General Description
The MAX6709/MAX6714 quad voltage monitors provide
accurate monitoring of up to four supplies without any
external components. A variety of factory-trimmed thresh-
old voltages and supply tolerances are available to opti-
mize the MAX6709/MAX6714 for specific applications.
The selection includes input options for monitoring 5.0V,
3.3V, 3.0V, 2.5V, and 1.8V voltages. Additional high-input-
impedance comparator options can be used as
adjustable voltage monitors, general-purpose compara-
tors, or digital-level translators.
The MAX6709 provides four independent open-drain
outputs with 10µA internal pullup to VCC. The MAX6714
provides an active-low, open-drain RESET output with
integrated reset timing and three power-fail comparator
outputs.
Each of the monitored voltages is available with trip
thresholds to support power-supply tolerances of either
5% or 10% below the nominal voltage. An internal
bandgap reference ensures accurate trip thresholds
across the operating temperature range.
The MAX6709 consumes only 35µA (typ) of supply cur-
rent. The MAX6714 consumes only 60µA (typ) of supply
current. The MAX6709/MAX6714 operate with supply
voltages of 2.0V to 5.5V. An internal undervoltage lock-
out circuit forces all four digital outputs low when VCC
drops below the minimum operating voltage. The four
digital outputs have weak internal pullups to VCC,
accommodating wire-ORed connections. Each input
threshold voltage has an independent output. The
MAX6709/MAX6714 are available in a 10-pin µMAX
package and operate over the extended (-40°C to
+85°C) temperature range.
Applications
Telecommunications
Servers
High-End Printers
Desktop and Notebook Computers
Data Storage Equipment
Networking Equipment
Multivoltage Systems
Features
Monitor Four Power-Supply Voltages
Precision Factory-Set Threshold Options for 5.0V,
3.3V, 3.0V, 2.5V, and 1.8V (Nominal) Supplies
Adjustable Voltage Threshold Monitors Down to
0.62V
High-Accuracy (±2.0%) Adjustable Threshold
Inputs
Low Supply Current
MAX6709: 35µA
MAX6714: 60µA
Four Independent, Active-Low, Open-Drain
Outputs with 10µA Internal Pullup to VCC
140ms (min) Reset Timeout Period
(MAX6714 only)
2.0V to 5.5V Supply Voltage Range
Immune to Supply Transients
Fully Specified from -40°C to +85°C
Small 10-Pin µMAX Package
MAX6709/MAX6714
Low-Voltage, High-Accuracy, Quad Voltage
Monitors in µMAX Package
________________________________________________________________ Maxim Integrated Products 1
Ordering Information
1
2
3
4
5
10
9
8
7
6
VCC
PWRGD1
PWRGD2
PWRGD3IN4
IN3
IN2
IN1
MAX6709
µMAX
TOP VIEW
PWRGD4GND
Pin Configurations
19-2379; Rev 1; 12/05
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Pin Configurations continued at end of data sheet.
PART TEMP RANGE PIN-PACKAGE
MAX6709_UB* -40°C to +85°C 10 µMAX
MAX6714_UB* -40°C to +85°C 10 µMAX
Typical Operating Circuits appear at end of data sheet.
Selector Guides appear at end of data sheet.
*Insert the desired letter from the Selector Guide into the blank
to complete the part number.
Devices are available in both leaded and lead-free packaging.
Specify lead free by adding the + symbol at the end of the part
number when ordering.
