This is information on a product in full production.
December 2017 DocID025409 Rev 8 1/121
STM32F334x4 STM32F334x6
STM32F334x8
Arm®Cortex®-M4 32b MCU+FPU,up to 64KB Flash,16KB SRAM,
2 ADCs,3 DACs,3 comp.,op-amp, 217ps 10-ch (HRTIM1)
Datasheet - production data
Features
Core: Arm® Cortex®-M4 32-bit CPU with FPU
(72 MHz max), single-cycle multiplication and
HW division DSP instruction
Memories
Up to 64 Kbytes of Flash memory
Up to 12 Kbytes of SRAM with HW parity
check
Routine booster: 4 Kbytes of SRAM on
instruction and data bus with HW parity
check (CCM)
CRC calculation unit
Reset and supply management
–V
DD,VDDA voltage range: 2.0 to 3.6 V
Power-on/Power-down reset (POR/PDR)
Programmable voltage detector (PVD)
Low-power modes: Sleep, Stop, Standby
–V
BAT supply for RTC and backup registers
Clock management
4 to 32 MHz crystal oscillator
32 kHz oscillator for RTC with calibration
Internal 8 MHz RC (up to 64 MHz with PLL
option)
Internal 40 kHz oscillator
Up to 51 fast I/O ports, all mappable on
external interrupt vectors, several 5 V-tolerant
Interconnect matrix
7-channel DMA controller
Up to two ADC 0.20 µs (up to 21 channels) with
selectable resolution of 12/10/8/6 bits, 0 to
3.6 V conversion range, single-ended /
differential mode, separate analog supply from
2.0 to 3.6 V
Temperature sensor
Up to three 12-bit DAC channels with analog
supply from 2.4 V to 3.6 V
Three ultra-fast rail-to-rail analog comparators
with analog supply from 2 to 3.6 V
One operational amplifiers that can be used in
PGA mode, all terminals accessible with
analog supply from 2.4 to 3.6 V
Up to 18 capacitive sensing channels
supporting touchkeys, linear and rotary touch
sensors
Up to 12 timers
HRTIM: 6 x16-bit counters, 217 ps
resolution, 10 PWM, 5 fault inputs, 10 ext
event input, 1 synchro. input,1 synchro. out
One 32-bit timer and one 16-bit timer with
up to 4 IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
One 16-bit 6-channel advanced-control
timer, with up to 6 PWM channels,
deadtime generation and emergency stop
One 16-bit timer with 2 IC/OCs,
1 OCN/PWM, deadtime generation,
emergency stop
Two 16-bit timers with IC/OC/OCN/PWM,
deadtime generation and emergency stop
Two watchdog timers (independent,
window)
SysTick timer: 24-bit downcounter
Up to two 16-bit basic timers to drive DAC
Calendar RTC with alarm, periodic wakeup
from Stop
Communication interfaces
CAN interface (2.0 B Active) and one SPI
LQFP32 (7 x 7 mm)
LQFP48 (7 x 7 mm)
LQFP64 (10 x 10 mm)
WLCSP49
(3.89x3.74 mm)
www.st.com
STM32F334x4 STM32F334x6 STM32F334x8
2/121 DocID025409 Rev 8
–One I
2C with 20 mA current sink to support
Fast mode plus, SMBus/PMBus
Up to 3 USARTs, one with ISO/IEC 7816
interface, LIN, IrDA, modem control
Debug mode: serial wire debug (SWD), JTAG
96-bit unique ID
All packages ECOPACK®2 compliant
Table 1. Device summary
Reference Part number
STM32F334Kx STM32F334K4/K6/K8
STM32F334Cx STM32F334C4/C6/C8
STM32F334Rx STM32F334R6/R8
DocID025409 Rev 8 3/121
STM32F334x4 STM32F334x6 STM32F334x8 Contents
5
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Arm® Cortex®-M4 core with FPU with embedded Flash
memory and SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14
3.4 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 19
3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 19
3.10 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10.4 OPAMP2 reference voltage (VOPAMP2) . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13 Ultra-fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Contents STM32F334x4 STM32F334x6 STM32F334x8
4/121 DocID025409 Rev 8
3.14.1 217 ps high-resolution timer (HRTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.2 Advanced timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.3 General-purpose timers (TIM2, TIM3, TIM15, TIM16 and TIM17) . . . . . 24
3.14.4 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25
3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.16.1 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.16.2 Universal synchronous / asynchronous
receivers / transmitters (USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.16.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.16.4 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.18 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.19.1 Serial-wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 Pinout and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.5 Input voltage on a pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.6 Power-supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.1.7 Measurement of the current consumption . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 51
6.3.3 Characteristics of the embedded reset and power-control block . . . . . . 51
DocID025409 Rev 8 5/121
STM32F334x4 STM32F334x6 STM32F334x8 Contents
5
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.16 High-resolution timer (HRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.17 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.18 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.19 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.22 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.23 Temperature sensor (TS) characteristics . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.24 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
7.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.6.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 116
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
List of tables STM32F334x4 STM32F334x6 STM32F334x8
6/121 DocID025409 Rev 8
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32F334x4/6/8 family device features and peripheral counts. . . . . . . . . . . . . . . . . . . . 10
Table 3. VDDA ranges for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. STM32F334x4/6/8 peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 7. STM32F334x4/6/8 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 8. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. STM32F334x4/6/8 SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 10. Capacitive sensing GPIOs available on STM32F334x4/6/8 devices . . . . . . . . . . . . . . . . . 29
Table 11. No. of capacitive sensing channels available on STM32F334x4/6/8 devices. . . . . . . . . . . 29
Table 12. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 13. STM32F334x4/6/8 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 14. Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 15. STM32F334x4/6/8 peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . 43
Table 16. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 17. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 18. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 19. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 20. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 21. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 22. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 23. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 24. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6V . . . . . . . . . . . 54
Table 26. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 55
Table 27. Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 55
Table 28. Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 56
Table 29. Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 56
Table 30. Typical current consumption in Run mode, code with data processing
running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 31. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 59
Table 32. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 33. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 34. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 35. Wakeup time using USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 36. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 37. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 38. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 39. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 40. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 41. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 42. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 43. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 44. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 45. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 46. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 47. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
DocID025409 Rev 8 7/121
STM32F334x4 STM32F334x6 STM32F334x8 List of tables
7
Table 48. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 49. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 50. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 51. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 52. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 53. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 54. HRTIM1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 55. HRTIM output response to fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 56. HRTIM output response to external events 1 to 5 (Low-Latency mode). . . . . . . . . . . . . . . 81
Table 57. HRTIM output response to external events 1 to 10 (Synchronous mode ) . . . . . . . . . . . . . 81
Table 58. HRTIM synchronization input / output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 59. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 60. IWDG min./max. timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 61. WWDG min./max. timeout value at 72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 62. I2C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 63. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 64. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 65. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 66. ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 67. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 68. ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 69. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 70. Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 71. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 72. Temperature sensor (TS) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 73. Temperature sensor (TS) calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 74. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 75. LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 76. LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 77. LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 78. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 79. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,
recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 80. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 81. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 82. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
List of figures STM32F334x4 STM32F334x6 STM32F334x8
8/121 DocID025409 Rev 8
List of figures
Figure 1. STM32F334x4/6/8 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3. Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 4. LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 5. LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 6. LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 7. WLCSP49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 8. STM32F334x4/6/8 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 9. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 11. Power-supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 12. Scheme of the current-consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 13. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 57
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 15. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 18. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 69
Figure 19. TC and TTa I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 20. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 21. 5V- tolerant (FT and FTf) I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . 76
Figure 22. 5V-tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 23. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 24. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 25. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 26. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 27. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 28. ADC typical current consumption in single-ended and differential modes . . . . . . . . . . . . . 89
Figure 29. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 30. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 31. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 32. Maximum VREFINT scaler startup time from power-down . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 33. OPAMP voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 34. LQFP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 35. Recommended footprint for the LQFP32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 36. LQFP32 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 37. LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 38. Recommended footprint for the LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 39. LQFP48 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 40. LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 41. Recommended footprint for the LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 42. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 43. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 44. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 45. WLCSP49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
DocID025409 Rev 8 9/121
STM32F334x4 STM32F334x6 STM32F334x8 Introduction
44
1 Introduction
This datasheet provides the ordering information and the mechanical device characteristics
of the STM32F334x4/6/8 microcontrollers.
This document must be read in conjunction with the STM32F334xx, reference manual
RM0364 available from the STMicroelectronics website www.st.com.
For information on the Cortex®-M4 core with FPU, refer to:
Arm® Cortex®-M4 Processor Technical Reference Manual available from the
www.arm.com website.
STM32F3xxx and STM32F4xxx Cortex®-M4 programming manual (PM0214) available
from the www.st.com website.
Description STM32F334x4 STM32F334x6 STM32F334x8
10/121 DocID025409 Rev 8
2 Description
The STM32F334x4/6/8 family incorporates the high-performance Arm® Cortex®-M4 32-bit
RISC core operating at up to 72 MHz frequency embedding a floating point unit (FPU),
high-speed embedded memories (up to 64 Kbytes of Flash memory, up to 12 Kbytes of
SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB
buses.
The STM32F334x4/6/8 microcontrollers offer two fast 12-bit ADCs (5 Msps), up to three
ultra-fast comparators, an operational amplifier, three DAC channels, a low-power RTC, one
high-resolution timer, one general-purpose 32-bit timer, one timer dedicated to motor
control, and four general-purpose 16-bit timers. They also feature standard and advanced
communication interfaces: one I2C, one SPI, up to three USARTs and one CAN.
The STM32F334x4/6/8 family operates in the –40 to +85 °C and –40 to +105 °C
temperature ranges from 2.0 to 3.6 V power supply. A comprehensive set of power-saving
modes allows the design of low-power applications.
The STM32F334x4/6/8 family offers devices in 32-, 48- and 64-pin packages.
Depending on the device chosen, different sets of peripherals are included.
Table 2. STM32F334x4/6/8 family device features and peripheral counts
Peripheral STM32F334Kx STM32F334Cx STM32F334Rx
Flash memory (Kbyte) 16 32 64 16 32 64 16 32 64
SRAM on data bus (Kbyte) 12
Core coupled memory SRAM
on instruction bus (CCM
SRAM) (Kbyte)
4
Timers
High-resolution
timer 1 (16-bit / 10 channels)
Advanced control 1 (16-bit)
General purpose 4 (16-bit)
1 (32 bit)
Basic 2 (16-bit)
SysTick timer 1
Watchdog timers
(independent,
window)
2
PWM channels
(all)(1) 20 26 28
PWM channels
(except
complementary)
14 20 22
DocID025409 Rev 8 11/121
STM32F334x4 STM32F334x6 STM32F334x8 Description
44
Comm.
interfaces
SPI 1
I2C1
USART 2 3
CAN 1
GPIOs
Normal I/Os (TC,
TTa) 10 20 26
5-Volt tolerant
I/Os (FT,FTf) 15 17 25
Capacitive sensing channels 14 17 18
DMA channels 7
12-bit ADCs
Number of channels
2
10
2
15
2
21
12-bit DAC channels 3
Ultra-fast analog comparator 2 3
Operational amplifiers 1
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperature Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C
Junction temperature: - 40 to 125 °C
Packages LQFP32 LQFP48, WLCSP49 LQFP64
1. This total considers also the PWMs generated on the complementary output channels.
Table 2. STM32F334x4/6/8 family device features and peripheral counts (continued)
Peripheral STM32F334Kx STM32F334Cx STM32F334Rx
Description STM32F334x4 STM32F334x6 STM32F334x8
12/121 DocID025409 Rev 8
Figure 1. STM32F334x4/6/8 block diagram
1. AF: alternate function on I/O pins.
MSv31953V3
@VDD33
EXT.IT
WinWATCHDOG
JTDI
JTCK-SWCLK
JTMS-SWDAT
JTRST
JTDO-TRACESWO
NRESET
VDD33 =2 to 3.6V
up to 16 lines
AHB2
WKUP
Fmax= 72MHz
VSS
VREF+
GP DMA1
XTAL OSC
4-32MHz
OSC_IN
OSC_OUT
OSC32_OUT
OSC32_IN
AHBPCLK
HCLK
APBP1CLK
VDD18 POWER
Backup interface
as AF
BusMatrix
CORTEX M4 CPU
USART1
USART3
7 channels
SCL,SDA,SMBA
as AF
RX,TX, CTS, RTS,
Temp sensor
VREF-
PD2
4 Channels, ETR
FCLK
Standby
Ind. WDG32K
SUPPLY
@VDD33
VDDA
VSSA
VBAT=
1.65 to 3.6V
SmartCard as AF
RX,TX, CTS, RTS,
SmartCard as AF
RX,TX, CTS, RTS,
SmartCard as AF
NVIC
SPI1
MOSI,MISO,
SCK,NSS as AF
interface
@VDDA
SUPERVISION
Reset
Int
AHB2
APB2 APB1
POR
ANTI-TAMP
RESET&
CLOCK
CTRL
APBP2CLK
DAC1_OUT1 as AF
DAC2_OUT1 as AF
USARTCLK
I2CCLK
ADC1/ADC2
CRC
AHB DECODER
GPIOPORTA
as AF
15
TIM16
TIM17
2 channels,
1 channel,
1 channel,
1 compl. channel,
BRK as AF
1 compl. channel,
BRK as AF
1 compl. channel,
BRK as AF
TIM6
@VDDA
6 Groups of
4 Channels as AF
TIM1
4 channels,
3 compl. channel,
ETR, BRK as AF
FPU
TPIU
SWJTAG
GPIOPORTB
GPIOPORTC
GPIOPORTD
PC[15:0]
PB[15:0]
PA[15:0]
Ibus
Dbus
System
bus
Flash 64KB
64 bits
Flash
interface
Obl
Touch Sensing
Controller
TIM15
IF
12bitADC1 IF
IF
12bitADC2 IF
@VDDA
VOLT. REG.
3.3V TO 1.8V
POR / PDR
PVD
RC HS 8MHz
RC LS
PLL
XTAL 32kHz
RTC
AWU
Backup
reg (20B)
TIM3
GP Comparator 2
IF
12-bit DAC1
channel 1
IF
I2C1
USART2
@VDDA
Dbus SRAM
12KB
CAN_TX
CAN_RX
APB2: Fmax = 72 MHz
APB1: Fmax = 36 MHz
4 Channels, ETR
as AF
TIM2 (32-bit/PWM)
TIM7
HRTIM1
PF[1:0] GPIOPORTF
5 fault inputs as AF
10 PWM outputs
10 ext. event inputs
1 synchro. input
1 synchro. output
12-bit DAC2
channel 1
IF
DAC1_OUT2 as AF
IF
12-bit DAC1
channel 2
IF
GP Comparator 4
GP Comparator 6
INM, INP, OUT as AF
CCM SRAM
4KB
BxCAN
SYSCFG CTL INM, INP, OUT as AF
Op-amp2
IF
@VDDA
DocID025409 Rev 8 13/121
STM32F334x4 STM32F334x6 STM32F334x8 Functional overview
44
3 Functional overview
3.1 Arm® Cortex®-M4 core with FPU with embedded Flash
memory and SRAM
The Arm Cortex-M4 processor with FPU is the latest generation of Arm processors for
embedded systems. It has been developed to provide a low-cost platform that meets the
needs of MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The Arm 32-bit Cortex-M4 RISC processor with FPU features exceptional code-efficiency,
delivering the high performance expected from an Arm core, with memory sizes usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions that allows efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm core, the STM32F334x4/6/8 family is compatible with all Arm tools
and software.
Figure 1 shows the general block diagram of the STM32F334x4/6/8 family devices.
3.2 Memories
3.2.1 Embedded Flash memory
All STM32F334x4/6/8 devices feature up to 64 Kbytes of embedded Flash memory
available for storing programs and data. The Flash memory access time is adjusted to the
CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2
wait states above).
3.2.2 Embedded SRAM
The STM32F334x4/6/8 devices feature up to 12 Kbytes of embedded SRAM with hardware
parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait
states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz when running code from
CCM (core coupled memory) RAM.
The SRAM is organized as follows:
4 Kbytes of SRAM on instruction and data bus with parity check (core coupled memory
or CCM) and used to execute critical routines or to access data
12 Kbytes of SRAM with parity check mapped on the data bus
Functional overview STM32F334x4 STM32F334x6 STM32F334x8
14/121 DocID025409 Rev 8
3.2.3 Boot modes
At startup, BOOT0 pin and BOOT1 option bit are used to select one of the three boot
options:
Boot from user Flash memory
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART2 (PA2/PA3), I2C1 (PB6/PB7).
3.3 Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps to compute a signature
of the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
3.4 Power management
3.4.1 Power supply schemes
VSS, VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is
provided externally through VDD pins.
VSSA, VDDA = 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators
operational amplifiers, reset blocks, RCs and PLL.The minimum voltage to be applied
to VDDA differs from one analog peripherals to another. See Table 3 below,
summarizing the VDDA ranges for analog peripherals. The VDDA voltage level must be
always greater or equal to the VDD voltage level and must be provided first.
VDD18 = 1.65 to 1.95 V (VDD18 domain): power supply for digital core, SRAM and Flash
memory. VDD18 is internally generated through an internal voltage regulator.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
3.4.2 Power supply supervisor
The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
Table 3. VDDA ranges for analog peripherals
Analog peripheral Min. VDDAsupply Max. VDDAsupply
ADC/COMP 2 V 3.6 V
DAC/OPAMP 2.4 V 3.6 V
DocID025409 Rev 8 15/121
STM32F334x4 STM32F334x6 STM32F334x8 Functional overview
44
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA must arrive first and be greater than or equal to VDD.
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
3.4.3 Voltage regulator
The regulator has three operation modes: main (MR), low-power (LPR), and power-down.
The MR mode is used in the nominal regulation mode (Run)
The LPR mode is used in Stop mode.
The power-down mode is used in Standby mode: the regulator output is in high
impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The voltage regulator is always enabled after reset. It is disabled in Standby mode.
3.4.4 Low-power modes
The STM32F334x4/6/8 supports three low-power modes to achieve the best compromise
between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm, COMPx,
I2C or USARTx.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
Functional overview STM32F334x4 STM32F334x6 STM32F334x8
16/121 DocID025409 Rev 8
3.5 Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU resources thus power supply
consumption. In addition, these hardware connections allow fast and predictable latency.
Note: For more details about the interconnect actions, refer to the corresponding sections in the
RM0364 reference manual.
Table 4. STM32F334x4/6/8 peripheral interconnect matrix
Interconnect source Interconnect
destination Interconnect action
TIMx
TIMx Timers synchronization or chaining
ADCx
DACx Conversion triggers
DMA Memory to memory transfer trigger
COMPx Comparator output blanking
COMPx TIMx Timer input: ocrefclear input, input capture
ADCx TIM/HRTIM1 Timer triggered by analog watchdog
GPIO
RTCCLK
HSE/32
MC0
TIM16 Clock source used as input channel for HSI and
LSI calibration
CSS
CPU (hard fault)
RAM (parity error)
COMPx
PVD
GPIO
TIM1
TIM15, 16, 17 Timer break
GPIO
TIMx External trigger, timer break
ADCx
DACx Conversion external trigger
DACx COMPx Comparator inverting input
HRTIM1 DACx/ADCx Conversion trigger
COMPx HRTIM1 COMPx output is an input event or a fault input for
HRTIM1
OPAMP2 HRTIM1 OPAMP2 output is an input event for HRTIM1
GPIO HRTIM1 External fault/event/ Synchro inputs for HRTIM1
HRTIM1 GPIO Synchro output for HRTIM1
DocID025409 Rev 8 17/121
STM32F334x4 STM32F334x6 STM32F334x8 Functional overview
44
3.6 Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected on reset as default CPU clock. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example with
failure of an indirectly used external oscillator).
Several prescalers allow to configure the AHB frequency, the high-speed APB (APB2) and
the low-speed APB (APB1) domains. The maximum frequency of the AHB and the
high-speed APB domains is 72 MHz, while the maximum allowed frequency of the low-
speed APB domain is 36 MHz.
TIM1and HRTIM1 maximum frequency is 144 MHz.
Functional overview STM32F334x4 STM32F334x6 STM32F334x8
18/121 DocID025409 Rev 8
Figure 2. Clock tree
MS31933V5
/32
4-32 MHz
HSE OSC
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
8 MHz
HSI RC
IWDGCLK
to IWDG
PLL
x2,x3,..
x16
PLLMUL
MCO
Main clock
output
AHB
/2 PLLCLK
HSI
HSE
APB1
prescaler
/1,2,4,8,16
HCLK
PLLCLK
to AHB bus, core,
memory and DMA
LSE
LSI
HSI
HSI
HSE
to RTC
PLLSRC SW
MCO
/8
SYSCLK
RTCCLK
RTCSEL[1:0]
SYSCLK
to TIM 2, 3, 6, 7
If (APB1 prescaler
=1) x1 else x2
FLITFCLK
to Flash programming interface
LSI
to I2C1
to USARTx (x = 1, 2, 3)
LSE
HSI
SYSCLK
/2
PCLK1
SYSCLK
HSI
PCLK1
to cortex System timer
FHCLK Cortex free
running clock
to APB1 peripherals
AHB
prescaler
/1,2,..512
CSS
/2,/3,...
/16
LSE OSC
32.768kHz
LSI RC
40kHz
APB2
prescaler
/1,2,4,8,16
to TIM 15,16,17
If (APB2 prescaler
=1) x1 else x2
PCLK2 to APB2 peripherals
TIM1/
HRTIM1
ADC
Prescaler
/1,2,4
to ADCx
(x = 1, 2)
ADC
Prescaler
/1,2,4,6,8,10,12,16,
32,64,128,256
x2
/1,2,4,
...128
MCOPRE
PLLNODIV
DocID025409 Rev 8 19/121
STM32F334x4 STM32F334x6 STM32F334x8 Functional overview
44
3.7 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current
capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed, following a specific
sequence to avoid spurious writing to the I/Os registers.
Fast I/O handling allows I/O toggling up to 36 MHz.
3.8 Direct memory access (DMA)
The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to-
memory and memory-to-peripheral transfers. The DMA controller supports circular buffer
management, avoiding the generation of interrupts when the controller reaches the end of
the buffer.
Each of the 7 DMA channels is connected to dedicated hardware DMA requests, with
software trigger support for each channel. Configuration is done by software and transfer
sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers,
high-resolution timer, DAC and ADC.
3.9 Interrupts and events
3.9.1 Nested vectored interrupt controller (NVIC)
The STM32F334x4/6/8 devices embed a nested vectored interrupt controller (NVIC) able to
handle up to 60 interrupt channels that can be masked and 16 priority levels.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved on interrupt entry and restored on interrupt exit
with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.9.2 Extended interrupt/event controller (EXTI)
The external interrupt/event controller consists of 27 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
Functional overview STM32F334x4 STM32F334x6 STM32F334x8
20/121 DocID025409 Rev 8
independently. A pending register maintains the status of the interrupt requests. The EXTI
can detect an external line with a pulse width shorter than the internal clock period. Up to 51
GPIOs can be connected to the 16 external interrupt lines.
3.10 Fast analog-to-digital converter (ADC)
Two 5 MSPS fast analog-to-digital converters, with selectable resolution between 12 and 6
bit, are embedded in the STM32F334x4/6/8 family devices. The ADCs have up to 21
external channels. Some of the external channels are shared between ADC1 and ADC2,
performing conversions in single-shot or scan modes. The channels can be configured to be
either single-ended input or differential input. In scan mode, automatic conversion is
performed on a selected group of analog inputs.
The ADCs also have internal channels: temperature sensor connected to ADC1 channel 16,
VBAT/2 connected to ADC1 channel 17, voltage reference VREFINT connected to both ADC1
and ADC2 channel 18 and VOPAMP2 connected to ADC2 channel 17.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single-shunt phase current reading techniques.
Three analog watchdogs are available per ADC. The ADC can be served by the DMA
controller.
The analog watchdog feature allows very precise monitoring of the converted voltage of
one, some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIM2, TIM3, TIM6, TIM15), the
advanced-control timer (TIM1) and the High-resolution timer (HRTIM1) can be internally
connected to the ADC start trigger and injection trigger, respectively, to allow the application
to synchronize A/D conversion and timers.
3.10.1 Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC1_IN16 input channel that is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.10.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC1_IN18 and ADC2_IN18
DocID025409 Rev 8 21/121
STM32F334x4 STM32F334x6 STM32F334x8 Functional overview
44
input channels. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
3.10.3 VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC1_IN17. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 2. As a consequence, the converted digital value is half the VBAT voltage.
3.10.4 OPAMP2 reference voltage (VOPAMP2)
OPAMP2 reference voltage can be measured using ADC2 internal channel 17.
3.11 Digital-to-analog converter (DAC)
One 12-bit buffered DAC channel (DAC1_OUT1) and two 12-bit unbuffered DAC channels
(DAC1_OUT2 and DAC2_OUT1) can be used to convert digital signals into analog voltage
signal outputs. The chosen design structure is composed of integrated resistor strings and
an amplifier in inverting configuration.
This digital interface supports the following features:
Three DAC output channels
8-bit or 12-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation (only on DAC1)
Triangular-wave generation (only on DAC1)
Dual DAC channel independent or simultaneous conversions
DMA capability for each channel
External triggers for conversion
3.12 Operational amplifier (OPAMP)
The STM32F334x4/6/8 embeds an operational amplifier (OPAMP2) with external or internal
follower routing and PGA capability (or even amplifier and filter capability with external
components). When an operational amplifier is selected, an external ADC channel is used
to enable output measurement.
The operational amplifier features:
8 MHz GBP
0.5 mA output capability
Rail-to-rail input/output
In PGA mode, the gain can be programmed to 2, 4, 8 or 16.
Functional overview STM32F334x4 STM32F334x6 STM32F334x8
22/121 DocID025409 Rev 8
3.13 Ultra-fast comparators (COMP)
The STM32F334x4/6/8 devices embed three ultra-fast rail-to-rail comparators (COMP2/4/6)
that offer the features below:
Programmable internal or external reference voltage
Selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 23: Embedded
internal reference voltage for values and parameters of the internal reference voltage.
All comparators can wake up from STOP mode, generate interrupts and breaks for the
timers.
3.14 Timers and watchdogs
The STM32F334x4/6/8 includes advanced control timer, 5 general-purpose timers, basic
timer, two watchdog timers and a SysTick timer. The table below compares the features of
the advanced control, general purpose and basic timers.
Table 5. Timer feature comparison
Timer type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
High-
resolution
timer
HRTIM1(1) 16-bit Up
/1 /2 /4
(x2 x4 x8 x16
x32, with
DLL)
Yes 10 Yes
Advanced
control TIM1(1) 16-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 Yes
General-
purpose TIM2 32-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 No
General-
purpose TIM3 16-bit Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes 4 No
General-
purpose TIM15 16-bit Up
Any integer
between 1
and 65536
Yes 2 1
General-
purpose
TIM16,
TIM17 16-bit Up
Any integer
between 1
and 65536
Yes 1 1
Basic TIM6, TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No
1. TIM1 can be clocked from the PLL x 2 running at 144 MHz .
DocID025409 Rev 8 23/121
STM32F334x4 STM32F334x6 STM32F334x8 Functional overview
44
3.14.1 217 ps high-resolution timer (HRTIM1)
The high-resolution timer (HRTIM1) allows generating digital signals with high-accuracy
timings, such as PWM or phase-shifted pulses.
It consists of 6 timers, 1 master and 5 slaves, totaling 10 high-resolution outputs, which can
be coupled by pairs for deadtime insertion. It also features 5 fault inputs for protection
purposes and 10 inputs to handle external events such as current limitation, zero voltage or
zero current switching.
HRTIM1 timer is made of a digital kernel clocked at 144 MHz followed by delay lines. Delay
lines with closed loop control guarantee a 217 ps resolution whatever the voltage,
temperature or chip-to-chip manufacturing process deviation. The high-resolution is
available on the 10 outputs in all operating modes: variable duty cycle, variable frequency,
and constant ON time.
The slave timers can be combined to control multiswitch complex converters or operate
independently to manage multiple independent converters.
The waveforms are defined by a combination of user-defined timings and external events
such as analog or digital feedbacks signals.
HRTIM1 timer includes options for blanking and filtering out spurious events or faults. It also
offers specific modes and features to offload the CPU: DMA requests, burst mode controller,
push-pull and resonant mode.
It supports many topologies including LLC, Full bridge phase shifted, buck or boost
converters, either in voltage or current mode, as well as lighting application (fluorescent or
LED). It can also be used as a general purpose timer, for instance to achieve high-resolution
PWM-emulated DAC.
In debug mode, the HRTIM1 counters can be frozen and the PWM outputs enter safe state.
3.14.2 Advanced timer (TIM1)
The advanced-control timer can be seen as a three-phase PWM multiplexed on 6 channels.
They have complementary PWM outputs with programmable inserted dead-times. They can
also be seen as complete general-purpose timers. The 4 independent channels can be
used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability
(0-100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIM timers (described in
Section 3.14.3) using the same architecture, so the advanced-control timers can work
together with the TIM timers via the Timer Link feature for synchronization or event chaining.
Functional overview STM32F334x4 STM32F334x6 STM32F334x8
24/121 DocID025409 Rev 8
3.14.3 General-purpose timers (TIM2, TIM3, TIM15, TIM16 and TIM17)
There are up to three general-purpose timers embedded in the STM32F334x4/6/8 (see
Table 5 for differences) that can be synchronized. Each general-purpose timer can be used
to generate PWM outputs, or act as a simple time base.
TIM2 and TIM3
They are full-featured general-purpose timers:
TIM2 has a 32-bit auto-reload up/down counter and 32-bit prescaler
TIM3 has a 16-bit auto-reload up/down counter and 16-bit prescaler
These timers feature four independent channels for input capture/output compare,
PWM or one-pulse mode output. They can work together, or with the other general-
purpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
TIM15, 16 and 17
They are three general-purpose timers with mid-range features.
They have 16-bit auto-reload upcounters and 16-bit prescalers.
TIM15 has two channels and one complementary channel
TIM16 and TIM17 have one channel and one complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.14.4 Basic timers (TIM6 and TIM7)
The basic timers are mainly used for DAC trigger generation. They can also be used as
generic 16-bit timebases.
3.14.5 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
3.14.6 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
DocID025409 Rev 8 25/121
STM32F334x4 STM32F334x6 STM32F334x8 Functional overview
44
3.14.7 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
3.15 Real-time clock (RTC) and backup registers
The RTC and the 5 backup registers are supplied through a switch that takes power from
either the VDD supply when present or the VBAT pin. The backup registers are five 32-bit
registers used to store 20 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, or when the device wakes up from Standby
mode.
The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms with wakeup from Stop and Standby mode capability.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
Two anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stop and Standby modes on tamper event detection.
Timestamp feature, which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY
capability.
The RTC clock sources can be:
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 40 kHz)
The high-speed external clock divided by 32.
Functional overview STM32F334x4 STM32F334x6 STM32F334x8
26/121 DocID025409 Rev 8
3.16 Communication interfaces
3.16.1 Inter-integrated circuit interface (I2C)
The devices feature an I2C bus interface that can operate in multimaster and slave mode. It
can support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz)
modes.
It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses,
1 with configurable mask). It also includes programmable analog and digital noise filters.
In addition, it provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability,
Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and
ALERT protocol management. It also has a clock domain independent from the CPU clock,
allowing the I2C1 to wake up the MCU from Stop mode on address match.
The I2C interface can be served by the DMA controller.
The features available in I2C1 are showed below in Table 7.
Table 6. Comparison of I2C analog and digital filters
-Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2C peripheral clocks
Benefits Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
Table 7. STM32F334x4/6/8 I2C implementation
I2C features(1)
1. X = supported.
I2C1
7-bit addressing mode X
10-bit addressing mode X
Standard mode (up to 100 kbit/s) X
Fast mode (up to 400 kbit/s) X
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X
Independent clock X
SMBus X
Wakeup from STOP X
DocID025409 Rev 8 27/121
STM32F334x4 STM32F334x6 STM32F334x8 Functional overview
44
3.16.2 Universal synchronous / asynchronous
receivers / transmitters (USARTs)
The STM32F334x4/6/8 devices have three embedded universal synchronous
receivers/transmitters (USART1, USART2 and USART3).
The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.
USART1 provides hardware management of the CTS and RTS signals. It supports IrDA SIR
ENDEC, the multiprocessor communication mode, the single-wire half-duplex
communication mode and has LIN Master/Slave capability.
All USART interfaces can be served by the DMA controller.
The features available in the USART interfaces are showed below in Table 8.
3.16.3 Serial peripheral interface (SPI)
A SPI interface allows to communicate up to 18 Mbits/s in slave and master modes in full-
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
The features available in SPI1 are showed below in Table 9.
Table 8. USART features
USART modes/features(1)
1. X = supported.
USART1 USART2
USART3
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode X X
Smartcard mode X -
Single-wire half-duplex communication X X
IrDA SIR ENDEC block X -
LIN mode X -
Dual clock domain and wake up from Stop mode X -
Receiver timeout interrupt X -
Modbus communication X -
Auto baud rate detection X -
Driver Enable X X
Table 9. STM32F334x4/6/8 SPI implementation
SPI features(1) SPI1
Hardware CRC calculation X
Rx/Tx FIFO X
Functional overview STM32F334x4 STM32F334x6 STM32F334x8
28/121 DocID025409 Rev 8
3.16.4 Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
3.17 Infrared transmitter
The STM32F334x4/6/8 devices provide an infrared transmitter solution. The solution is
based on internal connections between TIM16 and TIM17 as shown in the figure below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be
sent. The infrared output signal is available on PB9 or PA13.
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must
be properly configured to generate correct waveforms. All standard IR pulse modulation
modes is obtained by programming the two timers of the output compare channels (see
Figure 3).
Figure 3. Infrared transmitter
3.18 Touch sensing controller (TSC)
The STM32F334x4/6/8 devices provide a simple solution for adding capacitive sensing
functionality to any application. These devices offer up to 18 capacitive sensing channels
distributed over 6 analog I/Os group.
Capacitive sensing technology is able to detect the presence of a finger near an electrode
that is protected from direct touch by a dielectric (glass, plastic and others). The capacitive
NSS pulse mode X
TI mode X
1. X = supported.
Table 9. STM32F334x4/6/8 SPI implementation (continued)
SPI features(1) SPI1
MSv30365V1
TIMER 16
(for envelop)
TIMER 17
(for carrier)
OC
OC
PB9/PA13
DocID025409 Rev 8 29/121
STM32F334x4 STM32F334x6 STM32F334x8 Functional overview
44
variation introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the electrode capacitance and then transferring a part of the accumulated charges
into a sampling capacitor, until the voltage across this capacitor has reached a specific
threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the
hardware touch sensing controller and only requires few external components to operate.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library, which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
Table 10. Capacitive sensing GPIOs available on STM32F334x4/6/8 devices
Group Capacitive sensing
group name Pin name -Group Capacitive sensing
group name Pin name
1
TSC_G1_IO1 PA0 -
4
TSC_G4_IO1 PA9
TSC_G1_IO2 PA1 - TSC_G4_IO2 PA10
TSC_G1_IO3 PA2 - TSC_G4_IO3 PA13
TSC_G1_IO4 PA3 - TSC_G4_IO4 PA14
2
TSC_G2_IO1 PA4 -
5
TSC_G5_IO1 PB3
TSC_G2_IO2 PA5 - TSC_G5_IO2 PB4
TSC_G2_IO3 PA6 - TSC_G5_IO3 PB6
TSC_G2_IO4 PA7 - TSC_G5_IO4 PB7
3
TSC_G3_IO1 PC5 -
6
TSC_G6_IO1 PB11
TSC_G3_IO2 PB0 - TSC_G6_IO2 PB12
TSC_G3_IO3 PB1 - TSC_G6_IO3 PB13
TSC_G3_IO1 PC5 - TSC_G6_IO4 PB14
----- -
Table 11. No. of capacitive sensing channels available on STM32F334x4/6/8 devices
Analog I/O group
Number of capacitive sensing channels
STM32F334xRx STM32F334xCx STM32F334xKx
G1 3 3 3
G2 3 3 3
G3 3 2 2
G4 3 3 3
G5 3 3 3
G6 3 3 0
Number of capacitive
sensing channels 18 17 14
Functional overview STM32F334x4 STM32F334x6 STM32F334x8
30/121 DocID025409 Rev 8
3.19 Development support
3.19.1 Serial-wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
DocID025409 Rev 8 31/121
STM32F334x4 STM32F334x6 STM32F334x8 Pinout and pin descriptions
44
4 Pinout and pin descriptions
Figure 4. LQFP32 pinout
1. The above figure shows the package top view.
Figure 5. LQFP48 pinout
1. The above figure shows the package top view.
MS31949V3
VSS
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
32 31 30 29 28 27 26 25
VDD 1
2
3
4
PF0/OSC_IN
5
24 PA14
6
LQFP32
23 PA13
NRST
7
22 PA12
8
21 PA11
20 PA10
PA1
19 PA9
PA8
17
9 10111213141516
PA4
PA5
PA6
PA7
PB0
PB1
VSS
VDD
PF1/OSC_OUT
VDDA/VREF+
PA2
PA3
18
PA0
MSv36901V2
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
48 47 46 45 44 43 42 41 40 39 38 37
VBAT 136
VDD
PC13 235
VSS
PC14/OSC32_IN 334
PA13
433
PA12
PF0/OSC_IN 532
PA11
6LQFP48 31 PA10
NRST 730
PA9
VSSA/VREF- 829
PA8
928
PB15
PA0 10 27 PB14
11 26 PB13
12 25 PB12
13 14 15 16 17 18 19 20 21 22 23 24
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
PC15/OSC32_OUT
PF1/OSC_OUT
VDDA/VREF+
PA1
PA2
Pinout and pin descriptions STM32F334x4 STM32F334x6 STM32F334x8
32/121 DocID025409 Rev 8
Figure 6. LQFP64 pinout
1. The above figure shows the package top view.
MS31951V2
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
148 VDD
247 VSS
346 PA13
445 PA12
544 PA11
643 PA10
742 PA9
8LQFP64 41 PA8
940 PC9
10 39 PC8
11 38 PC7
12 37 PC6
13 36 PB15
14 35 PB14
15 34 PB13
16 33 PB12
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
PF0/OSC_IN
PC2
PC3
PA0
PA1
PA2
VBAT
PC13
PC14/OSC32_IN
PC15/OSC32_OUT
PF1/OSC_OUT
NRST
PC0
PC1
VSSA/VREF-
VDDA/VREF+
DocID025409 Rev 8 33/121
STM32F334x4 STM32F334x6 STM32F334x8 Pinout and pin descriptions
44
Figure 7. WLCSP49 ballout
1. The above figure shows the package top view.
MSv44311V1
A
B
E
D
C
F
G
VSS
PA1
PB9
PB8
BOOT0
PB7
PB6
PB5
PB3
PB4
PA15
VDD
PA14
VSS
PA12
PA9
PB13
PA13
PB10
PA11
PB12
PA8
PB14
PB11
6
5
4
3
2
17
PC7
VDD
PF0
OSC_IN
PF1
OSC_OUT
NRST
PC3
VSSA
VREF-
VREF+
VDDA
PA0PA2
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB15
PA10
Pinout and pin descriptions STM32F334x4 STM32F334x6 STM32F334x8
34/121 DocID025409 Rev 8
Table 12. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and
after reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, FM+ capable
TTa 3.3 V tolerant I/O directly connected to ADC
TT 3.3 V tolerant I/O
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
RST Bi-directional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after
reset
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 13. STM32F334x4/6/8 pin definitions
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Pin functions
LQFP32
LQFP48
LQFP64
WLCSP49
Alternate
functions Additional functions
- 1 1 - VBAT S - Backup power supply
- 2 2 - PC13 (1) I/O TC TIM1_CH1N RTC_TAMP1/RTC_TS/
RTC_OUT/WKUP2
- 3 3 - PC14 / OSC32_IN(1) I/O TC - OSC32_IN
- 4 4 - PC15 / OSC32_OUT(1) I/O TC - OSC32_OUT
2 5 5 C7 PF0 / OSC_IN I/O FT TIM1_CH3N OSC_IN
3 6 6 C6 PF1 / OSC_OUT I/O FT - OSC_OUT
4 7 7 D7 NRST I/O RST Device reset input / internal reset output
(active low)
DocID025409 Rev 8 35/121
STM32F334x4 STM32F334x6 STM32F334x8 Pinout and pin descriptions
44
--8- PC0 I/OTTa EVENTOUT,
TIM1_CH1 ADC12_IN6
--9- PC1 I/OTTa EVENTOUT,
TIM1_CH2 ADC12_IN7
--10- PC2 I/OTTa EVENTOUT,
TIM1_CH3 ADC12_IN8
--11C5 PC3 I/OTTa
EVENTOUT,
TIM1_CH4,
TIM1_BKIN2
ADC12_IN9
- 8 12 E7 VSSA/VREF- S - Analog ground/Negative reference voltage
- - F7 VREF+ S - - -
E6 VDDA S - - -
5 9 13 - VDDA/VREF+ S - Analog power supply/Positive reference voltage
61014D6 PA0 I/O TTa
TIM2_CH1/
TIM2_ETR,
TSC_G1_IO1,
USART2_CTS,
EVENTOUT
ADC1_IN1(2),
RTC_TAMP2/WKUP1
71115G7 PA1 I/O TTa
TIM2_CH2,
TSC_G1_IO2,
USART2_RTS_DE,
TIM15_CH1N,
EVENTOUT
ADC1_IN2(2), RTC_REFIN
81216D5 PA2 I/O TTa
TIM2_CH3,
TSC_G1_IO3,
USART2_TX,
COMP2_OUT,
TIM15_CH1,
EVENTOUT
ADC1_IN3(2), COMP2_INM
91317E5 PA3 I/O TTa
TIM2_CH4,
TSC_G1_IO4,
USART2_RX,
TIM15_CH2,
EVENTOUT
ADC1_IN4(2)
--18F6 VSS S - - -
--19G6 VDD S - - -
10 14 20 F5 PA4 (3) I/O TTa
TIM3_CH2,
TSC_G2_IO1,
SPI1_NSS,
USART2_CK,
EVENTOUT
ADC2_IN1(2), DAC1_OUT1,
COMP2_INM, COMP4_INM,
COMP6_INM
11 15 21 G5 PA5(3) I/O TTa
TIM2_CH1/
TIM2_ETR,
TSC_G2_IO2,
SPI1_SCK,
EVENTOUT
ADC2_IN2(2), DAC1_OUT2,
OPAMP2_VINM
Table 13. STM32F334x4/6/8 pin definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Pin functions
LQFP32
LQFP48
LQFP64
WLCSP49
Alternate
functions Additional functions
Pinout and pin descriptions STM32F334x4 STM32F334x6 STM32F334x8
36/121 DocID025409 Rev 8
12 16 22 E4 PA6(3) I/O TTa
TIM16_CH1,
TIM3_CH1,
TSC_G2_IO3,
SPI1_MISO,
TIM1_BKIN,
OPAMP2_DIG,
EVENTOUT
ADC2_IN3(2), DAC2_OUT1,
OPAMP2_VOUT
13 17 23 F4 PA7 I/O TTa
TIM17_CH1,
TIM3_CH2,
TSC_G2_IO4,
SPI1_MOSI,
TIM1_CH1N,
EVENTOUT
ADC2_IN4(2), COMP2_INP,
OPAMP2_VINP
- - 24 G4 PC4 I/O TTa
EVENTOUT,
TIM1_ETR,
USART1_TX
ADC2_IN5(2)
- - 25 E3 PC5 I/O TTa
EVENTOUT,
TIM15_BKIN,
TSC_G3_IO1,
USART1_RX
ADC2_IN11, OPAMP2_VINM
14 18 26 F3 PB0 I/O TTa
TIM3_CH3,
TSC_G3_IO2,
TIM1_CH2N,
EVENTOUT
ADC1_IN11, COMP4_INP,
OPAMP2_VINP
15 19 27 G3 PB1 I/O TTa
TIM3_CH4,
TSC_G3_IO3,
TIM1_CH3N,
COMP4_OUT,
HRTIM1_SCOUT,
EVENTOUT
ADC1_IN12
-2028F2 PB2 I/O TTa
TSC_G3_IO4,
HRTIM_SCIN,
EVENTOUT
ADC2_IN12, COMP4_INM
-2129G2 PB10 I/O TT
TIM2_CH3,
TSC_SYNC,
USART3_TX,
HRTIM1_FLT3,
EVENTOUT
-
-2230G1 PB11 I/O TTa
TIM2_CH4,
TSC_G6_IO1,
USART3_RX,
HRTIM1_FLT4,
EVENTOUT
COMP6_INP
16 23 31 - VSS S - Digital ground
17 24 32 B2 VDD S - Digital power supply
-2533F1 PB12 I/O TTa
TSC_G6_IO2,
TIM1_BKIN,
USART3_CK,
HRTIM1_CHC1,
EVENTOUT
ADC2_IN13
-2634E2 PB13 I/O TTa
TSC_G6_IO3,
TIM1_CH1N,
USART3_CTS,
HRTIM1_CHC2,
EVENTOUT
ADC1_IN13
Table 13. STM32F334x4/6/8 pin definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Pin functions
LQFP32
LQFP48
LQFP64
WLCSP49
Alternate
functions Additional functions
DocID025409 Rev 8 37/121
STM32F334x4 STM32F334x6 STM32F334x8 Pinout and pin descriptions
44
-2735E1 PB14 I/O TTa
TIM15_CH1,
TSC_G6_IO4,
TIM1_CH2N,
USART3_RTS_DE,
HRTIM1_CHD1,
EVENTOUT
ADC2_IN14, OPAMP2_VINP
-2836D3 PB15 I/O TTa
TIM15_CH2,
TIM15_CH1N,
TIM1_CH3N,
HRTIM1_CHD2,
EVENTOUT
ADC2_IN15, COMP6_INM,
RTC_REFIN
--37- PC6 I/OFT
EVENTOUT,
TIM3_CH1,
HRTIM1_EEV10,
COMP6_OUT
-
--38D4 PC7 I/OFT
EVENTOUT,
TIM3_CH2,
HRTIM1_FLT5
-
--39- PC8 I/OFT
EVENTOUT,
TIM3_CH3,
HRTIM1_CHE1
-
--40- PC9 I/OFT
EVENTOUT,
TIM3_CH4,
HRTIM1_CHE2
-
18 29 41 D1 PA8 I/O FT
MCO, TIM1_CH1,
USART1_CK,
HRTIM1_CHA1,
EVENTOUT
-
19 30 42 D2 PA9 I/O FT
TSC_G4_IO1,
TIM1_CH2,
USART1_TX,
TIM15_BKIN,
TIM2_CH3,
HRTIM1_CHA2,
EVENTOUT
-
20 31 43 C4 PA10 I/O FT
TIM17_BKIN,
TSC_G4_IO2,
TIM1_CH3,
USART1_RX,
COMP6_OUT,
TIM2_CH4,
HRTIM1_CHB1,
EVENTOUT
-
21 32 44 C1 PA11 I/O FT
TIM1_CH1N,
USART1_CTS,
CAN_RX, TIM1_CH4,
TIM1_BKIN2,
HRTIM1_CHB2,
EVENTOUT
-
22 33 45 C3 PA12 I/O FT
TIM16_CH1,
TIM1_CH2N,
USART1_RTS_DE,
COMP2_OUT,
CAN_TX, TIM1_ETR,
HRTIM1_FLT1,
EVENTOUT
-
Table 13. STM32F334x4/6/8 pin definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Pin functions
LQFP32
LQFP48
LQFP64
WLCSP49
Alternate
functions Additional functions
Pinout and pin descriptions STM32F334x4 STM32F334x6 STM32F334x8
38/121 DocID025409 Rev 8
23 34 46 C2 PA13 I/O FT
JTMS/SWDAT,
TIM16_CH1N,
TSC_G4_IO3,
IR_OUT,
USART3_CTS,
EVENTOUT
-
-3547B1 VSS S - - -
-3648- VDD S - - -
24 37 49 A1 PA14 I/O FTf
JTCK/SWCLK,
TSC_G4_IO4,
I2C1_SDA,
TIM1_BKIN,
USART2_TX,
EVENTOUT
-
25 38 50 A2 PA15 I/O FTf
JTDI,
TIM2_CH1/TIM2_ETR,
TSC_SYNC,
I2C1_SCL, SPI1_NSS,
USART2_RX,
TIM1_BKIN,
HRTIM1_FLT2,
EVENTOUT
-
--51- PC10 I/OFT EVENTOUT,
USART3_TX -
--52- PC11 I/OFT
EVENTOUT,
HRTIM1_EEV2,
USART3_RX
-
--53- PC12 I/OFT
EVENTOUT,
HRTIM1_EEV1,
USART3_CK
-
--54- PD2 I/OFT EVENTOUT,
TIM3_ETR -
26 39 55 A3 PB3 I/O FT
JTDO/TRACE
SWO, TIM2_CH2,
TSC_G5_IO1,
SPI1_SCK,
USART2_TX,
TIM3_ETR,
HRTIM1_SCOUT,
HRTIM1_EEV9,
EVENTOUT
-
27 40 56 B3 PB4 I/O FT
NJTRST, TIM16_CH1,
TIM3_CH1,
TSC_G5_IO2,
SPI1_MISO,
USART2_RX,
TIM17_BKIN,
HRTIM1_EEV7,
EVENTOUT
-
Table 13. STM32F334x4/6/8 pin definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Pin functions
LQFP32
LQFP48
LQFP64
WLCSP49
Alternate
functions Additional functions
DocID025409 Rev 8 39/121
STM32F334x4 STM32F334x6 STM32F334x8 Pinout and pin descriptions
44
28 41 57 B4 PB5 I/O FT
TIM16_BKIN,
TIM3_CH2,
I2C1_SMBA,
SPI1_MOSI,
USART2_CK,
TIM17_CH1,
HRTIM1_EEV6,
EVENTOUT
-
29 42 58 A4 PB6 I/O FTf
TIM16_CH1N,
TSC_G5_IO3,
I2C1_SCL,
USART1_TX,
HRTIM1_SCIN,
HRTIM1_EEV4,
EVENTOUT
-
30 43 59 B5 PB7 I/O FTf
TIM17_CH1N,
TSC_G5_IO4,
I2C1_SDA,
USART1_RX,
TIM3_CH4,
HRTIM1_EEV3,
EVENTOUT
-
31 44 60 A5 BOOT0 I B - -
-4561B6 PB8 I/O FTf
TIM16_CH1,
TSC_SYNC,
I2C1_SCL,
USART3_RX,
CAN_RX, TIM1_BKIN,
HRTIM1_EEV8,
EVENTOUT
-
-4662A6 PB9 I/O FTf
TIM17_CH1,
I2C1_SDA, IR_OUT,
USART3_TX,
COMP2_OUT,
CAN_TX,
HRTIM1_EEV5,
EVENTOUT
-
32 47 63 B7 VSS S - - -
14864A7 VDD S - - -
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of
GPIO PC13 to PC15 in output mode is limited:
- The speed must not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup
registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP
register description sections in the reference manual.
2. Fast ADC channel.
3. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.
