Figure 9 shows MII receive signal timings. Table 38 describes the timing parameters (M1–M4) shown in
the figure.
Figure 9. MII Receive Signal Timing Diagram
1 ENET0_RX_DV, ENET0_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.
3.5.4.1.2 MII Transmit Signal Timing (ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER,
and ENET0_TX_CLK)
The transmitter functions correctly up to an ENET0_TX_CLK maximum frequency of 25 MHz + 1%.
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed
twice the ENET0_TX_CLK frequency.
Table 38. MII Receive Signal Timing
ID Characteristic1Min. Max. Unit
M1 ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER to
ENET0_RX_CLK setup
5— ns
M2 ENET0_RX_CLK to ENET0_RXD[3:0], ENET0_RX_DV,
ENET0_RX_ER hold
5— ns
M3 ENET0_RX_CLK pulse width high 35% 65% ENET0_RX_CLK
period
M4 ENET0_RX_CLK pulse width low 35% 65% ENET0_RX_CLK
period
ENET0_RX_CLK (input)
ENET0_RXD[3:0] (inputs)
ENET0_RX_DV
ENET0_RX_ER
M3
M4
M1 M2
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 35
Figure 10 shows MII transmit signal timings. Table 39 describes the timing parameters (M5–M8) shown
in the figure.
Figure 10. MII Transmit Signal Timing Diagram
1 ENET0_TX_EN, ENET0_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.
3.5.4.1.3 MII Asynchronous Inputs Signal Timing (ENET0_CRS and ENET0_COL)
Figure 11 shows MII asynchronous input timings. Table 40 describes the timing parameter (M9) shown in
the figure.
Figure 11. MII Async Inputs Timing Diagram
1 ENET0_COL has the same timing in 10-Mbit 7-wire interface mode.
Table 39. MII Transmit Signal Timing
ID Characteristic1Min. Max. Unit
M5 ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN,
ENET0_TX_ER invalid
5— ns
M6 ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN,
ENET0_TX_ER valid
—20 ns
M7 ENET0_TX_CLK pulse width high 35% 65% ENET0_TX_CLK
period
M8 ENET0_TX_CLK pulse width low 35% 65% ENET0_TX_CLK
period
Table 40. MII Asynchronous Inputs Signal Timing
ID Characteristic Min. Max. Unit
M91ENET0_CRS to ENET0_COL minimum pulse width 1.5 ENET0_TX_CLK period
ENET0_TX_CLK (input)
ENET0_TXD[3:0] (outputs)
ENET0_TX_EN
ENET0_TX_ER
M7
M8
M5
M6
i.MX28 Applications Processors for Consumer Products, Rev. 2
36 Freescale Semiconductor
Electrical Characteristics
3.5.4.1.4 MII Serial Management Channel Timing (ENET0_MDIO and ENET0_MDC)
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3
MII specification. However the ENET can function correctly with a maximum MDC frequency of
15 MHz.
Figure 12 shows MII asynchronous input timings. Table 41 describes the timing parameters (M10–M15)
shown in the figure.
Figure 12. MII Serial Management Channel Timing Diagram
3.5.4.2 RMII Mode Timing
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference
clock. ENET0_RX_DV is used as the CRS_DV in RMII. Other signals under RMII mode include
ENET0_TX_EN, ENET0_TXD[1:0], ENET0_RXD[1:0] and ENET0_RX_ER.
Table 41. MII Serial Management Channel Timing
ID Characteristic Min. Max. Unit
M10 ENET0_MDC falling edge to ENET0_MDIO output invalid (min.
propagation delay)
0— ns
M11 ENET0_MDC falling edge to ENET0_MDIO output valid (max.
propagation delay)
—5 ns
M12 ENET0_MDIO (input) to ENET0_MDC rising edge setup 18 ns
M13 ENET0_MDIO (input) to ENET0_MDC rising edge hold 0 ns
M14 ENET0_MDC pulse width high 40% 60% ENET0_MDC period
M15 ENET0_MDC pulse width low 40% 60% ENET0_MDC period
ENET0_MDC (output)
ENET0_MDIO (output)
M14
M15
M10
M11
M12 M13
ENET0_MDIO (input)
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 37
Figure 13 shows RMII mode timings. Table 42 describes the timing parameters (M16–M21) shown in the
figure.
Figure 13. RMII Mode Signal Timing Diagram
3.5.5 Coresight ETM9 AC Interface Timing
The following timing specifications are given as a guide for a TPA that supports TRACECLK
(ETM_TCLK) frequencies up to 80 MHz. TRACECLK is the ETM_TCLK signal which can be made
functional by using some IOMUX configurations. See the reference manual for detailed information.
3.5.5.1 TRACECLK Timing
This section describes TRACECLK timings.
Table 42. RMII Signal Timing
ID Characteristic Min. Max. Unit
M16 ENET_CLK pulse width high 35% 65% ENET_CLK period
M17 ENET_CLK pulse width low 35% 65% ENET_CLK period
M18 ENET_CLK to ENET0_TXD[1:0], ENET0_TX_EN invalid 3 ns
M19 ENET_CLK to ENET0_TXD[1:0], ENET0_TX_EN valid 12 ns
M20 ENET0_RXD[1:0], CRS_DV(ENET0_RX_DV), ENET0_RX_ER to
ENET_CLK setup
2— ns
M21 ENET_CLK to ENET0_RXD[1:0], ENET0_RX_DV, ENET0_RX_ER hold 2 ns
ENET_CLK (input)
ENET0_TX_EN
M16
M17
M18
M19
M20 M21
ENET0_RXD[1:0]
ENET0_TXD[1:0] (output)
ENET0_RX_ER
CRS_DV (input)
i.MX28 Applications Processors for Consumer Products, Rev. 2
38 Freescale Semiconductor
Electrical Characteristics
Figure 14 shows TRACECLK signal timings. Table 43 describes the timing parameters shown in the
figure.
Figure 14. TRACECLK Signal Timing Diagram
3.5.5.2 Trace Data Signal Timing
Figure 15 shows the setup and hold requirements of the trace data pins with respect to TRACECLK.
Table 44 describes the timing parameters shown in the figure.
Figure 15. Trace Data Signal Timing Diagram
Table 43. TRACECLK Signal Timing
ID Characteristic1Min. Max. Unit
Tr Clock and data raise time 3 ns
Tf Clock and data fall time 3 ns
Twh High pulse wide 2 ns
Twl Low pulse wide 2 ns
Tcyc Clock period 12.5 ns
Table 44. Trace Data Signal Timing
ID Characteristic1Min. Max. Unit
Ts Data setup 2 ns
Th Data hold 2 ns
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 39
3.5.6 FlexCAN AC Timing
Table 45 and Table 46 show voltage requirements for the FlexCAN transceiver Tx and Rx pins.
Figure 16 through Figure 19 show the FlexCAN timing, including timing of the standby and shutdown
signals.
Figure 16. FlexCAN Timing Diagram
Table 45. Tx Pin Characteristics
Parameter Symbol Min. Typ. Max. Unit
High-level output voltage VOH 2— Vcc
1 + 0.3
1Vcc = +3.3 V ± 5%
V
Low-level output voltage VOL —0.8 V
Table 46. Rx Pin Characteristics
Parameter Symbol Min. Typ. Max. Unit
High-level input voltage VIH 0.8 × Vcc1
1Vcc = +3.3 V ± 5%
— Vcc
1V
Low-level input voltage VIL —0.4 V
TXD
VDIFF
RXD
VCC/2
tONTXD tOFFTXD
tONRXD tOFFRXD
VCC/2 VCC/2
0.5V
0.9V
VCC/2
i.MX28 Applications Processors for Consumer Products, Rev. 2
40 Freescale Semiconductor
Electrical Characteristics
Figure 17. Timing Diagram for FlexCAN Standby Signal
Figure 18. Timing Diagram for FlexCAN Shutdown Signal
Figure 19. Timing Diagram for FlexCAN Shutdown-to-Standby Signal
RS
VDIFF
RXD VCC/2 VCC/2
tSBRXDL
tDRXDL
1.1V
VCC x 0.75
Bus Externally
Driven
SHDN
VDIFF
RXD VCC/2
VCC/2
Bus Externally
Driven
tOFFSHDN tONSHDN
VCC/2
0.5V
SHDN
RS
VCC/2
0.75 x VCC
tSHDNSB
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 41
3.5.7 General-Purpose Media Interface (GPMI) Timing
The i.MX28 GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to
50MB/s I/O speed and individual chip select.