MAX6709/MAX6714
Low-Voltage, High-Accuracy, Quad Voltage
Monitors in µMAX Package
2_______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
ELECTRICAL CHARACTERISTICS (MAX6709)
(VCC = 2.0V to 5.5V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 5V and TA= +25°C.) (Note 1)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
All Pins to GND.........................................................-0.3V to +6V
Input/Output Current (all pins) ............................................20mA
Continuous Power Dissipation (TA= +70°C)
10-Pin µMAX (derate 5.6mW/°C above +70°C) ..........444mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Junction Temperature......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Supply Voltage Range VCC 2.0 5.5 V
VCC = 3V 25 50
Supply Current ICC VCC = 5V 35 65 µA
VIN_ = input threshold voltage 25 40
Input Current IIN_ VIN_ = 0 to 0.85V (for adjustable threshold) 0.2 µA
5.0V (-5%)
4.50 4.63 4.75
5.0V (-10%)
4.25 4.38 4.50
3.3V (-5%)
3.00 3.08 3.15
3.3V (-10%)
2.85 2.93 3.00
3.0V (-5%)
2.70 2.78 2.85
3.0V (-10%)
2.55 2.63 2.70
2.5V (-5%)
2.25 2.32 2.38
2.5V (-10%)
2.13 2.19 2.25
1.8V (-5%)
1.62 1.67 1.71
Threshold Voltage VTH IN_ decreasing
1.8V (-10%)
1.53 1.58 1.62
V
Adjustable Threshold VTH IN_ decreasing
0.609 0.623 0.635
V
Threshold Voltage Temperature
Coefficient
TCVTH
60
ppm/°C
Threshold Hysteresis VHYST 0.3 x VTH %
VIN_ falling at 10mV/µs from
VTH to (VTH - 50mV) 30
Propagation Delay tPD VIN_ rising at 10mV/µs from
VTH to (VTH + 50mV) 5
µs
VCC = 5V, ISINK = 2mA 0.3
VCC = 2.5V, ISINK = 1.2mA 0.3
Output Low Voltage VOL
VCC = 1V, ISINK = 50µA (Note 2) 0.3
V
Output High Voltage VOH
VCC 2.0V, ISOURCE = 6µA (min), PWRGD_
unasserted 0.8 x VCC V
Output High Source Current IOH VCC 2.0V, PWRGD_ unasserted 10 µA
MAX6709/MAX6714
Low-Voltage, High-Accuracy Quad, Voltage
Monitors in µMAX Package
_______________________________________________________________________________________ 3
ELECTRICAL CHARACTERISTICS (MAX6714)
(VCC = 2.0V to 5.5V, TA= -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 5V and TA= +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN TYP MAX
Supply Voltage Range VCC 2.0 5.5 V
VCC = 3V 60 90
Supply Current (Note 3) ICC VCC = 5V 80
105
µA
Power-Fail Input Current IPFI_ VPFI_ = 0 to 0.85V 0.2 µA
MAX6714B (-5%)
4.50 4.63 4.75
MAX6714A (-10%)
4.25 4.38 4.50
MAX6714D (-5%)
3.00 3.08 3.15
VCC Reset Threshold VTH VCC decreasing
MAX6714C (-10%)
2.85 2.93 3.00
V
Power-Fail Input Threshold VPFI VPFI_ decreasing
0.609 0.623 0.635
V
Threshold Hysteresis
VHYST VPFI_ increasing relative to VPFI_ decreasing 0.3 x VTH
%
Reset Timeout Period tRP
140 210 280
ms
Reset Delay tRD VCC falling at 10mV/µs from
(VTH + 100mV) to (VTH - 100mV) 30 µs
VPFI_ falling at 10mV/µs from VTH to
(VTH - 50mV) 30
Power-Fail Propagation Delay tPFD VCC falling at 10mV/µs from
(VTH + 100mV) to (VTH - 100mV) 5
µs
VIL
0.3 x VCC
MR Input Voltage VIH
0.7 x VCC
V
MR Minimum Input Pulse s
MR Glitch Rejection
100
ns
MR to RESET Delay tMRD
200
ns
MR Pullup Resistance MR to VCC 10 20 50 k
VCC = 5V, ISINK = 2mA 0.3
VCC = 2.5V, ISINK = 1.2mA 0.3
Output Low Voltage VOL
VCC = 1V, ISINK = 50µA (Note 2) 0.3
V
Output High Voltage VOH VCC 2.0V, ISOURCE = 6mA (min), RESET,
PFO_ unasserted
0.8 x VCC
V
Output High Source Current IOH VCC 2.0V, RESET and PFO_ unasserted 10 µA
Note 1: 100% production tested at TA= +25°C. Overtemperature limits guaranteed by design.
Note 2: Condition at VCC = 1V is guaranteed only from TA= 0°C to +70°C.
