TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DQualified for Automotive Applications
DESD Protection Exceeds 1000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
DSupply Current . . . 300 µA Max
DHigh Unity-Gain Bandwidth ...2 MHz Typ
DHigh Slew Rate . . . 0.45 V/µs Min
DSupply-Current Change Over Full Temp
Range ...10 µA Typ at VCC ±=±15 V
DSpecified for Both 5-V Single-Supply and
±15-V Operation
DPhase-Reversal Protection
DHigh Open-Loop Gain ...6.5 V/µV
(136 dB) Typ
DLow Offset Voltage . . . 100 µV Max
DOffset Voltage Drift With Time
0.005 µV/mo Typ
DLow Input Bias Current . . . 50 nA Max
DLow Noise Voltage . . . 19 nV/Hz Typ
description
The TLE202x and TLE202xA devices are precision, high-speed, low-power operational amplifiers using a new
Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly
improved slew rate and unity-gain bandwidth.
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic
improvement in unity-gain bandwidth and slew rate over similar devices.
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both
time and temperature. This means that a precision device remains a precision device even with changes in
temperature and over years of use.
This combination of excellent dc performance with a common-mode input voltage range that includes the
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply
rail.
A variety of available options includes small-outline versions for high-density systems applications.
The Q-suffix devices are characterized for operation over the full automotive temperature range of −40°C to
125°C.
Copyright 2008, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
ORDERING INFORMATION
TA
VIOmax
AT 25°CPACKAGEORDERABLE
PART NUMBER
TOP-SIDE
MARKING
200 V
SOIC (D) Tape and reel TLE2021AQDRQ1 2021AQ
40°C to 125°C
200 µVTSSOP (PW) Tape and reel TLE2021AQPWRQ1§2021AQ
−40°C to 125°C
500 V
SOIC (D) Tape and reel TLE2021QDRQ1 2021Q1
500 µVTSSOP (PW) Tape and reel TLE2021QPWRQ1§2021Q1
300 V
SOIC (D) Tape and reel TLE2022AQDRQ1 2021AQ
40°C to 125°C
300 µVTSSOP (PW) Tape and reel TLE2022AQPWRQ1§2022AQ1
−40°C to 125°C
500 V
SOIC (D) Tape and reel TLE2022QDRQ1 2022Q1
500 µVTSSOP (PW) Tape and reel TLE2022QPWRQ1§2022Q1
40°C to 125°C
750 µVSOP (DW) Tape and reel TLE2024AQDWRQ1 2024AQ1
−40°C to 125°C1000 µVSOP (DW) Tape and reel TLE2024QDWRQ1 2024Q1
For the most current package and ordering information, see the Package Option Addendum at the end of this document,
or see the TI web site at http://www.ti.com.
Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.
§Product preview
1
2
3
4
8
7
6
5
OFFSET N1
IN−
IN+
VCC /GND
NC
VCC+
OUT
OFFSET N2
TLE2021
D OR PW PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN−
1IN+
VCC /GND
VCC+
2OUT
2IN−
2IN+
TLE2022
D OR PW PACKAGE
(TOP VIEW)
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
1OUT
1IN
1IN+
VCC +
2IN+
2IN
2OUT
NC
4OUT
4IN−
4IN+
VCC /GND
3IN+
3IN
3OUT
NC
TLE2024
DW PACKAGE
(TOP VIEW)
NC − No internal connection
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic (each amplifier)
IN
Q23 Q25
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22
Q24
Q26
Q27
Q28
Q29
Q30
Q31
Q32
Q33
Q34
Q35
Q36
Q37
Q38
Q39
Q40
D1 D2
D3
D4
IN +
OUT
OFFSET N1
(see Note A)
VCC+
VCC /GND
C1
R1
R2
R3
R4
R5
C2
R6
R7
C4
C3
OFFSET N2
(see Note A)
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLE2021 TLE2022 TLE2024
Transistors 40 80 160
Resistors 7 14 28
Diodes 4 8 16
Capacitors 4 8 16
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) 20 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply voltage, VCC (see Note 1) −20 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±0.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input, see Note 1) ±VCC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±1 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO (each output): TLE2021 ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE2022 ±30 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE2024 ±40 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VCC+ 80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VCC 80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: Q suffix −40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating virtual junction temperature, TJ 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, RθJA (see Notes 4 and 5): D (8 pin) 97°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DW (16 pin) 57°C/W. . . . . . . . . . . . . . . . . . . . . . . . . .
PW (8 pin) 149°C/W. . . . . . . . . . . . . . . . . . . . . . . . . .
PW (14 pin) 113°C/W. . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 3 seconds: D or PW package 300°C. . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC .
2. Differential voltages are at IN+ with respect to IN −. Excessive current flows if a differential input voltage in excess of approximately
±600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Selecting the maximum of 150°C can affect reliability.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions
MIN MAX UNIT
Supply voltage, VCC ±2±20 V
Common mode input voltage V
VCC = ± 5 V 0 3.2
V
Common-mode input voltage, VIC VCC ± = ±15 V −15 13.2 V
Operating free-air temperature, TA−40 125 °C
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2021-Q1 TLE2021A-Q1
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX UNIT
V
25°C 120 600 100 400
V
VIO Input offset voltage Full range 800 550 µV
αVIO
Temperature
coefficient of input
offset voltage
Full range 2 2 µV/°C
Input offset voltage
long-term drift
(see Note 4)
VIC = 0, RS = 50 25°C0.005 0.005 µV/mo
I
25°C 0.2 6 0.2 6
nA
IIO Input offset current Full range 10 10 nA
I
25°C 25 70 25 70
nA
IIB Input bias current Full range 90 90 nA
V
Common-mode input
R50
25°C
0
to
3.5
−0.3
to
4
0
to
3.5
−0.3
to
4
V
VICR
voltage range RS = 50
Full range
0
to
3.2
0
to
3.2
V
V
Hi
h-level output 25°C 4 4.3 4 4.3
V
VOH
voltage
R10 k
Full range 3.8 3.8 V
V
Low-level output RL = 10 k25°C 0.7 0.8 0.7 0.8
V
VOL
voltage Full range 0.95 0.95 V
A
Large-signal
V14Vto4V
R10 k
25°C 0.3 1.5 0.3 1.5
V/ V
AVD differential
voltage amplification
VO = 1.4 V to 4 V, RL = 10 kFull range 0.1 0.1 V/µV
CMRR
Common-mode
V V min
R50
25°C 85 110 85 110
dB
CMRR
rejection ratio VIC = VICRmin, RS = 50 Full range 80 80 dB
k
Supply-voltage
V5Vto30V
25°C 105 120 105 120
dB
kSVR rejection ratio
(VCC ±/VIO)
VCC = 5 V to 30 V Full range 100 100 dB
I
25°C 170 300 170 300
A
ICC Supply current Full range 300 300 µA
ICC
Supply current
change over operating
temperature range
VO = 2.5 V, No load
Full range 9 9 µA
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2021-Q1 TLE2021A-Q1
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 120 500 80 300
V
VIO Input offset voltage Full range 700 450 µV
αVIO
Temperature
coefficient of input
offset voltage
Full range 2 2 µV/°C
Input offset voltage
long-term drift
(see Note 4)
VIC = 0, RS = 50 25°C0.006 0.006 µV/mo
I
Input offset current
25°C 0.2 6 0.2 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 25 70 25 70
nA
IIB Input bias current Full range 90 90 nA
V
Common-mode input
R50
25°C
−15
to
13.5
−15.3
to
14
−15
to
13.5
−15.3
to
14
V
VICR
Common mode
input
voltage range RS = 50
Full range
−15
to
13.2
−15
to
13.2
V
V
Maximum positive
peak output voltage
25°C 14 14.3 14 14.3
V
VOM + peak output voltage
swing
R10 k
Full range 13.8 13.8 V
V
Maximum negative
peak output voltage
RL = 10 k25°C −13.7 −14.1 −13.7 −14.1
V
VOM peak output voltage
swing Full range −13.6 −13.6 V
A
Large-signal
differential voltage
V±10 V
R10 k
25°C 1 6.5 1 6.5
V/ V
AVD differential voltage
amplification
VO = ±10 V, RL = 10 kFull range 0.5 0.5 V/µV
CMRR
Common-mode
V V min
R50
25°C 100 115 100 115
dB
CMRR
Common mode
rejection ratio VIC = VICRmin, RS = 50 Full range 96 96 dB
k
Supply-voltage
rejection ratio
V = ±25Vto±15 V
25°C 105 120 105 120
dB
kSVR rejection ratio
(VCC ±/VIO)
VCC ± = ±2.5 V to ±15 V
Full range 100 100
dB
I
Supply current
25°C 200 350 200 350
A
ICC Supply current Full range 350 350 µA
ICC
Supply current
change over
operating temperature
range
VO = 0, No load
Full range 10 10 µA
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2022-Q1 TLE2022A-Q1
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 600 400
V
VIO Input offset voltage Full range 800 550 µV
Temperature coefficient of
Full range
2
2
V/°C
αVIO
Temperature
coefficient
of
input offset voltage Full range 2 2 µV/°C
Input offset volta
g
e
V 0
R50
25°C
0 005
0 005
V/mo
Input
offset
voltage
long-term drift (see Note 4) VIC = 0, RS = 50 25°C0.005 0.005 µV/mo
I
Input offset current
25°C 0.5 6 0.4 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 35 70 33 70
nA
IIB Input bias current Full range 90 90 nA
0 −0.3 0 −0.3
25°C
0
to
0
.
3
to
0
to
0
.
3
to
V
Common-mode input
R50
25 C
to
3.5
to
4
to
3.5
to
4
V
VICR
Common mode
input
voltage range RS = 50 0 0 V
voltage
range
Full ran
g
e
0
to
0
to
Full
range
to
3.2
to
3.2
V
High level output voltage
25°C 4 4.3 4 4.3
V
VOH High-level output voltage
R10 k
Full range 3.8 3.8 V
V
Low level output voltage
RL = 10 k25°C 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.95 0.95 V
A
Lar
g
e-si
g
nal differential
V14Vto4V
R10 k
25°C 0.3 1.5 0.4 1.5
V/ V
AVD
Large signal
differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kFull range 0.1 0.1 V/µV
CMRR
Common-mode rejection
V V min
R50
25°C 85 100 87 102
dB
CMRR
Common mode
rejection
ratio VIC = VICRmin, RS = 50 Full range 80 82 dB
k
Suppl
y
-volta
g
e rejection
V5Vto30V
25°C 100 115 103 118
dB
kSVR
Supply voltage
rejection
ratio (VCC ±/VIO)VCC = 5 V to 30 V Full range 95 98 dB
I
Supply current
25°C 450 600 450 600
A
ICC Supply current Full range 600 600 µA
I
Supply current change over
operating temperature
VO = 2.5 V, No load
Full range
37
37
µA
ICC operating temperature
range
Full range 37 37 µA
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2022-Q1 TLE2022A-Q1
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 150 500 120 300
V
VIO Input offset voltage Full range 700 450 µV
αVIO
Temperature coefficient
Full range
2
2
V/°C
αVIO
Temperature
coefficient
of input offset voltage Full range 2 2 µV/°C
Input offset voltage
long term drift
V 0
R50
25°C
0 006
0 006
V/mo
long-term drift
(see Note 4)
VIC = 0, RS = 50 25°C0.006 0.006 µV/mo
I
Input offset current
25°C 0.5 6 0.4 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 35 70 33 70
nA
IIB Input bias current Full range 90 90 nA
−15 −15.3 −15 −15.3
25°C
15
to
15
.
3
to
15
to
15
.