It supports normal timing mode, using two Flash clock cycles for one access of RE and WE. AC timings
are provided as multiplications of the clock cycle and fixed delay. Figure 20, Figure 21, Figure 22 and
Figure 23 depict the relative timing between GPMI signals at the module level for different operations
under normal mode. Table 47 describes the timing parameters (NF1–NF17) that are shown in the figures.
Figure 20. Command Latch Cycle Timing Diagram
Figure 21. Address Latch Cycle Timing Diagram
CLE
CEn
WE
ALE
IO[7:0] Command
NF9
NF8
NF1 NF2
NF5
NF3 NF4
NF6 NF7
CLE
CEn
WE
ALE
IO[7:0] Address
NF9
NF8
NF1
NF5
NF3 NF4
NF6
NF11
NF10
NF7
i.MX28 Applications Processors for Consumer Products, Rev. 2
42 Freescale Semiconductor
Electrical Characteristics
Figure 22. Write Data Latch Cycle Timing Diagram
Figure 23. Read Data Latch Cycle Timing Diagram
CLE
CEn
WE
ALE
IO[7:0] Data to NF
NF9
NF8
NF1
NF5
NF3
NF6
NF11
NF10
NF7
CLE
CEn
RE
RB
IO[7:0] Data from NF
NF13
NF15
NF14
NF17
NF12
NF16
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 43
Table 47. NFC Timing Parameters1
1The Flash clock maximum frequency is 100 MHz.
2)GPMI’s output timing could be controlled by module’s internal register, say
HW_GPMI_TIMING0_ADDRESS_SETUP,HW_GPMI_TIMING0_DATA_SETUP,HW_GPMI_TIMING0_DATA_HOLD, this AC
timing depends on these registers’ setting. In the above table we use AS/DS/DH representing these settings each.
3)AS minimum value could be 0, while DS/DH minimum value is 1.
ID Parameter Symbol
Timing
T = GPMI Clock Cycle
Example Timing for
GPMI Clock ≈ 100MHz
T = 10ns Unit
Min. Max. Min. Max.
NF1 CLE setup time tCLS (AS+1)*T 10 ns
NF2 CLE hold time tCLH (DH+1)*T 20 ns
NF3 CEn setup time tCS (AS+1)*T 10 ns
NF4 CE hold time tCH (DH+1)*T 20 ns
NF5 WE pulse width tWP DS*T 10 ns
NF6 ALE setup time tALS (AS+1)*T 10 ns
NF7 ALE hold time tALH (DH+1)*T 20 ns
NF8 Data setup time tDS DS*T 10 ns
NF9 Data hold time tDH DH*T 10 ns
NF10 Write cycle time tWC (DS+DH)*T 20 ns
NF11 WE hold time tWH DH*T 10 ns
NF12 Ready to RE low tRR (AS+1)*T 10 ns
NF13 RE pulse width tRP DS*T 10 ns
NF14 READ cycle time tRC (DS+DH)*T 20 ns
NF15 RE high hold time tREH DH*T 10 ns
NF16 Data setup on read tDSR N/A 10 ns
NF17 Data hold on read tDHR N/A 10 ns
i.MX28 Applications Processors for Consumer Products, Rev. 2
44 Freescale Semiconductor
Electrical Characteristics
3.5.8 LCD AC Output Electrical Specifications
Figure 24 depicts the AC output timing for the LCD module. Table 48 lists the LCD module timing
parameters.
Figure 24. LCD AC Output Timing Diagram
Table 48. LCD AC Output Timing Parameters
ID Parameter Description
tSF Data setup for falling edge DOTCK = T/2 – 1.97ns + 0.15*Cck – 0.19*Cd
tHF Data hold for falling edge DOTCK = T/2 + 0.29ns + 0.09*Cd – 0.10*Cck
tSR Data setup for rising edge DOTCK = T/2 – 2.09ns + 0.18*Cck – 0.19*Cd
tHR Data hold for rising edge DOTCK = T/2 + 0.40ns + 0.09*Cd – 0.10*Cck
tDW Data valid window tDW = T – 1.45ns
PAD_LCD_DOTCK
Falling edge capture
Notes:
T = LCD interface clock period
I/O Drive Strength = 4mA
I/O Voltage = 3.3V
Cck = Capacitance load on DOTCK pad
Cd = Capacitance load on DATA/CTRL pad
PAD_LCD_D[17:0],
PAD_LCD_VSYNC, etc DATA/CTRL
tDW
tSF tHF
PAD_LCD_DOTCK
Rising edge capture
tSR tHR
T
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 45
3.5.9 Inter IC (I2C) Timing
The I2C module is designed to support up to 400-Kbps I2C connection compliant with I2C bus protocol.
The following section describes I2C SDA and SCL signal timings.
Figure 25 shows the timing of the I2C module. Table 49 describes the I2C module timing parameters
(IC1–IC11) shown in the figure.
Figure 25. I2C Module Timing Diagram
Table 49. I2C Module Timing Parameters: 1.8 V 3.6 V
ID Parameter
Standard Mode Fast Mode
Unit
Min. Max. Min. Max.
IC1 I2C_SCL cycle time 10 2.5 μs
IC2 Hold time (repeated) START condition 4.0 0.6 μs
IC3 Set-up time for STOP condition 4.0 0.6 μs
IC4 Data hold time 01
1A device must internally provide a hold time of at least 300 ns for the I2C_SDA signal in order to bridge the undefined region
of the falling edge of I2C_SCL.
3.452
2The maximum IC4 has to be met only if the device does not stretch the LOW period (ID no IC5) of the I2C_SCL signal.
010.92μs
IC5 HIGH Period of I2C_SCL clock 4.0 0.6 μs
IC6 LOW Period of the I2C_SCL clock 4.7 1.3 μs
IC7 Set-up time for a repeated START condition 4.7 0.6 μs
IC8 Data set-up time 250 1003
3A fast-mode I2C bus device can be used in a standard-mode I2C bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal.
If such a device does stretch the LOW period of the I2C_SCL signal, it must output the next data bit to the I2C_SDA line
max_rise_time (ID No IC9) + data_setup_time (ID No IC7) = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus
specification) before the I2C_SCL line is released.
—ns
IC9 Bus free time between a STOP and START condition 4.7 1.3 μs
IC10 Rise time of both I2C_SDA and I2C_SCL signals 1000 20+0.1Cb4
4Cb = total capacitance of one bus line in pF.
300 ns
IC11 Fall time of both I2C_SDA and I2C_SCL signals 300 20+0.1Cb4300 ns
IC12 Capacitive load for each bus line (Cb) 400 400 pF
IC10 IC11 IC9
IC2 IC8 IC4 IC7 IC3
IC6
IC10
IC5
IC11 START STOP START
START
I2C_SDA
I2C_SCL
IC1
i.MX28 Applications Processors for Consumer Products, Rev. 2
46 Freescale Semiconductor
Electrical Characteristics
3.5.10 JTAG Interface Timing
Figure 26 through Figure 29 show respectively the test clock input, boundary scan, test access port, and
TRST timings for the SJC. Table 50 describes the SJC timing parameters (SJ1–SJ13) indicated in the
figures.
Figure 26. Test Clock Input Timing Diagram
Figure 27. Boundary Scan (JTAG) Timing Diagram
TCK
(Input) VM VM
VIH VIL
SJ1
SJ2 SJ2
SJ3
SJ3
TCK
(Input)
Data
Inputs
Data
Outputs
Data
Outputs
Data
Outputs
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
SJ4 SJ5
SJ6
SJ7
SJ6
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 47
Figure 28. Test Access Port Timing Diagram
Figure 29. TRST Timing Diagram
Table 50. SJC Timing Parameters
ID Parameter
All Frequencies
Unit
Min. Max.
SJ1 TCK cycle time 100 ns
SJ2 TCK clock pulse width measured at VM140 ns
SJ3 TCK rise and fall times 3 ns
SJ4 Boundary scan input data set-up time 10 ns
SJ5 Boundary scan input data hold time 50 ns
SJ6 TCK low to output data valid 50 ns
SJ7 TCK low to output high impedance 50 ns
SJ8 TMS, TDI data set-up time 10 ns
SJ9 TMS, TDI data hold time 50 ns
TCK
(Input)
TDI
(Input)
TDO
(Output)
TDO
(Output)
TDO
(Output)
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
TMS
SJ8 SJ9
SJ10
SJ11
SJ10
TCK
(Input)
TRST
(Input)
SJ13
SJ12
i.MX28 Applications Processors for Consumer Products, Rev. 2
48 Freescale Semiconductor
Electrical Characteristics
3.5.11 Pulse Width Modulator (PWM) Timing
Figure 30 depicts the timing of the PWM, and Table 51 lists the PWM timing characteristics.