Note 3: Monitored voltage 5V/3.3V is also the device supply. In the typical condition, supply current splits as follows: 25µA for the
resistor-divider, and the rest for other circuitry.
MAX6709/MAX6714
Low-Voltage, High-Accuracy, Quad Voltage
Monitors in µMAX Package
4_______________________________________________________________________________________
Typical Operating Characteristics
(VCC = 5V, TA = +25°C, unless otherwise noted.)
SUPPLY CURRENT
vs. SUPPLY VOLTAGE (MAX6709)
MAX6709/14 toc01
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (µA)
5.04.53.5 4.01.0 1.5 2.0 2.5 3.00.5
5
10
15
20
25
30
35
40
45
50
0
05.5
TA = +85°C
TA = +25°C
TA = -40°C
SUPPLY CURRENT
vs. SUPPLY VOLTAGE (MAX6714)
MAX6709/14 toc02
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (µA)
5.04.53.5 4.01.0 1.5 2.0 2.5 3.00.5
10
20
30
40
50
60
70
80
90
100
0
0 5.5
TA = +85°C
TA = +25°C
TA = -40°C
NORMALIZED THRESHOLD ERROR
vs. SUPPLY VOLTAGE (MAX6709)
MAX6709/14 toc03
SUPPLY VOLTAGE (V)
NORMALIZED THRESHOLD ERROR (%)
5.04.53.5 4.03.02.5
-0.01
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
-0.02
2.0 5.5
NORMALIZED TO VCC = 5V
NORMALIZED THRESHOLD
vs. TEMPERATURE (MAX6709)
MAX6709/14 toc04
TEMPERATURE (°C)
NORMALIZED THRESHOLD
6035-15 10
-0.15
-0.10
-0.05
0
0.05
0.10
0.15
0.20
-0.20
-40 85
NORMALIZED PFI_ THRESHOLD
vs. TEMPERATURE (MAX6714)
MAX6709/14 toc05
TEMPERATURE (°C)
NORMALIZED PFI_ THRESHOLD
603510-15
0.992
0.994
0.996
0.998
1.000
1.002
1.004
1.006
1.008
1.010
0.990
-40 85
VCC = 3V OR 5V
OUTPUT VOLTAGE LOW
vs. SINK CURRENT
MAX6709/14 toc06
SINK CURRENT (mA)
OUTPUT VOLTAGE LOW (mV)
986 72 3 4 51
20
40
60
80
100
120
140
160
180
200
0
010
TA = +85°C
TA = +25°C
TA = -40°C
MAXIMUM TRANSIENT DURATION
vs. VCC OVERDRIVE (MAX6714)
MAX6709/14 toc07
VCC OVERDRIVE (mV)
MAXIMUM TRANSIENT DURATION (µs)
900800600 700200 300 400 500100
10
20
30
40
50
60
70
80
90
100
110
120
0
01000
RESET ASSERTS
ABOVE THIS LINE
MAXIMUM TRANSIENT DURATION
vs. PFI_ OVERDRIVE (MAX6714)
MAX6709/14 toc08
PFI_ OVERDRIVE (mV)
MAXIMUM TRANSIENT DURATION (µs)
5001004020
10
20
30
40
50
60
70
80
90
100
110
120
0
01000
PFO_ ASSERTS
ABOVE THIS LINE
RESET TIMEOUT PERIOD
vs. TEMPERATURE (MAX6714)
MAX6709/14 toc09
TEMPERATURE (°C)
RESET TIMEOUT PERIOD (ms)
603510-15
211
212
213
214
215
216
210
-40 85
MAX6709/MAX6714
Low-Voltage, High-Accuracy Quad, Voltage
Monitors in µMAX Package
_______________________________________________________________________________________ 5
Typical Operating Characteristics (continued)
(VCC = 5V, TA= +25°C, unless otherwise noted.)
PROPAGATION DELAY
(WITH 100mV OVERDRIVE)
MAX6709/14 toc10
10µs/div
PWRGD_ (PFO_)
2V/div
IN_ (PFI_)
100mV/div
AC-COUPLED
PFO_ PULLUP AND PULLDOWN RESPONSE
(CPFO_ = 47pF)
MAX6709/14 toc11
10µs/div
PFO_
2V/div
PFI_
50mV/div
AC-COUPLED
RESET TIMEOUT DELAY
MAX6709/14 toc12
40ms/div
RESET
2V/div
MR
2V/div
MAX6709/MAX6714
Low-Voltage, High-Accuracy, Quad Voltage
Monitors in µMAX Package
6_______________________________________________________________________________________
Pin Description
PIN
MAX6709
MAX6714 NAME
FUNCTION
1—IN1 Input Voltage 1. See Selector Guide for monitored voltages.
2—IN2 Input Voltage 2. See Selector Guide for monitored voltages.
3—IN3 Input Voltage 3. See Selector Guide for monitored voltages.
4—IN4 Input Voltage 4. See Selector Guide for monitored voltages.
55GND Ground
6—
PWRGD4
Output 4. PWRGD4 asserts low when IN4 falls below its threshold voltage. PWRGD4 is open
drain with a 10µA internal pullup current source to VCC.
7—
PWRGD3
Output 3. PWRGD3 asserts low when IN3 falls below its threshold voltage. PWRGD3 is open
drain with a 10µA internal pullup current source to VCC.
8—
PWRGD2
Output 2. PWRGD2 asserts low when IN2 falls below its threshold voltage. PWRGD2 is open
drain with a 10µA internal pullup current source to VCC.
9—
PWRGD1
Output 1. PWRGD1 asserts low when IN1 falls below its threshold voltage. PWRGD1 is open
drain with a 10µA internal pullup current source to VCC.
10 10 VCC
Power-Supply Input. Connect VCC to a 2.0V to 5.5V supply. An undervoltage lockout circuit
forces all PWRGD_ outputs low when VCC drops below the minimum operating voltage. VCC
is not a monitored voltage for the MAX6709. For the MAX6714, RESET asserts low when VCC
drops below its threshold.
—1MR Manual Reset Input. Force MR low to assert the RESET output. RESET remains asserted for
the reset timeout period after MR goes high. MR is internally pulled up to VCC.
—2PFI1
Power-Fail Input 1. Input to noninverting input of the power-fail comparator. PFI1 is
compared to an internal 0.62V reference. Use an external resistor-divider network to adjust
the monitor threshold.
—3PFI2
Power-Fail Input 2. Input to noninverting input of the power-fail comparator. PFI2 is
compared to an internal 0.62V reference. Use an external resistor-divider network to adjust
the monitor threshold.
—4PFI3
Power-Fail Input 3. Input to noninverting input of the power-fail comparator. PFI3 is
compared to an internal 0.62V reference. Use an external resistor-divider network to adjust
the monitor threshold.
—6PFO3 Power-Fail Output 3. PFO3 is an active-low, open-drain output with a 10µA internal pullup to
VCC. PFO3 asserts low when PFI3 is below the selected threshold.
—7PFO2 Power-Fail Output 2. PFO2 is an active-low, open-drain output with a 10µA internal pullup to
VCC. PFO2 asserts low when PFI2 is below the selected threshold.
—8PFO1 Power-Fail Output 1. PFO1 is an active-low, open-drain output with a 10µA internal pullup to
VCC. PFO1 asserts low when PFI1 is below the selected threshold.
—9
RESET
Reset Output. RESET is an active-low, open-drain output that asserts low when VCC drops
below its preset threshold voltage or when a manual reset is initiated. RESET remains low for
the reset timeout period after VCC exceeds the selected reset threshold or MR is released.
Detailed Description
The MAX6709/MAX6714 are low-power, quad voltage
monitors designed for multivoltage systems. Preset
voltage options for 5.0V, 3.3V, 3.0V, 2.5V, and 1.8V
make these quad monitors ideal for applications such
as telecommunications, desktop and notebook comput-
ers, high-end printers, data storage equipment, and
networking equipment.
The MAX6709/MAX6714 have an internally trimmed
threshold that minimizes or eliminates the need for
external components. The four open-drain outputs have
weak (10µA) internal pullups to VCC, allowing them to
interface easily with other logic devices. The weak inter-
nal pullups can be overdriven by external pullups to any
voltage from 0 to 5.5V. Internal circuitry prevents current
flow from the external pullup voltage to VCC. The out-
puts can be wire-ORed for a single power-good signal.
The MAX6709 quad voltage monitor includes an accu-
rate reference, four precision comparators, and a
series of internally trimmed resistor-divider networks to
set the factory-fixed threshold options. The resistor net-
works scale the specified IN_ reset voltages to match
the internal reference/comparator voltage. Adjustable
threshold options bypass the internal resistor networks
and connect directly to one of the comparator inputs
(an external resistor-divider network is required for
threshold matching). The MAX6709 monitors power
supplies with either 5% or 10% tolerance specifica-
tions, depending on the selected version. Additional
high-input-impedance comparator options can be used
MAX6709/MAX6714
Low-Voltage, High-Accuracy Quad, Voltage
Monitors in µMAX Package
_______________________________________________________________________________________ 7
UNDERVOLTAGE
LOCKOUT
0.62V
REFERENCE
PWRGD3
IN4
(ADJ)
IN3
(2.5V/1.8V)
IN2
(3.3V/3.0V)
IN1
(ADJ)
VCC
MAX6709
PWRGD4
PWRGD2
PWRGD1
VCC
VCC
VCC
VCC
Figure 1. MAX6709 Functional Diagram
MAX6709/MAX6714
as an adjustable voltage monitor, general-purpose
comparator, or digital-level translator.
The MAX6714 quad voltage monitor/reset offers one
fixed input with internal timing for µP reset, three power-
fail comparators, and a manual reset input (MR). RESET
asserts low when VCC drops below its threshold or MR is
driven low. Each of the three power-fail inputs connects
directly to one of the comparator inputs.
When any input is higher than the threshold level, the
output is high. The output goes low as the input drops
below the threshold voltage. The undervoltage lockout
circuitry remains active and all outputs remain low with
VCC down to 1V (Figures 1 and 2).
Applications Information
Hysteresis
When the voltage on one comparator input is at or near
the voltage on another input, ambient noise generally
causes the comparator output to oscillate. The most
common way to eliminate this problem is through hys-
teresis. When the two comparator input voltages are
equal, hysteresis causes one comparator input voltage
to move quickly past the other, thus taking the input out
of the region where oscillation occurs. Standard com-
parators require hysteresis to be added through the
use of external resistors. The external resistive network
usually provides a positive feedback to the input in
order to cause a jump in the threshold voltage when
output toggles in one direction or the other. These
Low-Voltage, High-Accuracy, Quad Voltage
Monitors in µMAX Package
8_______________________________________________________________________________________
UNDERVOLTAGE
LOCKOUT
TIMEOUT
(200ms)
0.62V
REFERENCE
PFO2
PFI3
(ADJ)
PFI2
(ADJ)
PFI1
(ADJ)
VCC
(5.0V/3.3V)
VCC
MAX6714
VCC
VCC
VCC
VCC
PFO3
PFO1
RESET
MR
Figure 2. MAX6714 Functional Diagram
resistors are not required when using the MAX6709/
MAX6714 because hysteresis is built into the device.
MAX6709/MAX6714 hysteresis is typically 0.3% of the
threshold voltage.
Undervoltage Detection Circuit
The open-drain outputs of the MAX6709/MAX6714 can
be configured to detect an undervoltage condition.
Figure 3 shows a configuration where an LED turns on
when the comparator output is low, indicating an
undervoltage condition.
The MAX6709/MAX6714 can also be used in applica-
tions such as system supervisory monitoring, multivolt-
age level detection, and VCC bar graph monitoring
(Figure 4).
Window Detection
A window detector circuit uses two auxiliary inputs in a
configuration such as the one shown in Figure 5.
External resistors R1–R4 set the two threshold voltages
(VTH1 and VTH4) of the window detector circuit. Window
width (VTH) is the difference between the threshold
voltages (Figure 6).
Adjustable Input
The MAX6709 offers several monitor options with
adjustable reset thresholds. The MAX6714 has three
monitored inputs with adjustable thresholds. The thresh-
old voltage at each adjustable IN_ (PFI_) input is typically
0.62V. To monitor a voltage >0.62V, connect a resistor-
divider network to the circuit as shown in Figure 7.