3
to
V
Common-mode input
R50
25 C
to
13.5
to
14
to
13.5
to
14
V
VICR
Common mode
input
voltage range RS = 50 −15 −15 V
voltage
range
Full ran
g
e
15
to
15
to
Full
range
to
13.2
to
13.2
V
Maximum positive peak 25°C 14 14.3 14 14.3
V
VOM +
Maximum
positive
peak
output voltage swing
R10 k
Full range 13.8 13.8 V
V
Maximum ne
g
ative peak RL = 10 k25°C −13.7 −14.1 −13.7 −14.1
V
VOM
Maximum
negative
peak
output voltage swing Full range −13.6 −13.6 V
A
Lar
g
e-si
g
nal differential
V±10 V
R10 k
25°C 0.8 4 1 7
V/ V
AVD
Large signal
differential
voltage amplification VO = ±10 V, RL = 10 kFull range 0.8 1 V/µV
CMRR
Common-mode rejection
V V min
R50
25°C 95 106 97 109
dB
CMRR
Common mode
rejection
ratio VIC = VICRmin, RS = 50 Full range 91 93 dB
k
Supply-volta
g
e rejection
V±25Vto±15 V
25°C 100 115 103 118
dB
kSVR
Supply voltage
rejection
ratio (VCC ±/VIO)VCC ± = ±2.5 V to ±15 V Full range 95 98 dB
I
Supply current
25°C 550 700 550 700
A
ICC Supply current Full range 700 700 µA
I
Supply current change
over operating
VO = 0, No load
Full range
60
60
µA
ICC over operating
temperature range
Full range 60 60 µA
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2024-Q1 TLE2024A-Q1
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 1100 850
V
VIO Input offset voltage Full range 1300 1050 µV
αVIO Temperature coefficient
of input offset voltage Full range 2 2 µV/°C
Input offset voltage
long-term drift
(see Note 4) VIC = 0, RS = 50 25°C0.005 0.005 µV/mo
I
Input offset current
25°C 0.6 6 0.5 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 45 70 40 70
nA
IIB Input bias current Full range 90 90 nA
V
Common-mode input
R50
25°C
0
to
3.5
−0.3
to
4
0
to
3.5
−0.3
to
4
V
VICR
Common mode
input
voltage range RS = 50
Full range
0
to
3.2
0
to
3.2
V
V
High level output voltage
25°C 3.9 4.2 3.9 4.2
V
VOH High-level output voltage
R10 k
Full range 3.7 3.7 V
V
Low level output voltage
RL = 10 k25°C 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.95 0.95 V
A
Lar
g
e-si
g
nal differential
V14Vto4V
R10 k
25°C 0.2 1.5 0.3 1.5
V/ V
AVD
Large signal
differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kFull range 0.1 0.1 V/µV
CMRR
Common-mode rejection
V V min
R50
25°C 80 90 82 92
dB
CMRR
Common mode
rejection
ratio VIC = VICRmin, RS = 50 Full range 80 82 dB
kSVR
Suppl
y
-volta
g
e rejection
V±25Vto±15 V
25°C 98 112 100 115
dB
kSVR
Supply voltage
rejection
ratio (VCC±/VIO)VCC ± = ±2.5 V to ±15 V Full range 93 95 dB
I
Supply current
25°C 800 1200 800 1200
A
ICC Supply current Full range 1200 1200 µA
ICC
Supply current change
over operating
temperature range
VO = 0, No load
Full range 50 50 µA
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2024-Q1 TLE2024A-Q1
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 1000 750
V
VIO Input offset voltage Full range 1200 950 µV
αVIO Temperature coefficient
of input offset voltage Full range 2 2 µV/°C
Input offset voltage
long-term drift
(see Note 4) VIC = 0, RS = 50 25°C0.006 0.006 µV/mo
I
Input offset current
25°C 0.6 6 0.2 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 50 70 45 70
nA
IIB Input bias current Full range 90 90 nA
V
Common-mode input
R50
25°C
−15
to
13.5
−15.3
to
14
−15
to
13.5
−15.3
to
14
V
VICR
Common mode
input
voltage range RS = 50
Full range
−15
to
13.2
−15
to
13.2
V
V
Maximum positive peak 25°C 13.8 14.1 13.8 14.2
V
VOM +
Maximum
positive
peak
output voltage swing
R10 k
Full range 13.7 13.7 V
V
Maximum ne
g
ative peak RL = 10 k25°C −13.7 −14.1 −13.7 −14.1
V
VOM
Maximum
negative
peak
output voltage swing Full range −13.6 −13.6 V
A
Lar
g
e-si
g
nal differential
V±10 V
R10 k
25°C 0.4 2 0.8 4
V/ V
AVD
Large signal
differential
voltage amplification VO = ±10 V, RL = 10 kFull range 0.4 0.8 V/µV
CMRR
Common-mode rejection
V V min
R50
25°C 92 102 94 105
dB
CMRR
Common mode
rejection
ratio VIC = VICRmin, RS = 50 Full range 88 90 dB
k
Suppl
y
-volta
g
e rejection
V±25Vto±15 V
25°C 98 112 100 115
dB
kSVR
Supply voltage
rejection
ratio (VCC ±/VIO)VCC ± = ±2.5 V to ±15 V Full range 93 95 dB
I
Supply current
25°C 1050 1400 1050 1400
A
ICC Supply current Full range 1400 1400 µA
I
Supply current change
over operating
VO = 0, No load
Full range
85
85
µA
ICC over operating
temperature range
Full range 85 85 µA
Full range is −40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 25°C 0.5 V/µs
V
Equivalent input noise volta
g
ef = 10 Hz 25°C 21
nV/Hz
Vn
Equivalent
input
noise
voltage
(see Figure 2) f = 1 kHz 25°C 17 nV/Hz
V
Peak-to-peak equivalent input f = 0.1 to 1 Hz 25°C 0.16
V
VN(PP)
Peak to peak
equivalent
input
noise voltage f = 0.1 to 10 Hz 25°C 0.47 µV
InEquivalent input noise current 25°C 0.9 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 1.2 MHz
φmPhase margin at unity gain See Figure 3 25°C 42°
TLE2021 operating characteristics at specified free-air temperature, VCC = ±15 V
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
SR
Slew rate at unity gain
V±10 V
See Figure 1
25°C 0.45 0.65
V/ s
SR Slew rate at unity gain VO = ±10 V, See Figure 1 Full range 0.4 V/µs
V
Equivalent input noise volta
g
ef = 10 Hz 25°C 19
nV/Hz
Vn
Equivalent
input
noise
voltage
(see Figure 2) f = 1 kHz 25°C 15 nV/Hz
V
Peak-to-peak equivalent input f = 0.1 to 1 Hz 25°C 0.16
V
VN(PP)
Peak to peak
equivalent
input
noise voltage f = 0.1 to 10 Hz 25°C 0.47 µV
InEquivalent input noise current 25°C 0.09 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 2 MHz
φmPhase margin at unity gain See Figure 3 25°C 46°
Full range is −40°C to 125°C for the Q-suffix devices.