Table 13. STM32F334x4/6/8 pin definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structure
Pin functions
LQFP32
LQFP48
LQFP64
WLCSP49
Alternate
functions Additional functions
Pinout and pin descriptions STM32F334x4 STM32F334x6 STM32F334x8
40/121 DocID025409 Rev 8
Table 14. Alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/TIM15/
TIM16/TIM17/
EVENT
TIM1/TIM3/
TIM15/
TIM16
HRTIM1/TSC I2C1/TIM1 SPI1/
Infrared
TIM1/
Infrared
USART1/USA
RT2/USART3/
GPCOMP6
GPCOMP2/
GPCOMP4/
GPCOMP6
CAN/TIM1/
TIM15
TIM2/TIM3/TI
M17 TIM1 HRTIM1/
TIM1
HRTIM1/
OPAMP2 -EVENT
Port A
PA0 - TIM2_CH1/TI
M2_ETR - TSC_G1_IO1 - - - USART2_CTS - - - - - - - EVENTOUT
PA1 - TIM2_CH2 - TSC_G1_IO2 - - - USART2_RTS
_DE - TIM15_CH1N - - - - - EVENTOUT
PA2 - TIM2_CH3 - TSC_G1_IO3 - - - USART2_TX COMP2_OUT TIM15_CH1 - - - - - EVENTOUT
PA3 - TIM2_CH4 - TSC_G1_IO4 - - - USART2_RX - TIM15_CH2 - - - - - EVENTOUT
PA4 - - TIM3_CH2 TSC_G2_IO1 - SPI1_NSS - USART2_CK - - - - - - - EVENTOUT
PA5 - TIM2_CH1/TI
M2_ETR - TSC_G2_IO2 - SPI1_SCK - - - - - - - - - EVENTOUT
PA6 - TIM16_CH1 TIM3_CH1 TSC_G2_IO3 - SPI1_MISO TIM1_BKIN - - - - - - OPAMP2_DIG - EVENTOUT
PA7 - TIM17_CH1 TIM3_CH2 TSC_G2_IO4 - SPI1_MOSI TIM1_CH1N - - - - - - - - EVENTOUT
PA8 MCO - - - - - TIM1_CH1 USART1_CK - - - - - HRTIM1_CHA1 - EVENTOUT
PA9 - - - TSC_G4_IO1 - - TIM1_CH2 USART1_TX - TIM15_BKIN TIM2_CH3 - - HRTIM1_CHA2 - EVENTOUT
PA10 - TIM17_BKIN - TSC_G4_IO2 - - TIM1_CH3 USART1_RX COMP6_OUT - TIM2_CH4 - - HRTIM1_CHB1 - EVENTOUT
PA11 - - - - - - TIM1_CH1N USART1_CTS - CAN_RX - TIM1_CH4 TIM1_BKIN2 HRTIM1_CHB2 - EVENTOUT
PA12 - TIM16_CH1 - - - - TIM1_CH2N USART1_RTS
_DE COMP2_OUT CAN_TX - TIM1_ETR - HRTIM1_FLT1 - EVENTOUT
PA13 JTMS/SWDAT TIM16_CH1N - TSC_G4_IO3 - IR_OUT - USART3_CTS - - - - - - - EVENTOUT
PA14 JTCK/SWCLK - - TSC_G4_IO4 I2C1_SDA - TIM1_BKIN USART2_TX - - - - - - - EVENTOUT
PA15 J TD I TIM2_CH1/
TIM2_ETR - TSC_SYNC I2C1_SCL SPI1_NSS - USART2_RX - TIM1_BKIN - - - HRTIM1_FLT2 - EVENTOUT
Port B
PB0 - - TIM3_CH3 TSC_G3_IO2 - - TIM1_CH2N - - - - - - - - EVENTOUT
PB1 - - TIM3_CH4 TSC_G3_IO3 - - TIM1_CH3N - COMP4_OUT - - - - HRTIM1_SCOUT - EVENTOUT
PB2 - - - TSC_G3_IO4 - - - - - - - - - HRTIM1_SCIN - EVENTOUT
PB3 JTDO/TRACE
SWO TIM2_CH2 - TSC_G5_IO1 - SPI1_SCK - USART2_TX - - TIM3_ETR - HRTIM1_
SCOUT HRTIM1_EEV9 - EVENTOUT
PB4 NJTRST TIM16_CH1 TIM3_CH1 TSC_G5_IO2 - SPI1_MISO - USART2_RX - - TIM17_BKIN - - HRTIM1_EEV7 - EVENTOUT
PB5 - TIM16_BKIN TIM3_CH2 - I2C1_SMBA SPI1_MOSI - USART2_CK - - TIM17_CH1 - - HRTIM1_EEV6 - EVENTOUT
PB6 - TIM16_CH1N - TSC_G5_IO3 I2C1_SCL - - USART1_TX - - - - HRTIM1_
SCIN HRTIM1_EEV4 - EVENTOUT
PB7 - TIM17_CH1N - TSC_G5_IO4 I2C1_SDA - - USART1_RX - - TIM3_CH4 - - HRTIM1_EEV3 - EVENTOUT
PB8 - TIM16_CH1 - TSC_SYNC I2C1_SCL - - USART3_RX - CAN_RX - - TIM1_BKIN HRTIM1_EEV8 - EVENTOUT
PB9 - TIM17_CH1 - - I2C1_SDA - IR_OUT USART3_TX COMP2_OUT CAN_TX - - - HRTIM1_EEV5 - EVENTOUT
STM32F334x4 STM32F334x6 STM32F334x8 Pinout and pin descriptions
DocID025409 Rev 8 41/121
Port B
PB10 - TIM2_CH3 - TSC_SYNC - - - USART3_TX - - - - - HRTIM1_FLT3 - EVENTOUT
PB11 - TIM2_CH4 - TSC_G6_IO1 - - - USART3_RX - - - - - HRTIM1_FLT4 - EVENTOUT
PB12 - - - TSC_G6_IO2 - - TIM1_BKIN USART3_CK - - - - - HRTIM1_CHC1 - EVENTOUT
PB13 - - - TSC_G6_IO3 - - TIM1_CH1N USART3_CTS - - - - - HRTIM1_CHC2 - EVENTOUT
PB14 - TIM15_CH1 - TSC_G6_IO4 - - TIM1_CH2N USART3_RTS
_DE - - - - - HRTIM1_CHD1 - EVENTOUT
PB15 - TIM15_CH2 TIM15_CH1N - TIM1_CH3N - - - - - - - - HRTIM1_CHD2 - EVENTOUT
Port C
PC0 - EVENTOUT TIM1_CH1 - - - - - - - - - - - - -
-- - - - --- - - - --- ---
PC2 - EVENTOUT TIM1_CH3 - - - - - - - - - - - - -
PC3 - EVENTOUT TIM1_CH4 - - - TIM1_BKIN2 - - - - - - - - -
PC4 - EVENTOUT TIM1_ETR - - - - USART1_TX - - - - - - - -
PC5 - EVENTOUT TIM15_BKIN TSC_G3_IO1 - - - USART1_RX - - - - - - - -
PC6 - EVENTOUT TIM3_CH1 HRTIM1_
EEV10 - - - COMP6_OUT - - - - - - - -
PC7 - EVENTOUT TIM3_CH2 HRTIM1_FLT5 - - - - - - - - - - - -
PC8 - EVENTOUT TIM3_CH3 HRTIM1_CHE1 - - - - - - - - - - - -
PC9 - EVENTOUT TIM3_CH4 HRTIM1_CHE2 - - - - - - - - - - - -
PC10 - EVENTOUT - - - - - USART3_TX - - - - - - - -
PC11 - EVENTOUT - HRTIM1_EEV2 - - - USART3_RX - - - - - - - -
PC12 - EVENTOUT - HRTIM1_EEV1 - - - USART3_CK - - - - - - - -
PC13 - - - - TIM1_CH1N - - - - - - - - - - -
PC14 - - - - - - - - - - - - - - - -
PC15 - - - - - - - - - - - - - - - -
Port D PD2 - EVENTOUT TIM3_ETR - - - - - - - - - - - - -
Port F
PF0 - - - - - - TIM1_CH3N - - - - - - - - -
PF1 - - - - - - - - - - - - - - - -
Table 14. Alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM2/TIM15/
TIM16/TIM17/
EVENT
TIM1/TIM3/
TIM15/
TIM16
HRTIM1/TSC I2C1/TIM1 SPI1/
Infrared
TIM1/
Infrared
USART1/USA
RT2/USART3/
GPCOMP6
GPCOMP2/
GPCOMP4/
GPCOMP6
CAN/TIM1/
TIM15
TIM2/TIM3/TI
M17 TIM1 HRTIM1/
TIM1
HRTIM1/
OPAMP2 -EVENT
Memory mapping STM32F334x4 STM32F334x6 STM32F334x8
42/121 DocID025409 Rev 8
5 Memory mapping
Figure 8. STM32F334x4/6/8 memory map
DocID025409 Rev 8 43/121
STM32F334x4 STM32F334x6 STM32F334x8 Memory mapping
44
- Table 15. STM32F334x4/6/8 peripheral register boundary addresses
Bus Boundary address Size
(bytes) Peripheral
AHB3 0x5000 0000 - 0x5000 03FF 1 K ADC1 - ADC2
-0x4800 1800 - 0x4FFF FFFF ~132 M Reserved
AHB2 0x4800 1400 - 0x4800 17FF 1 K GPIOF
-0x4800 1000 - 0x4800 13FF 1 K Reserved
AHB2
0x4800 0C00 - 0x4800 0FFF 1 K GPIOD
0x4800 0800 - 0x4800 0BFF 1 K GPIOC
0x4800 0400 - 0x4800 07FF 1 K GPIOB
0x4800 0000 - 0x4800 03FF 1 K GPIOA
-0x4002 4400 - 0x47FF FFFF ~128 M Reserved
AHB1
0x4002 4000 - 0x4002 43FF 1 K TSC
0x4002 3400 - 0x4002 3FFF 3 K Reserved
0x4002 3000 - 0x4002 33FF 1 K CRC
0x4002 2400 - 0x4002 2FFF 3 K Reserved
0x4002 2000 - 0x4002 23FF 1 K Flash interface
0x4002 1400 - 0x4002 1FFF 3 K Reserved
0x4002 1000 - 0x4002 13FF 1 K RCC
0x4002 0400 - 0x4002 0FFF 3 K Reserved
0x4002 0000 - 0x4002 03FF 1 K DMA1
-0x4001 8000 - 0x4001 FFFF 32 K Reserved
APB2 0x4001 7400 - 0x4001 77FF 1 K HRTIM1
APB2
0x4001 4C00 - 0x4001 73FF 12 K Reserved
0x4001 4800 - 0x4001 4BFF 1 K TIM17
0x4001 4400 - 0x4001 47FF 1 K TIM16
0x4001 4000 - 0x4001 43FF 1 K TIM15
0x4001 3C00 - 0x4001 3FFF 1 K Reserved
0x4001 3800 - 0x4001 3BFF 1 K USART1
0x4001 3400 - 0x4001 37FF 1 K Reserved
0x4001 3000 - 0x4001 33FF 1 K SPI1
0x4001 2C00 - 0x4001 2FFF 1 K TIM1
0x4001 0800 - 0x4001 2BFF 9 K Reserved
0x4001 0400 - 0x4001 07FF 1 K EXTI
0x4001 0000 - 0x4001 03FF 1 K SYSCFG + COMP + OPAMP
-0x4000 9C00 - 0x4000 FFFF 25 K Reserved
Memory mapping STM32F334x4 STM32F334x6 STM32F334x8
44/121 DocID025409 Rev 8
APB1
0x4000 9800 - 0x4000 9BFF 1 K DAC2
0x4000 7800 - 0x4000 97FF 8 K Reserved
0x4000 7400 - 0x4000 77FF 1 K DAC1
0x4000 7000 - 0x4000 73FF 1 K PWR
0x4000 6800 - 0x4000 6FFF 2 K Reserved
0x4000 6400 - 0x4000 67FF 1 K bxCAN
0x4000 5800 - 0x4000 63FF 3 K Reserved
0x4000 5400 - 0x4000 57FF 1 K I2C1
0x4000 4C00 - 0x4000 53FF 2 K Reserved
0x4000 4800 - 0x4000 4BFF 1 K USART3
0x4000 4400 - 0x4000 47FF 1 K USART2
0x4000 3400 - 0x4000 43FF 2 K Reserved
0x4000 3000 - 0x4000 33FF 1 K IWDG
0x4000 2C00 - 0x4000 2FFF 1 K WWDG
0x4000 2800 - 0x4000 2BFF 1 K RTC
0x4000 1800 - 0x4000 27FF 4 K Reserved
0x4000 1400 - 0x4000 17FF 1 K TIM7
0x4000 1000 - 0x4000 13FF 1 K TIM6
0x4000 0800 - 0x4000 0FFF 2 K Reserved
0x4000 0400 - 0x4000 07FF 1 K TIM3
0x4000 0000 - 0x4000 03FF 1 K TIM2
-0x2000 3000 - 3FFF FFFF ~512 M Reserved
- 0x2000 0000 - 0x2000 2FFF 12 K SRAM
- 0x1FFF F800 - 0x1FFF FFFF 2 K Option bytes
- 0x1FFF D800 - 0x1FFF F7FF 8 K System memory
-0x1000 2000 - 0x1FFF D7FF ~256 M Reserved
- 0x1000 0000 - 0x1000 0FFF 4 K CCM RAM
-0x0804 0000 - 0x0FFF FFFF ~128 M Reserved
- 0x0800 0000 - 0x0800 FFFF 64 K Main Flash memory
-0x0004 0000 - 0x07FF FFFF ~128 M Reserved
- 0x0000 000 - 0x0000 FFFF 64 K
Main Flash memory, system
memory or SRAM depending
on BOOT configuration
Table 15. STM32F334x4/6/8 peripheral register boundary addresses (continued)
Bus Boundary address Size
(bytes) Peripheral
DocID025409 Rev 8 45/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3 σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V, VDDA =
3.3 V. They are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
6.1.5 Input voltage on a pin
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 9. Pin loading conditions Figure 10. Pin input voltage
MS19210V1
MCU pin
C = 50 pF
MS19211V1
MCU pin
VIN
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
46/121 DocID025409 Rev 8
6.1.6 Power-supply scheme
Figure 11. Power-supply scheme
Caution: Each power-supply pair (VDD/VSS, VDDA/VSSA etc..) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to or below the appropriate pins on the underside of the PCB, to ensure the good
functionality of the device.
MS31954V1
Kernel logic
(CPU,
Digital
& Memories)
Backup circuitry
(LSE, RTC,
Backup registers)
Wake-up logic
ADC/
DAC
Level shifter
I/O
Logic
VDD
1.65 - 3.6V
VBAT
Power
switch
4 x VDD
4 x VSS
VDDA
VREF+
VREF-
VSSA
VDDA
GPIOs
OUT
IN
4 x 100nF
+ 1 x 4.7 μF
10 nF
+ 1 μF
Anolog: RCs, PLL,
comparators, OPAMP, ...
Regulator
DocID025409 Rev 8 47/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
6.1.7 Measurement of the current consumption
Figure 12. Scheme of the current-consumption measurement
MS19213V1
VBAT
VDD
VDDA
IDD
IDDA
IDD_VBAT
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
48/121 DocID025409 Rev 8
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 16: Voltage characteristics,
Table 17: Current characteristics, and Table 18: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect the device reliability.
Table 16. Voltage characteristics(1)
Symbol Ratings Min. Max. Unit
VDD–VSS
External main supply voltage (including VDDA, VBAT
and VDD)-0.3 4.0
V
VDD–VDDA Allowed voltage difference for VDD > VDDA -0.4
VIN(2)
Input voltage on FT and FTf pins VSS 0.3 VDD + 4.0
Input voltage on TTa and TT pins VSS 0.3 4.0
Input voltage on any other pin VSS 0.3 4.0
Input voltage on Boot0 pin 0 9
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS| Variations between all the different ground pins(3) -50
VESD(HBM)
Electrostatic discharge voltage (human body
model)
see Section 6.3.12: Electrical
sensitivity characteristics -
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range. The following relationship must be respected between VDDA and VDD:
VDDA must power on before or at the same time as VDD in the power up sequence.
VDDA must be greater than or equal to VDD.
2. VIN maximum must always be respected. Refer to Table 17: Current characteristics for the maximum allowed injected
current values.
3. Include VREF- pin.
DocID025409 Rev 8 49/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Table 17. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD power lines (source)(1) 140
mA
ΣIVSS Total current out of sum of all VSS ground lines (sink)(1) -140
IVDD Maximum current into each VDD power line (source)(1) 100
IVSS Maximum current out of each VSS _x ground line (sink)(1) 100
IIO(PIN)
Output current sunk by any I/O and control pin 25
Output current source by any I/O and control pin -25
ΣIIO(PIN)
Total output current sunk by sum of all I/Os and control pins(2) 80
Total output current sourced by sum of all I/Os and control pins(2) -80
IINJ(PIN)
Injected current on TT, FT, FTf and B pins(3) -5 /+0
Injected current on TC and RST pin(4) ±5
Injected current on TTa pins(5) ±5
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ±25
1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer to Table 16: Voltage characteristics for the maximum allowed input voltage values.
5. A positive injection is induced by VIN > VDDA while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer also to Table 16: Voltage characteristics for the maximum allowed input voltage values. Negative injection
disturbs the analog performance of the device. See note 2.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 18. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 150 °C
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
50/121 DocID025409 Rev 8
6.3 Operating conditions
6.3.1 General operating conditions
Table 19. General operating conditions
Symbol Parameter Conditions Min. Max. Unit
fHCLK Internal AHB clock frequency - 0 72
MHzfPCLK1 Internal APB1 clock frequency - 0 36
fPCLK2 Internal APB2 clock frequency - 0 72
VDD Standard operating voltage - 2 3.6
V
VDD18
Core, SRAM and Flash memory
power supply -1.651.95
VDDA
Analog operating voltage
(OPAMP and DAC not used) Must have a potential equal to
or higher than VDD
23.6
Analog operating voltage
(OPAMP and DAC used) 2.4 3.6
VBAT Backup operating voltage - 1.65 3.6 V
VIN I/O input voltage
TC I/O –0.3 VDD+0.3
V
TT I/O -0.3 3.6
TTa I/O –0.3 VDDA+0.3
FT and FTf I/O(1) –0.3 5.5
BOOT0 0 5.5
PD
Power dissipation at TA = 85 °C for
suffix 6 or TA = 105 °C for suffix
7(2)
LQFP64 - 444 mW
LQFP48 - 364 mW
LQFP32 - 333 mW
WLCSP49 - 414 mW
TA
Ambient temperature for 6 suffix
version
Maximum power dissipation –40 85
°C
Low power dissipation(3) –40 105
Ambient temperature for 7 suffix
version
Maximum power dissipation –40 105
°C
Low power dissipation(3) –40 125
TJ Junction temperature range
6 suffix version –40 105
°C
7 suffix version –40 125
1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 80: Package thermal
characteristics).
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.6:
Thermal characteristics).
DocID025409 Rev 8 51/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
6.3.2 Operating conditions at power-up / power-down
The parameters given in Table 20 are derived from tests performed under the ambient
temperature condition summarized in Table 19.
6.3.3 Characteristics of the embedded reset and power-control block
The parameters given in Table 21 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 19.
Table 20. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min. Max. Unit
tVDD
VDD rise time rate
-
0
µs/V
VDD fall time rate 20
tVDDA
VDDA rise time rate
-
0
VDDA fall time rate 20
Table 21. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
VPOR/PDR(1)
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
Power on/power down
reset threshold
Falling edge 1.8(2)
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
1.88 1.96 V
Rising edge 1.84 1.92 2.0 V
VPDRhyst(1) PDR hysteresis - - 40 - mV
tRSTTEMPO(3)
3. Guaranteed by design, not tested in production.
POR reset
temporization - 1.5 2.5 4.5 ms
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
52/121 DocID025409 Rev 8
6.3.4 Embedded reference voltage
The parameters given in Table 23 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 19.
Table 22. Programmable voltage detector characteristics
Symbol Parameter Conditions Min.(1)
1. Data based on characterization results only, not tested in production.
Typ. Max.(1) Unit
VPVD0 PVD threshold 0
Rising edge 2.1 2.18 2.26
V
Falling edge 2 2.08 2.16
VPVD1 PVD threshold 1
Rising edge 2.19 2.28 2.37
Falling edge 2.09 2.18 2.27
VPVD2 PVD threshold 2
Rising edge 2.28 2.38 2.48
Falling edge 2.18 2.28 2.38
VPVD3 PVD threshold 3
Rising edge 2.38 2.48 2.58
Falling edge 2.28 2.38 2.48
VPVD4 PVD threshold 4
Rising edge 2.47 2.58 2.69
Falling edge 2.37 2.48 2.59
VPVD5 PVD threshold 5
Rising edge 2.57 2.68 2.79
Falling edge 2.47 2.58 2.69
VPVD6 PVD threshold 6
Rising edge 2.66 2.78 2.9
Falling edge 2.56 2.68 2.8
VPVD7 PVD threshold 7
Rising edge 2.76 2.88 3
Falling edge 2.66 2.78 2.9
VPVDhyst(2)
2. Guaranteed by design, not tested in production.
PVD hysteresis - - 100 - mV
IDD(PVD) PVD current
consumption - - 0.15 0.26 µA
Table 23. Embedded internal reference voltage
Symbol Parameter Conditions Min. Typ. Max. Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.20 1.23 1.25 V
TS_vrefint
ADC sampling time when
reading the internal
reference voltage
-2.2--µs
VRERINT
Internal reference voltage
spread over the
temperature range
VDD = 31.8 V ±10 mV - - 10(1)
1. Guaranteed by design, not tested in production.
mV
TCoeff Temperature coefficient - - - 100(1) ppm/°C
DocID025409 Rev 8 53/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
6.3.5 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 12: Scheme of the current-
consumption measurement.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Note: The total current consumption is the sum of the IDD and IDDA values.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled fPCLK2 = fHCLK and fPCLK1 = fHCLK/2
When fHCLK > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or
HSE (8 MHz) in bypass mode.
The parameters given in Table 25 to Table 29 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 19.
Table 24. Internal reference voltage calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at
temperature of 30 °C
VDDA= 3.3 V
0x1FFF F7BA - 0x1FFF F7BB
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
54/121 DocID025409 Rev 8
Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6V
Symbol Parameter Conditions fHCLK
All peripherals enabled All peripherals disabled
Unit
Typ.
Max. @ TA(1)
Typ.
Max. @ TA(1)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD
Supply
current in
Run mode,
executing
from Flash
External
clock (HSE
bypass)
72 MHz 71.4 77.9 79.1 80.0 27.1 32.2 32.4 32.4
mA
64 MHz 63.9 70.6 71.3 71.5 24.2 27.0 27.5 27.7
48 MHz 49.5 56.6 57.1 57.7 18.7 21.4 21.6 21.9
32 MHz 34.0 38.6 38.9 39.2 12.9 14.6 14.9 15.9
24 MHz 25.9 30.2 30.4 30.6 10.0 11.1 11.2 12.3
8 MHz 9.3 14.1 14.3 14.4 3.3 4.0 4.4 5.1
1 MHz 3.5 8.9 9.1 9.5 0.7 0.9 1.0 1.2
Internal
clock (HSI)
64 MHz 61.6 68.1 68.8 70.1 24.1 27.0 27.1 27.2
48 MHz 48.1 54.6 54.8 55.1 18.6 21.6 21.7 21.9
32 MHz 33.3 37.8 37.9 38.0 12.7 14.4 14.9 16.0
24 MHz 25.7 29.8 29.8 30.0 10.0 11.1 11.2 12.3
8 MHz 9.7 12.2 12.3 12.8 3.4 3.8 4.2 5.0
Supply
current in
Run mode,
executing
from RAM
External
clock (HSE
bypass)
72 MHz 71.3 77.8 78.7 78.9 27.6 32.1 32.2 32.3
64 MHz 63.8 70.5 70.7 70.9 24.5 27.2 27.6 27.7
48 MHz 49.3 56.5 56.9 57.4 18.1 21.6 21.8 21.8
32 MHz 33.9 37.7 37.9 38.0 12.9 14.9 14.9 15.9
24 MHz 25.8 28.8 29.0 29.2 9.8 11.1 11.3 11.5
8 MHz 9.0 13.2 13.3 13.8 3.2 3.6 4.0 4.6
1 MHz 3.2 7.6 7.8 8.0 0.3 0.4 0.8 1.2
Internal
clock (HSI)
64 MHz 61.3 66.9 67.3 67.8 24.1 26.9 27.0 27.1
48 MHz 48.0 52.4 52.6 53.1 19.1 21.6 21.6 22.1
32 MHz 33.1 35.6 35.8 36.6 12.6 14.8 14.9 15.9
24 MHz 25.6 28.5 28.7 28.8 9.8 11.1 11.3 11.5
8 MHz 9.7 11.6 11.6 11.7 3.0 3.1 4.1 4.7
IDD
Supply
current in
Sleep
mode,
executing
from Flash
or RAM
External
clock (HSE
bypass)
72 MHz 55.5 58.7 61.1 61.9 7.0 7.3 8.4 8.5
mA
64 MHz 49.8 52.7 54.5 54.8 6.3 6.7 7.0 7.8
48 MHz 38.5 40.6 41.7 41.8 4.6 5.1 5.6 5.9
32 MHz 26.9 28.8 29.2 29.5 3.0 3.3 4.0 4.5
24 MHz 19.1 23.2 23.7 23.9 2.4 2.5 3.2 3.8
8 MHz 7.1 11.5 11.7 11.9 0.6 0.9 1.2 2.1
1 MHz 3.0 7.4 7.7 7.9 0.3 0.3 0.4 1.2
Internal
clock (HSI)
64 MHz 47.7 52.4 52.6 52.8 5.4 6.5 6.8 7.5
48 MHz 35.0 40.4 40.6 40.8 4.3 4.7 5.2 5.7
32 MHz 23.7 27.7 28.3 28.8 2.9 3.1 3.2 4.4
24 MHz 18.5 23.8 24.0 24.2 1.3 1.7 2.2 2.7
8 MHz 7.5 9.6 9.7 9.7 0.5 0.7 1.1 2.0
1. Data based on characterization results, not tested in production unless otherwise specified.
DocID025409 Rev 8 55/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Table 26. Typical and maximum current consumption from the VDDA supply
Symbol Parameter Conditions
(1) fHCLK
VDDA = 2.4 V VDDA = 3.6 V
Unit
Typ.
Max. @ TA(2)
Typ.
Max. @ TA(2)
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDDA
Supply
current in
Run/Sleep
mode,
code
executing
from Flash
or RAM
HSE
bypass
72 MHz 224 252 265 269 245 272 288 295
µA
64 MHz 196 225 237 241 214 243 257 263
48 MHz 147 174 183 186 159 186 196 201
32 MHz 100 126 133 135 109 133 142 145
24 MHz 79 102 107 108 85 108 113 116
8 MHz 3 5 5 6 4 6 6 7
1 MHz 3 5 5 6 3 5 6 6
HSI clock
64 MHz 259 288 304 309 285 315 332 338
48 MHz 208 239 251 254 230 258 271 277
32 MHz 162 190 198 202 179 206 216 219
24 MHz 140 168 175 178 155 181 188 191
8 MHz 62 85 88 89 71 94 96 98
1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the
PLL is off, IDDA is independent from the frequency.
2. Data based on characterization results, not tested in production.
Table 27. Typical and maximum VDD consumption in Stop and Standby modes
Symbol Parameter Conditions
Typ. @VDD (VDD=VDDA) Max.(1)
Unit
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply
current in
Stop mode
Regulator in run
mode, all
oscillators OFF
17.51 17.68 17.84 18.17 18.57 19.39 30.6 232.5 612.2
µA
Regulator in low-
power mode, all
oscillators OFF
6.44 6.51 6.60 6.73 6.96 7.20 20.0 246.4 585.0
Supply
current in
Standby
mode
LSI ON and
IWDG ON 0.73 0.89 1.02 1.14 1.28 1.44 - - -
LSI OFF and
IWDG OFF 0.55 0.66 0.75 0.85 0.93 1.01 4.9 7.0 7.9
1. Data based on characterization results, not tested in production unless otherwise specified.
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
56/121 DocID025409 Rev 8
Table 28. Typical and maximum VDDA consumption in Stop and Standby modes
Symbo
lParameter Conditions
Typ. @VDD (VDD = VDDA) Max.(1)
Uni
t
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA =
25 °C
TA =
85 °C
TA =
105 °C
IDDA
Supply
current in
Stop mode
VDDA supervisor ON
Regulator in
run/low-power
mode, all
oscillators OFF
1.67 1.79 1.91 2.04 2.19 2.35 2.5 5.9 6.2
µA
Supply
current in
Standby
mode
LSI ON and
IWDG ON 2.06 2.24 2.41 2.60 2.80 3.04 - - -
LSI OFF and
IWDG OFF 1.54 1.68 1.78 1.92 2.06 2.22 2.6 3.0 3.8
Supply
current in
Stop mode
VDDA supervisor OFF
Regulator in
run/low-power
mode, all
oscillators OFF
0.97 0.99 1.03 1.07 1.14 1.22 - - -
Supply
current in
Standby
mode
LSI ON and
IWDG ON 1.36 1.44 1.52 1.62 1.76 1.91 - - -
LSI OFF and
IWDG OFF 0.86 0.88 0.91 0.95 1.03 1.09 - - -
1. Data based on characterization results, not tested in production.
Table 29. Typical and maximum current consumption from VBAT supply
Symbol Para
meter
Conditions
(1)
Typ.@VBAT
Max.
@VBAT= 3.6V(2)
Unit
1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V TA=
25°C
TA=
85°C
TA=
105°C
IDD_VBAT
Backup
domain
supply
current
LSE & RTC
ON; “Xtal
mode” lower
driving
capability;
LSEDRV[1:0]
= '00'
0.42 0.44 0.47 0.54 0.60 0.66 0.74 0.82 - - -
µA
LSE & RTC
ON; “Xtal
mode” higher
driving
capability;
LSEDRV[1:0]
= '11'
0.71 0.74 0.77 0.85 0.91 0.98 1.06 1.16 - - -
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Data based on characterization results, not tested in production.
DocID025409 Rev 8 57/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Figure 13. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’)
Typical current consumption
The MCU is placed under the following conditions:
VDD = VDDA = 3.3 V
All I/O pins available on each package are in analog input configuration
The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz,
1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash
prefetch is ON
When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB
PLL is used for frequencies greater than 8 MHz
AHB prescaler of 2, 4, 8, 16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz,
500 kHz and 125 kHz respectively.
Typical current consumption in Run mode, code with data processing running from
Flash
MS34525V1
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
25°C 60°C 85°C 105°C
I
VBAT
(μA)
T°C)
1.65 V
1.8 V
2 V
2.4 V
2.7 V
3 V
3.3 V
3.6 V
(
A
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
58/121 DocID025409 Rev 8
Table 30. Typical current consumption in Run mode, code with data processing
running from Flash memory
Symbol Parameter Conditions fHCLK
Typ.
Unit
Peripherals
enabled
Peripherals
disabled
IDD
Supply current in
Run mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash memory
72 MHz 70.6 25.2
mA
64 MHz 60.3 22.6
48 MHz 46.0 17.3
32 MHz 31.3 12.0
24 MHz 25.0 9.3
16 MHz 16.2 6.5
8 MHz 8.4 3.55
4 MHz 4.75 2.21
2 MHz 2.81 1.52
1 MHz 1.82 1.17
500 kHz 1.34 0.94
125 kHz 0.93 0.82
IDDA(1) (2)
Supply current in
Run mode from
VDDA supply
72 MHz 240.0 234.0
µA
64 MHz 209.9 208.6
48 MHz 154.5 153.5
32 MHz 104.1 103.6
24 MHz 80.2 80.0
16 MHz 56.8 56.6
8 MHz 1.14 1.14
4 MHz 1.14 1.14
2 MHz 1.14 1.14
1 MHz 1.14 1.14
500 kHz 1.14 1.14
125 kHz 1.14 1.14
1. VDDA supervisor is OFF.
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
OpAmp and others, is not included. Refer to the tables of characteristics in the subsequent sections.
DocID025409 Rev 8 59/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 50: I/O static characteristics.
Table 31. Typical current consumption in Sleep mode, code running from Flash or RAM
Symbol Parameter Conditions fHCLK
Typ.
Unit
Peripherals
enabled
Peripherals
disabled
IDD
Supply current in
Sleep mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash or RAM
72 MHz 51.8 6.3
mA
64 MHz 46.4 5.7
48 MHz 35.0 4.40
32 MHz 23.7 3.13
24 MHz 18.0 2.49
16 MHz 12.2 1.85
8 MHz 6.2 0.99
4 MHz 3.68 0.88
2 MHz 2.26 0.80
1 MHz 1.55 0.76
500 kHz 1.20 0.74
125 kHz 0.89 0.72
IDDA(1) (2)
Supply current in
Sleep mode from
VDDA supply
72 MHz 239.0 236.7
µA
64 MHz 209.4 207.8
48 MHz 154.0 152.9
32 MHz 103.7 103.2
24 MHz 80.1 79.8
16 MHz 56.7 56.6
8 MHz 1.14 1.14
4 MHz 1.14 1.14
2 MHz 1.14 1.14
1 MHz 1.14 1.14
500 kHz 1.14 1.14
125 kHz 1.14 1.14
1. VDDA supervisor is OFF.
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
OpAmp and others, is not included. Refer to the tables of characteristics in the subsequent sections.
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
60/121 DocID025409 Rev 8
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins that must be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 33: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
where:
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+CS
ISW VDD fSW C××=
DocID025409 Rev 8 61/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
Table 32. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS = 5 pF (estimated value).
I/O toggling
frequency (fSW)Typ. Unit
ISW
I/O current
consumption
VDD = 3.3 V
Cext = 0 pF
C = CINT + CEXT+ CS
2 MHz 0.90
mA
4 MHz 0.93
8 MHz 1.16
18 MHz 1.60
36 MHz 2.51
VDD = 3.3 V
Cext = 10 pF
C = CINT + CEXT +CS
2 MHz 0.93
4 MHz 1.06
8 MHz 1.47
18 MHz 2.26
36 MHz 3.39
VDD = 3.3 V
Cext = 22 pF
C = CINT + CEXT +CS
2 MHz 1.03
4 MHz 1.30
8 MHz 1.79
18 MHz 3.01
36 MHz 5.99
VDD = 3.3 V
Cext = 33 pF
C = CINT + CEXT+ CS
2 MHz 1.10
4 MHz 1.31
8 MHz 2.06
18 MHz 3.47
36 MHz 8.35
VDD = 3.3 V
Cext = 47 pF
C = CINT + CEXT+ CS
2 MHz 1.20
4 MHz 1.54
8 MHz 2.46
18 MHz 4.51
36 MHz 9.98
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
62/121 DocID025409 Rev 8
On-chip peripheral current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input configuration
All peripherals are disabled unless otherwise mentioned
The given value is calculated by measuring the current consumption:
With all peripherals clocked off
With only one peripheral clocked on
Ambient operating temperature at 25°C and VDD = VDDA = 3.3 V
Table 33. Peripheral current consumption
Peripheral
Typical consumption(1)
Unit
IDD
BusMatrix (2) 11.1 µA/MHz
DMA1 8.0 -
CRC 2.1 -
GPIOA 8.7 -
GPIOB 8.4 -
GPIOC 8.4 -
GPIOD 2.6 -
GPIOF 1.7 -
TSC 4.7 -
ADC1&2 17.4 -
APB2-Bridge (3) 3.3 -
SYSCFG 4.2 -
TIM1 32.3 -
USART1 20.3 -
TIM15 13.8 -
TIM16 9.7 -
TIM17 10.3 -
HRTIM 324.2 -
APB1-Bridge (3) 5.3 -
TIM2 43.4 -
TIM3 34.0 -
TIM6 9.7 -
TIM7 10.3 -
WWDG 6.9 -
USART2 18.8 -
USART3 19.1 -
DocID025409 Rev 8 63/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
I2C1 13.3 -
CAN 31.3 -
PWR 4.7 -
DAC 15.4 -
DAC2 8.6 -
SPI1 8.2 -
1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp
and others, is not included. Refer to the tables of characteristics in the subsequent sections.
2. BusMatrix is automatically active when at least one master is ON (CPU or DMA1).
3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.
Table 33. Peripheral current consumption (continued)
Peripheral
Typical consumption(1)
Unit
IDD
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
64/121 DocID025409 Rev 8
6.3.6 Wakeup time from low-power mode
The wakeup times given in Table 34 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep mode: the wakeup event is WFE.
WKUP1 (PA0) pin is used to wake up from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 19.
6.3.7 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the
recommended clock input waveform is shown in Figure 14.
Table 34. Low-power mode wakeup timings
Symbol Parameter Conditions
Typ. @VDD, VDD = VDDA
Max. Unit
2.0 V 2.4 V 2.7 V 3 V 3.3 V 3.6 V
tWUSTOP
Wakeup from
Stop mode
Regulator in
run mode 4.3 4.1 4.0 3.9 3.8 3.7 4.5
µs
Regulator in
low-power
mode
7.8 6.7 6.1 5.9 5.5 5.3 9
tWUSTANDBY(1) Wakeup from
Standby mode
LSI and
IWDG OFF 74.4 64.3 60.0 56.9 54.3 51.1 103
tWUSLEEP
Wakeup from
Sleep mode -6-
CPU
clock
cycles
1. Data based on characterization results, not tested in production.
Table 35. Wakeup time using USART(1)
Symbol Parameter Conditions Typ Max Unit
tWUUSART
Wakeup time needed to calculate
the maximum USART baudrate
allowing to wake up from stop
mode when USART clock source is
HSI
Stop mode with main
regulator in low
power mode
- 13.125
µs
Stop mode with main
regulator in run
mode
- 3.125
1. Guaranteed by design.
DocID025409 Rev 8 65/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Figure 14. High-speed external clock source AC timing diagram
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the
recommended clock input waveform is shown in Figure 15.
Table 36. High-speed external user clock characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
fHSE_ext
User external clock source
frequency(1)
1. Guaranteed by design, not tested in production.
-
1832MHz
VHSEH OSC_IN input pin high-level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low-level voltage VSS -0.3V
DD
tw(HSEH)
tw(HSEL)
OSC_IN high or low time(1) 15 - -
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --20
Table 37. Low-speed external user clock characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
fLSE_ext
User External clock source
frequency(1)
1. Guaranteed by design, not tested in production.
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high-level
voltage 0.7VDD -V
DD
V
VLSEL
OSC32_IN input pin low-level
voltage VSS -0.3V
DD
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
MS19214V2
VHSEH
tf(HSE)
90%
10%
THSE
t
tr(HSE)
VHSEL
tw(HSEH)
tw(HSEL)
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
66/121 DocID025409 Rev 8
Figure 15. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 38. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins to minimize output distortion and startup stabilization time. Refer to the
crystal resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 38. HSE oscillator characteristics
Symbol Parameter Conditions(1)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
Min.(2)
2. Guaranteed by design, not tested in production.
Typ. Max.(2) Unit
fOSC_IN Oscillator frequency - 4 8 32 MHz
RFFeedback resistor - - 200 - kΩ
IDD HSE current consumption
During startup(3)
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.
--8.5
mA
VDD= 3.3 V, Rm= 30Ω,
CL=10 pF@8 MHz -0.4-
VDD= 3.3 V, Rm= 45Ω,
CL=10 pF@8 MHz -0.5-
VDD= 3.3 V, Rm= 30Ω,
CL=5 pF@32 MHz -0.8-
VDD= 3.3 V, Rm= 30Ω,
CL=10 pF@32 MHz -1-
VDD= 3.3 V, Rm= 30Ω,
CL=20 pF@32 MHz -1.5-
gmOscillator transconductance Startup 10 - - mA/V
tSU(HSE)(4)
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
Startup time VDD is stabilized - 2 - ms
MS19215V2
VLSEH
tf(LSE)
90%
10%
TLSE
t
tr(LSE)
VLSEL
tw(LSEH)
tw(LSEL)
DocID025409 Rev 8 67/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 16. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 39. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins to minimize output distortion and startup stabilization time. Refer to the
crystal resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 39. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol Parameter Conditions(1) Min.(2) Typ. Max.(2) Unit
IDD LSE current consumption
LSEDRV[1:0]=00
lower driving capability -0.50.9
µA
LSEDRV[1:0]=10
medium low driving
capability
--1
LSEDRV[1:0]=01
medium high-driving
capability
--1.3
LSEDRV[1:0]=11
higher-driving capability --1.6
MS19876V1
(1)
OSC_IN
OSC_OUT
RF
Bias
controlled
gain
fHSE
REXT
8 MHz
resonator
Resonator with integrated
capacitors
CL1
CL2
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
68/121 DocID025409 Rev 8
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available at the ST website www.st.com.
Figure 17. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
6.3.8 Internal clock source characteristics
The parameters given in Table 40 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 19.
gm
Oscillator
transconductance
LSEDRV[1:0]=00
lower-driving capability 5- -
µA/V
LSEDRV[1:0]=10
medium low-driving
capability
8- -
LSEDRV[1:0]=01
medium high-driving
capability
15 - -
LSEDRV[1:0]=11
higher-driving capability 25 - -
tSU(LSE)(3) Startup time VDD is stabilized - 2 - s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly
with the crystal manufacturer.
Table 39. LSE oscillator characteristics (fLSE = 32.768 kHz) (continued)
Symbol Parameter Conditions(1) Min.(2) Typ. Max.(2) Unit
MS19876V1
(1)
OSC_IN
OSC_OUT
RF
Bias
controlled
gain
fHSE
REXT
8 MHz
resonator
Resonator with integrated
capacitors
CL1
CL2
DocID025409 Rev 8 69/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
High-speed internal (HSI) RC oscillator
Figure 18. HSI oscillator accuracy characterization results for soldered parts
Table 40. HSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min. Typ. Max. Unit
fHSI Frequency - - 8 - MHz
TRIM HSI user trimming step - - - 1(2)
2. Guaranteed by design, not tested in production.
%
DuCy(HSI) Duty cycle - 45(2) -55
(2) %
ACCHSI
Accuracy of the HSI
oscillator (factory
calibrated)
TA = –40 to 105 °C –2.8(3)
3. Data based on characterization results, not tested in production.
-3.8
(3)
%
TA = –10 to 85 °C –1.9(3) -2.3
(3)
TA = 0 to 85 °C -1.9(3) -2
(3)
TA = 0 to 70 °C -1.3(3) -2
(3)
TA = 0 to 55 °C –1(3) -2
(3)
TA = 25 °C(4)
4. Factory calibrated, parts not soldered
–1 - 1
tsu(HSI)
HSI oscillator startup
time -1
(2) -2
(2) µs
IDDA(HSI)
HSI oscillator power
consumption - - 80 100(2) µA
MS30985V4
T [ºC]
A
MAX
MIN
-40 -20 0 20 40 60 80 100 120
4%
3%
2%
1%
0%
-1%
-2%
-3%
-4%
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
70/121 DocID025409 Rev 8
Low-speed internal (LSI) RC oscillator
6.3.9 PLL characteristics
The parameters given in Table 42 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 19.
Table 41. LSI oscillator characteristics(1)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min. Typ. Max. Unit
fLSI Frequency 30 40 50 kHz
tsu(LSI)(2)
2. Guaranteed by design, not tested in production.
LSI oscillator startup time - - 85 µs
IDD(LSI)(2) LSI oscillator power consumption - 0.75 1.2 µA
Table 42. PLL characteristics
Symbol Parameter
Value
Unit
Min. Typ. Max.
fPLL_IN
PLL input clock(1)
1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
1(2) -24
(2) MHz
PLL input clock duty cycle 40(2) -60
(2) %
fPLL_OUT PLL multiplier output clock 16(2) -72MHz
tLOCK PLL lock time - - 200(2) µs
Jitter Cycle-to-cycle jitter - - 300(2)
2. Guaranteed by design, not tested in production.
ps
DocID025409 Rev 8 71/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
6.3.10 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
6.3.11 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
The device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 45. They are based on the EMS levels and classes
defined in “EMC design guide for ST microcontrollers” application note (AN1709).
Table 43. Flash memory characteristics
Symbol Parameter Conditions Min. Typ. Max.(1)
1. Guaranteed by design, not tested in production.
Unit
tprog 16-bit programming time TA = –40 to +105 °C 40 53.5 60 µs
tERASE Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms
tME Mass erase time TA = –40 to +105 °C 20 - 40 ms
IDD Supply current
Write mode - - 10 mA
Erase mode - - 12 mA
Table 44. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min.(1)
1. Data based on characterization results, not tested in production.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
72/121 DocID025409 Rev 8
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It must be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (for example control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see the “Software techniques for improving
microcontrollers EMC performance” application note (AN1015)).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored, while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with the
IEC 61967-2 standard that specifies the test board and the pin loading.
Table 45. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP64, TA = +25°C,
fHCLK = 72 MHz
conforms to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP64, TA = +25°C,
fHCLK = 72 MHz
conforms to IEC 61000-4-4
4A
Table 46. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs. [fHSE/fHCLK]
Unit
8/72 MHz
SEMI Peak level
VDD = 3.6 V, TA =25 °C,
LQFP64 package
compliant with IEC
61967-2
0.1 to 30 MHz 5
dBµV30 to 130 MHz 9
130 MHz to 1GHz 31
SAE EMI Level 4 -
DocID025409 Rev 8 73/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
6.3.12 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.13 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) must be avoided during normal product
operation. However, to give an indication of the robustness of the microcontroller in cases
when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
Table 47. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1)
1. Data based on characterization results, not tested in production.
Unit
VESD(HBM
)
Electrostatic discharge
voltage (human body model)
TA = +25 °C,
conforming to JESD22-
A114
22000
V
VESD(CD
M)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C,
conforming to JESD22-
C101
II 250
Table 48. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
74/121 DocID025409 Rev 8
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator
frequency deviation). The test results are given in Table 49: I/O current injection
susceptibility.
Note: It is recommended to add a Schottky diode (pin to ground) to the analog pins that may
potentially inject negative currents.
6.3.14 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 50 are derived from tests
performed under the conditions summarized in Table 19. All I/Os are CMOS and TTL
compliant.
Table 49. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 – 0 NA (Injection is not
possible)
mA
Injected current on PC0, PC1, PC2, PC3 (TTa pins) and PF1
pin (FT pin) -0 +5
Injected current on PA0, PA1, PA2, PA3, PA4, PA5, PA6,
PA7, PC4, PC5, PB0, PB1, PB2, PB12, PB13, PB14, PB15
with induced leakage current on other pins from this group
less than -100 µA or more than +900 µA
-5 +5
Injected current on PB11, other TT, FT, and FTf pins – 5 Injection is not
possible
Injected current on all other TC, TTa and RESET pins – 5 +5
Table 50. I/O static characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
VIL
Low-level input
voltage
TT, TC and TTa I/O - - 0.3 VDD+0.07 (1)
V
FT and FTf I/O - - 0.475 VDD-0.2 (1)
BOOT0 - - 0.3 VDD–0.3 (1)
All I/Os except BOOT0 - - 0.3 VDD (2)
VIH
High-level input
voltage
TTa and TT I/O 0.445 VDD+0.398 (1) --
FT and FTf I/O 0.5 VDD+0.2 (1) --
BOOT0 0.2 VDD+0.95 (1) --
All I/Os except BOOT0 0.7 VDD (2) --
DocID025409 Rev 8 75/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 19 and Figure 20 for standard I/Os.
Figure 19. TC and TTa I/O input characteristics - CMOS port
Vhys
Schmitt trigger
hysteresis
TT, TC and TTa I/O - 200 (1) -
mVFT and FTf I/O - 100 (1) -
BOOT0 - 300 (1) -
Ilkg
Input leakage
current (3)
TC, FT, TT, FTf and TTa
I/O in digital mode
VSS VIN VDD
--±0.1
µA
TTa I/O in digital mode
VDD VIN VDDA
--1
TTa I/O in analog mode
VSS VIN VDDA
--±0.2
FT and FTf I/O(4)
VDD VIN 5 V --10
RPU
Weak pull-up
equivalent resistor(5) VIN = VSS 25 40 55 kΩ
RPD
Weak pull-down
equivalent resistor(5) VIN = VDD 25 40 55 kΩ
CIO I/O pin capacitance - - 5 - pF
1. Data based on design simulation.
2. Tested in production.
3. Leakage could be higher than the maximum value. If negative current is injected on adjacent pins. Refer to Table 49: I/O
current injection susceptibility.
4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimum (~10% order).
Table 50. I/O static characteristics (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
MS30255V2
VDD (V)
VIHmin 2.0
VILmax 0.7
VIL/VIH (V)
1.3
2.0 3.6
V
ILmax
= 0.3V
DD
+0.07
0.6
2.7 3.0 3.3
CMOS standard requirements VILmax = 0.3VDD
V
IHmin
= 0.445V
DD
+0.398
Area not determined
Tested in production
Tested in production
Based on design simulations
Based on design simulations
CMOS standard requirements V
IH
min = 0.7V
DD
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
76/121 DocID025409 Rev 8
Figure 20. TC and TTa I/O input characteristics - TTL port
Figure 21. 5V- tolerant (FT and FTf) I/O input characteristics - CMOS port
Figure 22. 5V-tolerant (FT and FTf) I/O input characteristics - TTL port
MS30256V2
VDD (V)
VIHmin 2.0
VILmax 0.8
VIL/VIH (V)
1.3
2.0 3.6
V
ILmax
= 0.3V
DD
+0.07
0.7
2.7 3.0 3.3
TTL standard requirements VILmax = 0.8V
V
IHmin
= 0.445V
DD
+0.398
Area not determined
Based on design simulations
Based on design simulations
TTL standard requirements VIHmin = 2V
VDD (V)
2.0
0.5
VIL/VIH (V)
2.0 3.6
1.0
2.7
Area not determined
MS30257V3
V
ILmax
= 0.475V
DD
-0.2
V
IHmin
= 0.5V
DD
+0.2
Based on design simulations
Based on design simulations
CMOS standard requirements V
IH
min = 0.7V
DD
CMOS standard requirements V
IL
max = 0.3V
DD
MS30258V2
VDD (V)
2.0
VIL/VIH (V)
1.0
2.0 3.6
V
ILmin
= 0.475V
DD
-0.2
0.5
V
IHmin
= 0.5V
DD
+0.2
Area not determined
2.7
TTL standard requirements VIHmin = 2V
TTL standard requirements VILmax = 0.8V
0.8
Based on design simulations
Based on design simulations
DocID025409 Rev 8 77/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Output driving current
The GPIOs (general-purpose input/output) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 17).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 17).
Output voltage levels
Unless otherwise specified, the parameters given in Table 47: ESD absolute maximum
ratings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 19. All I/Os (FT, TTa and TC unless otherwise
specified) are CMOS and TTL compliant.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 23 and
Table 66, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 19.
Table 51. Output voltage characteristics
Symbol Parameter Conditions Min. Max. Unit
VOL(1) Low-level output voltage for an I/O pin CMOS port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
V
VOH(3) High- level output voltage for an I/O pin VDD–0.4 -
VOL (1) Low-level output voltage for an I/O pin TTL port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-0.4
VOH (3) High-level output voltage for an I/O pin 2.4 -
VOL(1)(4) Low-level output voltage for an I/O pin IIO = +20 mA
2.7 V < VDD < 3.6 V
-1.3
VOH(3)(4) High-level output voltage for an I/O pin VDD–1.3 -
VOL(1)(4) Low-level output voltage for an I/O pin IIO = +6 mA
2 V < VDD < 2.7 V
-0.4
VOH(3)(4) High-level output voltage for an I/O pin VDD–0.4 -
VOLFM+(1)(4) Low-level output voltage for an FTf I/O pin
in FM+ mode
IIO = +20 mA
2.7 V < VDD < 3.6 V -0.4
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 17 and the sum of
IIO (I/O ports and control pins) must not exceed ΣIIO(PIN).
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 17 and the sum
of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN).
4. Data based on design simulation.
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
78/121 DocID025409 Rev 8
Table 52. I/O AC characteristics(1)
OSPEEDRy
[1:0] value(1) Symbol Parameter Conditions Min. Max. Unit
x0
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V - 2(3) MHz
tf(IO)out
Output high to low level
fall time
CL = 50 pF, VDD = 2 V to 3.6 V
-125
(3)
ns
tr(IO)out
Output low to high level
rise time -125
(3)
01
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V - 10(3) MHz
tf(IO)out
Output high to low level
fall time
CL = 50 pF, VDD = 2 V to 3.6 V
-25
(3)
ns
tr(IO)out
Output low to high level
rise time -25
(3)
11
fmax(IO)out Maximum frequency(2)
CL = 30 pF, VDD = 2.7 V to 3.6 V - 50(3) MHz
CL = 50 pF, VDD = 2.7 V to 3.6 V - 30(3) MHz
CL = 50 pF, VDD = 2 V to 2.7 V - 20(3) MHz
tf(IO)out
Output high to low level
fall time
CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3)
ns
CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V - 12(3)
tr(IO)out
Output low to high level
rise time
CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3)
CL = 50 pF, VDD = 2 V to 2.7 V - 12(3)
FM+
configuration(4)
fmax(IO)out Maximum frequency(2)
CL = 50 pF, VDD = 2 V to 3.6 V
-2
(4) MHz
tf(IO)out
Output high to low level
fall time -12
(4)
ns
tr(IO)out
Output low to high level
rise time -34
(4)
-t
EXTIpw
Pulse width of external
signals detected by the
EXTI controller
-10-ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0364 reference manual for a description of
GPIO Port configuration register.
2. The maximum frequency is defined in Figure 23.
3. Guaranteed by design, not tested in production.
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the RM0364 reference manual for a description of FM+
I/O mode configuration.
DocID025409 Rev 8 79/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Figure 23. I/O AC characteristics definition
6.3.15 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 50).
Unless otherwise specified, the parameters given in Table 53 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 19.
ai14131d
10%
90%
50%
tr(IO)out
OUTPUT
EXTERNAL
ON CL
Maximum frequency is achieved if (tr + tf) ≤ (2/3)T and if the duty cycle is (45-55%)
when loaded by CL specified in the table “ I/O AC characteristics”.
10%
50%
90%
T
tf(IO)out
Table 53. NRST pin characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
VIL(NRST)(1) NRST Input low level voltage - - - 0.3VDD
+ 0.07(1)
V
VIH(NRST)(1) NRST Input high-level voltage - 0.445VDD +
0.398(1) --
Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV
RPU Weak pull-up equivalent resistor(2) VIN = VSS 25 40 55 kΩ
VF(NRST)(1) NRST Input filtered pulse - - - 100(1) ns
VNF(NRST)(1) NRST Input not filtered pulse - 500(1) --ns
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
80/121 DocID025409 Rev 8
Figure 24. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 53. Otherwise the reset is not be taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.
4. Place the external capacitor 0.1u F on NRST as close as possible to the chip.
6.3.16 High-resolution timer (HRTIM)
The parameters given in Table 54 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 19.
069
538
9''
,QWHUQDOUHVHW
([WHUQDO
UHVHWFLUFXLW
1567
)LOWHU
)
Table 54. HRTIM1 characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
TA
Timer ambient
temperature range
fHRTIM=144MHz (1)
1. Using HSE with 8MHz XTAL as clock source, configuring PLL to get PLLCLK=144MHz, and selecting
PLLCLKx2 as HRTIM clock source. (Refer to Reset and clock control section in RM0364.)
-40 - 105 °C
fHRTIM=128MHz (2)
2. Using HSI (internal 8MHz RC oscillator), configuring PLL to get PLLCLK=128MHz, and selecting
PLLCLKx2 as HRTIM clock source. (Refer to Reset and clock control section in RM0364.
-10 - 105 °C
fHRTIM HRTIM input clock
for DLL calibration As per TA conditions 128 - 144 MHz
tHRTIM 6.9 - 7.8 ns
tRES(HRTIM)
Timer resolution
time
fHRTIM=144MHz (1), TA
from -40 to 105°C - 217 - ps
fHRTIM=128MHz (2),TA from
-10 to 105°C - 244 - ps
ResHRTIM Timer resolution - - - 16 bit
tDTG
Dead time
generator clock
period
-0.125-16t
HRTIM
fHRTIM=144MHz (1) 0.868 - 111.10 ns
|tDTR| / |tDTF|
max
Dead time range
(absolute value)
---511t
DTG
fHRTIM=144MHz (1) - - 56.77 µs
fCHPFRQ
Chopper stage
clock frequency
- 1/256 - 1/16 fHRTIM
fHRTIM=144MHz (1) 0.562 - 9 MHz
t1STPW
Chopper first
pulse length
-16-256t
HRTIM
fHRTIM=144MHz (1) 0.111 - 1.77 µs
DocID025409 Rev 8 81/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Table 55. HRTIM output response to fault protection(1)
1. Refer to Fault paragraph in HRTIM section of RM0364.
Symbol Parameter Conditions Min. Typ. Max.(2)
2. Data based on characterization results, not tested in production.
Unit
tLAT(DF)
Digital fault response
latency
Propagation delay from
HRTIM1_FLTx digital input to
HRTIM_CHxy output pin
-1225
nstW(FLT)
Minimum Fault pulse
width -12.5--
tLAT(AF)
Analog fault response
latency
Propagation delay from
comparator COMPx_INP input
pin to HRTIM_CHxy output pin
-2543
Table 56. HRTIM output response to external events 1 to 5 (Low-Latency mode(1))
1. EExFAST bit in HRTIM_EECR1 register is set (Low Latency mode). This functionality is available on
external events channels 1 to 5. Refer to Latency to external events paragraph in HRTIM section of
RM0364.
Symbol Parameter Conditions Min. Typ. Max.(2)
2. Data based on characterization results, not tested in production.
Unit
tLAT(DEEV)
Digital external event
response latency
Propagation delay from
HRTIM1_EEVx digital input to
HRTIM_CHxy output pin (30pF
load)
-1225 ns
tW(FLT)
Minimum external
event pulse width -12.5--ns
tLAT(AEEV)
Analog external event
response latency
Propagation delay from
comparator COMPx_INP input
pin to HRTIM_CHxy output pin
(30pF load)
-2543 ns
TJIT(EEV)
External event
response jitter
Jitter of the delay from
HRTIM1_EEVx digital input or
COMPx_INP input pin to
HRTIM_CHxy output pin
-- 0t
HRTIM(3)
3. THRTIM = 1 / fHRTIM with fHRTIM= 144 MHz or fHRTIM = 128 MHZ depending on the clock controller
configuration. (Refer to Reset and clock control section in RM0364.)
TJIT(PW)
Jitter on output pulse
width in response to
an external event
---1t
HRTIM(3)
Table 57. HRTIM output response to external events 1 to 10 (Synchronous mode (1))
Symbol Parameter Conditions Min. Typ. Max.(2) Unit
TPROP(HRTIM)
External event response
latency in HRTIM HRTIM internal propagation delay (3) 6- 7 t
HRTIM
tLAT(DEEV)
Digital external event
response latency
Propagation delay from HRTIM1_EEVx
digital input to HRTIM_CHxy output pin
(30pF load) (4)
-61 72 ns
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
82/121 DocID025409 Rev 8
tLAT(AEEV)
Analog external event
response latency
Propagation delay from COMPx_INP
input pin to HRTIM_CHxy output pin
(30pF load) (4)
-81 94 ns
tW(FLT)
Minimum external event
pulse width - 12.5 - - ns
TJIT(EEV)
External event response
jitter
Jitter of the delay from HRTIM1_EEVx
digital input or COMPx_INP to
HRTIM_CHxy output pin
-- 1t
HRTIM (5)
TJIT(PW)
Jitter on output pulse
width in response to an
external event
---0t
HRTIM (5)
1. EExFAST bit in HRTIM_EECR1 or HRTIM_EECR2 register is cleared (synchronous mode). External event filtering is
disabled, i.e. EExF[3:0]=0000 in HRTIM_EECR2 register. Refer to Latency to external events paragraph in HRTIM section
of RM0364.
2. Data based on characterization results, not tested in production.
3. This parameter does not take into account latency introduced by GPIO or comparator. Refer to DEERL or SACRL
parameter for complete latency.
4. This parameter is given for fHRTIM = 144 MHz.
5. THRTIM = 1 / fHRTIM with fHRTIM= 144 MHz or fHRTIM = 128 MHZ depending on the clock controller configuration. (Refer to
Reset and clock control section in RM0364.)
Table 57. HRTIM output response to external events 1 to 10 (Synchronous mode (1)) (continued)
Symbol Parameter Conditions Min. Typ. Max.(2) Unit
Table 58. HRTIM synchronization input / output(1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min. Typ. Max. Unit
tW(SYNCIN)
Minimum pulse width
on SYNCIN inputs,
including
HRTIM1_SCIN
-2--t
HRTIM
tLAT(DF)
Response time to
external
synchronization
request
---1t
HRTIM
tLAT(AF)
Pulse width on
HRTIM1_SCOUT
output
--16-t
HRTIM
fHRTIM=144 MHz - 111.1 - ns
DocID025409 Rev 8 83/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
6.3.17 Timer characteristics
The parameters given in Table 59 are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 59. TIMx(1)(2) characteristics
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM15, TIM16 and TIM17 timers.