VINTH = 0.62V (R1 + R2) / R2
MAX6709/MAX6714
Low-Voltage, High-Accuracy Quad, Voltage
Monitors in µMAX Package
_______________________________________________________________________________________ 9
IN1
VCC
GND
IN2
IN3
IN4
PWRGD1
PWRGD2
PWRGD3
PWRGD4
5V
MAX6709
V1
V2
V3
V4
Figure 3. Quad Undervoltage Detector with LED Indicators
D3
D1
D2
D4
IN1
VCC
GND
IN2
IN3
IN4
PWRGD1
PWRGD2
PWRGD3
PWRGD4
VIN (5V)
5V
MAX6709
Figure 4. VCC Bar Graph Monitoring
IN1
VCC
GND
IN2
IN3
IN4
PWRGD1
PWRGD2
PWRGD3
PWRGD4
5V
MAX6709
OUT
INPUT
R2
R4
R1
R3
VTH1 = (1 + ) V REF
R2
R1
VTH4 = (1 + ) V REF
R4
R3
V REF = 0.62V
Figure 5. Window Detection
PWRGD1
PWRGD4
OUT
VTH1
VTH4
VTH
Figure 6. Output Response of Window Detector Circuit
MAX6709/MAX6714
Or, solved in terms of R1:
R1 = R2 ((VINTH / 0.62V) - 1)
Unused Inputs
The unused inputs (except the adjustable) are internally
connected to ground through the lower resistors of the
threshold-setting resistor pairs. The adjustable input,
however, must be connected to ground if unused.
Reset Output
The MAX6714 RESET output asserts low when VCC
drops below its specified threshold or MR asserts low
and remains low for the reset timeout period (140ms
min) after VCC exceeds its threshold and MR deasserts
(Figure 8). The output is open drain with a weak (10µA)
internal pullup to VCC. For many applications, no exter-
nal pullup resistor is required to interface with other
logic devices. An external pullup resistor to any voltage
from 0 to 5.5V overdrives the internal pullup if interfac-
ing to different logic supply voltages (Figure 9). Internal
circuitry prevents reverse current flow from the external
pullup voltage to VCC.
Manual Reset Input
Many µP-based products require manual reset capabili-
ty, allowing the operator, a test technician, or external
logic circuitry to initiate a reset. A logic low on MR
asserts RESET low. RESET remains asserted while MR is
low, and during the reset timeout period (140ms min)
after MR returns high. The MR input has an internal 20k
pullup resistor to VCC, so it can be left open if unused.
Drive MR with TTL or CMOS-logic levels, or with open-
drain/collector outputs. Connect a normally open momen-
tary switch from MR to GND to create a manual reset
function; external debounce circuitry is not required. If
MR is driven from long cables or if the device is used in a
noisy environment, connecting a 0.1µF capacitor from
MR to GND provides additional noise immunity.
Reseting the µP from a 2nd Voltage
(MAX6714)
The MAX6714 can be configured to assert a reset from a
second voltage by connecting the power-fail output to
manual reset. As the VPFI_ falls below its threshold, PFO
goes low and asserts the reset output for the reset time-
out period after the manual reset input is deasserted.
(See Typical Operating Circuit.)
Power-Supply Bypassing and Grounding
The MAX6709/MAX6714 operate from a single 2.0V to
5.5V supply. In noisy applications, bypass VCC with a
0.1µF capacitor as close to VCC as possible.
Low-Voltage, High-Accuracy, Quad Voltage
Monitors in µMAX Package
10 ______________________________________________________________________________________
R1 = R2 ( - 1)
VINTH
0.62V
VREF = 0.62V
R2
R1
VINTH
Figure 7. Setting the Auxiliary Monitor
VTH_
90%
10%
VCC
VTH_
RESET
tRP
tRD
Figure 8.