TLE2022 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 V/µs
V
Equivalent input noise volta
g
ef = 10 Hz 21
nV/Hz
Vn
Equivalent
input
noise
voltage
(see Figure 2) f = 1 kHz 17 nV/
Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 0.47 µV
InEquivalent input noise current 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 1.7 MHz
φmPhase margin at unity gain See Figure 3 47°
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 operating characteristics at specified free-air temperature, VCC = ±15 V
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
SR
Slew rate at unity gain
V±10 V
See Figure 1
25°C 0.45 0.65
V/ s
SR Slew rate at unity gain VO = ±10 V, See Figure 1 Full range 0.4 V/µs
V
Equivalent input noise f = 10 Hz 25°C 19
nV/Hz
Vn
Equivalent
input
noise
voltage (see Figure 2) f = 1 kHz 25°C 15 nV/
Hz
V
Peak-to-peak equivalent f = 0.1 to 1 Hz 25°C 0.16
V
VN(PP)
Peak to peak
equivalent
input noise voltage f = 0.1 to 10 Hz 25°C 0.47 µV
InEquivalent input noise current 25°C 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 2.8 MHz
φmPhase margin at unity gain See Figure 3 25°C 52°
Full range is −40°C to 125°C.
TLE2024 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 V/µs
V
Equivalent input noise voltage (see Figure 2)
f = 10 Hz 21
nV/Hz
VnEquivalent input noise voltage (see Figure 2) f = 1 kHz 17 nV/
Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 0.47 µV
InEquivalent input noise current 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 1.7 MHz
φmPhase margin at unity gain See Figure 3 47°
TLE2024 operating characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
SR
Slew rate at unity gain
V±10 V
See Figure 1
25°C 0.45 0.7
V/ s
SR Slew rate at unity gain VO = ±10 V, See Figure 1 Full range 0.4 V/µs
V
Equivalent input noise volta
g
e f = 10 Hz 25°C 19
nV/Hz
Vn
Equivalent
input
noise
voltage
(see Figure 2) f = 1 kHz 25°C 15 nV/
Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 25°C 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 25°C 0.47 µV
InEquivalent input noise current 25°C 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 2.8 MHz
φmPhase margin at unity gain See Figure 3 25°C 52°
Full range is −40°C to 125°C.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
−15 V
15 V
20 k
VI
20 k
VO
20 k
VI
30 pF
(see Note A)
VO
5 V
20 k
+
+
(a) SINGLE SUPPLY
NOTE A: CL includes fixture capacitance.
(b) SPLIT SUPPLY
30 pF
(see Note A)
Figure 1. Slew-Rate Test Circuit
2.5 V
5 V
VO
2 k
20
20
20
20
VO
15 V
15 V
2 k
+
+
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 2. Noise-Voltage Test Circuit
2.5 V
+
+
VO
10 k
15 V
15 V
10 k
100
VI
VI
10 k
VO
100
10 k
5 V
(a) SINGLE SUPPLY
NOTE A: CL includes fixture capacitance.
(b) SPLIT SUPPLY
30 pF
(see Note A)
30 pF
(see Note A)
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
10 k
0.1 µF
10 k
+
VO
10 k
VI
5 V
+
VO
10 k
VI
15 V
15 V
(a) SINGLE SUPPLY
NOTE A: CL includes fixture capacitance.
(b) SPLIT SUPPLY
30 pF
(see Note A)
30 pF
(see Note A)
Figure 4. Small-Signal Pulse-Response Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO Input offset voltage Distribution 5, 6, 7
IIB Input bias current vs Common-mode input voltage
vs Free-air temperature
8, 9, 10
11, 12, 13
IIInput current vs Differential input voltage 14
VOM Maximum peak output voltage vs Output current
vs Free-air temperature
15, 16, 17
18
VOH High-level output voltage vs High-level output current
vs Free-air temperature
19, 20
21
VOL Low-level output voltage vs Low-level output current
vs Free-air temperature
22
23
VO(PP) Maximum peak-to-peak output voltage vs Frequency 24, 25
AVD Large-signal differential voltage amplification vs Frequency
vs Free-air temperature
26
27, 28, 29
IOS Short-circuit output current vs Supply voltage
vs Free-air temperature
30 − 33
34 − 37
ICC Supply current vs Supply voltage
vs Free-air temperature
38, 39, 40
41, 42, 43
CMRR Common-mode rejection ratio vs Frequency 44, 45, 46
SR Slew rate vs Free-air temperature 47, 48, 49
Voltage-follower small-signal pulse response 50, 51
Voltage-follower large-signal pulse response 52 − 57
VN(PP) Peak-to-peak equivalent input noise voltage 0.1 to 1 Hz
0.1 to 10 Hz
58
59
VnEquivalent input noise voltage vs Frequency 60
B1Unity-gain bandwidth vs Supply voltage
vs Free-air temperature
61, 62
63, 64
φmPhase margin
vs Supply voltage
vs Load capacitance
vs Free-air temperature
65, 66
67, 68
69, 70
Phase shift vs Frequency 26
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 5
16
12
8
4
3000300
0600
20
VIO − Input Offset Voltage − µV
Percentage of Units − %
600
ÎÎÎÎ
P Package
VCC ± = ±15 V
231 Units Tested From 1 Wafer Lot
DISTRIBUTION OF TLE2021
INPUT OFFSET VOLTAGE
TA = 25°C
450 150 150 450
Figure 6
600
Percentage of Units − %
VIO − Input Offset Voltage − µV
20
200
0400 200 0
4
8
12
16
400 600
DISTRIBUTION OF TLE2022
INPUT OFFSET VOLTAGE
ÎÎÎÎÎÎÎÎÎÎÎ
398 Amplifiers Tested From 1 Wafer Lot
VCC ± = ±15 V
TA = 25°C
P Package
Figure 7
−1
Percentage of Units − %
VIO − Input Offset Voltage − mV
16
1
00.5 0 0.5
796 Amplifiers Tested From 1 Wafer Lot
VCC ± = ±15 V
TA = 25°C
N Package
4
8
12
DISTRIBUTION OF TLE2024
INPUT OFFSET VOLTAGE
Figure 8
TA = 25°C
