IN1IN2
D1D2
S1S2
V– V+
GND NC
S4S3
D4D3
IN4IN3
Dual-In-Line and SOIC
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
Top View
S1
NC
S2
IN3
V–
D3
V+
D4
NC
IN4
NC
NC
GND
IN2
NC
D2
S4
D1
S3
IN1
Key
Top View
LCC
910111213
4
5
6
7
8
1231920
14
15
16
17
18
DG201A DG201A
DG201A/202
Siliconix
S-52880—Rev. E, 28-Apr-97 1
Monolithic Quad SPST CMOS Analog Switches
Features Benefits Applications
15-V Input Range
Low Off Leakage—ID(on): 0.1 nA
Low On-Resistance—rDS(on): 115
44-V Maximum Supply Ratings
TTL and CMOS Compatible
Wide Input Range
Low Distortion Switching
Can Be Driven from Comparators or
Op Amps Without Limiting Resistors
Disk Drives
Radar Systems
Communications Systems
Sample-and-Hold
Description
The DG201A and DG202 are quad SPST analog switches
designed to provide accurate switching over a wide range
of input signals. When combining a low on-resistance and
a wide signal range (15 V) with low charge-transfer
these devices are well suited for industrial and military
applications.
Built on Siliconix’ high voltage metal gate process to
achieve optimum switch performance, each switch
conducts equally well in both directions when on. When
off these switches will block up to 30 V peak-to-peak and
have a 44-V absolute maximum power supply rating.
These two devices are differentiated by the type of switch
actions (See Truth Table).
The DG201B/DG202B upgrades are recommended for
new designs.
Functional Block Diagram and Pin Configuration
Truth Table
Logic DG201A DG202
0 ON OFF
1 OFF ON
Logic “0” 0.8 V
Logic “1” 2.4 V
Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70036.
DG201A/202
2 Siliconix
S-52880—Rev. E, 28-Apr-97
Ordering Information
Temp Range Package Part Number
0to70
_
C
16 Pin Plastic DIP
DG201ACJ
0
to
70_C
16
-
Pin
Plastic
DIP
DG202CJ
–25 to 85_C16-Pin CerDIP DG201ABK
–40 to 85_C16-Pin Narrow
SOIC DG201ADY
DG201AAK
DG201AAK/883, JM38510/12302BEA
–55 to 125_C16-Pin CerDIP 7705301EA
DG202AK
DG202AK/883
16 Pin Sidebraze
JM38510/12302BEC
–55 to 125_C
16
-
Pin
Sidebraze
7705301EC
LCC-20 77053012A
Absolute Maximum Ratings
Voltages Referenced to V–
V+ 44 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GND 25 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Inputsa VS, VD(V–) –2 V to (V+) +2 V . . . . . . . . . . . . . . . . . .
or 20 mA, whichever occurs first
Current, Any Terminal Except S or D 30 mA. . . . . . . . . . . . . . . . . . . .
Continuous Current, S or D 20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peak Current, S or D
(Pulsed at 1 ms, 10% duty cycle max) 70 mA. . . . . . . . . . . . . . . . . . . .
Storage Temperature (K, Z Suffix) –65 to 150_C. . . . . . . . . . .
(J, Y Suffix) –65 to 125_C. . . . . . . . . . .
Power Dissipation (Package)b
16-Pin Plastic DIPc470 mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16-Pin SOICd640 mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16-Pin CerDIP and Sidebrazee900 mW. . . . . . . . . . . . . . . . . . . . . . . .
LCC-20f750 mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Notes:
a. Signals on SX, DX, or INX exceeding V+ or V– will be clamped
by internal diodes. Limit forward diode current to maximum
current ratings.
b. All leads welded or soldered to PC Board.
c. Derate 6.5 mW/_C above 25_C
d. Derate 7.6 mW/_C above 75_C
e. Derate 12 mW/_C above 75_C
f. Derate 10 mW/_C above 75_C
Schematic Diagram (Typical Channel)
Figure 1.