The PWM can be programmed to select one of two clock signals as its source frequency: xtal clock or
hsadc clock. The selected clock signal is passed through a prescaler before being input to the counter. The
output is available at the pulse width modulator output (PWMO) external pin.
PWM also supports MATT mode. In this mode, it can be programmed to select one of two clock signals
as its source frequency, 24-MHz or 32-kHz crystal clock. For a 32-kHz source clock input, the PWM
outputs the 32-kHz clock directly to PAD.
Figure 30. PWM Timing
SJ10 TCK low to TDO data valid 44 ns
SJ11 TCK low to TDO high impedance 44 ns
SJ12 TRST assert time 100 ns
SJ13 TRST set-up time to TCK low 40 ns
1VM – mid point voltage
Table 51. PWM Output Timing Parameter: Xtal clock
Ref No. Parameter Minimum Maximum Unit
1 System CLK frequency1
1CL of PWMO = 30 pF
0 24MHz MHz
2a Clock high time 21 ns
2b Clock low time 21 ns
3a Clock fall time 0.3 ns
3b Clock rise time 0.3 ns
4a Output delay time 15.08 ns
4b Output setup time 15.77 ns
Table 50. SJC Timing Parameters (continued)
ID Parameter
All Frequencies
Unit
Min. Max.
4a
PWM Source Clock
2a 1
PWM Output
2b
3a
3b
4b
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 49
Figure 31. PWM Timing
Figure 32. PWM Timing
Table 52. PWM Output Timing Parameter: HSADC clock
Ref No. Parameter Minimum Maximum Unit
1 System CLK frequency1
1CL of PWMO = 30 pF
032MHz
2a Clock high time 6.813 ns
2b Clock low time 24.432 ns
3a Clock fall time 0.3 ns
3b Clock rise time 0.3 ns
4a Output delay time 14.93 ns
4b Output setup time 15.71 ns
4a
PWM Source Clock
2a 1
PWM Output
2b
3a
3b
4b
PWM Source Clock
PWM Output
2a
4a
3a 2b 3b
4b
i.MX28 Applications Processors for Consumer Products, Rev. 2
50 Freescale Semiconductor
Electrical Characteristics
3.5.12 Serial Audio Interface (SAIF) AC Timing
The following subsections describe SAIF timing in two cases:
Transmitter
Receiver
3.5.12.1 SAIF Transmitter Timing
Figure 33 shows the timing for SAIF transmitter with internal clock, and Table 54 describes the timing
parameters (SS1–SS13).
Figure 33. SAIF Transmitter Timing Diagram
Table 53. PWM Output Timing Parameter: MATT Mode 24 MHz Crystal Clock
Ref No. Parameter Minimum Maximum Unit
1 System CLK frequency1
1CL of PWMO = 30 pF
24 24 MHz
2a Clock high time 20.99 ns
2b Clock low time 21.01 ns
3a Clock fall time 0.3 ns
3b Clock rise time 0.3 ns
4a Output delay time 15.23 ns
4b Output setup time 15.92 ns
BITCLK
LRCLK
SS1
SDATA0-2
SS2 SS4
SS3
SS5
SS6 SS7
SS8 SS9
SS12
SS13
SS10
SS11
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 51
3.5.12.2 SAIF Receiver Timing
Figure 34 shows the timing for the SAIF receiver with internal clock. Table 55 describes the timing
parameters (SS1–SS17) shown in the figure.
Figure 34. SAIF Receiver Timing Diagram
Table 54. SAIF Transmitter Timing
ID Parameter Min. Max. Unit
SS1 BITCLK period 81.4 ns
SS2 BITCLK high period 36.0 ns
SS3 BITCLK rise time 6.0 ns
SS4 BITCLK low period 36.0 ns
SS5 BITCLK fall time 6.0 ns
SS6 BITCLK high to LRCLK high 15.0 ns
SS7 BITCLK high to LRCLK low 15.0 ns
SS8 LRCLK rise time 6.0 ns
SS9 LRCLK fall time 6.0 ns
SS10 BITCLK high to SDATA valid from high impedance 15.0 ns
SS11 BITCLK high to SDATA high/low 15.0 ns
SS12 BITCLK high to SDATA high impedance 15.0 ns
SS13 SDATA rise/fall time 6.0 ns
BITCLK
LRCLK
SDATA0-2
SS1
SS4SS2
SS16
SS17
SS14 SS15
SS3
SS5
i.MX28 Applications Processors for Consumer Products, Rev. 2
52 Freescale Semiconductor
Electrical Characteristics
3.5.13 SPDIF AC Timing
SPDIF data is sent using bi-phase marking code. When encoding, the SPDIF data signal is modulated by
a clock that is twice the bit rate of the data signal.
The following Table 56 shows SPDIF timing parameters, including the timing of the modulating Tx clock
(spdif_clk) in SPDIF transmitter as shown in the Figure 35.
Figure 35. spdif_clk Timing
Table 55. SAIF Receiver Timing with Internal Clock
ID Parameter Min. Max. Unit
SS1 BITCLK period 81.4 ns
SS2 BITCLK high period 36.0 ns
SS3 BITCLK rise time 6.0 ns
SS4 BITCLK low period 36.0 ns
SS5 BITCLK fall time 6.0 ns
SS14 BITCLK high to LRCLK high 15.0 ns
SS15 BITCLK high to LRCLK low 15.0 ns
SS16 SDATA setup time before BITCLK high 10.0 ns
SS17 SDATA hold time after BITCLK high 0.0 ns
Table 56. SPDIF Timing
Characteristics Symbol
Timing Parameter Range
Unit
Min Max
SPDIFOUT output (Load = 30pf)
•Skew
Transition Rising
Transition Falling
1.5
13.6
18.0
ns
Modulating Tx clock (spdif_clk) period spclkp 81.4 ns
spdif_clk high period spclkph 65.1 ns
spdif_clk low period spclkpl 65.1 ns
spdif_clk
(Input)
spclkp
spclkph
spclkpl
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 53
3.5.14 Synchronous Serial Port (SSP) AC Timing
This section describes the electrical information of the SSP, which includes SD/MMC4.3 (Single Data
Rate) timing, MMC4.4 (Dual Date Rate) timing, MS (Memory Stick) timing, and SPI timing.
3.5.14.1 SD/MMC4.3 (Single Data Rate) AC Timing
Figure 36 depicts the timing of SD/MMC4.3, and Table 57 lists the SD/MMC4.3 timing characteristics.
Figure 36. SD/MMC4.3 Timing
Table 57. SD/MMC4.3 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (Low Speed) fPP10 400 kHz
Clock Frequency (SD/SDIO Full Speed/High
Speed)
fPP2025/50MHz
Clock Frequency (MMC Full Speed/High Speed) fPP3020/52MHz
Clock Frequency (Identification Mode) fOD 100 400 kHz
SD2 Clock Low Time tWL 7—ns
SD3 Clock High Time tWH 7—ns
SD4 Clock Rise Time tTLH —3ns
SD5 Clock Fall Time tTHL —3ns
SSP Output / Card Inputs CMD, DAT (Reference to CLK)
SD6 SSP Output Delay tOD -5 5 ns
SSP Input / Card Outputs CMD, DAT (Reference to CLK)
SD1
SD3
SD5
SD4
SD7
CMD
output from SSP to card DAT1
......
DAT7
DAT0
CMD
input from card to SSP DAT1
......
DAT7
DAT0
SCK
SD2
SD8
SD6
i.MX28 Applications Processors for Consumer Products, Rev. 2
54 Freescale Semiconductor
Electrical Characteristics
3.5.14.2 MMC4.4 (Dual Data Rate) AC Timing
Figure 37 depicts the timing of MMC4.4, and Table 58 lists the MMC4.4 timing characteristics. Be aware
that only DATA0–DATA7 are sampled on both edges of the clock (not applicable to CMD).