RESET
Output Timing Diagram
VCC
GND
VCC = 3.3V 5V
MAX6714
VCC
GND
RESET
RESET
100k
Figure 9. Interfacing to Different Logic Supply Voltage
MAX6709/MAX6714
Low-Voltage, High-Accuracy Quad, Voltage
Monitors in µMAX Package
______________________________________________________________________________________ 11
1
2
3
4
5
10
9
8
7
6
VCC
PFI3
PFI2
PFI1
MAX6714
µMAX
TOP VIEW
GND
MR
RESET
PFO1
PFO2
PFO3
Pin Configurations (continued)
Selector Guide (MAX6709)
NOMINAL INPUT VOLTAGE
PART
IN1
(V)
IN2
(V)
IN3
(V)
IN4
(V)
SUPPLY
TOLERANCE
(%)
MAX6709AUB
5
3.3 2.5 Adj*
10
MAX6709BUB
5
3.3 2.5 Adj*
5
MAX6709CUB
5
3.3 1.8 Adj*
10
MAX6709DUB
5
3.3 1.8 Adj*
5
MAX6709EUB
Adj* 3.3 2.5 1.8
10
MAX6709FUB
Adj* 3.3 2.5 1.8
5
MAX6709GUB
5
3.3 Adj* Adj*
10
MAX6709HUB
5
3.3 Adj* Adj*
5
MAX6709IUB
Adj* 3.3 2.5 Adj*
10
MAX6709JUB
Adj* 3.3 2.5 Adj*
5
MAX6709KUB
Adj* 3.3 1.8 Adj*
10
MAX6709LUB
Adj* 3.3 1.8 Adj*
5
MAX6709MUB
Adj*
3
Adj* Adj*
10
MAX6709NUB
Adj*
3
Adj* Adj*
5
MAX6709OUB
Adj* Adj* Adj* Adj*
N/A
NOMINAL INPUT VOLTAGE
PART VCC
(V)
PFI1
(V)
PFI2
(V)
PFI3
(V)
SUPPLY
TOLERANCE
(%)
MAX6714AUB 5 Adj* Adj* Adj* 10
MAX6714BUB 5 Adj* Adj* Adj* 5
MAX6714CUB 3.3 Adj* Adj* Adj* 10
MAX6714DUB 3.3 Adj* Adj* Adj* 5
Selector Guide (MAX6714)
*Adjustable voltage based on 0.62V internal threshold. External
threshold voltage can be set using an external resistor-divider.
*Adjustable voltage based on 0.62V internal threshold. External
threshold voltage can be set using an external resistor-divider.
Chip Information
TRANSISTOR COUNT: 1029
PROCESS: BiCMOS
MAX6709/MAX6714
Low-Voltage, High-Accuracy, Quad Voltage
Monitors in µMAX Package
12 ______________________________________________________________________________________
Typical Operating Circuit (MAX6709)
µP
I/O
I/O
VCC
RESET RESET
MR
PFO1
PFO2
PFO3
VCC
PFI1
PFI2
PFI3
GND
3.3V
SUPPLY
VBATT
5V
SUPPLY
9V
SUPPLY
MAX6714
µP
SYSTEM
LOGIC
PWRGD1
PWRGD2
PWRGD3
PWRGD4
IN1
IN2
IN3
IN4
GND
VCC
SUPPLIES
TO BE
MONITORED
2.0V TO 5.5V
(MAY BE ONE OF THE MONITORED VOLTAGES)
MAX6709
Typical Operating Circuit (MAX6714)
MAX6709/MAX6714
Low-Voltage, High-Accuracy, Quad Voltage
Monitors in µMAX Package
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13
©2005 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.
10LUMAX.EPS
PACKAGE OUTLINE, 10L uMAX/uSOP
1
1
21-0061
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
TOP VIEW
FRONT VIEW
1
0.498 REF
0.0196 REF
S
SIDE VIEW
α
BOTTOM VIEW
0.037 REF
0.0078
MAX
0.006
0.043
0.118
0.120
0.199
0.0275
0.118
0.0106
0.120
0.0197 BSC
INCHES
1
10
L1
0.0035
0.007
e
c
b
0.187
0.0157
0.114
H
L
E2
DIM
0.116
0.114
0.116
0.002
D2
E1
A1
D1
MIN
-A
0.940 REF
0.500 BSC
0.090
0.177
4.75
2.89
0.40
0.200
0.270
5.05
0.70
3.00
MILLIMETERS
0.05
2.89
2.95
2.95
-
MIN
3.00
3.05
0.15
3.05
MAX
1.10
10
0.6±0.1
0.6±0.1
Ø0.50±0.1
H
4X S
e
D2
D1
b
A2 A
E2
E1 L
L1
c
α
GAGE PLANE
A2 0.030 0.037 0.75 0.95
A1
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
ENGLISH ???? ??? ???