V+
INX
V–
GND
+
S
D
V–
V+
8888
DG201A/202
Siliconix
S-52880—Rev. E, 28-Apr-97 3
Specificationsa
Test Conditions
Unless Otherwise Specified
V 15 V V 15V
A Suffix
–55 to 125_CB, C, D
Suffix
Parameter Symbol V+ = 15 V, V– = –15V
VIN = 2.4 V, 0.8 VfTempbTypcMindMaxdMindMaxdUnit
Analog Switch
Analog Signal RangeeVANALOG Full –15 15 –15 15 V
Drain Source On Resistance
rDS( )
VD=10 V IS=1mA
Room 115 175 175
W
Drain
-
Source
On
-
Resistance
r
DS(on)
V
D =
10
V
,
I
S =
1
mA
Full 250 250
W
Source Off
Leakage Current IS(off) VS = 14 V, VD = 14 V Room
Full 0.02 –1
–100 1
100 –5
–100 5
100
Drain Off Leakage Current ID(off) VD = 14 V, VS = 14 V Room
Full 0.02 –1
–100 1
100 –5
–100 5
100 nA
Drain On Leakage Current ID(on) VS = VD = 14 V Room
Full 0.15 –1
–200 1
200 –5
–200 5
200
Digital Control
Input Current with
IVlHih
IINH
VIN = 2.4 V Room
Full –0.0004 –1
–1 –1
–10
Input Voltage High
IINH
VIN = 15 V Room
Full 0.003 1
10 1
10 mA
Input Current with
Input Voltage Low IINL VIN = 0 V Room
Full –0.0004 –1
–10 –1
–10
Dynamic Characteristics
Turn-On Time tON See Switching Time
TCii
Room 480 600 600
ns
Turn-Off Time tOFF Test Circuit Room 370 450 450
ns
Charge Injection QCL = 1000 pF, Vg= 0 V
Rg = 0 WRoom 20 pC
Source-Off Capacitance CS(off)
VS=0VV
IN =5Vf=1MHz
Room 5
Drain-Off Capacitance CD(off)
V
S =
0
V
,
V
IN =
5
V
,
f
=
1
MHz
Room 5
p
F
Channel On Capacitance CD(on) +
CS(on)
VD = VS = 0 V, VIN = 0 V
f = 1 MHz Room 16
pF
Off Isolation OIRR
VIN =5VR
L=75W
Room 70
Channel-to-Channel
Crosstalk XTALK
V
IN =
5
V
,
R
L =
75
W
VS = 2 V, f = 100 kHz Room 90 dB
Power Supply
Positive Supply Current I+
All Channels On or Off
Room 0.9 2 2
mA
Negative Supply Current I–
All
Channels
On
or
Off
Room –0.3 –1 –1
mA
Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room = 25_C, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. VIN = input voltage to perform proper function.
DG201A/202
4 Siliconix
S-52880—Rev. E, 28-Apr-97
Typical Characteristics rDS(on) vs. VD and Power Supply VoltageCharge Injection vs. Analog Voltage
–15
70
60
50
40
30
20
10
0
–10
–20
–30 –10 –5 0 5 10 15
VANALOG – Analog Voltage (V)
Q (pC)
QD
QS
rDS(on) ()
VD – Drain Voltage (V)
–25 –15 –5 5 15 25
300
250
200
150
100
50
TA = 25_C
5 V
8 V
10 V
12 V
15 V
V+ = 15 V, V– = –15 V
TA = 25_C
Leakage vs. TemperaturerDS(on) vs. VD and Temperature
rDS(on) ()
VD – Drain Voltage (V) Temperature (_C)
–15 –10 –5 0 5 10 15
100 nA
–55 –35 –15 5 25 45 65 85 105 125
10 nA
1 nA
100 pA
10 pA
1 pA
0.1 pA
V+ = 15 V, V– = –15 V
VD = 14 V
IS(off), ID(off), ID(on)
180
160
140
120
100
80
60
V+ = 15 V, V– = –15 V
125_C
85_C
25_C
0_C
–40_C
–55_C
I, I
SD
Insertion Loss vs. FrequencySupply Current vs. Switching Frequency
I+, I– (mA)
LOSS (dB)
f – Frequency (Hz) f – Frequency (Hz)
6
4
2
0
–2
–4
–61 k 10 k 100 k 1 M
I
I
+
V+ = 15 V
V– = –15 V
1 k 10 k 100 k 1 M 10 M
V+ = 15 V
V– = –15 V
Ref. 0.0 dBm
See Figures 3 and 4
RL = 50
1 M
1 k
2.0
0.0
–2.0
–4.0
–6.0
DG201A/202
Siliconix
S-52880—Rev. E, 28-Apr-97 5
Typical Characteristics (Cont’d)
Leakage Current vs. Analog VoltageCrosstalk and Off Isolation vs. Frequency
(pA)I, I
SD
, ISO (dB)XTALK
f – Frequency (Hz) VD or VS – Drain or Source Voltage (V)
10
–20 –15 –10 –5 0 5 10 15 20
8
6
4
2
0
–2
–4
–6
–8
–10
V+ = 15 V
V– = –15 V
TA = 25_C
For ID(off), VS = –VD
For IS(off), VD = – VS
10 k 100 k 1 M 10 M
0
–20
–40
–60
–80
–100
–120
–140
–160
V+ = 15 V
V– = –15 V
Ref. 0 dBm
RL = 50
Off Isolation
Crosstalk
IS(off), ID(off)
ID(on)
(ns)tON,t
OFF
(ns)tON,t
OFF
1000
900
800
700
600
500
400
300
200
100
Switching Time vs. Power Supply VoltageSwitching Time vs. Temperature
Temperature (_C) V+ – Positive Supply (V)
–55 –35 –15 5 25 45 65 85 105 125
1000
10 12 14 16 18 20 22
900
800
700
600
500
400
300
200
100
V+ = 15 V
V– = –15 V
VS = 2 V
tON
tOFF
tON
tOFF
See Figures 3 and 4
DG201A/202
6 Siliconix
S-52880—Rev. E, 28-Apr-97
Test Circuits
Figure 2. Switching Time
Figure 3. Off Isolation
VO is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output
waveform.