Figure 37. MMC4.4 Timing
SD7 SSP Input Setup Time tISU 2.5 ns
SD8 SSP Input Hold Time tIH42.5 ns
1In low speed mode, the card clock must be lower than 400 kHz, and the voltage ranges from 2.7 to 3.6 V.
2In normal speed mode for the SD/SDIO card, clock frequency can be any value between 0 ~ 25 MHz. In high speed mode,
clock frequency can be any value between 0 ~ 50 MHz.
3In normal speed mode for MMC card, clock frequency can be any value between 0 ~ 20 MHz. In high speed mode, clock
frequency can be any value between 0 ~ 52MHz.
4To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2ns.
Table 58. MMC4.4 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (MMC Full Speed/High Speed) fPP 052MHz
SSP Output / Card Inputs CMD, DAT (Reference to CLK)
SD2 SSP Output Delay tOD –5 5 ns
SSP Input / Card Outputs CMD, DAT (Reference to CLK)
SD3 SSP Input Setup Time tISU 2.5 ns
SD4 SSP Input Hold Time tIH 2.5 ns
Table 57. SD/MMC4.3 Interface Timing Specification (continued)
ID Parameter Symbols Min Max Unit
SD1
SD2
SD3
output from SSP to card DAT1
......
DAT7
DAT0
input from card to SSP DAT1
......
DAT7
DAT0
SCK
SD4
SD2
......
......
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 55
3.5.14.3 MS (Memory Stick) AC Timing
The SSP module, which also has the function of a memory stick host controller, is compatible with the
Sony Memory Stick version 1.x and Memory Stick PRO.
Figure 38, Figure 39 and Table 40 show the timing of the Memory Stick. Table 59 and Table 60 list the
Memory Stick timing characteristics.
Figure 38. MS Clock Time Waveforms
Figure 39. MS Serial Transfer Mode Timing Diagram
20%
80% 80%
20%
SCK 50% 50% 20%
80%
50%
MS4
MS2
MS5
MS3
MS1
SCK
BS(CMD)
DATA
(Output)
DATA
(Input)
MS1
MS6 MS7
MS8 MS9
MS10
i.MX28 Applications Processors for Consumer Products, Rev. 2
56 Freescale Semiconductor
Electrical Characteristics
Figure 40. MS Parallel Transfer Mode Timing Diagram
Table 59. MS Serial Transfer Timing Parameters
ID Parameter Symbol Min Max Unit
MS1 SCK Cycle Time tCLKc 50 ns
MS2 SCK High Pulse Time tCLKwh 15 ns
MS3 SCK Low Pulse Time tCLKwl 15 ns
MS4 SCK Rise Time tCLKr 10 ns
MS5 SCK Fall Time tCLKf 10 ns
MS6 BS Setup Time tBSsu 5 ns
MS7 BS Hold Time tBSh 5 ns
MS8 DATA Setup Time tDsu 5 ns
MS9 DATA Hold Time tDh 5 ns
MS10 DATA Input Delay Time tDd 15 ns
Table 60. MS Parallel Transfer Timing Parameters
ID Parameter Symbol Min Max Unit
MS1 SCK Cycle Time tCLKc 25 ns
MS2 SCK High Pulse Time tCLKwh 5 ns
MS3 SCK Low Pulse Time tCLKwl 5 ns
MS4 SCK Rise Time tCLKr 10 ns
Electrical Characteristics
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 57
3.5.14.4 SPI AC Timing
Figure 41 depicts the master mode and slave mode timings of the SPI, and Table 61 lists the timing
parameters.
Figure 41. SPI Interface Timing Diagram
MS5 SCK Fall Time tCLKf 10 ns
MS11 BS Setup Time tBSsu 8 ns
MS12 BS Hold Time tBSh 1 ns
MS13 DATA Setup Time tDsu 8 ns
MS14 DATA Hold Time tDh 1 ns
MS15 DATA Input Delay Time tDd 15 ns
Table 61. SPI Interface Timing Parameters
ID Parameter Symbol Min. Max. Unit
CS1 SCK cycle time tclk 50 ns
CS2 SCK high or low time tSW 25 ns
CS3 SCK rise or fall tRISE/FALL —7.6ns
CS4 SSn pulse width tCSLH 25 ns
CS5 SSn lead time (CS setup time) tSCS 25 ns
CS6 SSn lag time (CS hold time) tHCS 25 ns
CS7 MOSI setup time tSmosi 5—ns
CS8 MOSI hold time tHmosi 5—ns
CS9 MISO setup time tSmiso 5—ns
CS10 MISO hold time tHmiso 5—ns
Table 60. MS Parallel Transfer Timing Parameters (continued)
ID Parameter Symbol Min Max Unit
CS7 CS8
CS2
CS2
CS4
CS6
CS9 CS10
SCK
SSn
MISO
MOSI
CS1 CS3
CS3
CS5
i.MX28 Applications Processors for Consumer Products, Rev. 2
58 Freescale Semiconductor
Electrical Characteristics
3.5.15 UART (UARTAPP and DebugUART) AC Timing
This section describes the UART module AC timing which is applicable to both UARTAPP and
DebugUART.
3.5.15.1 UART Transmit Timing
Figure 39 shows the UART transmit timing, showing only eight data bits and one stop bit. Table 62
describes the timing parameter (UA1) shown in the figure.
Figure 42. UART Transmit Timing Diagram
3.5.15.2 UART Receive Timing
Figure 43 shows the UART receive timing, showing only eight data bits and one stop bit. Table 63
describes the timing parameter (UA2) shown in the figure.
Figure 43. UART Receive Timing Diagram
Table 62. UART Transmit Timing Parameters
ID Parameter Symbol Min. Max. Unit
UA1 Transmit Bit Time tTbit 1/Fbaud_rate1 – Tref_clk2
1Fbaud_rate: Baud rate frequency. The maximum baud rate the UARTAPP can support is 3.25 Mbps. The maximum baud rate of
DebugUART is 115.2 kbps.
2Tref_clk: The period of UART reference clock ref_clk (which is APBX clock = 24 MHz).
1/Fbaud_rate + Tref_clk
Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
TXD
(output) Bit 3
Start
Bit STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA1
UA1 UA1
UA1
Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
RXD
(input) Bit 3
Start
Bit STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA2 UA2
UA2 UA2
Package Information and Contact Assignments
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 59
4 Package Information and Contact Assignments
4.1 Case MAPBGA-289, 14 x 14 mm, 0.8 mm Pitch
The following notes apply to Figure 44:
All dimensions are in millimeters.
Dimensioning and tolerancing per ASME Y14.5M-1994.
Maximum solder bump diameter measured parallel to datum A.
Datum A, the seating plane, is determined by the spherical crowns of the solder bumps.
Parallelism measurement excludes any effect of mark on top surface of package.
Table 63. UART Receive Timing Parameters
ID Parameter Symbol Min. Max. Unit
UA2 Receive bit time1
1The UART receiver can tolerate 1/(16 × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 × Fbaud_rate).
tRbit 1/Fbaud_rate2 – 1/(16
× Fbaud_rate)
2Fbaud_rate: Baud rate frequency. The maximum baud rate the UARTAPP can support is 3.25 Mbps. The maximum baud rate of
DebugUART is 115 kbps.
1/Fbaud_rate + 1/(16
× Fbaud_rate)
i.MX28 Applications Processors for Consumer Products, Rev. 2
60 Freescale Semiconductor
Package Information and Contact Assignments
Figure 44 shows the i.MX28 production package.
Figure 44. zzxzi.MX28 Production Package
4.2 Ground, Power, Sense, and Reference Contact Assignments
Table 64 shows power and ground contact assignments for the MAPBGA package.
Table 64. MAPBGA Power and Ground Contact Assignments
Contact Name Contact Assignment
VDDA1 C13
VDDD G12,G11,F10,F11,K12,F12,G10
VDDIO18 G8,F9,F8,G9
VDDIO33 H8,J8,N3,G3,E6,J9,J10,A7,E16
VDDIO33_EMI N17
VDDIO_EMI P11,R13,N13,N15,G17,M12,M10,G13,M11,L13,G15
Package Information and Contact Assignments
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 61
4.3 Signal Contact Assignments
Table 65 lists the i.MX287 MAPBGA package signal contact assignments.
VDDIO_EMIQ K15,J13,R15
VDDXTAL C12
VSS E15,L11,A1,K10,K11,J11,M14,H11,U1,H9,H12,H3,K9,C16,L10,H16,J12,H10,B7,E5,J15,A9,N4
VSSA1 B13
VSSA2 B11
VSSIO_EMI F16,R10,H14,M16,F14,L12,P16,U17,T14,P14,R12
Table 65. i.MX287 MAPBGA Contact Assignments
Signal Name Contact
Assignment Signal Name Contact
Assignment Signal Name Contact
Assignment
AUART0_CTS J6 EMI_DQS1N J16 LCD_D17 R3
AUART0_RTS J7 EMI_ODT0 R17 LCD_D18 U4
AUART0_RX G5 EMI_ODT1 T17 LCD_D19 T4
AUART0_TX H5 EMI_RASN R16 LCD_D20 R4
AUART1_CTS K5 EMI_VREF0 R14 LCD_D21 U5
AUART1_RTS J5 EMI_VREF1 K13 LCD_D22 T5
AUART1_RX L4 EMI_WEN T15 LCD_D23 R5
AUART1_TX K4 ENET0_COL J4 LCD_DOTCLK N1
AU AR T 2 _C T S H 6 E N E T 0 _ C RS J3 LCD_ENABLE N5
AUART2_RTS H7 ENET0_MDC G4 LCD_HSYNC M1
AUART2_RX F6 ENET0_MDIO H4 LCD_RD_E P4
AUART2_TX F5 ENET0_RXD0 H 1 LCD_R E SET M 6
AUART3_CTS L6 ENET0_RXD1 H2 LCD_RS M4
AUART3_RTS K6 ENET0_RXD2 J1 LCD_VSYNC L1
AUART3_RX M5 ENET0_RXD3 J2 LCD_WR_RWN K1
AUART3_TX L5 ENET0_RX_CLK F3 LRADC0 C15
BATTERY A15 ENET0_RX_EN E4 LRADC1 C9
DCDC_BATT B15 ENET0_TXD0 F1 LRADC2 C8
DCDC_GND A17 ENET0_TXD1 F2 LRADC3 D9
DCDC_LN1 B17 ENET0_TXD2 G1 LRADC4 D13
DCDC_LP A16 ENET0_TXD3 G2 LRADC5 D15
Table 64. MAPBGA Power and Ground Contact Assignments (continued)
Contact Name Contact Assignment
i.MX28 Applications Processors for Consumer Products, Rev. 2
62 Freescale Semiconductor
Package Information and Contact Assignments
DCDC_VDDA B16 ENET0_TX_CLK E3 LRADC6 C14
DCDC_VDDD D17 ENET0_TX_EN F4 PSWITCH A11
DCDC_VDDIO C17 ENET_CLK E2 PWM0 K7
DEBUG B9 GPMI_ALE P6 PWM1 L7
EMI_A00 U15 GPMI_CE0N N7 PWM2 K8
EMI_A01 U12 GPMI_CE1N N9 PWM3 E9
EMI_A02 U14 GPMI_CE2N M7 PWM4 E10
EMI_A03 T11 GPMI_CE3N M9 RESETN A14
EMI_A04 U10 GPMI_CLE P7 RTC_XTALI D11
EMI_A05 R11 GPMI_D00 U8 RTC_XTALO C11
EMI_A06 R9 GPMI_D01 T8 SAIF0_BITCLK F7
EMI_A07 N11 GPMI_D02 R8 SAIF0_LRCLK G6
EMI_A08 U9 GPMI_D03 U7 SAIF0_MCLK G7
EMI_A09 P10 GPMI_D04 T7 SAIF0_SDATA0 E7
EMI_A10 U13 GPMI_D05 R7 SAIF1_SDATA0 E8
EMI_A11 T10 GPMI_D06 U6 SPDIF D7
EMI_A12 U11 GPMI_D07 T6 SSP0_CMD A4
EMI_A13 T9 GPMI_RDN R6 SSP0_DATA0 B6
EMI_A14 N10 GPMI_RDY0 N6 SSP0_DATA1 C6
EMI_BA0 T16 GPMI_RDY1 N8 SSP0_DATA2 D6
EMI_BA1 T12 GPMI_RDY2 M8 SSP0_DATA3 A5
EMI_BA2 N12 GPMI_RDY3 L8 SSP0_DATA4 B5
EMI_CASN U16 GPMI_RESETN L9 SSP0_DATA5 C5
EMI_CE0N P12 GPMI_WRN P8 SSP0_DATA6 D5
EMI_CE1N P9 HSADC0 B14 SSP0_DATA7 B4
EMI_CKE T13 I2C0_SCL C7 SSP0_DETECT D10
EMI_CLK L17 I2C0_SDA D8 SSP0_SCK A6
EMI_CLKN L16 JTAG_RTCK E14 SSP1_CMD C1
EMI_D00 N16 JTAG_TCK E11 SSP1_DATA0 D1
EMI_D01 M13 JTAG_TDI E12 SSP1_DATA3 E1
EMI_D02 P15 JTAG_TDO E13 SSP1_SCK B1
EMI_D03 N14 JTAG_TMS D12 SSP2_MISO B3
Table 65. i.MX287 MAPBGA Contact Assignments (continued)
Signal Name Contact
Assignment Signal Name Contact
Assignment Signal Name Contact
Assignment
Package Information and Contact Assignments
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 63
4.4 i.MX280 Ball Map
Table 66 shows the i.MX280 MAPBGA ball map.
EMI_D04 P13 JTAG_TRST D14 SSP2_MOSI C3
EMI_D05 P17 LCD_CS P5 SSP2_SCK A3
EMI_D06 L14 LCD_D00 K2 SSP2_SS0 C4
EMI_D07 M17 LCD_D01 K3 SSP2_SS1 D3
EMI_D08 G16 LCD_D02 L2 SSP2_SS2 D4
EMI_D09 H15 LCD_D03 L3 SSP3_MISO B2
EMI_D10 G14 LCD_D04 M2 SSP3_MOSI C2
EMI_D11 J14 LCD_D05 M3 SSP3_SCK A2
EMI_D12 H13 LCD_D06 N2 SSP3_SS0 D2
EMI_D13 H17 LCD_D07 P1 TESTMODE C10
EMI_D14 F13 LCD_D08 P2 USB0DM A10
EMI_D15 F17 LCD_D09 P3 USB0DP B10
EMI_DDR_OPE
N
K14 LCD_D10 R1 USB1DM B8
EMI_DDR_OPE
N_FB
L15 LCD_D11 R2 USB1DP A8
EMI_DQM0 M15 LCD_D12 T1 VDD1P5 D16
EMI_DQM1 F15 LCD_D13 T2 VDD4P2 A13
EMI_DQS0 K17 LCD_D14 U2 VDD5V E17
EMI_DQS0N K16 LCD_D15 U3 XTALI A12
EMI_DQS1 J17 LCD_D16 T3 XTALO B12
Table 66. 289-Pin i.MX280 MAPBGA Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
A
VSS
NC
SSP2_SCK
SSP0_CMD
SSP0_DATA3
SSP0_SCK
VDDIO33
USB1DP
VSS
USB0DM
PSWITCH
XTALI
VDD4P2
RESETN
BATTERY
DCDC_LP
DCDC_GND
A
Table 65. i.MX287 MAPBGA Contact Assignments (continued)
Signal Name Contact
Assignment Signal Name Contact
Assignment Signal Name Contact
Assignment
i.MX28 Applications Processors for Consumer Products, Rev. 2
64 Freescale Semiconductor
Package Information and Contact Assignments
B
NC
NC
SSP2_MISO
SSP0_DATA7
SSP0_DATA4
SSP0_DATA0
VSS
USB1DM
DEBUG
USB0DP
VSSA2
XTALO
VSSA1
HSADC0
DCDC_BATT
DCDC_VDDA
DCDC_LN1
B
C
NC
NC
SSP2_MOSI
SSP2_SS0
SSP0_DATA5
SSP0_DATA1
I2C0_SCL
LRADC2
LRADC1
TESTMODE
RTC_XTALO
VDDXTAL
VDDA1
LRADC6
LRADC0
VSS
DCDC_VDDIO
C
D
NC
NC
SSP2_SS1
SSP2_SS2
SSP0_DATA6
SSP0_DATA2
NC
I2C0_SDA
LRADC3
SSP0_DETECT
RTC_XTALI
JTAG_TMS
LRADC4
JTAG_TRST
LRADC5
VDD1P5
DCDC_VDDD
D
E
NC
ENET_CLK
NC
ENET0_RX_EN
VSS
VDDIO33
SAIF0_SDATA0
SAIF1_SDATA0
PWM3
PWM4
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_RTCK
VSS
VDDIO33
VDD5V
E
F
ENET0_TXD0
ENET0_TXD1
NC
ENET0_TX_EN
NC
NC
SAIF0_BITCLK
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
EMI_D14
VSSIO_EMI
EMI_DQM1
VSSIO_EMI
EMI_D15
F
G
NC
NC
VDDIO33
ENET0_MDC
AUART0_RX
SAIF0_LRCLK
SAIF0_MCLK
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
VDDIO_EMI
EMI_D10
VDDIO_EMI
EMI_D08
VDDIO_EMI
G
H
ENET0_RXD0
ENET0_RXD1
VSS
ENET0_MDIO
AUART0_TX
NC
NC
VDDIO33
VSS
VSS
VSS
VSS
EMI_D12
VSSIO_EMI
EMI_D09
VSS
EMI_D13
H
J
NC
NC
NC
NC
NC
AUART0_CTS
AUART0_RTS
VDDIO33
VDDIO33
VDDIO33
VSS
VSS
VDDIO_EMIQ
EMI_D11
VSS
EMI_DQS1N
EMI_DQS1
J
K
ETM_TCLK
ETM_DA0
ETM_DA1
AUART1_TX
NC
NC
PWM0
PWM2
VSS
VSS
VSS
VDDD
EMI_VREF1
EMI_DDR_OPEN
VDDIO_EMIQ
EMI_DQS0N
EMI_DQS0
K
Table 66. 289-Pin i.MX280 MAPBGA Ball Map (continued)
Package Information and Contact Assignments
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 65
4.5 i.MX283 Ball Map
Table 67 shows the i.MX283 MAPBGA ball map.
L
NC
ETM_DA2
ETM_DA3
AUART1_RX
NC
NC
PWM1
NC
GPMI_RESETN
VSS
VSS
VSSIO_EMI
VDDIO_EMI
EMI_D06
EMI_DDR_OPEN_FB
EMI_CLKN
EMI_CLK
L
M
NC
ETM_DA4
ETM_DA5
GPIO_B1P26
NC
NC
NC
NC
NC
VDDIO_EMI
VDDIO_EMI
VDDIO_EMI
EMI_D01
VSS
EMI_DQM0
VSSIO_EMI
EMI_D07
M
N
NC
ETM_DA6
VDDIO33
VSS
NC
GPMI_RDY0
GPMI_CE0N
GPMI_RDY1
GPMI_CE1N
EMI_A14
EMI_A07
EMI_BA2
VDDIO_EMI
EMI_D03
VDDIO_EMI
EMI_D00
VDDIO33_EMI
N
P
ETM_DA7
NC
NC
ETM_TCTL
NC
GPMI_ALE
GPMI_CLE
GPMI_WRN
EMI_CE1N
EMI_A09
VDDIO_EMI
EMI_CE0N
EMI_D04
VSSIO_EMI
EMI_D02
VSSIO_EMI
EMI_D05
P
R
NC
NC
NC
NC
NC
GPMI_RDN
GPMI_D05
GPMI_D02
EMI_A06
VSSIO_EMI
EMI_A05
VSSIO_EMI
VDDIO_EMI
EMI_VREF0
VDDIO_EMIQ
EMI_RASN
EMI_ODT0
R
T
NC
NC
NC
NC
NC
GPMI_D07
GPMI_D04
GPMI_D01
EMI_A13
EMI_A11
EMI_A03
EMI_BA1
EMI_CKE
VSSIO_EMI
EMI_WEN
EMI_BA0
EMI_ODT1
T
U
VSS
NC
NC
NC
NC
GPMI_D06
GPMI_D03
GPMI_D00
EMI_A08
EMI_A04
EMI_A12
EMI_A01
EMI_A10
EMI_A02
EMI_A00
EMI_CASN
VSSIO_EMI
U
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Table 67. 289-Pin i.MX283 MAPBGA Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
A
VSS
NC
SSP2_SCK
SSP0_CMD
SSP0_DATA3
SSP0_SCK
VDDIO33
USB1DP
VSS
USB0DM
PSWITCH
XTALI
VDD4P2
RESETN
BATTERY
DCDC_LP
DCDC_GND
A
Table 66. 289-Pin i.MX280 MAPBGA Ball Map (continued)
i.MX28 Applications Processors for Consumer Products, Rev. 2
66 Freescale Semiconductor
Package Information and Contact Assignments
B
NC
NC
SSP2_MISO
SSP0_DATA7
SSP0_DATA4
SSP0_DATA0
VSS
USB1DM
DEBUG
USB0DP
VSSA2
XTALO
VSSA1
HSADC0
DCDC_BATT
DCDC_VDDA
DCDC_LN1
B
C
NC
NC
SSP2_MOSI
SSP2_SS0
SSP0_DATA5
SSP0_DATA1
I2C0_SCL
LRADC2
LRADC1
TESTMODE
RTC_XTALO
VDDXTAL
VDDA1
LRADC6
LRADC0
VSS
DCDC_VDDIO
C
D
NC
NC
SSP2_SS1
SSP2_SS2
SSP0_DATA6
SSP0_DATA2
NC
I2C0_SDA
LRADC3
SSP0_DETECT
RTC_XTALI
JTAG_TMS
LRADC4
JTAG_TRST
LRADC5
VDD1P5
DCDC_VDDD
D
E
NC
ENET_CLK
NC
ENET0_RX_EN
VSS
VDDIO33
SAIF0_SDATA0
SAIF1_SDATA0
PWM3
PWM4
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_RTCK
VSS
VDDIO33
VDD5V
E
F
ENET0_TXD0
ENET0_TXD1
NC
ENET0_TX_EN
NC
NC
SAIF0_BITCLK
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
EMI_D14
VSSIO_EMI
EMI_DQM1
VSSIO_EMI
EMI_D15
F
G
NC
NC
VDDIO33
ENET0_MDC
AUART0_RX
SAIF0_LRCLK
SAIF0_MCLK
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
VDDIO_EMI
EMI_D10
VDDIO_EMI
EMI_D08
VDDIO_EMI
G
H
ENET0_RXD0
ENET0_RXD1
VSS
ENET0_MDIO
AUART0_TX
NC
NC
VDDIO33
VSS
VSS
VSS
VSS
EMI_D12
VSSIO_EMI
EMI_D09
VSS
EMI_D13
H
J
NC
NC
NC
NC
NC
AUART0_CTS
AUART0_RTS
VDDIO33
VDDIO33
VDDIO33
VSS
VSS
VDDIO_EMIQ
EMI_D11
VSS
EMI_DQS1N
EMI_DQS1
J
K
LCD_WR_RWN
LCD_D00
LCD_D01
AUART1_TX
NC
NC
PWM0
PWM2
VSS
VSS
VSS
VDDD
EMI_VREF1
EMI_DDR_OPEN
VDDIO_EMIQ
EMI_DQS0N
EMI_DQS0
K
Table 67. 289-Pin i.MX283 MAPBGA Ball Map (continued)
Package Information and Contact Assignments
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 67
4.6 i.MX286 Ball Map
Table 68 shows the i.MX286 MAPBGA ball map.