VCC ± = ±15 V
−35
−30
−25
−20
−15
−10
−5
1050−5−10
0
15
−40
VIC − Common-Mode Input Voltage − V
IIB − Input Bias Current − nA
−15
IB
I
TLE2021
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 9
−15
IIB − Input Bias Current − nA
VIC − Common-Mode Input Voltage − V
−50
15
−10 −5 0 5 10
−20
−25
−30
−35
−40
−45
VCC ± = ±15 V
TA = 25°C
IB
I
TLE2022
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
Figure 10
−15
IIB − Input Bias Current − nA
VIC − Common-Mode Input Voltage − V
−60
15
−20
−10 −5 0510
−30
−40
−50
VCC ± = ±15 V
TA = 25°C
ÁÁ
ÁÁ
IIB
TLE2024
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
Figure 11
−30
−25
−20
−15
−10
−5
1007550250−25−50
0125
−35
TA − Free-Air Temperature − °C
IIB − Input Bias Current − nA
−75
IB
I
TLE2021
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
VCC ± = ±15 V
VO = 0
VIC = 0
Figure 12
−75
IIB − Input Bias Current − nA
TA − Free-Air Temperature − °C
−50
125
−50 −25 0 25 50 75 100
−20
−25
−30
−35
−40
−45
VCC ± = ±15 V
VO = 0
VIC = 0
IB
I
TLE2022
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 13
TA − Free-Air Temperature − °C
−75
IIB − Input Bias Current − nA
−60
−20
−50 −25 0 25 50 75 100
−50
−30
−40
125
ÁÁ
ÁÁ
IIB
ÎÎÎ
ÎÎÎ
ÎÎÎ
VO = 0
VIC = 0
ÎÎÎÎÎ
VCC± = ±15 V
TLE2024
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
Figure 14
TA = 25°C
VIC = 0
VCC± = ±15 V
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.90.80.70.60.50.40.30.20.1
01
1
|VID| − Differential Input Voltage − V
II − Input Current − mA
0
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
II
Figure 15
0
VOM − Maximum Peak Output Voltage − V
IO Output Current − mA
16
10
02 4 6 8
2
4
6
8
10
12
14
VCC ± = ±15 V
TA = 25°C
ÁÁÁ
ÁÁÁ
ÁÁÁ
V
OM
ÎÎÎÎ
ÎÎÎÎ
VOM
ÎÎÎÎ
ÎÎÎÎ
VOM+
TLE2021
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
Figure 16
0
VOM| − Maximum Peak Output Voltage − V
|IO| − Output Current − mA
16
14
0246
2
4
6
8
10
12
14 TA = 25°C
81012
ÁÁ
ÁÁ
|VOM
ÎÎÎ
ÎÎÎ
VOM+
ÎÎÎÎ
ÎÎÎÎ
VOM−
VCC ± = ±15 V
TLE2022
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 17
IO Output Current − mA
0
VOM − Maximum Peak Output Voltage − V
16
0246
2
4
6
8
10
12
14
81012
ÎÎÎ
ÎÎÎ
VOM
14
VCC ± = ±5 V
ÎÎÎ
VOM +
ÁÁ
ÁÁ
ÁÁ
VOM
ÎÎÎÎ
TA = 25°C
TLE2024
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
Figure 18
−75
TA − Free-Air Temperature − °C
15
125
12 −50 −25 0 25 50 75 100
12.5
13
13.5
14
14.5
VOM
VOM +
VCC ± = ±15 V
TA = 25°C
RL = 10 k
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOM| − Maximum Peak Output Voltage − V
ÁÁÁ
ÁÁÁ
ÁÁÁ
|VOM
Figure 19
0
VOH − High-Level Output Voltage − V
IOH − High-Level Output Current − mA
5
−7
0−1 −2 −3 −4 −5 −6
1
2
3
4
TA = 25°C
VCC = 5 V
ÁÁ
ÁÁ
V
OH
TLE2021
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
Figure 20
IOH − High-Level Output Current − mA
0
VOH − High-Level Output Voltage − V
5
0
−2 −4 −6 −8
1
2
3
4
TA = 25°C
VCC = 5 V
ÁÁ
ÁÁ
V
OH
−10
TLE2022 AND TLE2024
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 21
−75
TA − Free-Air Temperature − °C
5
125
4
−50 −25 0 25 50 75 100
4.2
4.6
4.8
VOH − High-Level Output Voltage − V
VCC = 5 V
RL = 10 k
No Load
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
V
OH
4.4
Figure 22
0
VOL − Low-Level Output Voltage − V
IOL − Low-Level Output Current − mA
5
3
00.5 1 1.5 2 2.5
1
2
3
4
VCC = 5 V
TA = 25°C
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
ÁÁ
VOL
Figure 23
−75
TA − Free-Air Temperature − °C
1
125
0−50 −25 0 25 50 75 100
0.25
0.5
0.75
IOL = 1 mA
IOL = 0
VCC ± = ±5 V
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOL − Low-Level Output Voltage − V
ÁÁÁ
ÁÁÁ
VOL
Figure 24
100
VOPP − Maximum Peak-to-Peak Output Voltage − V
f − Frequency − Hz
5
1 M
0
1
2
3
4
1 k 10 k 100 k
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
VCC =5 V
RL = 10 k
ÁÁ
ÁÁ
ÁÁ
VO(PP)
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 25
100
f − Frequency − Hz
30
1 M
0
5
10
15
20
25
1 k 10 k 100 k
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
TA = 25°C
VCC ± = ±15 V
RL = 10 k
VOPP − Maximum Peak-to-Peak Output Voltage − V
ÁÁ
ÁÁ
ÁÁ
ÁÁ
VO(PP)
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 10 k
CL = 30 pF
TA = 25°C
Phase Shift
AVD
180°
60°
200°
160°
140°
120°
100°
80°
100
80
60
40
20
0
1 M100 k10 k1 k100
−20 10 M
120
f − Frequency − Hz
10
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÎÎÎÎÎ
ÎÎÎÎÎ
Phase Shift
VCC = 5 V
− Large-Signal Differential
AVD
Voltage Amplification − dB
Figure 26
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 27
RL = 10 k
ÎÎÎÎ
ÎÎÎÎ
VCC = 5 V
6
4
2
1007550250−25−50
0125
10
TA − Free-Air Temperature − °C
−75
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
Vµ
V/
Voltage Amplification
8
− Large-Signal Differential
AVD
TLE2021
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 28
−75
TA − Free-Air Temperature − °C
125
0−50 −25 0 25 50 75 100
1
VCC = 5 V
VCC ± = ±15 V
RL = 10 k
2
3
4
5
6
AVD − Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification − V/µV
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 29
VCC ± = ±5 V
6
4
2
1007550250−25−50
0125
10
TA − Free-Air Temperature − °C
−75
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 10 k
Vµ
V/
Voltage Amplification
8
A − Large-Signal Differential
VD
TLE2024