50%
0 V
3 V
tOFF
tON
VO
VS
tr <20 ns
tf <20 ns
Logic
Input
Switch
Input
Switch
Output
90%
CL
35 p
F
RL
1 kW
VO = VSRL + rDS(on)
RL
VS = +2 V VO
V–
V+
IN
SD
3 V
–15 V
GND
+15 V
S
IN RL
D
Rg = 50 W
VSVIN
0V, 2.4 V
Off Isolation = 20 log VS
VO
V+
–15 V
GND V– C
C
+15 V
IN1
0V, 2.4 V
VO
+15 V
–15 V
GND
RL
V+
V–
NC
XTALK Isolation = 20 log
C
VS
C
VO
0V, 2.4 V
50 W
VSS1
IN2
S2
Rg = 50 W
D1
D2
C = RF bypass
Figure 4. Channel-to-Channel Crosstalk
Figure 5. Charge Injection
CL
1000 pF
Vg3 V
D
V+
V–
Rg
–15 V
GND
IN
SVO
+15 V
VO
DVO
INXON ONOFF
DVO = measured voltage error due to charge injection
The charge injection in coulombs is DQ = CL x DVO
DG201A/202
Siliconix
S-52880—Rev. E, 28-Apr-97 7
Application Hintsa
V+
Positive Supply
Voltage
(V)
V–
Negative Supply
Voltage
(V)
VIN
Logic Input Voltage
VINH(min)/VINL(max)
(V)
VS or VD
Analog Voltage Range
(V)
15
10
12
8b
–15
–12
–10
–8
2.4/0.8
2.4/0.8
2.2/0.6
2.0/0.5
–15 to 15
–12 to 12
–10 to 10
–8 to 8
Notes:
a. Application Hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.
b. Operation below 8 V is not recommended.
Applications
Figure 6. Sample-and-Hold
LM101A
+15 V
–15 V
30 pF
15 V
–15 V
V+
V– DG201A
50 pF
1000 pF
J202
J500
J507
+15 V
2N4400
–15 V
VIN
VOU
T
1 kW
200 W
5 MW
5.1 MW
Acquisition Time = 25 ms
Aperature Time = 1 ms
Sample to Hold Offset = 5 mV
Droop Rate = 5 mV/s
Logic Input
Low = Sample
High = Hold
+
DG201A/202
8 Siliconix
S-52880—Rev. E, 28-Apr-97
Applications (Cont’d)
fC1 fC2 fC3
TTL
Control
150 pF
1500 pF
+15 V
DG201A
GND
30 pF
LM101A
+15 V
–15 V
Frequency – Hz
1 10 100 1 k 10 k 100 k 1 M
–40
0
160
120
80
Voltage Gain – dB
fC4
Select
fC3
Select
fC2
Select
fC1
Select
R1 = 10 kW
R2 = 10 kW
R3 = 1 MW
VOUT
V1
V–
C4
C3
C2
C1
fL1
fC4
fL2 fL3 fL4
AL (Voltage Gain Below Break Frequency) = = 100 (40 dB)
R3
R1
fC (Break Frequency) = 1
2pR3CX1
2pR1CX
fL (Unity Gain Frequency) =
Max Attenuation = rDS(on)
10 kW
–40 dB
0.015 mF
0.015 mF
Figure 7. Active Low Pass Filter with Digitally Selected Break Frequency
–15 V
+
Figure 8. A Precision Amplifier with Digitally Programable Input and Gains
Gain = Gain 1 (x1)
Gain 2 (x10)
Gain 3 (x100)
Gain 4 (x1000)
–15 V
+15 V
–15 V
GND
DG200A
30 pF
+15 V
+15 V
–15 V DG202
Logic High = Switch On
+
LM101A
RF + RG
RG
VIN1
VIN2
CH1
CH2
RF1
18 kW
RF1
9.9 kW
RF1
100 W
RG3
100 W
RG2
100 W
RG1
2 kW
V+
V–
GNDV–