L
NC
LCD_D02
LCD_D03
AUART1_RX
NC
NC
PWM1
NC
GPMI_RESETN
VSS
VSS
VSSIO_EMI
VDDIO_EMI
EMI_D06
EMI_DDR_OPEN_FB
EMI_CLKN
EMI_CLK
L
M
NC
LCD_D04
LCD_D05
LCD_RS
NC
LCD_RESET
NC
NC
NC
VDDIO_EMI
VDDIO_EMI
VDDIO_EMI
EMI_D01
VSS
EMI_DQM0
VSSIO_EMI
EMI_D07
M
N
NC
LCD_D06
VDDIO33
VSS
NC
GPMI_RDY0
GPMI_CE0N
GPMI_RDY1
GPMI_CE1N
EMI_A14
EMI_A07
EMI_BA2
VDDIO_EMI
EMI_D03
VDDIO_EMI
EMI_D00
VDDIO33_EMI
N
P
LCD_D07
LCD_D08
LCD_D09
LCD_RD_E
LCD_CS
GPMI_ALE
GPMI_CLE
GPMI_WRN
EMI_CE1N
EMI_A09
VDDIO_EMI
EMI_CE0N
EMI_D04
VSSIO_EMI
EMI_D02
VSSIO_EMI
EMI_D05
P
R
LCD_D10
LCD_D11
LCD_D17
LCD_D20
LCD_D23
GPMI_RDN
GPMI_D05
GPMI_D02
EMI_A06
VSSIO_EMI
EMI_A05
VSSIO_EMI
VDDIO_EMI
EMI_VREF0
VDDIO_EMIQ
EMI_RASN
EMI_ODT0
R
T
LCD_D12
LCD_D13
LCD_D16
LCD_D19
LCD_D22
GPMI_D07
GPMI_D04
GPMI_D01
EMI_A13
EMI_A11
EMI_A03
EMI_BA1
EMI_CKE
VSSIO_EMI
EMI_WEN
EMI_BA0
EMI_ODT1
T
U
VSS
LCD_D14
LCD_D15
LCD_D18
LCD_D21
GPMI_D06
GPMI_D03
GPMI_D00
EMI_A08
EMI_A04
EMI_A12
EMI_A01
EMI_A10
EMI_A02
EMI_A00
EMI_CASN
VSSIO_EMI
U
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Table 68. 289-Pin i.MX286 MAPBGA Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
A
VSS
NC
SSP2_SCK
SSP0_CMD
SSP0_DATA3
SSP0_SCK
VDDIO33
USB1DP
VSS
USB0DM
PSWITCH
XTALI
VDD4P2
RESETN
BATTERY
DCDC_LP
DCDC_GND
A
Table 67. 289-Pin i.MX283 MAPBGA Ball Map (continued)
i.MX28 Applications Processors for Consumer Products, Rev. 2
68 Freescale Semiconductor
Package Information and Contact Assignments
B
NC
NC
SSP2_MISO
SSP0_DATA7
SSP0_DATA4
SSP0_DATA0
VSS
USB1DM
DEBUG
USB0DP
VSSA2
XTALO
VSSA1
HSADC0
DCDC_BATT
DCDC_VDDA
DCDC_LN1
B
C
NC
NC
SSP2_MOSI
SSP2_SS0
SSP0_DATA5
SSP0_DATA1
I2C0_SCL
LRADC2
LRADC1
TESTMODE
RTC_XTALO
VDDXTAL
VDDA1
LRADC6
LRADC0
VSS
DCDC_VDDIO
C
D
NC
NC
SSP2_SS1
SSP2_SS2
SSP0_DATA6
SSP0_DATA2
SPDIF
I2C0_SDA
LRADC3
SSP0_DETECT
RTC_XTALI
JTAG_TMS
LRADC4
JTAG_TRST
LRADC5
VDD1P5
DCDC_VDDD
D
E
NC
ENET_CLK
NC
ENET0_RX_EN
VSS
VDDIO33
SAIF0_SDATA0
SAIF1_SDATA0
PWM3
PWM4
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_RTCK
VSS
VDDIO33
VDD5V
E
F
ENET0_TXD0
ENET0_TXD1
NC
ENET0_TX_EN
NC
NC
SAIF0_BITCLK
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
EMI_D14
VSSIO_EMI
EMI_DQM1
VSSIO_EMI
EMI_D15
F
G
NC
NC
VDDIO33
ENET0_MDC
AUART0_RX
SAIF0_LRCLK
SAIF0_MCLK
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
VDDIO_EMI
EMI_D10
VDDIO_EMI
EMI_D08
VDDIO_EMI
G
H
ENET0_RXD0
ENET0_RXD1
VSS
ENET0_MDIO
AUART0_TX
NC
NC
VDDIO33
VSS
VSS
VSS
VSS
EMI_D12
VSSIO_EMI
EMI_D09
VSS
EMI_D13
H
J
NC
NC
NC
NC
NC
AUART0_CTS
AUART0_RTS
VDDIO33
VDDIO33
VDDIO33
VSS
VSS
VDDIO_EMIQ
EMI_D11
VSS
EMI_DQS1N
EMI_DQS1
J
K
LCD_WR_RWN
LCD_D00
LCD_D01
AUART1_TX
NC
NC
PWM0
PWM2
VSS
VSS
VSS
VDDD
EMI_VREF1
EMI_DDR_OPEN
VDDIO_EMIQ
EMI_DQS0N
EMI_DQS0
K
Table 68. 289-Pin i.MX286 MAPBGA Ball Map (continued)
Package Information and Contact Assignments
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 69
4.7 i.MX287 Ball Map
Table 69 shows the i.MX287 MAPBGA Ball Map.
L
NC
LCD_D02
LCD_D03
AUART1_RX
NC
NC
PWM1
GPMI_RDY3
GPMI_RESETN
VSS
VSS
VSSIO_EMI
VDDIO_EMI
EMI_D06
EMI_DDR_OPEN_FB
EMI_CLKN
EMI_CLK
L
M
NC
LCD_D04
LCD_D05
LCD_RS
NC
LCD_RESET
GPMI_CE2N
GPMI_RDY2
GPMI_CE3N
VDDIO_EMI
VDDIO_EMI
VDDIO_EMI
EMI_D01
VSS
EMI_DQM0
VSSIO_EMI
EMI_D07
M
N
NC
LCD_D06
VDDIO33
VSS
NC
GPMI_RDY0
GPMI_CE0N
GPMI_RDY1
GPMI_CE1N
EMI_A14
EMI_A07
EMI_BA2
VDDIO_EMI
EMI_D03
VDDIO_EMI
EMI_D00
VDDIO33_EMI
N
P
LCD_D07
LCD_D08
LCD_D09
LCD_RD_E
LCD_CS
GPMI_ALE
GPMI_CLE
GPMI_WRN
EMI_CE1N
EMI_A09
VDDIO_EMI
EMI_CE0N
EMI_D04
VSSIO_EMI
EMI_D02
VSSIO_EMI
EMI_D05
P
R
LCD_D10
LCD_D11
LCD_D17
LCD_D20
LCD_D23
GPMI_RDN
GPMI_D05
GPMI_D02
EMI_A06
VSSIO_EMI
EMI_A05
VSSIO_EMI
VDDIO_EMI
EMI_VREF0
VDDIO_EMIQ
EMI_RASN
EMI_ODT0
R
T
LCD_D12
LCD_D13
LCD_D16
LCD_D19
LCD_D22
GPMI_D07
GPMI_D04
GPMI_D01
EMI_A13
EMI_A11
EMI_A03
EMI_BA1
EMI_CKE
VSSIO_EMI
EMI_WEN
EMI_BA0
EMI_ODT1
T
U
VSS
LCD_D14
LCD_D15
LCD_D18
LCD_D21
GPMI_D06
GPMI_D03
GPMI_D00
EMI_A08
EMI_A04
EMI_A12
EMI_A01
EMI_A10
EMI_A02
EMI_A00
EMI_CASN
VSSIO_EMI
U
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Table 69. 289-Pin i.MX287 MAPBGA Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
A
VSS
SSP3_SCK
SSP2_SCK
SSP0_CMD
SSP0_DATA3
SSP0_SCK
VDDIO33
USB1DP
VSS
USB0DM
PSWITCH
XTALI
VDD4P2
RESETN
BATTERY
DCDC_LP
DCDC_GND
A
Table 68. 289-Pin i.MX286 MAPBGA Ball Map (continued)
i.MX28 Applications Processors for Consumer Products, Rev. 2
70 Freescale Semiconductor
Package Information and Contact Assignments
B
SSP1_SCK
SSP3_MISO
SSP2_MISO
SSP0_DATA7
SSP0_DATA4
SSP0_DATA0
VSS
USB1DM
DEBUG
USB0DP
VSSA2
XTALO
VSSA1
HSADC0
DCDC_BATT
DCDC_VDDA
DCDC_LN1
B
C
SSP1_CMD
SSP3_MOSI
SSP2_MOSI
SSP2_SS0
SSP0_DATA5
SSP0_DATA1
I2C0_SCL
LRADC2
LRADC1
TESTMODE
RTC_XTALO
VDDXTAL
VDDA1
LRADC6
LRADC0
VSS
DCDC_VDDIO
C
D
SSP1_DATA0
SSP3_SS0
SSP2_SS1
SSP2_SS2
SSP0_DATA6
SSP0_DATA2
SPDIF
I2C0_SDA
LRADC3
SSP0_DETECT
RTC_XTALI
JTAG_TMS
LRADC4
JTAG_TRST
LRADC5
VDD1P5
DCDC_VDDD
D
E
SSP1_DATA3
ENET_CLK
ENET0_TX_CLK
ENET0_RX_EN
VSS
VDDIO33
SAIF0_SDATA0
SAIF1_SDATA0
PWM3
PWM4
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_RTCK
VSS
VDDIO33
VDD5V
E
F
ENET0_TXD0
ENET0_TXD1
ENET0_RX_CLK
ENET0_TX_EN
AUART2_TX
AUART2_RX
SAIF0_BITCLK
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
EMI_D14
VSSIO_EMI
EMI_DQM1
VSSIO_EMI
EMI_D15
F
G
ENET0_TXD2
ENET0_TXD3
VDDIO33
ENET0_MDC