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 30
ÎÎÎÎÎ
VID = 100 mV
TA = 25°C
VID = −100 mV
VO = 0
8
6
4
2
0
−2
−4
−6
−8
1412108642
−10 16
10
|VCC ±| − Supply Voltage − V
IOS − Short-Circuit Output Current − mA
0
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 31
0
IOS − Short-Circuit Output Current − mA
|VCC ±| − Supply Voltage − V
15
16
−15 2 4 6 8101214
VO = 0
TA = 25°C
VID = 100 mV
−10
−5
0
5
10
IOS
ÎÎÎÎÎ
VID = −100 mV
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Figure 32
VO = VCC
TA = 25°C
VID = 100 mV
VID = −100 mV
VO = 0
8
4
0
−4
−8
252015105
−12 30
12
VCC − Supply Voltage − V
0
IOS − Short-Circuit Output Current − mA
ÁÁ
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Figure 33
0
IOS − Short-Circuit Output CUrrent − mA
VCC − Supply Voltage − V
15
30
−15
−10
−5
0
5
10
ÎÎÎÎ
ÎÎÎÎ
TA = 25°C
VID = −100 mV
VID = 100 mV
252015105
VO = VCC
VO = 0
IOS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Figure 34
−75
8
125
−8 −50 −25 02550 75 100
−6
−4
−2
0
2
4
6
VID = −100 mV
VCC =5 V
VID = 100 mV
VO = 0
VO = 5 V
TA − Free-Air Temperature − °C
IOS − Short-Circuit Output Current − mA
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 35
−75
6
125
−10 −50 −25 0255075100
−8
−6
−4
−2
0
2
4
VID = −100 mV
VCC = 5 V
VO = 5 V
TA − Free-Air Temperature −°C
IOS − Short-Circuit Output Current − mA
IOS
ÎÎÎÎÎ
VID = 100 mV
ÎÎÎ
ÎÎÎ
VO = 0
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Figure 36
−75
IOS − Short-Circuit Output Current − mA
TA − Free-Air Temperature − °C
12
125
−12 −50 −25 0 25 50 75 100
−8
−4
0
4
8VO = 0
VCC ± = ±15 V
VID = −100 mV
VID = 100 mV
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Figure 37
−75
TA − Free-Air Temperature − °C
15
125
−15
−10
−5
0
5
10
VO = 0
VID = −100 mV
VID = 100 mV
VCC ± = ±15 V
IOS − Short-Circuit Output Current − mA
50 25 0 25 50 75 100
IOS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Figure 38
0
ICC − Supply Current − ua
|VCC ±| − Supply Voltage − V
250
16
0
50
100
150
200
2 4 6 8 10 12 14
VO = 0
No Load
ÁÁ
ÁÁ
CC
IAµ
ÎÎÎÎ
ÎÎÎÎ
TA = 25°C
ÎÎÎÎ
ÎÎÎÎ
TA = 125°C
ÎÎÎÎ
ÎÎÎÎ
TA = − 55°C
TLE2021
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 39
0
ICC − Supply Current − ua
|VCC ±| − Supply Voltage − V
16
2 4 6 8 10 12 14
VO = 0
No Load
TA = 25°C
TA = 125°C
TA = − 55°C
100
200
300
400
0
500
ÁÁ
ÁÁ
ÁÁ
CC
IAµ
TLE2022
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Figure 40
0
|VCC ±| − Supply Voltage − V
16
2 4 6 8 10 12 14
VO = 0
No Load
200
400
600
800
0
1000
TA = 25°C
ÎÎÎÎ
TA = 125°C
TA = − 55°C
− Supply Current − µAICC
TLE2024
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Figure 41
−75
225
125
0
25
50
75
100
125
150
175
200
50 25 0 25 50 75 100
TA − Free-Air Temperature − °C
No Load
VO = 0
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±2.5 V
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ICC − Supply Current − ua
ÁÁ
ÁÁ
CC
IAµ
TLE2021
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Figure 42
−75
500
125
050 25 0 25 50 75 100
VCC ±= ±15 V
VCC ± = ±2.5 V
TA − Free-Air Temperature − °C
No Load
VO = 0
400
300
200
100
ICC − Supply Current − ua
ÁÁ
ÁÁ
CC
IAµ
TLE2022
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 43
75 12550 25 0 25 50 75 100
TA − Free-Air Temperature − °C
1000
0
800
600
400
200
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ÎÎÎÎÎ
VCC ± = ±2.5 V
VO = 0
No Load
− Supply Current − µAICC
TLE2024
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Figure 44
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC = 5 V
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
100
80
60
40
20
1 M100 k10 k1 k100
0
10 M
120
f − Frequency − Hz
CMRR − Common-Mode Rejection Ratio − dB
10
TLE2021
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Figure 45
10
CMRR − Common-Mode Rehection Ratio − dB
f − Frequency − Hz
120
10 M
0100 1 k 10 k 100 k 1 M
20
40
60
80
100
VCC ± = ±15 V
VCC = 5 V
ÎÎÎÎÎ
TA = 25°C
TLE2022
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Figure 46
10
CMRR − Common-Mode Rejection Ratio − dB
f − Frequency − Hz
120
10 M
0100 1 k 10 k 100 k 1 M
20
40
60
80
100
ÎÎÎÎ
ÎÎÎÎ
VCC = 5 V
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
TLE2024
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 47
See Figure 1
RL = 20 k
CL = 30 pF
0.8
0.6
0.4
0.2
1007550250−25−50
0125
1
TA − Free-Air Temperature − °C
SR − Slew Rate − V/us
−75
sµ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ÎÎÎÎ
ÎÎÎÎ
VCC = 5 V
TLE2021
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 48
−75
SR − Slew Rate − V/ us
TA − Free-Air Temperature − °C
1
125
0−50 −25 0 25 50 75 100
0.2
0.4
0.6
0.8
VCC ± = ±15 V
VCC = 5 V
CL = 30 pF
RL = 20 k
See Figure 1
sµ
TLE2022
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 49
−75
SR − Slew Rate − V/s
TA − Free-Air Temperature − °C
1
125
0−50 −25 0 25 50 75 100
0.2
0.4
0.6
0.8
CL = 30 pF
RL = 20 k
See Figure 1
ÎÎÎÎÎ
VCC ± = ±15 V
VCC = 5 V
sµ
V/
TLE2024
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 50
ÎÎÎÎÎ
ÎÎÎÎÎ
See Figure 4
TA = 25°C
CL = 30 pF
RL = 10 k
VCC ± = ±15 V
50
0
−50
60
40200
100 80
100
t − Time − µs
VO − Output Voltage − mV
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
ÁÁ
ÁÁ
VO
