TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
1
TGC4405
Oct 2006 © Rev -
Datasheet subject to change without notice.
Primary Applications
Product Description
Key Features
Measured Performance
17 - 27 GHz Upconverter
RF Output Frequency Range: 17 - 27 GHz
LO Input Frequency Range: 8 -13 GHz
IF Input Frequency Range: 0.5 - 3 GHz
13 dB Conversion Gain
28 dBm OTOI
30 dBc LO Isolation
Bias: Vd = 5 V, Idq = 425 mA, Vg = -0.5 V Typical
Technology: 3MI 0.25 um Power PHEMT
Chip Dimensions: 2.07 x 1.93 x 0.1mm
Point-to-Point Radio
Ku Band Sat-Com
The TriQuint TGC4405 is a multifunction chip. It is an
upconverter with RF output frequencies of 17 to 27
GHz. It contains a frequency doubler and local
oscillator (LO) amplifier, operating at LO Input
frequencies of 8 - 13 GHz. The part is designed using
TriQuint’s 0.25 um 3MI power pHEMT process.
The TGC4405 nominally provides 13 dB Conversion
Gain and 28 dBm OTOI when operated with LO inputs
from 2 - 5 dBm. The part also achieves 30 dBc typical
isolation between the fundamental and doubled
frequency.
The TGC4405 is ideally suited for low cost markets
such as Point-to-Point Radio, and Ku-band Satellite
Communications.
The TGC4405 is 100% DC and RF tested on-wafer to
ensure performance compliance.
The TGC4405 has a protective surface passivation
layer providing environmental robustness.
Lead-Free & RoHS compliant
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz @ -8dBm, +2dBm LO
0
2
4
6
8
10
12
14
16
18
20
17 18 19 20 21 22 23 24 25 26 27
RF Output Frequency (GHz)
Converion Gain (dB)
Upper Side Band
Lower Side Band
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz +/- 5MHz @ -8dBm Input/Tone, +2dBm LO
14
16
18
20
22
24
26
28
30
32
34
18 19 20 21 22 23 24 25 26 27 28
RF Output Frequency (GHz)
OTOI (dBm)
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
2
TGC4405
Oct 2006 © Rev -
Table II
Recommended Operating Conditions
Table I
Absolute Maximum Ratings 1/
Symbol Parameter Value Notes
Vd-Vg Drain to Gate Voltage 12 V
Vd Drain Supply Voltage 8 V 2/
Vmxr Mixer Supply Voltage Range -5 to 0 V
Ig Gate Supply Current Range -3.3 to 56.7 mA
Idbl Doubler Supply Current Range -0.6 to 16.8 mA
PinLO LO Input Continuous Wave Power 18 dBm 2/
Vdbl Doubler Supply Voltage Range -5 to 0 V
Vg Gate Supply Voltage Range -5 to 0 V
Id Drain Supply Current 817 mA 2/
Imxr Mixer Supply Current Range -0.75 to 10.5 mA
PinIF IF Input Continuous Wave Power 21 dBm 2/
1/ These ratings represent the maximum operable values for this device. Stresses beyond those listed
under “Absolute Maximum Ratings” may cause permanent damage to the device and / or affect
device lifetime. These are stress ratings only, and functional operation of the device at these
conditions is not implied.
2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed Pd
(as listed in “Thermal Information”).
Symbol Parameter Value
Vd Drain Voltage 5 V
Idq Drain Current 425 mA
Vg Gate Voltage -0.5 V, typical
Vmxr Mixer Voltage -0.9 V
Vdbl Doubler Voltage -0.9 V
See assembly diagram for bias instructions.
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
3
TGC4405
Oct 2006 © Rev -
Table III
RF Characterization Table
SYMBOL PARAMETER TEST
CONDITIONS
NOMINAL UNITS
FLO LO Input Frequency Range 8 - 13 GHz
FIF IF Input Frequency Range 0.5 - 3 GHz
Gain Conversion Gain f = 17 - 27 GHz 13 dB
ORL Output Return Loss f = 17 - 27 GHz -10 dB
OTOI Output Third Order Intercept
@ IF Input = -8dBm/Tone
f = 17 - 27 GHz 28 dBm
LO_Isol LO Isolation f = 17 - 27 GHz 30 dBc
Bias: Vd = 5 V, Idq = 425 mA, Vmxr = Vdbl = -0.9V, Vg = -0.5V Typical
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
4
TGC4405
Oct 2006 © Rev -
Table IV
Power Dissipation and Thermal Properties
Parameter Test Conditions Value Notes
Maximum Power Dissipation Tbaseplate = 70 ºC Pd = 2.9 W
Tchannel = 150 ºC
Tm = 1.0E+6 Hrs
1/ 2/
Thermal Resistance, θjc Vd = 5 V
Id = 425 mA
Pd = 2.13 W
θjc = 27.4 (ºC/W)
Tchannel = 128 ºC
Tm = 7E+6 Hrs
Mounting Temperature 30 Seconds 320 ºC
Storage Temperature -65 to 150 ºC
1/ For a median life of 1E+6 hours, Power Dissipation is limited to
Pd(max) = (150 ºC Tbase ºC)/θjc.
2/ Channel operating temperature will directly affect the device median time to failure (MTTF). For
maximum life, it is recommended that channel temperatures be maintained at the lowest possible
levels.
