Rev. 1.0 9/10 Copyright © 2010 by Silico n Laboratories Si5326
Si5326
ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER
ATTENUATOR
Features
Applications
Description
The Si5326 is a jitter-attenuating precision clock multiplier for applications
requiring sub 1 ps jitter performance. The Si5326 accepts two input clocks ranging
from 2 kHz to 710 MHz and generates two output clocks ranging from 2 kHz to
945 MHz and select frequencies to 1.4 GHz. The two outputs are divided down
separately from a common source. The Si5326 can also use its crystal oscillator
as a clock source for frequency synthesis. The device provides virtually any
frequency translation combination across this operating range. The Si5326 input
clock frequency and clock multiplication ratio are programmable through an I2C or
SPI interface. The Si5326 is based on Silicon Laboratories' 3rd-generation
DSPLL® technology, which provides frequency synthesis and jitter attenuation in a
highly integrated PLL solution that eliminates the need for external VCXO and
loop filter components. The DSPLL loop bandwidth is digitally programmable,
providing jitter performance optimization at the application level. Operating from a
single 1.8, 2.5, or 3.3 V supply, the Si5326 is ideal for providing clock
multiplication and jitter attenuation in high performance timing applications.
Generates any frequency from 2 kHz
to 945 MHz and select frequencies to
1.4 GHz from an input frequency of
2 kHz to 710 MHz
Ultra-low jitter clock outputs with jitter
generation as low as 0.3 ps rms
(50 kHz–80 MHz)
Integrated loop filter with selectable
loop bandwidth (60 Hz to 8.4 kHz)
Meets OC-192 GR-253-CORE jitter
specifications
Dual clock inputs with manual or
automatically controlled hitless
switching (LVPECL, LVDS, CML,
CMOS)
Dual clock outputs with selectable
signal format
Support for ITU G.709 and custom
FEC ratios (255/238, 255/237,
255/236)
LOL, LOS, FOS alarm outputs
Digitally-controlled output phase
adjustment
I2C or SPI programmable
On-chip voltage regulator for
1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%
operation
Small size: 6 x 6 mm 36-lead QFN
Pb-free, ROHS compliant
SONET/SDH OC-48/OC-192/STM-
16/STM-64 line cards
ITU G.709 and custom FEC line
cards
GbE/10GbE, 1/2/4/8/10G Fibre
Channel line cards
GbE/10GbE Synchronous Ethernet
Optical modules
Wireless basestations
Data converter clocking
xDSL
PDH clock synthesis
Test and measurement
Broadcast video
Ordering Information:
See page 65.
Pin Assignments
1
2
3
2930313233343536
20
21
22
23
24
25
26
27
10 11 12 13 14 15 16 17
4
5
6
7
8
NC
NC
RST
C2B
INT_C1B
GND
VDD
XA
VDD
RATE0
CKIN2+
CKIN2–
NC
RATE1
CKIN1+
CKIN1–
CS_CA
SCL
SDA_SDO
A1
A2_SS
SDI
CKOUT1–
NC
GND
VDD
NC
CKOUT2–
CKOUT2+
CMODE
GND
Pad
A0
INC
9
18
19
28
XB
LOL
DEC
CKOUT1+
Si5326
2 Rev. 1.0
Functional Block Diagram
DSPLL
®
Loss of Signal/
Frequency Offset
Xtal or Refclock
CKOUT2
CKIN1
CKOUT1
CKIN2
÷ N31
÷ N2
÷ N1_LS
÷ N2_LS
Skew Control
Signal Detect
Device Interrupt
VDD (1.8, 2.5, or 3.3 V)
GND
÷ N32
Loss of Lock
Clock Select
I2C/SPI Port
Control
Rate Select
÷ N1_HS
Xtal/Refclock
Hitless Switching
Mux
Si5326
Rev. 1.0 3
TABLE OF CONTENTS
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
3. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4.1. External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.2. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
6. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
7. Pin Descriptions: Si5326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
9. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
10. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
11. Si5326 Device Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Si5326
4 Rev. 1.0
1. Electrical Specifications
Figure 1. Differential Voltage Characteristics
Figure 2. Rise/Fall Time Characteristics
Table 1. Recommended Operating Conditions
Parameter Symbol Test Condition Min Typ Max Unit
Ambient Temperature TA-40 25 85 C
Supply Voltage during
Normal Operation
VDD 3.3 V Nominal 2.97 3.3 3.63 V
2.5 V Nominal 2.25 2.5 2.75 V
1.8 V Nominal 1.71 1.8 1.89 V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.
V
ISE , VOSE
VID,VOD
Differential I/Os
VICM, VOCM
Single-Ended
Peak-to-Peak Voltage
Differential Peak-to-Peak Voltage
SIGNAL +
SIGNAL –
(SIGNAL +) – (SIGNAL –)
V
t
SIGNAL +
SIGNAL –
VID = (SIGNAL+) – (SIGNAL–)
V
ICM , VOCM
tFtR
80%
20%
CKIN, CKOUT
Si5326
Rev. 1.0 5
Table 2. DC Characteristics
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Supply Current1IDD LVPECL Format
622.08 MHz Out
Both CKOUTs Enabled
—251 279 mA
LVPECL Format
622.08 MHz Out
1 CKOUT Enabled
—217 243 mA
CMOS Format
19.44 MHz Out
Both CKOUTs Enabled
—204 234 mA
CMOS Format
19.44 MHz Out
1 CKOUT Enabled
—194 220 mA
Disable Mode 165 mA
CKINn Inp ut Pins 2
Input Common Mode
Voltage (Input Thresh-
old Voltage)
VICM 1.8 V ± 5% 0.9 1.4 V
2.5 V ± 10% 1 1.7 V
3.3 V ± 10% 1.1 1.95 V
Input Resistance CKNRIN Single-ended 20 40 60 k
Single-Ended Input
Voltage Swing
(See Absolute Specs)
VISE fCKIN < 212.5 MHz
See Figure 1.
0.2 VPP
fCKIN > 212.5 MHz
See Figure 1.
0.25 VPP
Differential Input
Voltage Swing
(See Absolute Specs)
VID fCKIN < 212.5 MHz
See Figure 1.
0.2 VPP
fCKIN > 212.5 MHz
See Figure 1.
0.25 VPP
Output Clocks (CKOUTn)3
Common Mode CKOVCM LVPECL 100 load line-
to-line
VDD
1.42
—V
DD –1.25 V
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx
Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
Si5326
6 Rev. 1.0
Differential Output
Swing
CKOVD LVPECL 100 load line-
to-line
1.1 1.9 VPP
Single Ended Output
Swing
CKOVSE LVPECL 100 load line-
to-line
0.5 0.93 VPP
Differential Output
Voltage
CKOVD CML 100 load line-to-
line
350 425 500 mVPP
Common Mode Output
Voltage
CKOVCM CML 100 load line-to-
line
—V
DD-0.36 V
Differential Output
Voltage
CKOVD LVDS
100 load line-to-line
500 700 900 mVPP
Low Swing LVDS
100 load line-to-line
350 425 500 mVPP
Common Mode Output
Voltage
CKOVCM LVDS 100 load line-to-
line
1.125 1.2 1.275 V
Differential Output
Resistance
CKORD CML, LVPECL, LVDS 200
Output Voltage Low CKOVOLLH CMOS 0.4 V
Output Voltage High CKOVOHLH VDD = 1.71 V
CMOS
0.8 x
VDD
——V
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx
Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
Si5326
Rev. 1.0 7
Output Drive Current
(CMOS driving into
CKOVOL for output low
or CKOVOH for output
high. CKOUT+ and
CKOUT– shorted
externally)
CKOIO ICMOS[1:0] =11
VDD =1.8V
—7.5 mA
ICMOS[1:0] =10
VDD =1.8V
—5.5 mA
ICMOS[1:0] =01
VDD =1.8V
—3.5 mA
ICMOS[1:0] =00
VDD =1.8V
—1.75 mA
ICMOS[1:0] =11
VDD =3.3V
—32 mA
ICMOS[1:0] =10
VDD =3.3V
—24 mA
ICMOS[1:0] =01
VDD =3.3V
—16 mA
ICMOS[1:0] =00
VDD =3.3V
—8 mA
2-Level LVCMOS Input Pins
Input Voltage Low VIL VDD =1.71V 0.5 V
VDD =2.25V 0.7 V
VDD =2.97V 0.8 V
Input Voltage High VIH VDD =1.89V 1.4 V
VDD =2.25V 1.8 V
VDD =3.63V 2.5 V
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx
Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
Si5326
8 Rev. 1.0
3-Level Input Pins4
Input Voltage Low VILL 0.15 x VDD V
Input Voltage Mid VIMM 0.45 x
VDD
—0.55xV
DD V
Input Voltage High VIHH 0.85 x
VDD
——V
Input Low Current IILL See Note 4 –20 µA
Input Mid Current IIMM See Note 4 –2 +2 µA
Input High Current IIHH See Note 4 20 µA
LVCMOS Output Pins
Output Voltage Low VOL IO = 2 mA
VDD =1.71V
—— 0.4 V
Output Voltage Low IO = 2 mA
VDD =2.97V
—— 0.4 V
Output Voltage High VOH IO = –2 mA
VDD =1.71V
VDD
0.4
——V
Output Voltage High IO = –2 mA
VDD =2.97V
VDD
0.4
——V
Disabled Leakage
Current
IOZ RSTb = 0 –100 100 µA
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. Current draw is independent of supply voltage
2. No under- or overshoot is allowed.
3. LVPECL outputs require nominal VDD 2.5 V.
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx
Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
Si5326
Rev. 1.0 9
Table 3. Microprocessor Control
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
I2C Bus Lines (SDA, SCL)
Input Voltage Low VILI2C 0.25 x VDD V
Input Voltage High VIHI2C 0.7 x VDD —V
DD V
Input Current III2C VIN = 0.1 x VDD
to 0.9 x VDD
–10 10 µA
Hysteresis of Schmitt
trigger inputs
VHYSI2C VDD = 1.8V 0.1 x VDD —— V
VDD = 2.5 or 3.3 V 0.05 x VDD —— V
Output Voltage Low VOLI2C VDD =1.8V
IO = 3 mA
0.2 x VDD V
VDD = 2.5 or 3.3 V
IO = 3 mA
—— 0.4 V
Si5326
10 Rev. 1.0
SPI Specifications
Duty Cycle, SCLK tDC SCLK = 10 MHz 40 60 %
Cycle Time, SCLK tc100 ns
Rise Time, SCLK tr20–80% 25 ns
Fall Time, SCLK tf20–80% 25 ns
Low Time, SCLK tlsc 20–20% 30 ns
High Time, SCLK thsc 80–80% 30 ns
Delay Time, SCLK Fall
to SDO Active
td1 —— 25 ns
Delay Time, SCLK Fall
to SDO Transition
td2 —— 25 ns
Delay Time, SS Rise
to SDO Tri-state
td3 —— 25 ns
Setup Time, SS to
SCLK Fall
tsu1 25 ns
Hold Time, SS to
SCLK Rise
th1 20 ns
Setup Time, SDI to
SCLK Rise
tsu2 25 ns
Hold Time, SDI to
SCLK Rise
th2 20 ns
Delay Time between
Slave Selects
tcs 25 ns
Table 3. Microprocessor Control (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Si5326
Rev. 1.0 11
Table 4. AC Specifications
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Single-Ended Reference Cloc k Input Pin XA (XB with cap to GND)
Input Resistance XARIN RATE[1:0] = LM, ML, MH,
or HM, ac coupled
—12 k
Input Voltage Swing XAVPP RATE[1:0] = LM, ML, MH,
or HM, ac coupled
0.5 1.2 VPP
Differential Reference Clock Input Pin s (XA/XB)
Input Voltage Swing XA/XBVPP RATE[1:0] = LM, ML, MH,
or HM
0.5 1.2 VPP
,
each.
CKINn Input Pins
Input Frequency CKNF0.002 710 MHz
Input Duty Cycle
(Minimum Pulse
Width)
CKNDC Whichever is smaller
(i.e., the 40% / 60%
limitation applies only
to high frequency
clocks)
40 60 %
2——ns
Input Capacitance CKNCIN —— 3 pF
Input Rise/Fall Time CKNTRF 20–80%
See Figure 2
——11 ns
CKOUTn Output Pins
(See ordering section for speed grade vs frequency limits)
Output Frequency
(Output not config-
ured for CMOS or
Disabled)
CKOFN1 6 0.002 945 MHz
N1 = 5 970 1134 MHz
N1 = 4 1.213 1.4 GHz
Maximum Output
Frequency in CMOS
Format
CKOF 212.5 MHz
Output Rise/Fall
(20–80 %) @
622.08 MHz output
CKOTRF Output not configured for
CMOS or Disabled
See Figure 2
—230350 ps
Output Rise/Fall
(20–80%) @
212.5 MHz output
CKOTRF CMOS Output
VDD =1.71
CLOAD =5 pF
—— 8 ns
Si5326
12 Rev. 1.0
Output Rise/Fall
(20–80%) @
212.5 MHz output
CKOTRF CMOS Output
VDD =2.97
CLOAD =5 pF
—— 2 ns
Output Duty Cycle
Uncertainty @
622.08 MHz
CKODC 100 Load
Line-to-Line
Measured at 50% Point
(Not for CMOS)
——+/-40ps
LVCMOS Input Pins
Minimum Reset Pulse
Width
tRSTMN s
Reset to Microproces-
sor Access Ready
tREADY 10 ms
Input Capacitance Cin —— 3 pF
LVCMOS Output Pins
Rise/Fall Times tRF CLOAD = 20pf
See Figure 2
—25 ns
LOSn Trigger Window LOSTRIG From last CKINn to
Internal detection of LOSn
N3 1
4.5 x N3 TCKIN
Time to Clear LOL
after LOS Cleared
tCLRLOL LOS to LOL
Fold = Fnew
Stable Xa/XB reference
—10ms
Device Skew
Output Clock Skew tSKEW of CKOUTn to of
CKOUT_m, CKOUTn
and CKOUT_m at same
frequency and signal
format
PHASEOFFSET =0
CKOUT_ALWAYS_ON =1
SQ_ICAL =1
——100ps
Phase Change due to
Temperature Variation
tTEMP Max phase changes from
–40 to +85 °C
—300500 ps
Table 4. AC Specifications (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Si5326
Rev. 1.0 13
PLL Performance
(fin=fout = 622.08 MHz; BW=120 Hz; LVPECL)
Lock Time tLOCKMP Start of ICAL to of LOL 35 1200 ms
Output Clock Phase
Change
tP_STEP After clock switch
f3 128 kHz
—200 ps
Closed Loop Jitter
Peaking
JPK —0.050.1 dB
Jitter Tolerance JTOL Jitter Frequency Loop
Bandwidth
5000/BW ns pk-pk
Phase Noise
fout = 622.08 MHz
CKOPN
1 kHz Offset –106 –87 dBc/Hz
10 kHz Offset –121 –100 dBc/Hz
100 kHz Offset –132 –104 dBc/Hz
1 MHz Offset –132 –119 dBc/Hz
Subharmonic Noise SPSUBH Phase Noise @ 100 kHz
Offset
—–8876dBc
Spurious Noise SPSPUR Max spur @ n x F3
(n 1, n x F3 < 100 MHz)
—–9370dBc
Table 4. AC Specifications (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Si5326
14 Rev. 1.0
Table 5. Jitter Generation
Parameter Symbol Test Condition*Min Typ Max GR-253-
Specification Unit
Measurement
Filter DSPLL
BW2
Jitter Gen
OC-192
JGEN 0.02–80 MHz 120 Hz 4.2 6.2 30 psPP
—.27.42 N/A ps
rms
4–80 MHz 120 Hz 3.7 6.4 10 psPP
.14 0.31 N/A psrms
0.05–80 MHz 120 Hz 4.4 6.9 10 psPP
.26 0.41 1.0 ps rms
Jitter Gen
OC-48
JGEN 0.12–20 MHz 120 Hz 3.5 5.4 40.2 psPP
.27 0.41 4.02 ps rms
*Note: Test conditions:
1. fIN = fOUT = 622.08 MHz
2. Clock input: LVPECL
3. Clock output: LVPECL
4. PLL bandwidth: 120 Hz
5. 114.285 MHz 3rd OT crystal used as XA/XB input
6. VDD = 2.5 V
7. TA = 85 °C
Table 6. Thermal Characteristics
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA= –40 to 85 °C)
Parameter Symbol Test Condition Value Unit
Thermal Resistance Junction to Ambient JA Still Air 32 C°/W
Thermal Resistance Junction to Case JC Still Air 14 C°/W
Si5326
Rev. 1.0 15
Table 7. Absolute Limits
Parameter Symbol Test Condition Min Typ Max Unit
DC Supply Voltage VDD –0.5 3.8 V
LVCMOS Input Voltage VDIG –0.3 VDD+0.3 V
CKINn Voltage Level Limits CKNVIN 0—V
DD V
XA/XB Voltage Level Limits XAVIN 0—1.2V
Operating Junction Temperature TJCT –55 150 ºC
Storage Temperature Range TSTG –55 150 ºC
ESD HBM Tolerance
(100 pF, 1.5 k); All pins except
CKIN+/CKIN–
2—kV
ESD MM Tolerance; All pins
except CKIN+/CKIN–
150 V
ESD HBM Tolerance
(100 pF, 1.5 k); CKIN+/CKIN–
750 V
ESD MM Tolerance;
CKIN+/CKIN–
100 V
Latch-up Tolerance JESD78 Compliant
Si5326
16 Rev. 1.0
2. Typical Phase Noise Performance
Figure 3. Typical Phase Noise Plot
Jitter Band Jitter, RMS
SONET_OC48, 12 kHz to 20 MHz 249 fs
SONET_OC192_A, 20 kHz to 80 MHz 274 fs
SONET_OC192_B, 4 MHz to 80 MHz 166 fs
SONET_OC192_C, 50 kHz to 80 MHz 267 fs
Brick Wall_800 Hz to 80 MHz 274 fs
*Note: Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass
(–60 dB/Dec) roll-offs per Telecordia GR-253-CORE.
Si5326
Rev. 1.0 17
3. Typical Application Circuit
Figure 4. Si5326 Typical Application Circuit (I2C Control Mode)
Note: For an example schematic and layout, refer to the Si5325/26-EVB User’s Guide.
Figure 5. Si5326 Typical Application Circuit (SPI Control Mode)
Note: For an example schematic and layout, refer to the Si5325/26-EVB User’s Guide.
GND PAD
Si5326 INT_C1B
C2B
LOL
RST
CKOUT1+
CKOUT1–
VDD
GND
Ferrite
Bead
System
Power
Supply
C1
C2
C3
Serial Data
Serial Clock
Reset
Interrupt/CKIN1 Invalid Indicator
CKIN2 Invalid Indicator
PLL Loss of Lock Indicator
Clock Outputs
CKOUT2+
CKOUT2–
SDA
SCL
I2C Interface
Serial Port Address
A[2:0]
CMODE
Control Mode (L)
100
0.1 µF
0.1 µF
+
100
0.1 µF
0.1 µF
+
C4
0.1 µF
0.1 µF
0.1 µF
1 µF
Clock Select/Clock ActiveCS_CA
1. Assumes differential LVPECL termination (3.3 V) on clock inputs.
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).
3. I2C-required pull-up resistors not shown.
Notes:
XA
XB
Refclk+
Option 2: 0.1 µF
Refclk–
0.1 µF
RATE[1:0]2
Crystal/Ref Clk Rate
VDD
15 k
15 k
XA
XB
Crystal
Option 1:
Input
Clock
Sources*
CKIN2+
CKIN2–
130 130
82 82
VDD = 3.3 V
130 130
82 82
VDD = 3.3 V
CKIN1+
CKIN1–
GND PAD
INC
DEC Output Phase Control
Si5326
RST
CKOUT1+
CKOUT1–
VDD
GND
Ferrite
Bead
System
Power
Supply
C1
C2
C3
Reset
Clock Outputs
CKOUT2+
CKOUT2–
CMODEControl Mode (H)
CKIN2+
CKIN2–
100
0.1 µF
0.1 µF
+
100
0.1 µF
0.1 µF
+
C4
0.1 µF
0.1 µF
0.1 µF
1 µF
CKIN1+
CKIN1–
INT_C1B
C2B
SPI Interface
LOL
Interrupt/CLKIN1 Invalid Indicator
CLKIN2 Invalid Indicator
PLL Loss of Lock Indicator
Serial Data Out
Serial Data In
SDO
SDI
Serial Clock
SCLK
Slave SelectSS
Clock Select/Clock Active
CS_CA
GND PAD
1. Assumes differential LVPECL termination (3.3 V) on clock inputs.
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).
Notes:
Input
Clock
Sources*
130 130
82 82
VDD = 3.3 V
130 130
82 82
VDD = 3.3 V
XA
XB
Refclk+
Option 2: 0.1 µF
Refclk–
0.1 µF
RATE[1:0]2
Crystal/Ref Clk Rate
VDD
15 k
15 k
XA
XB
Crystal
Option 1:
INC
DEC
Output Phase Control
Si5326
18 Rev. 1.0
4. Functional Description
Figure 6. Functional Block Diagram
The Si5326 is a jitter-attenuating precision clock
multiplier for applications requiring sub 1 ps jitter
performance. The Si5326 accepts two input clocks
ranging from 2 kHz to 710 MHz and generates two
output clocks ranging from 2 kHz to 945 MHz and select
frequencies to 1.4 GHz. The Si5326 can also use its
crystal oscillator as a clock source for frequency
synthesis. The device provides virtually any frequency
translation combination across this operating range.
Independent dividers are available for each input clock
and output clock, so the Si5326 can accept input clocks
at different frequencies and it can generate output
clocks at different frequencies. The Si5326 input clock
frequency and clock multiplication ratio are
programmable through an I2C or SPI interface. Silicon
Laboratories offers a PC-based software utility,
DSPLLsim, that can be used to determine the optimum
PLL divider settings for a given input frequency/clock
multiplication ratio combination that minimizes phase
noise and power consumption. This utility can be
downloaded from http://www.silabs.com/timing.
The Si5326 is based on Silicon Laboratories' 3rd-
generation DSPLL® technology, which provides any
frequency synthesis and jitter attenuation in a highly
integrated PLL solution that eliminates the need for
external VCXO and loop filter components. The Si5326
PLL loop bandwidth is digitally programmable and
supports a range from 60 Hz to 8.4 kHz. The DSPLLsim
software utility can be used to calculate valid loop
bandwidth settings for a given input clock
frequency/clock multiplication ratio.
The Si5326 supports hitless switching between the two
synchronous input clocks in compliance with GR-253-
CORE that greatly minimizes the propagation of phase
transients to the clock outputs during an input clock
transition (maximum 200 ps phase change). Manual
and automatic revertive and non-revertive input clock
switching options are available. The Si5326 monitors
both input clocks for loss-of-signal (LOS) and provides a
LOS alarm (INT_C1B and C2B) when it detects missing
pulses on either input clock. The device monitors the
lock status of the PLL. The lock detect algorithm works
by continuously monitoring the phase of the input clock
in relation to the phase of the feedback clock. The
Si5326 also monitors frequency offset alarms (FOS),
which indicate if an input clock is within a specified
frequency band relative to the frequency of a reference
clock. Both Stratum 3/3E and SONET Minimum Clock
(SMC) FOS thresholds are supported.The Si5326
provides a digital hold capability that allows the device
to continue generation of a stable output clock when the
selected input reference is lost. During digital hold, the
DSPLL generates an output frequency based on a
historical average frequency that existed for a fixed
amount of time before the error event occurred,
eliminating the effects of phase and frequency
transients that may occur immediately preceding digital
hold.
DSPLL
®
Loss of Signal/
Frequency Offset
Xtal or Refclock
CKOUT2
CKIN1
CKOUT1
CKIN2
÷ N31
÷ N2
÷ N1_LS
÷ N2_LS
Skew Control
Signal Detect
Device Interrupt
VDD (1.8, 2.5, or 3.3 V)
GND
÷ N32
Loss of Lock
Clock Selec t
I2C/SPI Port
Control
Rate Select
÷ N1_HS
Xtal/Refclock
Hitless Switch ing
Mux
Si5326
Rev. 1.0 19
The Si5326 has two differential clock outputs. The
electrical format of each clock output is independently
programmable to support LVPECL, LVDS, CML, or
CMOS loads. If not required, the second clock output
can be powered down to minimize power consumption.
The phase difference between the selected input clock
and the output clocks is adjustable in 200 ps increments
for system skew control using the CLAT[7:0] register.
Fine phase adjustment is available and is set using the
FLAT register bits. The nominal range and resolution of
the FLAT[14:0] skew adjustment word are: ±110 ps and
3 ps, respectively. In addition, the phase of one output
clock may be adjusted in relation to the phase of the
other output clock. The resolution varies from 800 ps to
2.2 ns depending on the PLL divider settings. See
Tab l e 8 for instructions on ensuring output-to-output
alignment. The input to output skew is not specified.
The DSPLLsim software utility determines the phase
offset resolution for a given input clock/clock
multiplication ratio combination. For system-level
debugging, a bypass mode is available which drives the
output clock directly from the input clock, bypassing the
internal DSPLL. The device is powered by a single 1.8,
2.5, or 3.3 V supply.
4.1. External Reference
An external, high quality clock or a low-cost
114.285 MHz 3rd overtone crystal is used as part of a
fixed-frequency oscillator within the DSPLL. This
external reference is required for the device to perform
jitter attenuation. Silicon Laboratories recommends
using a high quality crystal. Specific recommendations
may be found in the Family Reference Manual.
In digital hold, the DSPLL remains locked and tracks the
external reference. Note that crystals can have
temperature sensitivities.
4.2. Further Documentation
Consult the Silicon Laboratories Si53xx Any Frequency
Precision Clock Family Reference Manual (FRM) for
detailed information about the Si5326 functions.
Additional design support is available from Silicon
Laboratories through your distributor.
Silicon Laboratories has developed a PC-based
software utility called DSPLLsim to simplify device
configuration, including frequency planning and loop
bandwidth selection. The FRM and this utility can be
downloaded from http://www.silabs.com/timing.
Table 8. CKOUT_ALWAYS_ON and SQ_ICAL Truth Table
CKOUT_ALWAYS_ON SQ_ICAL Results
0 0 CKOUT OFF until after the first ICAL
0 1 CKOUT OFF until after the first successful
ICAL (i.e., when LOL is low)
1 0 CKOUT always ON, including during an ICAL
1 1 CKOUT always ON, including during an ICAL.
Use these settings to preserve output-to-output
skew
Si5326
20 Rev. 1.0
5. Register Map
All register bits that are not defined in this map should always be written with the specified Reset Values. The
writing to these bits of values other than the specified Reset Values may result in undefined device behavior.
Registers not listed, such as Register 64, should never be written to.
Register D7 D6 D5 D4 D3 D2 D1 D0
0 FREE_RUN CKOUT_
ALWAYS_
ON
BYPASS_
REG
1 CK_PRIOR2[1:0] CK_PRIOR[1:0]
2 BWSEL_REG[3:0]
3 CKSEL_REG[1:0] DHOLD SQ_ICAL
4 AUTOSEL_REG[1:0] HST_DEL[4:0]
5 ICMOS[1:0]
6 SLEEP SFOUT2_REG[2:0] SFOUT1_REG[2:0]
7FOSREFSEL[2:0]
8 HLOG_2[1:0] HLOG_1[1:0]
9 HIST_AVG[4:0]
10 DSBL2_
REG
DSBL1_
REG
11 PD_CK2 PD_CK1
16 CLAT[7:0]
17 FLAT_VALID FLAT[14:8]
18 FLAT[7:0]
19 FOS_EN FOS_THR[1:0] VALTIME[1:0] LOCK[T2:0]
20 CK2_
BAD_
PIN
CK1_
BAD_
PIN
LOL_PIN INT_PIN
21 INCDEC_
PIN
CK1_ACT-
V_PIN
CKSEL_PIN
22 CK_ACTV_
POL
CK_BAD_
POL
LOL_POL INT_POL
23 LOS2_MSK LOS1_MSK LOSX_MSK
24 FOS2_MSK FOS1_MSK LOL_MSK
25 N1_HS[2:0]
31 NC1_LS[19:16]
32 NC1_LS[15:8]