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 51
TA = 25°C
CL = 30 pF
ÎÎÎÎÎ
See Figure 4
RL = 10 k
t − Time − µs
VCC = 5 V
2.5
6040200
2.4 80
2.6
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VO − Output Voltage − V
ÁÁÁ
ÁÁÁ
VO
2.55
2.45
Figure 52
t − Time − µs
4
80
00 20 40 60
1
2
3
VCC = 5 V
RL = 10 k
CL = 30 pF
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
See Figure 1
VO − Output Voltage − V
ÁÁ
ÁÁ
VO
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 53
t − Time − µs
4
80
00 20 40 60
1
2
3
VCC = 5 V
RL = 10 k
CL = 30 pF
TA = 25°C
See Figure 1
VO − Output Voltage − V
ÁÁÁ
ÁÁÁ
VO
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 54
t − Time − µs
4
80
00 20 40 60
1
2
3
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = 5 V
RL = 10 k
CL = 30 pF
TA = 25°C
See Figure 1
VO − Output Voltage − V
V
O
TLE2024
VOLTAGE-FOLLOWER LARGE-SCALE
PULSE RESPONSE
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 55
VO − Output Voltage − V
t − Time − µs
15
80
−15 020 40 60
−10
−5
0
5
10
VCC ± = ±15 V
RL = 10 k
CL = 30 pF
TA = 25°C
See Figure 1
ÁÁ
ÁÁ
VO
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 56
VO − Output Voltage − V
t − Time − µs
15
80
−15 0 20 40 60
−10
−5
0
5
10
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
RL = 10 k
CL = 30 pF
TA = 25°C
See Figure 1
ÁÁ
ÁÁ
VO
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 57
VO − Output Voltage − V
t − Time − µs
15
80
−15 020 40 60
−10
−5
0
5
10
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
RL = 10 k
CL = 30 pF
TA = 25°C
See Figure 1
V
O
TLE2024
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 58
0
0.5
10
0.5 123456789
0.4
0.3
0.2
0.1
0
0.1
0.2
0.3
0.4
t − Time − s
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
TA = 25°C
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 1 Hz
VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV
Vµ
ÁÁ
ÁÁ
ÁÁ
VN(PP)
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 59
t − Time − s
0.4
0.3
0.2
0.1
0
0.1
0.2
0.3
0.4
0.5
0.5
987654321100
VCC ± = ±15 V
TA = 25°C
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV
Vµ
ÁÁÁ
ÁÁÁ
ÁÁÁ
VN(PP)
Figure 60
1
Vn − Equivalent Input Noise Voltage − nVHz
f − Frequency − Hz
200
10 k
0
40
80
120
160
10 100 1 k
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
Vn
ÁÁ
ÁÁ
ÁÁ
nV/ Hz
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
RS = 20
ÎÎÎÎ
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
See Figure 2
Figure 61
0
B1 − Unity-Gain Bandwidth − MHz
4
16
02 4 6 8 10 12 14
1
2
3See Figure 3
TA = 25°C
CL = 30 pF
RL = 10 k
B1
|VCC±| − Supply Voltage − V
TLE2021
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
Figure 62
3
2
1
1412108642
016
4
|VCC±| − Supply Voltage − V
B1 − Unity-Gain Bandwidth − MHz
0
B1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 k
CL = 30 pF
TA = 25°C
See Figure 3
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 63
−75
B1 − Unity-Gain Bandwidth − MHz
TA − Free-Air Temperature − °C
4
125
0−50 −25 0 25 50 75 100
1
2
3
See Figure 3
CL = 30 pF
RL = 10 k
VCC ± = ±15 V
ÎÎÎÎÎ
VCC = 5 V
B1
TLE2021
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
Figure 64
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC = 5 V
3
2
1
1007550250−25−50
0125
4
TA − Free-Air Temperature − °C
−75
RL = 10 k
CL = 30 pF
See Figure 3
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
B1 − Unity-Gain Bandwidth − MHz
B1
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
Figure 65
0
m − Phase Margin
50°
16
40°2 4 6 8 10 12 14
42°
44°
46°
48°
|VCC ±| − Supply Voltage − V
RL = 10 k
CL = 30 pF
TA = 25°C
See Figure 3
ÁÁ
ÁÁ
m
φ
TLE2021
PHASE MARGIN
vs
SUPPLY VOLTAGE
Figure 66
53°
51°
49°
47°
1412108642
45°16
55°
m − Phase Margin
0
|VCC±| − Supply Voltage − V
ÁÁ
ÁÁ
m
φ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
See Figure 3
TA = 25°C
CL = 30 pF
RL = 10 k
TLE2022 AND TLE2024
PHASE MARGIN
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 67
0
CL − Load Capacitance − pF
60°
100
020 40 60 80
10°
20°
30°
40°
50°
RL = 10 k
TA = 30 pF
See Figure 3
VCC ± = ±15 V
VCC = 5 V
m − Phase Margin
ÁÁ
ÁÁ
ÁÁ
m
φ
TLE2021
PHASE MARGIN
vs
LOAD CAPACITANCE
Figure 68
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
80604020
VCC = 5 V
See Figure 3
TA = 25°C
RL = 10 k
60°
50°
40°
30°
20°
10°
0°100
70°
CL − Load Capacitance − pF
m − Phase Margin
0
ÁÁ
ÁÁ
m
φ
VCC ± = ±15 V
TLE2022 AND TLE2024
PHASE MARGIN
vs
LOAD CAPACITANCE
Figure 69
−75
m − Phase Margin
TA − Free-Air Temperature − °C
50°
125
36°−50 −25 0 25 50 75 100
38°
40°
42°
44°
46°
48°
RL = 10 k
CL = 30 pF
See Figure 3
VCC ± = ±15 V
VCC = 5 V
Á
Á
m
φ
TLE2021
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Figure 70
42°
1007550250−25−50
VCC = 5 V
VCC ± = ±15 V
52°
50°
48°
46°
44°
40°125
54°
TA − Free-Air Temperature − °C
−75
m − Phase Margin
ÁÁ
ÁÁ
m
φ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
See Figure 3
CL = 30 pF
RL = 10 k
TLE2022 AND TLE2024
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
voltage-follower applications
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For
feedback resistor values greater than 10 k, this pole degrades the amplifier phase margin. This problem can
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).