2. Guaranteed by design, not tested in production.
Symbol Parameter Conditions Min. Max. Unit
tres(TIM) Timer resolution time
-1-t
TIMxCLK
fTIMxCLK = 72 MHz 13.9 - ns
fTIM1CLK = 144 MHz 6.95 - ns
fEXT
Timer external clock
frequency on CH1 to CH4
-0f
TIMxCLK/2 MHz
fTIMxCLK = 72 MHz 0 36 MHz
ResTIM Timer resolution
TIMx (except TIM2) - 16
bit
TIM2 - 32
tCOUNTER
16-bit counter clock
period
- 1 65536 tTIMxCLK
fTIMxCLK = 72 MHz 0.0139 910 µs
fTIM1CLK = 144 MHz 0.0069 455 µs
tMAX_COUNT
Maximum possible count
with 32-bit counter
- - 65536 × 65536 tTIMxCLK
fTIMxCLK = 72 MHz - 59.65 s
fTIM1CLK = 144 MHz - 29.825 s
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
84/121 DocID025409 Rev 8
6.3.18 Communication interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 Kbit/s
Fast-mode (Fm): with a bit rate up to 400 Kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and
SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present. Only FTf I/O pins
support Fm+ low-level output current maximum requirement. Refer to Section 6.3.14: I/O
port characteristics for the I2C I/O characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog
filter characteristics:
Table 60. IWDG min./max. timeout period at 40 kHz (LSI) (1)
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Prescaler divider PR[2:0] bits Min. timeout (ms)
RL[11:0] = 0x000
Max. timeout (ms)
RL[11:0] = 0xFFF
/4 0 0.1 409.6
/8 1 0.2 819.2
/16 2 0.4 1638.4
/32 3 0.8 3276.8
/64 4 1.6 6553.6
/128 5 3.2 13107.2
/256 7 6.4 26214.4
Table 61. WWDG min./max. timeout value at 72 MHz (PCLK)(1)
1. Guaranteed by design, not tested in production.
Prescaler WDGTB Min. timeout value Max. timeout value
1 0 0.05687 3.6409
2 1 0.1137 7.2817
4 2 0.2275 14.564
8 3 0.4551 29.127
DocID025409 Rev 8 85/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
SPI characteristics
Unless otherwise specified, the parameters given in Table 53 for SPI are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Table 19: General operating conditions.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 62. I2C analog filter characteristics(1)
1. Guaranteed by design, not tested in production.
Symbol Parameter Min. Max. Unit
tAF
Maximum pulse width of spikes that are
suppressed by the analog filter. 50(2)
2. Spikes with width below tAF(min.) are filtered.
260(3)
3. Spikes with width above tAF(max.) are not filtered.
ns
Table 63. SPI characteristics(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode 2.7 < VDD < 3.6 V
--
24
MHz
Master mode 2 < VDD < 3.6 V 18
Slave mode 2 < VDD < 3.6 V 24
Slave mode transmitter/full
duplex
2 < VDD < 3.6 V
18(2)
DuCy(SCK)Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - -
ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - -
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2
tsu(MI) Data input setup time Master mode 0 - -
tsu(SI) Slave mode 3 - -
th(MI) Data input hold time Master mode 5 - -
th(SI) Slave mode 1 - -
ta(SO) Data output access time Slave mode 10 - 40
tdis(SO) Data output disable time Slave mode 10 - 17
tv(SO) Data output valid time
Slave mode 2.7 < VDD < 3.6 V - 12 20
Slave mode 2 < VDD < 3.6 V - 12 27.5
tv(MO) Master mode - 1.5 5
th(SO) Data output hold time Slave mode 7.5 - -
th(MO) Master mode 0 - -
1. Data based on characterization results, not tested in production.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK
low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a
master having tsu(MI) = 0 while Duty(SCK) = 50%.
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
86/121 DocID025409 Rev 8
Figure 25. SPI timing diagram - slave mode and CPHA = 0
Figure 26. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
ai14135b
NSS input
tSU(NSS) tc(SCK) th(NSS)
SCK input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
ta(SO) tv(SO) th(SO) tr(SCK)
tf(SCK) tdis(SO)
MISO
OUTPUT
MOSI
INPUT
tsu(SI) th(SI)
MSB OUT
MSB IN
BIT6 OUT LSB OUT
LSB IN
BIT 1 IN
DocID025409 Rev 8 87/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Figure 27. SPI timing diagram - master mode(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
CAN (controller area network) interface
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (CAN_TX and CAN_RX).
6.3.19 ADC characteristics
Unless otherwise specified, the parameters showed from Table 64 to Table 67 are
guaranteed by design, with the conditions summarized in Table 19.
ai14136c
SCK Output
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
Table 64. ADC characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
VDDA
Analog supply voltage for
ADC -2-3.6V
IDDA
ADC current consumption
(Figure 28)
Single ended mode,
5 MSPS - 1011.3 1172.0
µA
Single ended mode,
1 MSPS - 214.7 322.3
Single ended mode,
200 KSPS -54.781.1
Differential mode, 5 MSPS - 1061.5 1243.6
Differential mode, 1 MSPS - 246.6 337.6
Differential mode,
200 KSPS -56.483.0
VREF-
Negative reference
voltage --0-V
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
88/121 DocID025409 Rev 8
fADC ADC clock frequency - 0.14 - 72 MHz
fS(1) Sampling rate
Resolution = 12 bits,
Fast Channel 0.01 - 5.14
Msps
Resolution = 10 bits,
Fast Channel 0.012 - 6
Resolution = 8 bits,
Fast Channel 0.014 - 7.2
Resolution = 6 bits,
Fast Channel 0.0175 - 9
fTRIG(1) External trigger frequency
fADC = 72 MHz
Resolution = 12 bits - - 5.14 MHz
Resolution = 12 bits - - 14 1/fADC
VAIN Conversion voltage range - 0 - VDDA V
RAIN(1) External input impedance - - - 100 κΩ
CADC(1) Internal sample and hold
capacitor --5-pF
tCAL(1) Calibration time
fADC = 72 MHz 1.56 µs
-1121/f
ADC
tlatr(1)
Trigger conversion latency
Regular and injected
channels without
conversion abort
CKMODE = 00 1.5 2 2.5 1/fADC
CKMODE = 01 - - 2 1/fADC
CKMODE = 10 - - 2.25 1/fADC
CKMODE = 11 - - 2.125 1/fADC
tlatrinj(1)
Trigger conversion latency
Injected channels aborting
a regular conversion
CKMODE = 00 2.5 3 3.5 1/fADC
CKMODE = 01 - - 3 1/fADC
CKMODE = 10 - - 3.25 1/fADC
CKMODE = 11 - - 3.125 1/fADC
tS(1) Sampling time
fADC = 72 MHz 0.021 - 8.35 µs
- 1.5 - 601.5 1/fADC
tADCVRE
G_STUP(
1)
ADC Voltage Regulator
Start-up time ---10µs
tSTAB Power-up time - 1
conver
sion
cycle
Table 64. ADC characteristics (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
DocID025409 Rev 8 89/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Figure 28. ADC typical current consumption in single-ended and differential modes
tCONV(1) Total conversion time
(including sampling time)
fADC = 72 MHz
Resolution = 12 bits 0.19 - 8.52 µs
Resolution = 12 bits 14 to 614 (tS for sampling + 12.5 for
successive approximation) 1/fADC
CMIR Common Mode Input
signal ADC differential mode (VSSA+VREF+)/
2-0.18
(VSSA +
VREF+)/2
(VSSA +
VREF+)/2
+ 0.18
V
1. Data guaranteed by design, not tested in production.
Table 64. ADC characteristics (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
MS34994V1
ADC current consumption (μA)
Clock frequency (MSPS)
Table 65. Maximum ADC RAIN(1)
Resolution
Sampling
cycle @
72 MHz
Sampling
time [ns] @
72 MHz
RAIN max. (kΩ)
Fast channels(2) Slow channels Other
channels(3)
12 bits
1.5 20.83 0.018 NA NA
2.5 34.72 0.150 NA 0.022
4.5 62.50 0.470 0.220 0.180
7.5 104.17 0.820 0.560 0.470
19.5 270.83 2.70 1.80 1.50
61.5 854.17 8.20 6.80 4.70
181.5 2520.83 22.0 18.0 15.0
601.5 8354.17 82.0 68.0 47.0
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
90/121 DocID025409 Rev 8
10 bits
1.5 20.83 0.082 NA NA
2.5 34.72 0.270 0.082 0.100
4.5 62.50 0.560 0.390 0.330
7.5 104.17 1.20 0.82 0.68
19.5 270.83 3.30 2.70 2.20
61.5 854.17 10.0 8.2 6.8
181.5 2520.83 33.0 27.0 22.0
601.5 8354.17 100.0 82.0 68.0
8 bits
1.5 20.83 0.150 NA 0.039
2.5 34.72 0.390 0.180 0.180
4.5 62.50 0.820 0.560 0.470
7.5 104.17 1.50 1.20 1.00
19.5 270.83 3.90 3.30 2.70
61.5 854.17 12.00 12.00 8.20
181.5 2520.83 39.00 33.00 27.00
601.5 8354.17 100.00 100.00 82.00
6 bits
1.5 20.83 0.270 0.100 0.150
2.5 34.72 0.560 0.390 0.330
4.5 62.50 1.200 0.820 0.820
7.5 104.17 2.20 1.80 1.50
19.5 270.83 5.60 4.7 3.90
61.5 854.17 18.0 15.0 12.0
181.5 2520.83 56.0 47.0 39.0
601.5 8354.17 100.00 100.0 100.0
1. Data based on characterization results, not tested in production.
2. All fast channels, expect channel on PA6.
3. Channels available on PA6.
Table 65. Maximum ADC RAIN(1) (continued)
Resolution
Sampling
cycle @
72 MHz
Sampling
time [ns] @
72 MHz
RAIN max. (kΩ)
Fast channels(2) Slow channels Other
channels(3)
DocID025409 Rev 8 91/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Table 66. ADC accuracy - limited test conditions(1)(2)
Symbol Parameter Conditions Min.
(3) Typ. Max.(3) Unit
ET
To ta l
unadjusted
error
ADC clock freq. 72 MHz
Sampling freq. 5 Msps
VDDA = 3.3 V
25°C
Single
ended
Fast channel 5.1 Ms - ±4 ±4.5
LSB
Slow channel 4.8 Ms - ±5.5 ±6
Differential
Fast channel 5.1 Ms - ±3.5 ±4
Slow channel 4.8 Ms - ±3.5 ±4
EO Offset
error
Single
ended
Fast channel 5.1 Ms - ±2 ±2
Slow channel 4.8 Ms - ±1.5 ±2
Differential
Fast channel 5.1 Ms - ±1.5 ±2
Slow channel 4.8 Ms - ±1.5 ±2
EG Gain error
Single
ended
Fast channel 5.1 Ms - ±3 ±4
Slow channel 4.8 Ms - ±5 ±5.5
Differential
Fast channel 5.1 Ms - ±3 ±3
Slow channel 4.8 Ms - ±3 ±3.5
ED
Differential
linearity
error
Single
ended
Fast channel 5.1 Ms - ±1 ±1
Slow channel 4.8 Ms - ±1 ±1
Differential
Fast channel 5.1 Ms - ±1 ±1
Slow channel 4.8 Ms - ±1 ±1
EL
Integral
linearity
error
Single
ended
Fast channel 5.1 Ms - ±1.5 ±2
Slow channel 4.8 Ms - ±2 ±3
Differential
Fast channel 5.1 Ms - ±1.5 ±1.5
Slow channel 4.8 Ms - ±1.5 ±2
ENOB(4)
Effective
number of
bits
Single
ended
Fast channel 5.1 Ms 10.8 10.8 -
bit
Slow channel 4.8 Ms 10.8 10.8 -
Differential
Fast channel 5.1 Ms 11.2 11.3 -
Slow channel 4.8 Ms 11.2 11.3 -
SINAD
(4)
Signal-to-
noise and
distortion
ratio
Single
ended
Fast channel 5.1 Ms 66 67 -
dB
Slow channel 4.8 Ms 66 67 -
Differential
Fast channel 5.1 Ms 69 70 -
Slow channel 4.8 Ms 69 70 -
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
92/121 DocID025409 Rev 8
SNR(4) Signal-to-
noise ratio
ADC clock freq. 72 MHz
Sampling freq. 5 Msps
VDDA = 3.3 V
25°C
Single
ended
Fast channel 5.1 Ms 66 67 -
dB
Slow channel 4.8 Ms 66 67 -
Differential
Fast channel 5.1 Ms 69 70 -
Slow channel 4.8 Ms 69 70 -
THD(4)
To ta l
harmonic
distortion
Single
ended
Fast channel 5.1 Ms - -80 -80
Slow channel 4.8 Ms - -78 -77
Differential
Fast channel 5.1 Ms - -83 -82
Slow channel 4.8 Ms - -81 -80
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins must be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Data based on characterization results, not tested in production.
4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.
Table 66. ADC accuracy - limited test conditions(1)(2) (continued)
Symbol Parameter Conditions Min.
(3) Typ. Max.(3) Unit
Table 67. ADC accuracy (1)(2)(3)
Symbol Parameter Conditions Min.(4) Max.(4) Unit
ET
To ta l
unadjusted
error
ADC clock freq. 72 MHz,
Sampling freq. 5 Msps
2.0 V VDDA 3.6 V
Single
ended
Fast channel 5.1 Ms - ±6.5
LSB
Slow channel 4.8 Ms - ±6.5
Differential Fast channel 5.1 Ms - ±4
Slow channel 4.8 Ms - ±4.5
EO Offset error
Single
ended
Fast channel 5.1 Ms - ±3
Slow channel 4.8 Ms - ±3
Differential Fast channel 5.1 Ms - ±2.5
Slow channel 4.8 Ms - ±2.5
EG Gain error
Single
ended
Fast channel 5.1 Ms - ±6
Slow channel 4.8 Ms - ±6
Differential Fast channel 5.1 Ms - ±3.5
Slow channel 4.8 Ms - ±4
ED
Differential
linearity
error
Single
ended
Fast channel 5.1 Ms - ±1.5
Slow channel 4.8 Ms - ±1.5
Differential Fast channel 5.1 Ms - ±1.5
Slow channel 4.8 Ms - ±1.5
DocID025409 Rev 8 93/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
EL
Integral
linearity
error
ADC clock freq. 72 MHz,
Sampling freq. 5 Msps
2.0 V VDDA 3.6 V
Single
ended
Fast channel 5.1 Ms - ±3
LSB
Slow channel 4.8 Ms - ±3.5
Differential Fast channel 5.1 Ms - ±2
Slow channel 4.8 Ms - ±2.5
ENOB
(5)
Effective
number of
bits
Single
ended
Fast channel 5.1 Ms 10.4 -
bits
Slow channel 4.8 Ms 10.4 -
Differential Fast channel 5.1 Ms 10.8 -
Slow channel 4.8 Ms 10.8 -
SINAD
(5)
Signal-to-
noise and
distortion
ratio
Single
ended
Fast channel 5.1 Ms 64 -
dB
Slow channel 4.8 Ms 63 -
Differential Fast channel 5.1 Ms 67 -
Slow channel 4.8 Ms 67 -
SNR(5) Signal-to-
noise ratio
ADC clock freq. 72 MHz,
Sampling freq 5 Msps,
2.0 V VDDA 3.6 V
Single
ended
Fast channel 5.1 Ms 64 -
Slow channel 4.8 Ms 64 -
Differential Fast channel 5.1 Ms 67 -
Slow channel 4.8 Ms 67 -
THD(5)
To ta l
harmonic
distortion
Single
ended
Fast channel 5.1 Ms - -75
Slow channel 4.8 Ms - -75
Differential Fast channel 5.1 Ms - -79
Slow channel 4.8 Ms - -78
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins must be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.
Table 67. ADC accuracy (1)(2)(3) (continued)
Symbol Parameter Conditions Min.(4) Max.(4) Unit
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
94/121 DocID025409 Rev 8
Figure 29. ADC accuracy characteristics
Table 68. ADC accuracy(1)(2) at 1MSPS
Symbol Parameter Test conditions Typ. Max(3) Unit
ET Total unadjusted error
ADC Freq. 72 MHz
Sampling Freq. 1MSPS
2.4 V VDDA = VREF+ 3.6 V
Single-ended mode
Fast channel ±2.5 ±5
LSB
Slow channel ±3.5 ±5
EO Offset error
Fast channel ±1 ±2.5
Slow channel ±1.5 ±2.5
EG Gain error
Fast channel ±2 ±3
Slow channel ±3 ±4
ED Differential linearity error
Fast channel ±0.7 ± 2
Slow channel ±0.7 ±2
EL Integral linearity error
Fast channel ±1 ±3
Slow channel ±1.2 ±3
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins must be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current
within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.14: I/O port characteristics does not affect the ADC
accuracy.
3. Data based on characterization results, not tested in production.
EO
EG
1LSB
IDEAL
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
4095
4094
4093
5
4
3
2
1
0
7
6
123456 7 4093 4094 4095 4096
(1)
(2)
ET
ED
EL
(3)
VDDA
VSSA
VDDA
4096
1LSBIDEAL =
MS34980V1
DocID025409 Rev 8 95/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Figure 30. Typical connection diagram using the ADC
1. Refer to Table 64 for the values of RAIN.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC must be reduced.
General PCB design guidelines
Power supply decoupling must be performed as shown in Figure 11: Power-supply scheme.
The 10 nF capacitor must be ceramic (good quality) and it must be placed as close as
possible to the chip.
6.3.20 DAC electrical specifications
12-bit
converter
Sample and hold ADC
converter
RAIN(1) AINx
VAIN Cparasitic
VDD
VT
0.6 V
VT
0.6 V
IL ± 1 μA
RADC
CADC
MS19881V3
Table 69. DAC characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
VDDA Analog supply voltage - 2.4 - 3.6 V
RLOAD(1) Resistive load
DAC output buffer ON (to VSSA)5
-kΩ
DAC output buffer ON (to VDDA)25
RO(1) Output impedance DAC output buffer OFF - - 15 kΩ
CLOAD(1) Capacitive load DAC output buffer ON - - 50 pF
VDAC_OUT(
1)
Voltage on DAC_OUT
output
Corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VDDA = 3.6 V
and (0x155) and (0xEAB) at VDDA =
2.4 V
0.2 - VDDA – 0.2 V
DAC output buffer OFF
-0.5 - mV
--V
DDA– 1LSB V
IDDA(3)
DAC DC current
consumption in quiescent
mode(2)
With no load, middle code (0x800)
on the input - - 380 µA
With no load, worst code (0xF1C) on
the input. - - 480 µA
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
96/121 DocID025409 Rev 8
DNL(3)
Differential non linearity
Difference between two
consecutive code-1LSB)
Given for a 10-bit input code
DAC1 channel 1 -- ±0.5 LSB
Given for a 12-bit input code
DAC1 channel 1 -- ±2 LSB
Given for a 10-bit input code
DAC1 channel 2 & DAC2 channel 1 ---0.75/+0.25LSB
Given for a 12-bit input code
DAC1 channel 2 & DAC2 channel 1 -- -3/+1LSB
INL(3)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 4095)
Given for a 10-bit input code - - ±1 LSB
Given for a 12-bit input code - - ±4 LSB
Offset(3)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value
= VDDA/2)
---±10mV
Given for a 10-bit input code at
VDDA = 3.6 V -- ±3LSB
Given for a 12-bit input code - - ±12 LSB
Gain
error(3) Gain error Given for a 12-bit input code - - ±0.5 %
tSETTLING(3
)
Settling time (full scale: for
a 12-bit input code
transition between the
lowest and the highest input
codes when DAC_OUT
reaches final value ±1LSB
CLOAD 50 pF, RLOAD 5 kΩ-3 4 µs
Update
rate(3)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to
i+1LSB)
CLOAD 50 pF, RLOAD 5 kΩ-- 1 MS/
s
Iskink Output sink current DAC buffer ON
Output level higher than 0.2 V 100 - - µA
tWAKEUP(3)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
CLOAD 50 pF, RLOAD 5 kΩ-6.5 10 µs
PSRR+ (1)
Power supply rejection ratio
(to VDDA) (static DC
measurement
No RLOAD, CLOAD = 50 pF - –67 –40 dB
1. Guaranteed by design, not tested in production.
2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is
involved.