AUART0_RX
SAIF0_LRCLK
SAIF0_MCLK
VDDIO18
VDDIO18
VDDD
VDDD
VDDD
VDDIO_EMI
EMI_D10
VDDIO_EMI
EMI_D08
VDDIO_EMI
G
H
ENET0_RXD0
ENET0_RXD1
VSS
ENET0_MDIO
AUART0_TX
AUART2_CTS
AUART2_RTS
VDDIO33
VSS
VSS
VSS
VSS
EMI_D12
VSSIO_EMI
EMI_D09
VSS
EMI_D13
H
J
ENET0_RXD2
ENET0_RXD3
ENET0_CRS
ENET0_COL
AUART1_RTS
AUART0_CTS
AUART0_RTS
VDDIO33
VDDIO33
VDDIO33
VSS
VSS
VDDIO_EMIQ
EMI_D11
VSS
EMI_DQS1N
EMI_DQS1
J
K
LCD_WR_RWN
LCD_D00
LCD_D01
AUART1_TX
AUART1_CTS
AUART3_RTS
PWM0
PWM2
VSS
VSS
VSS
VDDD
EMI_VREF1
EMI_DDR_OPEN
VDDIO_EMIQ
EMI_DQS0N
EMI_DQS0
K
Table 69. 289-Pin i.MX287 MAPBGA Ball Map (continued)
Package Information and Contact Assignments
i.MX28 Applications Processors for Consumer Products, Rev. 2
Freescale Semiconductor 71
L
LCD_VSYNC
LCD_D02
LCD_D03
AUART1_RX
AUART3_TX
AUART3_CTS
PWM1
GPMI_RDY3
GPMI_RESETN
VSS
VSS
VSSIO_EMI
VDDIO_EMI
EMI_D06
EMI_DDR_OPEN_FB
EMI_CLKN
EMI_CLK
L
M
LCD_HSYNC
LCD_D04
LCD_D05
LCD_RS
AUART3_RX
LCD_RESET
GPMI_CE2N
GPMI_RDY2
GPMI_CE3N
VDDIO_EMI
VDDIO_EMI
VDDIO_EMI
EMI_D01
VSS
EMI_DQM0
VSSIO_EMI
EMI_D07
M
N
LCD_DOTCLK
LCD_D06
VDDIO33
VSS
LCD_ENABLE
GPMI_RDY0
GPMI_CE0N
GPMI_RDY1
GPMI_CE1N
EMI_A14
EMI_A07
EMI_BA2
VDDIO_EMI
EMI_D03
VDDIO_EMI
EMI_D00
VDDIO33_EMI
N
P
LCD_D07
LCD_D08
LCD_D09
LCD_RD_E
LCD_CS
GPMI_ALE
GPMI_CLE
GPMI_WRN
EMI_CE1N
EMI_A09
VDDIO_EMI
EMI_CE0N
EMI_D04
VSSIO_EMI
EMI_D02
VSSIO_EMI
EMI_D05
P
R
LCD_D10
LCD_D11
LCD_D17
LCD_D20
LCD_D23
GPMI_RDN
GPMI_D05
GPMI_D02
EMI_A06
VSSIO_EMI
EMI_A05
VSSIO_EMI
VDDIO_EMI
EMI_VREF0
VDDIO_EMIQ
EMI_RASN
EMI_ODT0
R
T
LCD_D12
LCD_D13
LCD_D16
LCD_D19
LCD_D22
GPMI_D07
GPMI_D04
GPMI_D01
EMI_A13
EMI_A11
EMI_A03
EMI_BA1
EMI_CKE
VSSIO_EMI
EMI_WEN
EMI_BA0
EMI_ODT1
T
U
VSS
LCD_D14
LCD_D15
LCD_D18
LCD_D21
GPMI_D06
GPMI_D03
GPMI_D00
EMI_A08
EMI_A04
EMI_A12
EMI_A01
EMI_A10
EMI_A02
EMI_A00
EMI_CASN
VSSIO_EMI
U
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Table 69. 289-Pin i.MX287 MAPBGA Ball Map (continued)
i.MX28 Applications Processors for Consumer Products, Rev. 2
72 Freescale Semiconductor
Revision History
5 Revision History
Table 70 summarizes revisions to this document.
Table 70. Document Revision History
Rev.
Number Date Substantive Change(s)
Rev. 2 03/2012 In Section 1.1, “Device Features:”
—Updated synchronous serial ports (SSP) support for the i.MX28
—Updated Ethernet support for the i.MX28
—Updated Low-Resolution A/D Converter (LRADC) support for the i.MX28
Updated Table 2, "i.MX28 Functional Differences," on page 4.
•In Table 6, "DC Absolute Maximum Ratings," on page 12, removed the PSWITCH parameter as this
paramater is explained in detail in Ta b l e 1 1 .
•In Table 8, "Recommended Power Supply Operating Conditions," on page 13:
—Updated two parameters: “VDD5V Supply Voltage” and “Offstate Current”
—Updated the third footnote
•In Table 9, "Operating Temperature Conditions," on page 13, added a new footnote in the “Parameter”
column.
•In Table 13, "Power Supply Characteristics," on page 14, updated the “VDD4P2 Output Current Limit
Accuracy” parameter.
•In Section 3.1.2.1, “Recommended Operating Conditions for Specific Clock Targets:”
—Removed the “System Clocks” table
—Updated two TBD values in the first row of Ta bl e 1 4
—Removed the first row in Ta b l e 1 5
—Removed the first row in Ta b l e 1 6
•In Table 20, "Power Mode Settings," on page 17, changed the second column name from “Deep Sleep”
to “Offstate.
Updated Table 22, "EMI Digital Pin DC Characteristics," on page 20.
•In Table 30, "LRADC Electrical Specifications," on page 27, updated the “DC Electrical Specification”
section.
•In Table 31, "HSADC Electrical Specification," on page 28, updated the “DC Electrical Specification”
section.
•In Section 3.5.5, “Coresight ETM9 AC Interface Timing, updated the first paragraph.
•In Section 3.5.5.1, “TRACECLK Timing, corrected the title of Ta b l e 4 3 .
•In Section 3.5.5.2, “Trace Data Signal Timing,corrected the titles of Figure 15 and Ta bl e 4 4 .
Rev. 1 04/2011 Updated Section 1.1, “Device Features.”
Added Section 3.2, “Thermal Characteristics.”
•In Table 1, "Ordering Information," on page 3, added two rows.
Updated Table 2, "i.MX28 Functional Differences," on page 4.
Updated Table 4, "i.MX28 Digital and Analog Modules," on page 7.
•In Table 8, "Recommended Power Supply Operating Conditions," on page 13, updated BATT row.
Updated Table 9, "Operating Temperature Conditions," on page 13.
Replaced the term “DC Characteristics” with “Power Consumption” in the title and introduction of
Table 12, "Power Consumption," on page 14. Also changed Dissipation to Consumption in first row.
Updated Table 25, "Digital Pin DC Characteristics for GPIO in 3.3-V Mode," on page 21.
Updated Table 26, "Digital Pin DC Characteristics for GPIO in 1.8 V Mode," on page 22.
Updated and added a footnote to Table 33, "Ethernet PLL Specifications," on page 29.
Updated DDR1 row of Table 34, "EMI Command/Address AC Timing," on page 30.
Added Section 4.4, “i.MX280 Ball Map.
•In Section 4.5, “i.MX283 Ball Map,updated Figure 67.
Rev. 0 09/2010 Initial release.
Document Number: IMX28CEC
Rev. 2
03/2012
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners. ARM is the registered trademark of ARM Limited. ARM9 is a
trademark of ARM Limited.
© 2012 Freescale Semiconductor, Inc. All rights reserved.