WHAT'S NEW
PRODUCTS
SOLUTIONS
DESIGN
APPNOTES
SUPPORT
BUY
COMPANY
MEMBERS
MAX6709
Part Number Table
Notes:
See the MAX6709 QuickView Data Sheet for further information on this product family or download the
MAX6709 full data sheet (PDF, 324kB).
1.
Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.2.
Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within
one business day.
3.
Part number suffixes: T or T&R = tape and reel; + = RoHS/lead-free; # = RoHS/lead-exempt. More: See full
data sheet or Part Naming Conventions.
4.
* Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product
uses.
5.
Part Number
Free
Sample
Buy
Direct
Package:
TYPE PINS SIZE
DRAWING CODE/VAR *
Temp
RoHS/Lead-Free?
Materials Analysis
MAX6709OUB-G05
-40C to +85C
RoHS/Lead-Free: No
MAX6709OUB-TG05
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709CUB+T
-40C to +85C
RoHS/Lead-Free: Yes
MAX6709CUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709BUB+T
-40C to +85C
RoHS/Lead-Free: Yes
MAX6709BUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709AUB+T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709AUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709EUB+T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709EUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709DUB+T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709DUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709MUB+T
-40C to +85C
RoHS/Lead-Free: Yes
MAX6709MUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709QUB-T
-40C to +85C
RoHS/Lead-Free: No
MAX6709FUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709FUB+T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709GUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709OUB+T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709OUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709NUB+T
-40C to +85C
RoHS/Lead-Free: Yes
MAX6709NUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709LUB+T
-40C to +85C
RoHS/Lead-Free: Yes
MAX6709LUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709KUB+T
-40C to +85C
RoHS/Lead-Free: Yes
MAX6709KUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709JUB+T
-40C to +85C
RoHS/Lead-Free: Yes
MAX6709JUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709IUB+T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709IUB+
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10+2*
-40C to +85C
RoHS/Lead-Free: Yes
Materials Analysis
MAX6709GUB+T
-40C to +85C
RoHS/Lead-Free: Yes
MAX6709QUB
-40C to +85C
RoHS/Lead-Free: No
MAX6709PUB-T
-40C to +85C
RoHS/Lead-Free: No
MAX6709HUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709GUB-T
-40C to +85C
RoHS/Lead-Free: No
MAX6709GUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709FUB-T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709FUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709EUB-T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709EUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709DUB-T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709DUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709CUB-T
-40C to +85C
RoHS/Lead-Free: No
MAX6709CUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709BUB-T
-40C to +85C
RoHS/Lead-Free: No
MAX6709BUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709AUB-T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709HUB-T
-40C to +85C
RoHS/Lead-Free: No
MAX6709IUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709PUB
-40C to +85C
RoHS/Lead-Free: No
MAX6709OUB-T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709OUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709NUB-T
-40C to +85C
RoHS/Lead-Free: No
MAX6709NUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709MUB-T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709MUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709LUB-T
-40C to +85C
RoHS/Lead-Free: No
MAX6709LUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709KUB-T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709KUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709JUB-T
-40C to +85C
RoHS/Lead-Free: No
MAX6709JUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709IUB-T
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
MAX6709AUB
uMAX;10 pin;3 x 3mm
Dwg: 21-0061I (PDF)
Use pkgcode/variation: U10-2*
-40C to +85C
RoHS/Lead-Free: No
Materials Analysis
Didn't Find What You Need?
CONTACT US: SEND US AN EMAIL
C opyright 2007 by M axim Integrated P roducts, Dallas Semiconductor Legal Notices Privacy P olicy