CF = 20 pF to 50 pF
IF 1 mA
RF
VCC +
VCC
VO
VI
+
Figure 71. Voltage Follower
Input offset voltage nulling
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null
pins may be left disconnected.
1 k GND (single supply)
VCC − (split supply)
5 k
OFFSET N2
+
OFFSET N1
IN −
IN +
Figure 72. Input Offset Voltage Null Circuit
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and
Figure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
DUnity-gain frequency
DCommon-mode rejection ratio
DPhase margin
DDC output resistance
DAC output resistance
DShort-circuit output current limit
DMaximum positive output voltage swing
DMaximum negative output voltage swing
DSlew rate
DQuiescent power dissipation
DInput bias current
DOpen-loop voltage amplification
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
OUT
+
+
+
+
+
+
+
+
VCC +
rp
IN
2
IN+
1
VCC
rc1
11
Q1 Q2
13
cee Iee
3
12
rc2
ve
54 de
dp
vc
dc
4
C1
53
r2
6
9
egnd
vb
fb
C2
gcm ga vlim
8
5ro1
ro2
hlim
90
dip
91
din
92
vinvip
99
7
ree
14
re1 re2
Figure 73. Boyle Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
TLE202x-Q1, TLE202xA-Q1
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS199B − JANUARY 2004 − REVISED APRIL 2008
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
.SUBCKT TLE2021 1 2 3 4 5
*
c1 11 12 6.244E−12
c2 6 7 13.4E−12
c3 87 0 10.64E−9
cpsr 85 86 15.9E−9
dcm+ 81 82 dx
dcm− 83 81 dx
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
ecmr 84 99 (2 99) 1
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
epsr 85 0 poly(1) (3,4) −60E−6 2.0E−6
ense 89 2 poly(1) (88,0) 120E−6 1
fb 7 99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6
+ −50E7 50E7 50E7 −50E7 547E6
ga 6 0 11 12 188.5E−6
gcm 0 6 10 99 335.2E−12
gpsr 85 86 (85,86) 100E−6
grc1 4 11 (4,11) 1.885E−4
grc2 4 12 (4,12) 1.885E−4
gre1 13 10 (13,10) 6.82E−4
gre2 14 10 (14,10) 6.82E−4
hlim 90 0 vlim 1k
hcmr 80 1 poly(2) vcm+ vcm− 0 1E2 1E2
irp 3 4 185E−6
iee 3 10 dc 15.67E−6
iio 2 0 2E−9
i1 88 0 1E−21
q1 11 89 13 qx
q2 12 80 14 qx
R2 6 9 100.0E3
rcm 84 81 1K
ree 10 99 14.76E6
rn1 87 0 2.55E8
rn2 87 88 11.67E3
ro1 8 5 62
ro2 7 99 63
vcm+ 82 99 13.3
vcm− 83 99 −14.6
vb 9 0 dc 0
vc 3 53 dc 1.300
ve 54 4 dc 1.500
vlim 7 8 dc 0
vlp 91 0 dc 3.600
vln 0 92 dc 3.600
vpsr 0 86 dc 0
.model dx d(is=800.0E−18)
.model qx pnp(is=800.0E−18 bf=270)
.ends
Figure 74. Boyle Macromodel for the TLE2021
.SUBCKT TLE2022 1 2 3 4 5
*
c1 11 12 6.814E−12
c2 6 7 20.00E−12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0
+ 45.47E6 −50E6 50E6 50E6 −50E6
ga 6 0 11 12 377.9E−6
gcm 0 6 10 99 7.84E−10
iee 3 10 DC 18.07E−6
hlim 90 0 vlim 1k
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 4 11 2.842E3
rc2 4 12 2.842E3
ge1 13 10 (10,13) 31.299E−3
ge2 14 10 (10,14) 31.299E−3
ree 10 99 11.07E6
ro1 8 5 250
ro2 7 99 250
rp 3 4 137.2E3
vb 9 0 dc 0
vc 3 53 dc 1.300
ve 54 4 dc 1.500
vlim 7 8 dc 0
vlp 91 0 dc 3
vln 0 92 dc 3
.model dx d(is=800.0E−18)
.model qx pnp(is=800.0E−18 bf=257.1)
.ends
Figure 75. Boyle Macromodel for the TLE2022
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLE2021AQDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021AQDRQ1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021QDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021QDRQ1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022AQDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022AQDRQ1 ACTIVE SOIC D 8 TBD Call TI Call TI
TLE2022QDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022QDRQ1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024AQDWRG4Q1 ACTIVE SOIC DW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024AQDWRQ1 ACTIVE SOIC DW 16 2000 TBD Call TI Call TI
TLE2024QDWRG4Q1 ACTIVE SOIC DW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024QDWRQ1 ACTIVE SOIC DW 16 2000 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 2
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLE2021-Q1, TLE2021A-Q1, TLE2022-Q1, TLE2022A-Q1, TLE2024-Q1, TLE2024A-Q1 :
Catalog: TLE2021, TLE2021A, TLE2022, TLE2022A, TLE2024, TLE2024A
Enhanced Product: TLE2021-EP, TLE2021A-EP, TLE2022-EP, TLE2022A-EP, TLE2024-EP, TLE2024A-EP
Military: TLE2021M, TLE2021AM, TLE2022M, TLE2022AM, TLE2024M, TLE2024AM
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Enhanced Product - Supports Defense, Aerospace and Medical Applications
Military - QML certified for Military and Defense Applications
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated