StrongIRFET™
IRF200B211
HEXFET® Power MOSFET
D
S
G
Application
Brushed Motor drive applications
BLDC Motor drive applications
Battery powered circuits
Half-bridge and full-bridge topologies
Synchronous rectifier applications
Resonant mode power supplies
DC/DC and AC/DC converters
DC/AC Inverters
Benefits
Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
Fully Characterized Capacitance and Avalanche SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free*RoHS Compliant, Halogen-Free
VDSS 200V
RDS(on) typ. 135m
max 170m
ID (Silicon Limited) 12A
Fig 1. Typical On-Resistance vs. Gate Voltage Fig 2. Maximum Drain Current vs. Case Temperature
TO-220AB
IRF200B211
S
D
G
G D S
Gate Drain Source
Base part number Package Type Standard Pack Orderable Part Number
Form Quantity
IRF200B211 TO-220 Tube 50 IRF200B211
2 4 6 8 10 12 14 16 18 20
VGS, Gate -to -Source Voltage (V)
100
150
200
250
300
350
400
450
500
RDS(on), Drain-to -Source On Resistance (m)
ID = 7.2A
TJ = 25°C
TJ = 125°C
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
2
4
6
8
10
12
14
ID, Drain Current (A)
1 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 31, 2015
IRF200B211
2 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 31, 2015
Absolute Maximum Rating
Symbol Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 12
A
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 9.0
IDM Pulsed Drain Current  34
PD @TC = 25°C Maximum Power Dissipation 80 W
Linear Derating Factor 0.53 W/°C
VGS Gate-to-Source Voltage ± 20 V
TJ
TSTG
Operating Junction and
Storage Temperature Range -55 to + 175 °C
Soldering Temperature, for 10 seconds (1.6mm from case) 300
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 200 ––– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.21 ––– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– 135 170 m VGS = 10V, ID = 7.2A
VGS(th) Gate Threshold Voltage 3.0 ––– 4.9 V VDS = VGS, ID = 50µA
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 200V, VGS = 0V
––– ––– 250 VDS = 160V,VGS = 0V,TJ =125°C
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V
RG Gate Resistance ––– 2.7 ––– 
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Limited by TJmax, starting TJ = 25°C, L = 3.4mH, RG = 50, IAS = 7.2A, VGS =10V.
I
SD 7.2A, di/dt 1184A/µs, VDD V(BR)DSS, TJ 175°C.
Pulse width 400µs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
R is measured at TJ approximately 90°C.
Limited by TJmax, starting TJ = 25°C, L = 1.0mH, RG = 50, IAS = 11.5A, VGS =10V.
This value determined from sample failure population, starting TJ = 25°C, L= 3.4mH, RG = 50, IAS = 7.2A, VGS =10V.
Avalanche Characteristics
EAS (Thermally limited) Single Pulse Avalanche Energy  88
EAS (Thermally limited) Single Pulse Avalanche Energy  72
IAR Avalanche Current See Fig 15, 16, 23a, 23bA
EAR Repetitive Avalanche Energy mJ
mJ
EAS (tested) Single Pulse Avalanche Energy Tested Value  98
Thermal Resistance
Symbol Parameter Typ. Max. Units
RJC Junction-to-Case  ––– 1.88
°C/W
RCS Case-to-Sink, Flat Greased Surface 0.50 –––
RJA Junction-to-Ambient ––– 62
IRF200B211
3 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 31, 2015
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units Conditions
gfs Forward Transconductance 13 ––– ––– S VDS = 50V, ID = 7.2A
Qg Total Gate Charge ––– 15.3 23 ID = 7.2A
Qgs Gate-to-Source Charge ––– 5.1 ––– VDS = 100V
Qgd Gate-to-Drain Charge ––– 5.6 ––– VGS = 10V
Qsync Total Gate Charge Sync. (Qg– Qgd) ––– 10.2 –––
td(on) Turn-On Delay Time ––– 6.5 –––
ns
VDD = 130V
tr Rise Time ––– 9.5 ––– ID = 7.2A
td(off) Turn-Off Delay Time ––– 11.3 ––– RG= 2.7
tf Fall Time ––– 6.5 ––– VGS = 10V
Ciss Input Capacitance ––– 790 –––
pF
VGS = 0V
Coss Output Capacitance ––– 62 ––– VDS = 50V
Crss Reverse Transfer Capacitance ––– 21 ––– ƒ = 1.0MHz, See Fig.TBD
Coss eff.(ER)
Effective Output Capacitance
(Energy Related) ––– 66 ––– VGS = 0V, VDS = 0V to 160V
Coss eff.(TR) Output Capacitance (Time Related) ––– 83 ––– VGS = 0V, VDS = 0V to 160V
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units Conditions
IS Continuous Source Current ––– ––– 12
A
MOSFET symbol
(Body Diode) showing the
ISM Pulsed Source Current ––– ––– 34 integral reverse
(Body Diode) p-n junction diode.
VSD Diode Forward Voltage ––– 1.3 V TJ = 25°C, IS = 7.2A,VGS = 0V 
dv/dt Peak Diode Recovery dv/dt ––– 32.5 ––– V/ns TJ =175°C,IS = 7.2A,VDS = 200V
trr Reverse Recovery Time ––– 68 –––
ns TJ = 25°C VDD = 100V
––– 83 ––– TJ = 125°C IF = 7.2A,
Qrr Reverse Recovery Charge ––– 195 –––
nC TJ = 25°C di/dt = 100A/µs 
––– 280 ––– TJ = 125°C
IRRM Reverse Recovery Current ––– 4.3 ––– A TJ = 25°C
nC
D
S
G
IRF200B211
4 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 31, 2015
Fig 6. Normalized On-Resistance vs. Temperature
Fig 5. Typical Transfer Characteristics
Fig 4. Typical Output Characteristics
Fig 3. Typical Output Characteristics
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Gate Charge vs.Gate-to-Source Voltage
110 100 1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 4 8 12 16 20 24
QG, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
VGS, Gate-to-Source Voltage (V)
VDS= 160V
VDS= 100V
VDS= 40V
ID = 7.2A
-60 -20 20 60 100 140 180
TJ , Junction Temperature (°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 7.2A
VGS = 10V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
7.0V
6.0V
5.5V
5.25V
BOTTOM 5.0V
60µs PULSE WIDTH
Tj = 25°C
5.0V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 175°C
5.0V
VGS
TOP 15V
10V
7.0V
6.0V
5.5V
5.25V
BOTTOM 5.0V
2345678
VGS, Gate-to-Source Voltage (V)
0.01
0.1
1
10
100
ID, Drain-to-Source Current (A)
IRF200B211
5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 31, 2015
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode Forward Voltage
Fig 13. Typical On– Resistance vs. Drain Current
Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical Coss Stored Energy
010 20 30 40
ID, Drain Current (A)
100
200
300
400
500
600
700
800
RDS(on), Drain-to -Source On Resistance (m)
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS = 10V
-60 -40 -20 020 40 60 80 100120140160180
TJ , Temperature ( °C )
175
200
225
250
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
Id = 1.0mA
1 10 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA LIMITED BY RDS (on)
100µsec
DC
0.2 0.4 0.6 0.8 1.0 1.2
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
0 20 40 60 80 100 120 140 160 180 200
VDS, Drain-to-Source Voltage (V)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Energy (µJ)
IRF200B211
6 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 31, 2015
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 14, 15).
t
av = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
Z
thJC(D, tav) = Transient thermal resistance, see Figures 14)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
I
av = 2T/ [1.3·BV·Zth]
E
AS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
Fig 15. Avalanche Current vs. Pulse Width
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 7.2A
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02
tav (sec)
0.1
1
10
100
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 150°C.
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart = 25°C (Single Pulse)
IRF200B211
7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 31, 2015
Fig 21. Typical Stored Charge vs. dif/dt
Fig 20. Typical Stored Charge vs. dif/dt
Fig 19. Typical Recovery Current vs. dif/dt
Fig 18. Typical Recovery Current vs. dif/dt
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
2.0
3.0
4.0
5.0
6.0
VGS(th), Gate threshold Voltage (V)
ID = 50µA
ID = 100µA
ID = 250µA
ID = 1.0mA
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
0
5
10
15
20
25
IRRM (A)
IF = 4.8A
VR = 100V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
0
5
10
15
20
25
IRRM (A)
IF = 7.2A
VR = 100V
TJ = 25°C
TJ = 125°C
Fig 17. Threshold Voltage vs. Temperature
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
0
100
200
300
400
500
600
700
QRR (nC)
IF = 4.8A
VR = 100V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
0
100
200
300
400
500
600
700
QRR (nC)
IF = 7.2A
VR = 100V
TJ = 25°C
TJ = 125°C
IRF200B211
8 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 31, 2015
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 23a. Unclamped Inductive Test Circuit
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 24a. Switching Time Test Circuit
Fig 25a. Gate Charge Test Circuit
tp
V
(BR)DSS
I
AS
Fig 23b. Unclamped Inductive Waveforms
Fig 24b. Switching Time Waveforms
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 25b. Gate Charge Waveform
VDD
IRF200B211
9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 31, 2015
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IN T E R N A T IO N A L PART NUMBER
R E C T IF IE R
LO T C O D E
ASSEM BLY
LO G O
YEAR 0 = 2000
DATE CODE
W EEK 19
LIN E C
LOT CODE 1789
E X A M P L E : T H IS IS A N IR F 1 0 1 0
N o te : "P " in a s s e m b ly lin e p o s itio n
indicates "Lead - Free"
IN TH E ASSEM BLY LIN E "C "
ASSEM BLED O N W W 19, 2000
TO-220AB packages are not recommended for Surface Mount Application.
IRF200B211
10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 31, 2015
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Applicable version of JEDEC standard at the time of product release.
Qualification Information
Qualification Level
Industrial
(per JEDEC JESD47F) ††
Moisture Sensitivity Level TO-220 N/A
RoHS Compliant Yes
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/