Power De-rating Curve
0
1
2
3
4
5
6
7
-50 -25 0 25 50 75 100 125 150 175
Baseplate Temp (C)
Power Dissipated (W)
Tm= 1.0E+6 Hrs
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
5
TGC4405
Oct 2006 © Rev -
Measured Data
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz @ -8dBm, +2dBm LO
-10
-8
-6
-4
-2
0
2
4
6
8
10
12
14
16
18
20
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
RF Output Frequency (GHz)
Converion Gain (dB)
Upper Side Band
Lower Side Band
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz +/- 5MHz @ -8dBm Input/Tone, +2dBm LO
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
RF Output Frequency (GHz)
OTOI (dBm)
Upper Side Band
Lower Side Band
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
6
TGC4405
Oct 2006 © Rev -
Measured Data
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz @ -8dBm, +2dBm LO
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
8 10121416182022242628303234363840
LO Frequency (GHz)
Output Power (dBm)
1x LO Frequency
2x LO Frequency
3x LO Frequency
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz @ -8dBm, +2dBm LO
10
11
12
13
14
15
16
17
18
19
20
17 18 19 20 21 22 23 24
RF Output Frequency (GHz)
Noise Figure (dB)
Lower Side Band
Upper Side Band
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
7
TGC4405
Oct 2006 © Rev -
Measured Data
Swept IF @ -8dBm
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
RF Frequency = 21GHz, +2dBm LO
10
11
12
13
14
15
16
0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
IF Frequency (GHz)
Conversion Gain (dB)
Upper Side Band
Lower Side Band
Swept LO Power
Vd = 5V, Idq = 425mA, Vmxr = Vdbl = -0.9V
IF = 2GHz @ -8dBm, LO Frequency = 20GHz
10
11
12
13
14
15
16
00.511.522.533.544.55
LO Power (dBm)
Conversion Gain (dB)
Upper Side Band
Lower Side Band
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
8
TGC4405
Oct 2006 © Rev -
Electrical Schematic
Bias Procedures
Bias-up Procedure
Vg set to -1.5 V
Vd set to +5 V
Vmxr set to -0.9V
Vdbl set to -0.9 V
Adjust Vg more positive until Idq is 425 mA.
This will be ~ Vg = -0.5 V
Apply signals to LO and IF input
Bias-down Procedure
Turn off signals
Reduce Vg to -1.5V. Ensure Id ~ 0 mA
Turn Vdbl to 0V
Turn Vmxr to 0V
Turn Vd to 0V
Turn Vg to 0V
IF In
Vdbl
Vmxr
Vd
100
pF
0.01
uF
1 uF
Resistive FET
Mixer +
Baluns RF Amplifier
Doubler
2xLO
Buffer
TGC4405
1 uF
100
pF
Vg
1 uF
100
pF
1 uF
RF Out
LO In
15
100
pF
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
9
TGC4405
Oct 2006 © Rev -
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should
be observed during handling, assembly and test.
Mechanical Drawing
Bond Pad #1 LO In 0.100 x 0.100 Bond Pad #6 Vg 0.085 x 0.085
Bond Pad #2 IF In 0.100 x 0.150 Bond Pad #7 Vmxr 0.085 x 0.085
Bond Pad #3 RF Out 0.170 x 0.085 Bond Pad #8 Vd 0.081 x 0.081
Bond Pad #4 Vd 0.085 x 0.085 Bond Pad #9 Vg 0.081 x 0.081
Bond Pad #5 Vd 0.085 x 0.085 Bond Pad #10 Vdbl 0.081 x 0.081
Units: millimeters
Thickness: 0.10
Die x,y size tolerance: +/- 0.05
Chip edge to bond pad dimensions are shown to center of pad
Ground is backside of die
110
2
34 567
8
9
1.767
1.454
1.183
0.456
0.130
1.930
1.842
1.233
0.095
0.0
1.834
2.068
0.703
0.418
0.095
0.0
0.705
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
10
TGC4405
Oct 2006 © Rev -
100 pF
100 pF
100 pF
Vg ~ -0.5V
0.01 F
μ
15
1 F
μ
Ω
1 F
Vmxr = -0.9V
μ
Vd = 5V
1 F
μ
for Idq = 425mA
100 pF
Vdbl = -0.9V
μ
1 F
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should
be observed during handling, assembly and test.
Recommended Assembly Diagram
LO In
IF In
RF Out
Vmxr and Vdbl can be connected together
TriQuint Semiconductor: www. triquint.com (972)994-8465 Fax (972)994-8504 Info-mmw@tqs.com
11
TGC4405
Oct 2006 © Rev -
GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should
be observed during handling, assembly and test.
Assembly Notes
Ordering Information
Part Package Style
TGC4405 GaAs MMIC Die
Component placement and adhesive attachment assembly notes:
1. Vacuum pencils and/or vacuum collets are the preferred method of pick up.
2. Air bridges must be avoided during placement.
3. The force impact is critical during auto placement.
4. Organic attachment (i.e. epoxy) can be used in low-power applications.
5. Curing should be done in a convection oven; proper exhaust is a safety concern.
Reflow process assembly notes:
1. Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum.
2. An alloy station or conveyor furnace with reducing atmosphere should be used.
3. Do not use any kind of flux.
4. Coefficient of thermal expansion matching is critical for long-term reliability.
5. Devices must be stored in a dry nitrogen atmosphere.
Interconnect process assembly notes:
1. Thermosonic ball bonding is the preferred interconnect technique.
2. Force, time, and ultrasonics are critical parameters.
3. Aluminum wire should not be used.
4. Devices with small pad sizes should be bonded with 0.0007-inch wire.