3. Data based on characterization results, not tested in production.
Table 69. DAC characteristics (continued)
Symbol Parameter Conditions Min. Typ. Max. Unit
DocID025409 Rev 8 97/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
Figure 31. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
6.3.21 Comparator characteristics
RL
CL
Buffered/Non-buffered DAC
DAC_OUTx
Buffer(1)
12-bit
digital to
analog
converter
ai17157V3
Table 70. Comparator characteristics(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
VDDA Analog supply voltage - 2 - 3.6 V
VIN
Comparator input voltage
range -0-V
DDA -
VBG Scaler input voltage - - VREFINIT --
VSC Scaler offset voltage - - ±5 ±10 mV
tS_SC
VREFINT scaler startup time
from power down
First VREFINT scaler activation
after device power on --1
(2) s
Next activations - - 0.2 ms
tSTART Comparator startup time
VDDA < 2.7 V - - 4
µs
VDDA < 2.7 V - - 10
tD
Propagation delay for
200 mV step with 100 mV
overdrive
VDDA 2.7 V - 25 28
ns
VDDA < 2.7 V - 28 30
Propagation delay for full
range step with 100 mV
overdrive
VDDA 2.7 V - 32 35
VDDA < 2.7 V - 35 40
VOFFSET Comparator offset error
VDDA 2.7 V - ±5±10
mV
VDDA < 2.7 V - - ±25
TVOFFSET Total offset variation Full temperature range - - 3 mV
IDD(COMP)
COMP current
consumption - - 400 600 µA
1. Guaranteed by design, not tested in production.
2. For more details and conditions see Figure 32: Maximum VREFINT scaler startup time from power-down.
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
98/121 DocID025409 Rev 8
Figure 32. Maximum VREFINT scaler startup time from power-down
6.3.22 Operational amplifier characteristics
Table 71. Operational amplifier characteristics(1)
Symbol Parameter Condition Min. Typ. Max. Unit
VDDA Analog supply voltage - 2.4 - 3.6 V
CMIR Common mode input range - 0 - VDDA V
VIOFFSET Input offset voltage
Maximum
calibration range
25°C, No Load
on output. --4
mV
All
voltage/Temp. --6
After offset
calibration
25°C, No Load
on output. --1.6
All
voltage/Temp. --3
ΔVIOFFSET Input offset voltage drift - - 5 - µV/°C
ILOAD Drive current - - - 500 µA
IDDOPAMP Consumption No load,
quiescent mode - 690 1450 µA
CMRR Common mode rejection ratio - - 90 - dB
PSRR Power supply rejection ratio DC 73 117 - dB
GBW Bandwidth - - 8.2 - MHz
SR Slew rate - - 4.7 - V/µs
RLOAD Resistive load - 4 - - kΩ
CLOAD Capacitive load - - - 50 pF
DocID025409 Rev 8 99/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
VOHSAT High saturation voltage(2)
Rload = min,
Input at VDDA.VDDA-100 -
mV
Rload = 20K,
Input at VDDA.VDDA-20 -
VOLSAT Low saturation voltage
Rload = min,
input at 0 V - - 100
Rload = 20K,
input at 0 V. --20
ϕm Phase margin - - 62 - °
tOFFTRIM
Offset trim time: during calibration,
minimum time needed between two
steps to have 1 mV accuracy
---2ms
tWAKEUP Wakeup time from OFF state.
CLOAD 50 pf,
RLOAD 4 kΩ,
Follower
configuration
-2.85µs
tS_OPAM_VOUT ADC sampling time when reading the OPAMP output 400 - - ns
PGA gain Non inverting gain value -
-2--
-4--
-8--
-16--
Rnetwork
R2/R1 internal resistance values in
PGA mode (3)
Gain=2 - 5.4/5.4 -
kΩ
Gain=4 - 16.2/5.4 -
Gain=8 - 37.8/5.4 -
Gain=16 - 40.5/2.7 -
PGA gain
error PGA gain error - -1% - 1% -
Ibias OPAMP input bias current - - - ±0.2(4) µA
PGA BW PGA bandwidth for different non
inverting gain
PGA Gain = 2,
Cload = 50pF,
Rload = 4 KΩ
-4-
MHz
PGA Gain = 4,
Cload = 50pF,
Rload = 4 KΩ
-2-
PGA Gain = 8,
Cload = 50pF,
Rload = 4 KΩ
-1-
PGA Gain = 16,
Cload = 50pF,
Rload = 4 KΩ
-0.5-
Table 71. Operational amplifier characteristics(1) (continued)
Symbol Parameter Condition Min. Typ. Max. Unit
Electrical characteristics STM32F334x4 STM32F334x6 STM32F334x8
100/121 DocID025409 Rev 8
Figure 33. OPAMP voltage noise versus frequency
en Voltage noise density
@ 1KHz, Output
loaded with
4 KΩ
- 109 -
@ 10KHz,
Output loaded
with 4 KΩ
-43-
1. Guaranteed by design, not tested in production.
2. The saturation voltage can also be limited by the Iload.
3. R2 is the internal resistance between OPAMP output and OPAMP inverting input.
R1 is the internal resistance between OPAMP inverting input and ground.
The PGA gain =1+R2/R1
4. Mostly TTa I/O leakage, when used in analog mode.
Table 71. Operational amplifier characteristics(1) (continued)
Symbol Parameter Condition Min. Typ. Max. Unit
nV
Hz
-----------
DocID025409 Rev 8 101/121
STM32F334x4 STM32F334x6 STM32F334x8 Electrical characteristics
101
6.3.23 Temperature sensor (TS) characteristics
6.3.24 VBAT monitoring characteristics
Table 72. Temperature sensor (TS) characteristics
Symbol Parameter Min. Typ. Max. Unit
TL(1)
1. Guaranteed by design, not tested in production.
VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C
V25 Voltage at 25 °C 1.34 1.43 1.52 V
tSTART(1) Startup time 4 - 10 µs
TS_temp(1)(2)
2. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the
temperature 2.2 - - µs
Table 73. Temperature sensor (TS) calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3.3 V
0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2
TS ADC raw data acquired at
temperature of 110 °C
VDDA= 3.3 V
0x1FFF F7C2 - 0x1FFF F7C3
Table 74. VBAT monitoring characteristics
Symbol Parameter Min. Typ. Max. Unit
R Resistor bridge for VBAT -50-KΩ
QRatio on V
BAT measurement - 2 - -
Er(1)
1. Guaranteed by design, not tested in production.
Error on Q -1 - +1 %
TS_vbat(1)(2)
2. Shortest sampling time can be determined in the application by multiple iterations.
ADC sampling time when reading the VBAT
1mV accuracy 2.2 - - µs
Package information STM32F334x4 STM32F334x6 STM32F334x8
102/121 DocID025409 Rev 8
7 Package information
7.1 Package mechanical data
To meet the environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID025409 Rev 8 103/121
STM32F334x4 STM32F334x6 STM32F334x8 Package information
117
7.2 LQFP32 package information
LQFP32 is a 32-pin, 7 x 7mm low-profile quad flat package.
Figure 34. LQFP32 package outline
1. Drawing is not to scale.
Table 75. LQFP32 mechanical data
Symbol
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
D
D1
D3
E3
E1
E
18
9
16
17
24
25
32
A1
L1
L
K
A1
A2
A
c
b
GAUGE PLANE
0.25 mm
SEATING
PLANE
C
PIN 1
IDENTIFICATION
ccc C
5V_ME_V2
e
Package information STM32F334x4 STM32F334x6 STM32F334x8
104/121 DocID025409 Rev 8
Figure 35. Recommended footprint for the LQFP32 package
1. Drawing is not to scale.
2. Dimensions are expressed in millimeters.
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.600 - - 0.2205 -
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.600 - - 0.2205 -
e - 0.800 - - 0.0315 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc - - 0.100 - - 0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 75. LQFP32 mechanical data (continued)
Symbol
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
5V_FP_V2
18
9
16
17
24
25
32
9.70
7.30
7.30
1.20
0.30
0.50
1.20
6.10
9.70
0.80
6.10
DocID025409 Rev 8 105/121
STM32F334x4 STM32F334x6 STM32F334x8 Package information
117
Device marking for LQFP32
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 36. LQFP32 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv33098V1
STM32F
334K6T6
Y WW
R
Product Identification
(1)
Revision code
Pin 1
indentifier
Package information STM32F334x4 STM32F334x6 STM32F334x8
106/121 DocID025409 Rev 8
7.3 LQFP48 package information
LQFP48 is a 48-pin, 7 x 7mm low-profile quad flat package.
Figure 37. LQFP48 package outline
1. Drawing is not to scale.
5B_ME_V2
PIN 1
IDENTIFICATION
ccc C
C
D3
0.25 mm
GAUGE PLANE
b
A1
A
A2
c
A1
L1
L
D
D1
E3
E1
E
e
12
1
13
24
25
36
37
48
SEATING
PLANE
K
Table 76. LQFP48 package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 - 5.500 - - 0.2165 -
DocID025409 Rev 8 107/121
STM32F334x4 STM32F334x6 STM32F334x8 Package information
117
Figure 38. Recommended footprint for the LQFP48 package
1. Drawing is not to scale.
2. Dimensions are in millimeters.
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 76. LQFP48 package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
9.70 5.80 7.30
12
24
0.20
7.30
1
37
36
1.20
5.80
9.70
0.30
25
1.20
0.50
ai14911d
1348
Package information STM32F334x4 STM32F334x6 STM32F334x8
108/121 DocID025409 Rev 8
Device marking for LQFP48
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 39. LQFP48 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv33099V1
STM32F
334C6T6
Y WW
R
Product Identification
(1)
Revision code
Pin 1
indentifier
DocID025409 Rev 8 109/121
STM32F334x4 STM32F334x6 STM32F334x8 Package information
117
7.4 LQFP64 package information
LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.
Figure 40. LQFP64 package outline
1. Drawing is not to scale.
5W_ME_V3
A1
A2
A
SEATING PLANE
ccc C
b
C
c
A1
L
L1
K
IDENTIFICATION
PIN 1
D
D1
D3
e
116
17
32
33
48
49
64
E3
E1
E
GAUGE PLANE
0.25 mm
Table 77. LQFP64 package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 11.800 12.000 - - 0.4724 -
D1 9.800 10.000 - - 0.3937 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
e - 0.500 - - 0.0197 -
Package information STM32F334x4 STM32F334x6 STM32F334x8
110/121 DocID025409 Rev 8
Figure 41. Recommended footprint for the LQFP64 package
1. Drawing is not to scale.
2. Dimensions are in millimeters.
θ 3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
N
Number of pins
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 77. LQFP64 package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
48
32
49
64 17
116
1.2
0.3
33
10.3
12.7
10.3
0.5
7.8
12.7
ai14909c
DocID025409 Rev 8 111/121
STM32F334x4 STM32F334x6 STM32F334x8 Package information
117
Device marking for LQFP64
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 42. LQFP64 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MSv33100V1
R
STM32F334
R6T6
Y WW
Engineering Sample marking
(1)
Revision code
Pin 1
indentifier
Package information STM32F334x4 STM32F334x6 STM32F334x8
112/121 DocID025409 Rev 8
7.5 WLCSP49 package information
Figure 43. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,
package outline
1. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
2. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
3. Bump position designation per JESD 95-1, SPP-010.
B01F_WLCSP49_ME_V1
DETAIL A
ROTATED 90
A
G
17
G
F
e1
e
e
D
Ee2
BOTTOM VIEW
A3 A2
FRONT VIEW
TOP VIEW
A1 BALL LOCATION
D
E
SIDE VIEW
A
A2
A1
DETAIL A
bbb Z
aaa
SEATING PLANE
BUMP
A2
DocID025409 Rev 8 113/121
STM32F334x4 STM32F334x6 STM32F334x8 Package information
117
Figure 44. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,
recommended footprint
1. Dimensions are expressed in millimeters.
Table 78. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 0.62 - - 0.0244
A1 - 0.23 - - 0.009 -
A2 - 0.36 - - 0.014 -
A3 - 0.025(2)
2. A3 value is guaranteed by technology design value.
--0.001-
b 0.30 0.33 0.36 0.012 0.013 0.014
D 3.87 3.89 3.91 0.152 0.153 0.154
E 3.72 3.74 3.76 0.146 0.147 0.148
e - 0.50 - - 0.020 -
e1 - 3.00 - - 0.118 -
e2 - 3.00 - - 0.118 -
F - 0.445(3)
3. This value is calculated from over value D and e1.
--0.017-
G - 0.370(4)
4. This value is calculated from over value E and e2.
--0.015-
aaa - - 0.10 - - 0.004
bbb - - 0.10 - - 0.004
ccc - - 0.10 - - 0.004
ddd - - 0.05 - - 0.002
eee - - 0.05 - - 0.002
B01F_WLCSP49_FP_V1
Dpad
Dsm
Package information STM32F334x4 STM32F334x6 STM32F334x8
114/121 DocID025409 Rev 8
Table 79. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,
recommended PCB design rules
Dimension Recommended values
Pitch 0.5 mm
Dpad 0.290 mm
Dsm 0.350 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.310 mm
Stencil thickness 0.100 mm
DocID025409 Rev 8 115/121
STM32F334x4 STM32F334x6 STM32F334x8 Package information
117
Device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 45. WLCSP49 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
Package information STM32F334x4 STM32F334x6 STM32F334x8
116/121 DocID025409 Rev 8
7.6 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/O max),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.6.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available at the www.jedec.org website.
7.6.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Table 81: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and to a specific maximum junction temperature.
As applications do not commonly use the STM32F334x4/6/8 microcontroller at maximum
dissipation, it is useful to calculate the exact power consumption and junction temperature
to determine which temperature range is best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Table 80. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch 45
°C/W
Thermal resistance junction-ambient
LQFP48 - 7 × 7 mm / 0.5 mm pitch 55
Thermal resistance junction-ambient
LQFP32 - 7 × 7 mm / 0.8 mm pitch 60
Thermal resistance junction-ambient
WLCSP49 - 3.89 x 3.74 mm / 0.5 mm pitch 48.3
DocID025409 Rev 8 117/121
STM32F334x4 STM32F334x6 STM32F334x8 Package information
117
Example: high-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
mode at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V = 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW
PDmax = 175 + 272 = 447 mW
Thus: PDmax = 447 mW
Using the values obtained in Table 80: Package thermal characteristics TJmax is calculated
as follows:
For LQFP64, 45 °C/W
TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Table 81: Ordering information scheme).
Ordering information STM32F334x4 STM32F334x6 STM32F334x8
118/121 DocID025409 Rev 8
8 Ordering information
Table 81. Ordering information scheme
Example: STM32 F 334 C 8 T 6 xxx
Device family
STM32 = Arm®-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
334 = STM32F334xx, 2.0 to 3.6 V operating voltage
Pin count
K = 32 pins
C = 48 or 49 pins
R = 64 pins
Flash memory size
4 = 16 Kbytes of Flash memory
6 = 32 Kbytes of Flash memory
8 = 64 Kbytes of Flash memory
Package
T = LQFP
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Options
xxx = programmed parts
TR = tape and reel
DocID025409 Rev 8 119/121
STM32F334x4 STM32F334x6 STM32F334x8 Revision history
120
9 Revision history
Table 82. Document revision history
Date Revision Changes
19-Jun-2014 1 Initial release.
09-Dec-2014 2
Updated:
Table 54: TIMx characteristics
Table 14: STM32F334x6/8 pin definitions
Table 59: ADC characteristics
Table 34: Peripheral current consumption
Table 40: HSI oscillator characteristics
Table 17: HSI oscillator accuracy characterization results for
soldered parts
Table 2: STM32F334x4/6/8 family device features and
peripheral counts
2-Feb-2015 3
Updated:
Figure 1: STM32F334x4/6/8 block diagram
Table 38: HSE oscillator characteristics
Table 43: Flash memory characteristics
Added Figure 15: High-speed external clock source AC timing
diagram
09-Jun-2015 4
Updated:
Title
Section 3.14.1: 217 ps high-resolution timer (HRTIM1)
Section 6.1.6: Power-supply scheme
Table 19: General operating conditions
27-Sep-2016 5
Updated:
Section Table 69.: DAC characteristics, Section Table 64.:
ADC characteristics,Table 53: NRST pin characteristics,
Figure 2: Clock tree, Table 13: STM32F334x4/6/8 pin
definitions, Table 71: Operational amplifier characteristics,
Figure 22: 5V- tolerant (FT and FTf) I/O input characteristics -
CMOS port, Table 23: Embedded internal reference voltage,
Table 39: LSE oscillator characteristics (fLSE = 32.768 kHz)
Added:
Table 35: Wakeup time using USART.
15-May-2017 6
Updated:
Table 2: STM32F334x4/6/8 family device features and
peripheral counts
Table 13: STM32F334x4/6/8 pin definitions
Table 19: General operating conditions
Table 81: Package thermal characteristics
Table 82: Ordering information scheme
Added:
Figure 7: WLCSP49 ballout
Section 7.5: WLCSP49 package information
Revision history STM32F334x4 STM32F334x6 STM32F334x8
120/121 DocID025409 Rev 8
23-Nov--2017 7
Updated:
Footnotes of Table 25: Typical and maximum current
consumption from VDD supply at VDD = 3.6V
Footnotes of Table 26: Typical and maximum current
consumption from the VDDA supply
19-Dec-2017 8 Updated Table 1: Device summary: STM32F334R4 product
not covered by this datasheet
Table 82. Document revision history (continued)
Date Revision Changes
DocID025409 Rev 8 121/121
STM32F334x4 STM32F334x6 STM32F334x8
121
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved