8-Channel, 24-Bit,
Simultaneous Sampling ADC
Data Sheet
AD7771
Rev. A
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©20172018 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
8-channel, 24-bit simultaneous sampling ADC
Single-ended or true differential inputs
PGA per channel (gains of 1, 2, 4, and 8)
Low dc input current
±4 nA (differential)/±8 nA (single-ended)
Up to 128 kSPS ODR per channel
Programmable ODRs and bandwidth
SRC for coherent sampling
Sampling rate resolution up to 15.2 × 10−6 SPS
Low latency sinc3 and sinc5 filter paths
Adjustable phase synchronization
Internal 2.5 V reference
Two power modes
High resolution mode
Low power mode
Optimizes power dissipation and performance
Low resolution SAR ADC for system and chip diagnostics
Power supply
Bipolar1.65 V) or unipolar (3.3 V) supplies
Digital I/O supply: 1.8 V to 3.6 V
Performance temperature range: 40°C to +105°C
Functional temperature range: 40°C to +125°C
Performance
Combined ac and dc performance
107 dB SNR/dynamic range at 32 kSPS in high resolution
mode (sinc5)
109 dB THD
±8 ppm of FSR INL
±15 µV offset error
±0.1% FS gain error
±10 ppm/°C typical temperature coefficient
APPLICATIONS
Power quality and measurement applications
General-purpose data acquisition
Electroencephalography (EEG)
Industrial process control
GENERAL DESCRIPTION
The AD77711 is an 8-channel, simultaneous sampling analog-to-
digital converter (ADC). Eight full Σ-Δ ADCs are on-chip. The
AD7771 provides an ultralow input current to allow direct sensor
connection. Each input channel has a programmable gain stage
allowing gains of 1, 2, 4, and 8 to map lower amplitude sensor
outputs into the full-scale ADC input range, maximizing the
dynamic range of the signal chain. The AD7771 accepts a VREF
voltage from 1 V up to 3.6 V. The analog inputs accept unipolar
(0 V to VREF) or true bipolar (±VREF/2 V) analog input signals with
3.3 V or ±1.65 V analog supply voltages, respectively. The analog
inputs can be configured to accept true differential or single-ended
signals to match different sensor output configurations.
Each channel contains an ADC modulator and a sinc3/sinc5, low
latency digital filter. A sample rate converter (SRC) is provided to
allow fine resolution control over the AD7771 output data rate
(ODR). This control can be used in applications where the ODR
resolution is required to maintain coherency with 0.01 Hz
changes in the line frequency. The SRC is programmable through
the serial port interface (SPI). The AD7771 implements two
different interfaces: a data output interface and SPI control
interface. The ADC data output interface is dedicated to trans-
mitting the ADC conversion results from the AD7771 to the
processor. The SPI writes to and reads from the AD7771
configuration registers and for the control and reading of data
from the successive approximation register (SAR) ADC. The SPI
can also be configured to output the Σ-Δ conversion data.
The AD7771 includes a 12-bit SAR ADC. This ADC can be used
for AD7771 diagnostics without having to decommission one of
the Σ-Δ ADC channels dedicated to system measurement func-
tions. With the use of an external multiplexer, which can be
controlled through the three general-purpose input/output pins
(GPIOs), and signal conditioning, the SAR ADC can validate
the Σ-Δ ADC measurements in applications where functional
safety is required. In addition, the AD7771 SAR ADC includes
an internal multiplexer to sense internal nodes.
The AD7771 contains a 2.5 V reference and reference buffer. The
reference has a typical temperature coefficient of ±10 ppm/°C.
The AD7771 offers two modes of operation: high resolution
mode and low power mode. High resolution mode provides a
higher dynamic range while consuming 16.6 mW per channel;
low power mode consumes only 5.25 mW per channel at a
reduced dynamic range specification.
The specified operating temperature range is −40°C to +105°C,
although the device is operational up to +125°C.
Note that throughout this data sheet, certain terms are used to
refer to either the multifunction pins or a range of pins. The
multifunction pins, such as DCLK0/SDO, are referred to either
by the entire pin name or by a single function of the pin, for
example, DCLK0, when only that function is relevant. In the
case of ranges of pins, AVSSx refers to the following pins:
AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4.
1 This product is protected by at least U.S. Patent No. 9,432,043.
AD7771 Data Sheet
Rev. A | Page 2 of 99
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 3
Functional Block Diagram .............................................................. 4
Specifications ..................................................................................... 5
DOUTx Timing Characterististics ............................................. 9
SPI Timing Characterististics ................................................... 10
Synchronization Pins and Reset Timing Characteristics ...... 11
SAR ADC Timing Characterististics ....................................... 12
GPIO SRC Update Timing Characterististics......................... 12
Absolute Maximum Ratings .......................................................... 13
Thermal Resistance .................................................................... 13
ESD Caution ................................................................................ 13
Pin Configuration and Function Descriptions ........................... 14
Typical Performance Characteristics ........................................... 17
Terminology .................................................................................... 32
Theory of Operation ...................................................................... 34
Analog Inputs .............................................................................. 34
Transfer Function ....................................................................... 35
Core Signal Chain....................................................................... 36
Capacitive PGA ........................................................................... 36
Internal Reference and Reference Buffers ............................... 36
Integrated LDOs ......................................................................... 37
Clocking and Sampling .............................................................. 37
Digital Reset and Synchronization Pins .................................. 37
Digital Filtering ........................................................................... 38
Shutdown Mode .......................................................................... 38
Controlling the AD7771 ............................................................ 39
Pin Control Mode ....................................................................... 39
SPI Control .................................................................................. 42
Digital SPI .................................................................................... 45
RMS Noise and Resolution............................................................ 48
High Resolution Mode ............................................................... 48
Low Power Mode ........................................................................ 49
Diagnostics and Monitoring ......................................................... 50
Self Diagnostics Error ................................................................ 50
Monitoring Using the AD7771 SAR ADC (SPI Control
Mode) ........................................................................................... 51
Σ-Δ ADC Diagnostics (SPI Control Mode) ............................ 53
Σ-Output Data............................................................................. 54
ADC Conversion OutputHeader and Data ........................ 54
Sample Rate Converter (SRC) (SPI Control Mode) .............. 55
Data Output Interface ................................................................ 57
Calculating the CRC Checksum .............................................. 61
Register Summary .......................................................................... 62
Register Details ............................................................................... 66
Channel 0 Configuration Register ........................................... 66
Channel 1 Configuration Register ........................................... 66
Channel 2 Configuration Register ........................................... 67
Channel 3 Configuration Register ........................................... 67
Channel 4 Configuration Register ........................................... 68
Channel 5 Configuration Register ........................................... 68
Channel 6 Configuration Register ........................................... 69
Channel 7 Configuration Register ........................................... 69
Disable Clocks to ADC Channel Register .............................. 70
Channel 0 Sync Offset Register ................................................ 70
Channel 1 Sync Offset Register ................................................ 70
Channel 2 Sync Offset Register ................................................ 70
Channel 3 Sync Offset Register ................................................ 71
Channel 4 Sync Offset Register ................................................ 71
Channel 5 Sync Offset Register ................................................ 71
Channel 6 Sync Offset Register ................................................ 71
Channel 7 Sync Offset Register ................................................ 71
General User Configuration 1 Register ................................... 72
General User Configuration 2 Register ................................... 73
General User Configuration 3 Register ................................... 74
Data Output Format Register ................................................... 74
Main ADC Meter and Reference Mux Control Register ...... 75
Global Diagnostics Mux Register ............................................. 76
GPIO Configuration Register ................................................... 76
GPIO Data Register.................................................................... 77
Buffer Configuration 1 Register ............................................... 77
Buffer Configuration 2 Register ............................................... 77
Channel 0 Offset Upper Byte Register..................................... 78
Channel 0 Offset Middle Byte Register ................................... 78
Channel 0 Offset Lower Byte Register ..................................... 78
Channel 0 Gain Upper Byte Register ....................................... 78
Channel 0 Gain Middle Byte Register ..................................... 78
Channel 0 Gain Lower Byte Register ....................................... 79
Data Sheet AD7771
Rev. A | Page 3 of 99
Channel 1 Offset Upper Byte Register ..................................... 79
Channel 1 Offset Middle Byte Register .................................... 79
Channel 1 Offset Lower Byte Register ..................................... 79
Channel 1 Gain Upper Byte Register........................................ 79
Channel 1 Gain Middle Byte Register ...................................... 80
Channel 1 Gain Lower Byte Register ........................................ 80
Channel 2 Offset Upper Byte Register ..................................... 80
Channel 2 Offset Middle Byte Register .................................... 80
Channel 2 Offset Lower Byte Register ..................................... 80
Channel 2 Gain Upper Byte Register........................................ 81
Channel 2 Gain Middle Byte Register ...................................... 81
Channel 2 Gain Lower Byte Register ........................................ 81
Channel 3 Offset Upper Byte Register ..................................... 81
Channel 3 Offset Middle Byte Register .................................... 81
Channel 3 Offset Lower Byte Register ..................................... 82
Channel 3 Gain Upper Byte Register........................................ 82
Channel 3 Gain Middle Byte Register ...................................... 82
Channel 3 Gain Lower Byte Register ........................................ 82
Channel 4 Offset Upper Byte Register ..................................... 82
Channel 4 Offset Middle Byte Register .................................... 83
Channel 4 Offset Lower Byte Register ..................................... 83
Channel 4 Gain Upper Byte Register........................................ 83
Channel 4 Gain Middle Byte Register ...................................... 83
Channel 4 Gain Lower Byte Register ........................................ 83
Channel 5 Offset Upper Byte Register ..................................... 84
Channel 5 Offset Middle Byte Register .................................... 84
Channel 5 Offset Lower Byte Register ..................................... 84
Channel 5 Gain Upper Byte Register........................................ 84
Channel 5 Gain Middle Byte Register ...................................... 84
Channel 5 Gain Lower Byte Register ........................................ 85
Channel 6 Offset Upper Byte Register ..................................... 85
Channel 6 Offset Middle Byte Register .................................... 85
Channel 6 Offset Lower Byte Register ..................................... 85
Channel 6 Gain Upper Byte Register........................................ 85
Channel 6 Gain Middle Byte Register ...................................... 86
Channel 6 Gain Lower Byte Register ....................................... 86
Channel 7 Offset Upper Byte Register ..................................... 86
Channel 7 Offset Middle Byte Register .................................... 86
Channel 7 Offset Lower Byte Register ..................................... 86
Channel 7 Gain Upper Byte Register ....................................... 87
Channel 7 Gain Middle Byte Register ...................................... 87
Channel 7 Gain Lower Byte Register ....................................... 87
Channel 0 Status Register .......................................................... 87
Channel 1 Status Register .......................................................... 88
Channel 2 Status Register .......................................................... 88
Channel 3 Status Register .......................................................... 89
Channel 4 Status Register .......................................................... 89
Channel 5 Status Register .......................................................... 90
Channel 6 Status Register .......................................................... 90
Channel 7 Status Register .......................................................... 91
Channel 0/Channel 1 DSP Errors Register.............................. 91
Channel 2/Channel 3 DSP Errors Register.............................. 92
Channel 4/Channel 5 DSP Errors Register.............................. 92
Channel 6/Channel 7 DSP Errors Register.............................. 93
Channel 0 to Channel 7 Error Register Enable Register ....... 93
General Errors Register 1 ........................................................... 94
General Errors Register 1 Enable .............................................. 94
General Errors Register 2 ........................................................... 95
General Errors Register 2 Enable .............................................. 95
Error Status Register 1 ................................................................ 96
Error Status Register 2 ................................................................ 96
Error Status Register 3 ................................................................ 97
Decimation Rate (N) MSB Register ......................................... 97
Decimation Rate (N) LSB Register ........................................... 97
Decimation Rate (IF) MSB Register ......................................... 97
Decimation Rate (IF) LSB Register .......................................... 98
SRC Load Source and Load Update Register .......................... 98
Outline Dimensions ........................................................................ 99
Ordering Guide ........................................................................... 99
REVISION HISTORY
6/2018Rev. 0 to Rev. A
Changes to IAVDD2x Parameter, Table 1 ............................................. 8
Changes to AUXAIN± Parameter, Table 7 .................................. 13
Changes to Table 13 ........................................................................ 39
Changes to Phase Adjustment Section ......................................... 42
Added Table 17; Renumbered Sequentially ................................. 43
Added Figure 121; Renumbered Sequentially ............................. 47
Changes to Figure 132 Caption and Figure 133 Caption ........... 57
Updated Outline Dimensions........................................................ 99
Changes to Ordering Guide ........................................................... 99
6/2017Revision 0: Initial Version
AD7771 Data Sheet
Rev. A | Page 4 of 99
FUNCTIONAL BLOCK DIAGRAM
AVDD1x REF_OUT REFx+
VCM
AVDD2x
AVSSx AVDD4 CONVST_SAR
IOVDDAREGxCAP DREGCAP
CLOCK
MANAGER
XTAL1
XTAL2/MCLK
SYNC_IN
SYNC_OUT
START
REFx–
DCLK
DRDY
DOUT3
DOUT2
DOUT1
DOUT0
FORMAT1
FORMAT0
MODE3/ALERT
MODE2/GPIO2
MODE1/GPIO1
MODE0/GPIO0
ALERT/CS
DCLK2/SCLK
DCLK1/SDI
DCLK0/SDO
RESET
Σ-Δ ADC
AIN0+
AIN0– 280mV p-p
Σ-Δ ADC
REFERENCES
EXT_REF
INT_REF
AIN1+
AIN1–
Σ-Δ ADC
REFERENCES
AIN2+
AIN2–
Σ-Δ ADC
REFERENCES
AIN3+
AIN3–
Σ-Δ ADC
REFERENCES
AIN4+
AIN4–
Σ-Δ ADC
REFERENCES
AIN5+
AIN5–
REFERENCES
AIN6+
AIN6–
REFERENCES
DIAGNOSTIC
INPUTS
AIN7+
AIN7–
SINC3/
SINC5
SRC
FILTER
GAIN
OFFSET
COMMON-
MODE
VOLTAGE
ANALOG
LDO
2.5V REF
SINC3/
SINC5
SRC
FILTER
GAIN
OFFSET
SINC3/
SINC5
SRC
FILTER
GAIN
OFFSET
SINC3/
SINC5
SRC
FILTER
GAIN
OFFSET
SINC3/
SINC5
SRC
FILTER
GAIN
OFFSET
SINC3/
SINC5
SRC
FILTER
GAIN
OFFSET
SINC3/
SINC5
SRC
FILTER
GAIN
OFFSET
SINC3/
SINC5
SRC
FILTER
GAIN
OFFSET
Σ-Δ ADC
Σ-Δ ADC
AUXAIN+
AUXAIN–
DATA OUTPUT
INTERFACE
REGISTER MAP
AND
LOGIC CONTROL
HARDWARE
MODE
CONFIGURATION
SPI INTERFACE
AD7771
SAR ADC
DIGITAL
LDO
PGA
PGA
PGA
PGA
PGA
PGA
PGA
PGA
13802-001
Figure 1.
Data Sheet AD7771
Rev. A | Page 5 of 99
SPECIFICATIONS
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AV S S x = analog ground (AGND) (single-supply operation),
AVDD2x − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V AVSSx (internal/external), master clock
(MCLK) = 8192 kHz for high resolution mode and 4096 kHz for low power mode, ODR = 128 kSPS for high resolution mode and 32 kSPS
for low power mode; all specifications at TMIN to TMAX, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
ANALOG INPUTS
Differential Input Voltage Range VREF = (REFx+ − REFx−) ±VREF/PGAGAIN V
Single-Ended Input Voltage Range 0 to VREF/PGAGAIN V
AINx± Common-Mode Input Range AVSSx + 0.10 (AVDD1x +
AVSSx)/2
AVDD1x 0.10 V
Absolute AINx± Voltage Limits AVSSx + 0.10 AVDD1x 0.10 V
DC Input Current
Differential High resolution mode ±4 nA
Low power mode ±1 nA
Single-Ended High resolution mode ±8 nA
Low power mode ±2 nA
Input Current Drift 50 pA/°C
AC Input Capacitance 8 pF
PROGRAMMABLE GAIN AMPLIFIER (PGA)
Gain Settings (PGAGAIN) 1, 2, 4, or 8
Bandwidth
Small Signal High resolution mode 2 MHz
Low power mode
512
kHz
Large Signal High resolution mode See Figure 39, Figure 40, and Figure 44
Low power mode See Figure 42, Figure 43, and Figure 47
REFERENCE
Internal
Initial Accuracy REF_OUT, TA = 25°C 2.495 2.5 2.505 V
Temperature Coefficient ±10 ±38 ppm/°C
Reference Load Current, IL −10 +10 mA
DC Power Supply Rejection Line regulation 95 dB
Load Regulation, ∆V
OUT
/∆I
L
µV/mA
Voltage Noise, eN p-p 0.1 Hz to 10 Hz 6.8 µV rms
Voltage Noise Density, eN 1 kHz, 2.5 V reference 273.5 nV/√Hz
Turn On Settling Time 100 nF 1.5 ms
External
Input Voltage
V
REF
= (REFx+ − REFx−)
1
AVDD1x
V
Buffer Headroom AVSSx + 0.1 AVDD1x − 0.1 V
REFx− Input Voltage AVSSx AVDD1x REFx+ V
Average REFx± Input Current Current per channel
Reference buffer disabled,
high resolution mode
18 µA/V
Reference buffer precharge mode
(pre-Q), high resolution mode
600 nA/V
Reference buffer disabled,
low power mode
4.5 µA/V
Reference buffer pre-Q,
low power mode
100 nA/V
Reference buffer enabled,
high resolution mode
12 nA/V
Reference buffer enabled,
low power mode
5 nA/V
AD7771 Data Sheet
Rev. A | Page 6 of 99
Parameter Test Conditions/Comments Min Typ Max Unit
TEMPERATURE RANGE
Specified Performance TMIN to TMAX −40 +105 °C
Functional2 TMIN to TMAX −40 +125 °C
TEMPERATURE SENSOR
Accuracy ±2 °C
DIGITAL FILTER RESPONSE
Group Delay See the SRC Group Delay section
Settling Time See the Settling Time section
Pass Band −0.1 dB See the SRC Bandwidth section
−3 dB See the SRC Bandwidth section
Decimation Rate
Sinc3 16 4095.99
Sinc5 16 2048
CLOCK SOURCE
Frequency High resolution mode 0.655 8.192 MHz
Low power mode 1.3 4.096 MHz
Duty Cycle 45:55 50:50 55:45 %
Σ-Δ ADC
Speed and Performance
Resolution 24 Bits
ODR High resolution mode 128 kSPS
Low power mode
32
kSPS
No Missing Codes Sinc3, up to 24 kSPS 24 Bits
Sinc5 24 Bits
AC Accuracy
Dynamic Range Shorted inputs, PGAGAIN = 1
128 kSPS High resolution mode (sinc5) 95 dB
32 kSPS High resolution mode (sinc5) 107 dB
16 kSPS High resolution mode (sinc3) 105.9 dB
4 kSPS High resolution mode (sinc3) 116 dB
32 kSPS Low power mode (sinc5) 94.5 dB
8 kSPS Low power mode (sinc5) 106.5 dB
8 kSPS Low power mode (sinc3) 95.8 dB
2 kSPS Low power mode (sinc3) 111.8 dB
Total Harmonic Distortion (THD) −0.5 dBFS, high resolution mode −109 dB
−0.5 dBFS, low power mode −105 dB
Signal-to-Noise-and-Distortion Ratio
(SINAD)
fIN = 60 Hz 106 dB
Spurious-Free Dynamic Range
(SFDR)
High resolution mode, 16 kSPS,
PGAGAIN = 1
132 dB
Intermodulation Distortion (IMD) fA = 50 Hz, fB = 51 Hz,
high resolution mode
−125 dB
fA = 50 Hz, fB = 51 Hz,
low power mode
−105 dB
DC Power Supply Rejection AVDD1x = 3.3 V −90 dB
DC Common-Mode Rejection Ratio 80 dB
Crosstalk 120 dB
DC ACCURACY
Integral Nonlinearity (INL) Endpoint method
High Resolution PGAGAIN = 1 ±8 ±15 ppm of
FSR
Other PGA gains ±4 ±15 ppm of
FSR
Data Sheet AD7771
Rev. A | Page 7 of 99
Parameter Test Conditions/Comments Min Typ Max Unit
Low Power PGAGAIN = 1 ±9 ±17 ppm of
FSR
Other PGA gains ±6 ±15 ppm of
FSR
Offset Error
±90
µV
Offset Error Drift 0.25 µV/°C
Over time −2 µV/1000
hours
Offset Matching 25 µV
Gain Error ±0.1 % FS
Gain Error Drift vs. Temperature PGAGAIN = 1 ±0.75 ppm/°C
Gain Matching ±0.1 %
SAR ADC
Speed and Performance
Resolution 12 Bits
Analog Input Range AVSS4 + 0.1 AVDD4 − 0.1 V
Analog Input Common-Mode Range AVSS4 + 0.1 (AVDD4 +
AVSS4)/2
AVDD4 − 0.1 V
Analog Input Current ±100 nA
Throughput 256 kSPS
DC Accuracy Differential mode
INL ±1.5 LSB
Differential Nonlinearity (DNL) No missing codes (12-bit) −0.99 1 LSB
Offset ±1 LSB
Gain
LSB
AC Performance
Signal-to-Noise Ratio (SNR) 1 kHz 66 dB
THD 1 kHz −81 dB
VCM PIN
Output (VCM) (AVDD1x +
AVSSx)/2
V
Load Current, IL 1 mA
Load Regulation, ∆V
OUT
/∆I
L
mV/mA
Short-Circuit Current 5 mA
LOGIC INPUTS
Input Voltage
High, VIH 0.7 × IOVDD V
Low, VIL 0.4 V
Hysteresis 0.1 V
Input Currents −10 +10 µA
LOGIC OUTPUTS3
Output Voltage
High, VOH IOVDD ≥ 3 V, ISOURCE = 1 mA 0.8 × IOVDD V
2.3 V ≤ IOVDD < 3 V,
ISOURCE = 500 µA
0.8 × IOVDD V
IOVDD < 2.3 V, ISOURCE = 200 µA 0.8 × IOVDD V
Low, VOL IOVDD ≥ 3 V, ISINK = 2 mA 0.4 V
2.3 V ≤ IOVDD < 3 V, ISINK = 1 mA 0.4 V
IOVDD < 2.3 V, ISINK = 100 µA 0.4 V
Leakage Current Floating state −10 +10 µA
Output Capacitance Floating state 10 pF
Σ-Δ ADC Data Output Coding Twos complement
SAR ADC Data Output Coding Binary
AD7771 Data Sheet
Rev. A | Page 8 of 99
Parameter Test Conditions/Comments Min Typ Max Unit
POWER SUPPLIES All Σ-Δ channels enabled
AVDD1x − AVSSx 3.0 3.6 V
IAVDD1x4, 5 Reference buffer pre-Q, VCM
enabled, internal reference
enabled
High resolution mode 18.3 23.7 mA
Low power mode 5 6.4 mA
Reference buffer enabled, VCM
enabled, internal reference
enabled
High resolution mode
26.7
mA
Low power mode 5.5 7.1 mA
Reference buffer disabled, VCM
disabled, internal reference
disabled
High resolution mode 14.3 18.8 mA
Low power mode 3.9 5.1 mA
AVDD2x − AVSSx 2.2 3.6 V
IAVDD2x High resolution mode 9 9.45 mA
Low power mode 3.5 3.7 mA
AVDD4 − AVSSx
3
3.6
V
IAVDD4 SAR enabled 1.7 2 mA
SAR disabled 1 10 µA
AVSSx − DGND −1.8 0 V
IOVDD − DGND 1.8 3.6 V
IIOVDD High resolution mode (sinc5) 14.3 17 mA
Low power mode (sinc5) 4.6 5.5 mA
High resolution mode (sinc3) 12.2 14.2 mA
Low power mode (sinc3) 2.2 4.9 mA
Power Dissipation6 Internal buffers bypassed, internal
reference disabled, internal
oscillator disabled, SAR disabled
High Resolution Mode 128 kSPS 133 153 mW
Low Power Mode 32 kSPS 42 48.5 mW
Power-Down All ADCs disabled 530 µW
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVDD3, and AVSS4. This term is used throughout the data sheet.
2 At temperatures higher than 105°C, the device can be operated normally, though slight degradation on the maximum/minimum specifications is expected because
these specifications are only guaranteed up to 105°C. See the Typical Performance Characteristics section for plots showing the typical performance of the device at
high temperatures.
3 The SDO pin and the DOUTx pin are configured in the default mode of strength.
4 AVDD1x = 3.3 V, AVSSx = GND = ground, IOVDD = 1.8 V, CMOS clock.
5 Disabling either the VCM pin or the internal reference results in a 40 µA typical current consumption reduction.
6 Power dissipation is calculated using the maximum supply voltage, 3.6 V.
Data Sheet AD7771
Rev. A | Page 9 of 99
DOUTx TIMING CHARACTERISTISTICS
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND (single-supply operation), AVDD2 −
AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V internal/external, MCLK = 8192 kHz; all
specifications at TMIN to TMAX, unless otherwise noted.
Table 2.
Parameter Description2 Test Conditions/Comments Min Typ Max Unit
t1 MCLK frequency 50:50 0.655 8.192 MHz
t2 MCLK low time 60 ns
t3 MCLK high time 60 ns
t4 DCLK high time MCLK/2 121 ns
t5 DCLK low time MCLK/2 121 ns
t6 MCLK falling edge to DCLK rising edge 45 ns
t7 MCLK falling edge to DCLK falling edge 45 ns
t8 DCLK rising edge to DRDY rising edge 2 ns
t9 DCLK rising edge to DRDY falling edge 1 ns
t10 DOUTx setup time 20 ns
t11 DOUTx hold time 20 ns
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet.
2 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
MCLK
DCLK
DRDY
LSB MSB MSB – 1 LSB + 1 LSBDOUTx
t
2
t
4
t
5
t
6
t
7
t
10
t
11
t
8
t
9
t
1
t
3
13802-002
Figure 2. Data Interface Timing Diagram
AD7771 Data Sheet
Rev. A | Page 10 of 99
SPI TIMING CHARACTERISTISTICS
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX,
unless otherwise noted.
Table 3.
Parameter Description2 Test Conditions/Comments Min Typ Max Unit
t12 SCLK period 50:50 30 MHz
t13 SCLK low time 7 ns
t14 SCLK high time 7 ns
t15 SCLK rising edge to CS falling edge 10 ns
t16 CS falling edge to SCLK rising edge 10 ns
t17 SCLK rising edge to CS rising edge 10 ns
t18 CS rising edge to SCLK rising edge 10 ns
t19 Minimum CS high time 10 ns
t20 SDI setup time 5 ns
t21 SDI hold time 5 ns
t22A CS falling edge to SDO enable (SPI = Mode 0) 30 ns
t22B SCLK falling edge to SDO enable (SPI = Mode 3) 49 ns
t23 SDO setup time 10 ns
t24 SDO hold time 10 ns
t25 CS rising edge to SDO disable 30 ns
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet.
2 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
CS
SCLK
MSB MSB – 1 LSB + 1 LSB
SDI
MSB MSB – 1 LSB + 1 LSBSDO
t15 t16 t13
t14
t20
t22A t21
t24
t23
t22B
t12
t19
t17
t18
t25
13802-003
Figure 3. SPI Control Interface Timing Diagram
Data Sheet AD7771
Rev. A | Page 11 of 99
SYNCHRONIZATION PINS AND RESET TIMING CHARACTERISTICS
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX,
unless otherwise noted.
Table 4.
Parameter Description2 Test Conditions/Comments Min Typ Max Unit
t26 START setup time 10 ns
t27 START hold time MCLK ns
t28 MCLK falling edge to SYNC_OUT falling edge MCLK ns
t29 SYNC_IN setup time 10 ns
t30 SYNC_IN hold time MCLK ns
tINIT_SYNC_IN
SYNC_IN rising edge to first
DRDY 16 kSPS, high resolution mode 145 µs
tINIT_RESET
RESET rising edge to first
DRDY 16 kSPS, high resolution mode 225 µs
t31 RESET hold time 2 × MCLK ns
tPOWER_UP Start time tPOWER_UP is not shown in Figure 4 2 ms
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3, and AVSS4. This term is used throughout the data sheet.
2 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
MCLK
START
SYNC_OUT
SYNC_IN
DRDY
RESET
t
26
t
27
t
28
t
29
t
INIT_SYNC_IN
t
31
t
INIT_RESET
t
30
13802-004
Figure 4. Synchronization Pins and Reset Control Interface Timing Diagram
AD7771 Data Sheet
Rev. A | Page 12 of 99
SAR ADC TIMING CHARACTERISTISTICS
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX,
unless otherwise noted.
Table 5.
Parameter Description2 Min Typ Max Unit
t32 Conversion time 1 3.4 µs
t33 Acquisition time3 500 ns
t34 Delay time 50 ns
t35 Throughput data rate 256 kSPS
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3 and AVSS4. This term is used throughout the data sheet.
2 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
3 Direct mode enabled. If deglitch mode is enabled, add 1.5/MCLK as described in Table 30.
CS
CONVST_SAR
t
33
t
32
t
35
t
34
13802-005
Figure 5. SAR ADC Timing Diagram
GPIO SRC UPDATE TIMING CHARACTERISTISTICS
AVDD1x = 1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V;
IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V (internal/external), MCLK = 8192 kHz; all specifications TMIN to TMAX,
unless otherwise noted.
Table 6.
Parameter Description2 Min Typ Max Unit
t36 GPIO2 setup time 10 ns
t37 GPIO2 hold time—high resolution mode MCLK ns
GPIO2 hold time—low power mode 2 × MCLK ns
t38 MCLK rising edge to GPIO1 rising edge time 20 ns
t39 GPIO0 setup time 5 ns
t40 GPIO0 hold time MCLK ns
1 AVSSx refers to the following pins: AVSS1A, AVSS1B, AVSS2A, AVSS2B, AVSS3 and AVSS4. This term is used throughout the data sheet.
2 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
MCLK
GPIO2
GPIO1
GPIO0
t36
t37
t38
t39
t40
13802-006
Figure 6. GPIOs for SRC Update Timing Diagram
Data Sheet AD7771
Rev. A | Page 13 of 99
ABSOLUTE MAXIMUM RATINGS
Table 7.
Parameter Rating
Any Supply Pin to AVSSx −0.3 V to +3.96 V
AVSSx to DGND
−1.98 V to +0.3 V
AREGxCAP to AVSSx −0.3 V to +1.98 V
DREGCAP to DGND 0.3 V to +1.98 V
IOVDD to DGND −0.3 V to +3.96 V
IOVDD to AVSSx −0.3 V to +5.94 V
AVDD4 to AVSSx −0.3 V to +3.96 V
Analog Input Voltage AVSSx − 0.3 V to AVDD1x + 0.3 V or
3.96 V (whichever is less)
REFx± Input Voltage AVSSx − 0.3 V to AVDD1x + 0.3 V or
3.96 V (whichever is less)
AUXAIN± AVSSx 0.3 V to AVDD4 + 0.3 V or
3.96 V (whichever is less)
Digital Input Voltage to
DGND
DGND − 0.3 V to IOVDD + 0.3 V or
3.96 V (whichever is less)
Digital Output Voltage to
DGND
DGND − 0.3 V to IOVDD + 0.3 V or
3.96 V (whichever is less)
XTAL1 to DGND DGND − 0.3 V to DREGCAP + 0.3 V
or 1.98 V (whichever is less)
AINx±, AUXAIN±, and
Digital Input Current
±10 mA
Operating Temperature
Range
−40°C to +125°C
Junction Temperature,
TJ Maximum
150°C
Storage Temperature Range −65°C to +150°C
Reflow Soldering 260°C
ESD 2 kV
Field Induced Charged
Device Model (FICDM)
500 V
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Close attention to
PCB thermal design is required.
Table 8. Thermal Resistance
Package Type θJA θJB ΨJT ΨJB Unit
CP-64-151
No Thermal Vias 30.43 N/A2 0.13 6.59 °C/W
49 Thermal Vias
22.62
3.17
0.09
3.19
°C/W
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal
test board. See JEDEC JESD51.
2 N/A means not applicable.
ESD CAUTION
AD7771 Data Sheet
Rev. A | Page 14 of 99
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
AD7771
TOP VIEW
(Not to Scale)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
CONVST_SAR
ALERT/CS
DCLK2/SCLK
DCLK1/SDI
DCLK0/SDO
DGND
DREGCAP
IOVDD
DOUT3
DOUT2
DOUT1
DOUT0
DCLK
DRDY
XTAL1
XTAL2/MCLK
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
AUXAIN–
AUXAIN+
AVDD4
AVSS4
AVSS2A
AREG1CAP
AVDD2A
VCM
CLK_SEL
FORMAT0
FORMAT1
AVSS3
AVDD2B
AREG2CAP
AVSS2B
REF_OUT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
AIN0–
AIN0+
AIN1–
AIN1+
AVSS1A
AVDD1A
REF1–
REF1+
AIN2–
AIN2+
AIN3–
AIN3+
MODE0/GPIO0
MODE1/GPIO1
MODE2/GPIO2
MODE3/ALERT
NOTES
1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO AVSSx.
AIN4–
AIN4+
AIN5–
AIN5+
AVSS1B
AVDD1B
REF2–
REF2+
AIN6–
AIN6+
AIN7–
AIN7+
RESET
SYNC_IN
SYNC_OUT
START
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
13802-007
Figure 7. Pin Configuration
Table 9. Pin Function Descriptions
Pin No. Mnemonic Type Direction Description
1
AIN0
Analog input
Input
Analog Input Channel 0, Negative.
2 AIN0+ Analog input Input Analog Input Channel 0, Positive.
3 AIN1− Analog input Input Analog Input Channel 1, Negative.
4 AIN1+ Analog input Input Analog Input Channel 1, Positive.
5 AVSS1A Supply Supply Negative Front-End Analog Supply for Channel 0 to Channel 3, Typical at 1.65 V
(Dual Supply) and AGND (Single Supply). Connect all the AVSSx pins to the
same potential.
6 AVDD1A Supply Supply Positive Front-End Analog Supply for Channel 0 to Channel 3, Typical at
AVSSx + 3.3 V. Connect this pin to AVDD1B.
7 REF1− Reference Input Negative Reference Input 1 for Channel 0 to Channel 3, Typical at AVSSx.
Connect all the REFx− pins to the same potential.
8
REF1+
Reference
Input
Positive Reference Input 1 for Channel 0 to Channel 3, Typical at REF1− + 2.5 V.
9 AIN2− Analog input Input Analog Input Channel 2, Negative.
10 AIN2+ Analog input Input Analog Input Channel 2, Positive.
11 AIN3− Analog input Input Analog Input Channel 3, Negative.
12 AIN3+ Analog input Input Analog Input Channel 3, Positive.
13 MODE0/GPIO0 Digital I/O I/O Mode 0 Input in Pin Control Mode (MODE0). See Table 14 for more details.
Configurable General-Purpose Input/Output 0 in SPI Control Mode (GPIO0).
If not in use, connect this pin to DGND or IOVDD.
14 MODE1/GPIO1 Digital I/O I/O Mode 1 Input in Pin Control Mode (MODE1). See Table 14 for more details.
Configurable General-Purpose Input/Output 1 in SPI Control Mode (GPIO1).
If not in use, connect this pin to DGND or IOVDD.
15 MODE2/GPIO2 Digital I/O I/O Mode 2 Input in Pin Control Mode (MODE2). See Table 14 for more details.
Configurable General-Purpose Input/Output 2 in SPI Control Mode (GPIO2).
If not in use, connect this pin to DGND or IOVDD.
16 MODE3/ALERT Digital I/O I/O Mode 3 Input in Pin Control Mode (MODE3). See Table 14 for more details.
Alert Output in SPI Control Mode (ALERT).
Data Sheet AD7771
Rev. A | Page 15 of 99
Pin No. Mnemonic Type Direction Description
17 CONVST_SAR Digital input Input Σ-Δ Output Interface Selection Pin in Pin Control Mode. See Table 13 for more
details. This pin also functions as the start for the SAR conversion in SPI control
mode.
18 ALERT/CS Digital input Input Alert Output in Pin Control Mode (ALERT).
Chip Select in SPI Control Mode (CS).
19 DCLK2/SCLK Digital input Input Data Clock Frequency Selection Pin 2 in Pin Control Mode (DCLK2). See Table 15
for more details.
SPI Clock in SPI Control Mode (SCLK).
20 DCLK1/SDI Digital input Input Data Clock Frequency Selection Pin 1 in Pin Control Mode (DCLK1). See Table 15
for more details.
SPI Data Input in SPI Control Mode (SDI). Connect this pin to DGND if the
device is configured in pin control mode with the SPI as the data output interface.
21 DCLK0/SDO Digital output Output Data Clock Frequency Selection Pin 0 in Pin Control Mode (DCLK0). See Table 15
for more details.
SPI Data Output in SPI Control Mode (SDO).
22 DGND Supply Supply Digital Ground.
23 DREGCAP Supply Output Digital Low Dropout (LDO) Output. Decouple this pin to DGND with a 1 µF
capacitor.
24 IOVDD Supply Supply Digital Levels Input/Output and Digital LDO (DLDO) Supply from 1.8 V to 3.6 V.
IOVDD must not be lower than DREGCAP.
25 DOUT3 Digital output I/O Data Output Pin 3. If the device is configured in daisy-chain mode, this pin
acts as an input pin. See the Daisy-Chain Mode section for more details.
26 DOUT2 Digital output I/O Data Output Pin 2. If the device is configured in daisy-chain mode, this pin
acts as an input pin. See the Daisy-Chain Mode section for more details.
27 DOUT1 Digital output Output Data Output Pin 1.
28 DOUT0 Digital output Output Data Output Pin 0.
29 DCLK Digital output Output Data Output Clock.
30 DRDY Digital output Output Data Output Ready Pin.
31 XTAL1 Clock Input Crystal 1 Input Connection. If CMOS is used as a clock source, tie this pin to
DGND. See Table 12 for more details.
32 XTAL2/MCLK Clock Input Crystal 2 Input Connection (XTAL2). See Table 12 for more details.
CMOS Clock (MCLK). See Table 12 for more details.
33 START Digital input Input Synchronization Pulse. This pin internally synchronizes an external START
asynchronous pulse with MCLK. The synchronize signal is shifted out by the
SYNC_OUT pin. If not in use, tie this pin to DGND. See the Phase Adjustment
section and the Digital Reset and Synchronization Pins section for more details.
34 SYNC_OUT Digital output Input Synchronization Signal. This pin generates a synchronous pulse generated
and driven by hardware (via the START pin) or by software (GENERAL_USER_
CONFIG_2, Bit 0). If this pin is in use, it must be wired to the SYNC_IN pin.
See the Phase Adjustment section and the Digital Reset and Synchronization
Pins section for more details.
35 SYNC_IN Digital input Input Reset for the Internal Digital Block and Synchronize for Multiple Devices. See
the Digital Reset and Synchronization Pins section for more details.
36
RESET
Digital input
Input
Asynchronous Reset Pin. This pin resets all registers to their default value. It is
recommended to generate a pulse on this pin after the device is powered up
because a slow slew rate in the supplies may generate an incorrect initialization
in the digital block.
37 AIN7+ Analog input Input Analog Input Channel 7, Positive.
38 AIN7− Analog input Input Analog Input Channel 7, Negative.
39 AIN6+ Analog input Input Analog Input Channel 6, Positive.
40 AIN6− Analog input Input Analog Input Channel 6, Negative.
41 REF2+ Reference Input Positive Reference Input 2 for Channel 4 to Channel 7, Typical at REF2− + 2.5 V.
42 REF2− Reference Input Negative Reference Input 2 for Channel 4 to Channel 7, Typical at AVSSx.
Connect all the REFx− pins to the same potential.
43 AVDD1B Supply Supply Positive Front-End Analog Supply for Channel 4 to Channel 7. Connect this pin
to AVDD1A.
AD7771 Data Sheet
Rev. A | Page 16 of 99
Pin No. Mnemonic Type Direction Description
44 AVSS1B Supply Supply Negative Front-End Analog Supply for Channel 4 to Channel 7, Typical at
1.65 V (Dual Supply) or AGND (Single Supply). Connect all the AVSSx pins to
the same potential.
45 AIN5+ Analog input Input Analog Input Channel 5, Positive.
46
AIN5−
Analog input
Input
Analog Input Channel 5, Negative.
47 AIN4+ Analog input Input Analog Input Channel 4, Positive.
48 AIN4− Analog input Input Analog Input Channel 4, Negative.
49 REF_OUT Reference Output 2.5 V Reference Output. Connect a 100 nF capacitor on this pin if using the
internal reference.
50 AVSS2B Supply Supply Negative Analog Supply. Connect all the AVSSx pins together.
51 AREG2CAP Supply Output Analog LDO Output 2. Decouple this pin to AVSS2B with a 1 µF capacitor.
52 AVDD2B Supply Supply Positive Analog Supply. Connect this pin to AVDD2A.
53 AVSS3 Supply Supply Negative Analog Ground. Connect all the AVSSx to the same potential.
54 FORMAT1 Digital input Input Output Data Frame 1. See Table 13 for more details.
55 FORMAT0 Digital input Input Output Data Frame 0. See Table 13 for more details.
56 CLK_SEL Digital input Input Select Clock Source. See Table 12 for more details.
57 VCM Analog output Output Common-Mode Voltage Output, Typical at (AVDD1x + AVSSx)/2.
58 AVDD2A Supply Input Analog Supply from 2.2 V to 3.6 V. AVSS2x must not be lower than AREGxCAP.
Connect this pin to AVDD2B.
59 AREG1CAP Supply Output Analog LDO Output 1. Decouple this pin to AVSSx with a 1 µF capacitor.
60 AVSS2A Supply Input Negative Analog supply. Connect all the AVSSx pins to the same potential.
61 AVSS4 Supply Supply Negative SAR Analog Supply and Reference. Connect all AVSSx pins to the same
potential.
62 AVDD4 Supply Supply Positive SAR Analog Supply and Reference Source.
63 AUXAIN+ Analog input Input Positive SAR Analog Input Channel.
64 AUXAIN− Analog input Input Negative SAR Analog Input Channel.
EPAD Supply Input Exposed Pad. Connect the exposed pad to AVSSx.
Data Sheet AD7771
Rev. A | Page 17 of 99
TYPICAL PERFORMANCE CHARACTERISTICS
10
–10
–8
–6
–4
–2
0
2
4
6
8
INL (ppm)
INPUT VOLTAGE (V)
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
T
A
= 25°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13802-008
Figure 8. INL vs. Input Voltage and Channel at 64 kSPS,
High Resolution Mode
10
8
6
4
2
0
–2
–4
–6
–8
–10
–2.48
2.48
INL (ppm)
INPUT VOLTAGE (V)
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
TA = 25°C
DIFFERENTIAL VIN × GAIN
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
13802-009
Figure 9. INL vs. Input Voltage and PGA Gain at 64 kSPS,
High Resolution Mode
–3 –2 –1 0123
10
8
6
4
2
0
–2
–4
–6
–8
–10
INL (ppm)
INPUT VOLTAGE (V)
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
TA = –40°C
TA = +25°C
TA = +105°C
TA = +125°C
13802-010
Figure 10. INL vs. Input Voltage and Temperature at 64 kSPS,
High Resolution Mode
15
10
5
0
–5
–10
–15
INL (ppm)
–2.48
2.48
INPUT VOLTAGE (V)
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
TA = 25°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
13802-011
Figure 11. INL vs. Input Voltage and Channel at 16 kSPS,
Low Power Mode
10
–10
–8
–6
–4
–2
0
2
4
6
8
INL (ppm)
INPUT VOLTAGE (V)
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
DIFFERENTIAL V
IN
×GAIN
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
13802-012
Figure 12. INL vs. Input Voltage and PGA Gain at 16 kSPS,
Low Power Mode
10
5
–5
0
–10
–15
–3 –2 –1 0123
INL (ppm)
INPUT VOLTAGE (V)
TA = –40°C
TA = +25°C
TA = +105°C
TA = +125°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
13802-013
Figure 13. INL vs. Input Voltage and Temperature at 16 kSPS,
Low Power Mode
AD7771 Data Sheet
Rev. A | Page 18 of 99
20
–20
–10
5
15
0
–15
–5
10
–4 –2 0 2–3 –1 1 3 4
INL (ppm)
INPUT VOLTAGE (V)
TA = 25°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VCM = (AVDD1x + AVSSx) ÷ 2
VREF = 1.0V
VREF = 1.5V
VREF = 2.0V
VREF = 2.5V
VREF = 3.0V
VREF = 3.3V
13802-014
Figure 14. INL vs. Input Voltage and Reference Voltage (VREF)
at 64 kSPS, High Resolution Mode
10
–10
–8
–6
–4
–2
0
2
4
6
8
INL (ppm)
INPUT VOLTAGE (V)
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
T
A
= 25°C
GAIN = 1
DIFFERENTIAL V
IN
×GAIN
V
REF
= 2.5V
V
CM
= 1.95V
V
CM
= 1.65V
V
CM
= 1.35V
13802-015
Figure 15. INL vs. Input Voltage and VCM at 64 kSPS,
High Resolution Mode
8388326
ADC CODE
1000
900
800
700
600
500
400
300
200
100
0
SAMPLE COUNT
8388340
8388354
8388368
8388382
8388396
8388410
8388424
8388438
8388452
8388466
8388480
8388494
8388508
8388522
8388536
8388550
8388564
8388578
8388592
8388606
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
T
A
= 25°C
13802-016
Figure 16. Noise Histogram at 16 kSPS, High Resolution Mode,
Sinc3 Filter Enabled
–4 –3 4
INPUT VOLTAGE (V)
15
10
5
0
–5
–10
–15
INL (ppm)
–2 –1 0 1
23
TA = 25°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VCM = (AVDD1x + AVSSx) ÷ 2
VREF = 2.5V
VREF = 1.0V
VREF = 1.5V
VREF = 2.0V
VREF = 2.5V
VREF = 3.0V
VREF = 3.3V
13802-017
Figure 17. INL vs. Input Voltage and Reference Voltage (VREF)
at 16 kSPS, Low Power Mode
15
10
5
0
–5
–10
–15
INL (ppm)
–2.48
2.48
INPUT VOLTAGE (V)
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
TA = 25°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
VREF = 2.5V
VCM = 1.95V
VCM = 1.65V
VCM = 1.35V
13802-018
Figure 18. INL vs. Input Voltage and VCM at 16 kSPS,
Low Power Mode
8388300
8388604
ADC CODE
1000
900
800
700
600
500
400
300
200
100
0
SAMPLE COUNT
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
T
A
= 25°C
8388316
8388332
8388348
8388364
8388380
8388396
8388412
8388428
8388444
8388460
8388476
8388492
8388508
8388524
8388540
8388556
8388572
8388588
13802-019
Figure 19. Noise Histogram at 4 kSPS, Low Power Mode,
Sinc3 Filter Enabled
Data Sheet AD7771
Rev. A | Page 19 of 99
300
250
200
150
100
50
0
SAMPLE COUNT
ADC CODE
8387690
8387760
8387830
8387900
8387970
8388040
8388110
8388180
8388250
8388320
8388390
8388460
8388530
8388600
8388670
8388740
8388810
8388880
8388950
8389020
8389090
8389160
8389230
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
TA = 25°C
13802-020
Figure 20. Noise Histogram at 64 kSPS, High Resolution Mode,
Sinc5 Filter Enabled
12
0
125
NOISE (µV rms)
TEMPERATURE (°C)
2
4
6
8
10
–40 25 105
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
13802-021
Figure 21. Noise vs. Temperature at 16 kSPS, High Resolution Mode,
Sinc3 Filter Enabled
18
0
NOISE (µV rms)
2
4
6
8
10
12
14
16
125
TEMPERATURE (°C)
–40 25 105
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
13802-022
Figure 22. Noise vs. Temperature at 64 kSPS, High Resolution Mode,
Sinc5 Filter Enabled
300
250
200
150
100
50
0
SAMPLE COUNT
ADC CODE
8387466
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
TA = 25°C
8387554
8387642
8387730
8387818
8387906
8387994
8388082
8388170
8388258
8388346
8388434
8388522
8388610
8388698
8388786
8388874
8388962
8389050
8389138
13802-023
Figure 23. Noise Histogram at 16 kSPS, Low Power Mode,
Sinc5 Filter Enabled
12
0
125
NOISE (µV rms)
TEMPERATURE (°C)
2
4
6
8
10
–40 25 105
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
13802-024
Figure 24. Noise vs. Temperature at 4 kSPS, Low Power Mode,
Sinc3 Filter Enabled
20
0
NOISE (µV rms)
2
4
6
8
10
12
14
16
18
125
TEMPERATURE (°C)
–40 25 105
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
13802-025
Figure 25. Noise vs. Temperature at 16 kSPS, Low Power Mode,
Sinc5 Filter Enabled
AD7771 Data Sheet
Rev. A | Page 20 of 99
1.6
0
8192000
NOISE (µV rms)
CLOCK FREQUENCY (Hz)
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
1.0
1.1
1.2
1.3
1.4
1.5
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
7708400
7224800
6741200
6257600
5774000
5290400
4806800
4323200
3839600
3356000
2872400
2388800
1905200
1421600
938000
454400
13802-026
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
T
A
= 25°C
DECIMATION = 256
Figure 26. Noise vs. Clock Frequency, High Resolution Mode
160
0
140
NOISE (nV/√Hz)
ODR (SPS)
20
40
60
80
100
120
1000 4000 8000 16000
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13802-027
Figure 27. Noise vs. ODR, High Resolution Mode, Sinc3 Filter Enabled
180
0
40
80
120
160
20
60
100
140
NOISE (nV/√Hz)
ODR (SPS)
8000 128000
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
32000 64000
13802-028
Figure 28. Noise vs. ODR, High Resolution Mode, Sinc5 Filter Enabled
1.80
0
4096000
225280
NOISE (µV rms)
CLOCK FREQUENCY (Hz)
2.00
4.00
6.00
8.00
1.00
1.20
1.40
1.60
4015360
3773440
3531520
3249280
3007360
2765440
2523520
2241280
1999360
1757440
1475200
1233280
991360
709120
467200
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13802-029
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
TA = 25°C
DECIMATION = 256
Figure 29. Noise vs. Clock Frequency, Low Power Mode
700
0
NOISE (nV/√Hz)
ODR (SPS)
500 8000
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
2000 4000
100
200
300
400
500
600
13802-030
Figure 30. Noise vs. ODR, Low Power Mode, Sinc3 Filter Enabled
400
0
NOISE (nV/√Hz)
50
100
150
200
250
300
350
ODR (SPS)
1000 32000
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
8000 16000
13802-031
Figure 31. Noise vs. ODR, Low Power Mode, Sinc5 Filter Enabled
Data Sheet AD7771
Rev. A | Page 21 of 99
10
–180
AMPLITUDE (dB)
FREQUENCY (Hz)
0
278.320
555.664
846.680
1125.977
1393.555
1673.828
1954.102
2234.375
2501.953
2769.531
3037.109
3304.687
3572.266
3839.844
4107.422
4388.672
4664.063
4938.477
5211.914
5485.352
5759.766
6033.203
6307.617
6580.078
6851.563
7125.977
7399.414
7672.852
7947.266
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 50Hz
13802-032
Figure 32. FFT Plot, High Resolution Mode at 16 kSPS,
Input Frequency (fIN) = 50 Hz, Sinc3 Filter Enabled
0
63000
FREQUENCY (Hz)
10
–180
AMPLITUDE (dB)
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
2250
4500
6750
9000
11250
13500
15750
18000
20250
22500
24750
27000
29250
31500
33750
36000
38250
40500
42750
45000
47250
49500
51750
54000
56250
58500
60750
TA = 25°C
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
ODR = 128kSPS
INPUT FREQUENCY = 50Hz
13802-033
Figure 33. FFT Plot, High Resolution Mode at 128 kSPS,
Input Frequency (fIN) = 50 Hz, Sinc5 Filter Enabled
0
7861.33
FREQUENCY (Hz)
10
–180
AMPLITUDE (dB)
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 1kHz
341.80
683.59
1025.39
1367.19
1708.98
2050.78
2392.58
2734.38
3076.17
3417.97
3759.77
4101.56
4443.36
4785.16
5126.95
5468.75
5810.55
6152.34
6494.14
6835.94
7177.73
7519.53
13802-034
Figure 34. FFT Plot, High Resolution Mode at 16 kSPS,
Input Frequency (fIN) = 1 kHz, Sinc3 Filter Enabled
0
1982.42
FREQUENCY (Hz)
10
–180
AMPLITUDE (dB)
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 50Hz
68.36
136.72
205.08
273.44
341.80
410.16
478.52
546.88
615.23
683.59
751.95
820.31
888.67
957.03
1025.39
1093.75
1162.11
1230.47
1298.83
1367.19
1435.55
1503.91
1572.27
1640.63
1708.98
1777.34
1845.70
1914.06
13802-035
Figure 35. FFT Plot, Low Power Mode at 4 kSPS,
Input Frequency (fIN) = 50 Hz, Sinc3 Filter Enabled
0
15750.0
FREQUENCY (Hz)
10
–180
AMPLITUDE (dB)
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
ODR = 32kSPS
INPUT FREQUENCY = 50Hz
562.5
1125.0
1687.5
2250.0
2812.5
3375.0
3937.5
4500.0
5062.5
5625.0
6187.5
6750.0
7312.5
7875.0
8437.5
9000.0
9562.5
10125.0
10687.5
11250.0
11812.5
12375.0
12937.5
13500.0
14062.5
14625.0
15187.5
13802-036
Figure 36. FFT Plot, Low Power Mode at 32 kSPS,
Input Frequency (fIN) = 50 Hz, Sinc5 Filter Enabled
0
FREQUENCY (Hz)
10
–180
AMPLITUDE (dB)
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
74.22
148.44
222.66
296.88
371.09
445.31
519.53
593.75
667.97
742.19
816.41
890.63
964.84
1039.06
1113.28
1187.50
1261.72
1335.94
1410.16
1484.38
1558.59
1632.81
1707.03
1781.25
1855.47
1929.69
T
A
= 25°C
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 1kHz
13802-037
Figure 37. FFT Plot, Low Power Mode at 4 kSPS,
Input Frequency (fIN) = 1 kHz, Sinc3 Filter Enabled
AD7771 Data Sheet
Rev. A | Page 22 of 99
0
62968.75
FREQUENCY (Hz)
10
–180
AMPLITUDE (dB)
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
2421.88
4843.75
7265.63
9687.50
12109.38
14531.25
16953.13
19375.00
21796.88
24218.75
26640.63
29062.50
31484.38
33906.25
36328.13
38750.00
41171.88
43593.75
46015.63
48437.50
50859.38
53281.25
55703.13
58125.00
60546.88
TA = 25°C
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
ODR = 128kSPS
INPUT FREQUENCY = 1kHz
0
13802-038
Figure 38. FFT Plot, High Resolution Mode at 128 kSPS,
Input Frequency (fIN) = 1 kHz, Sinc5 Filter Enabled
–100
–105
–110
–115
–120
–125
–130
10.0
THD (dB)
INPUT FREQUENCY (Hz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
89.2
168.4
247.6
326.8
406.0
485.2
564.4
643.6
722.8
802.0
881.2
970.3
2860.0
5340.0
7820.0
10300.0
13090.0
15570.0
18050.0
20530.0
23010.0
25490.0
27970.0
30450.0
TA = 25°C
GAIN = 1
VREF = 2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
VIN = –0.5dBFS
13802-039
Figure 39. THD vs. Input Frequency at 64 kSPS, High Resolution Mode,
Sinc5 Filter Enabled
–100
–135
10.0
3910.0
THD (dB)
INPUT FREQUENCY (Hz)
–130
–125
–120
–115
–110
–105
89.2
168.4
247.6
326.8
406.0
485.2
564.4
643.6
722.8
802.0
881.2
970.3
1180.0
1450.0
1720.0
2050.0
2350.0
2590.0
2890.0
3130.0
3400.0
3670.0
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
TA = 25°C
VREF = 2.5V
VIN = –0.5dBFS
13802-040
Figure 40. THD vs. Input Frequency at 16 kSPS, High Resolution Mode,
Sinc3 Filter Enabled
10
–180
0
AMPLITUDE (dB)
FREQUENCY (Hz)
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
593.75
1187.50
1781.25
2375.00
2968.75
3562.50
4156.25
4750.00
5343.75
5937.50
6531.25
7125.00
7718.75
8312.50
8906.25
9500.00
10093.75
10687.50
11281.25
11875.00
12468.75
13062.50
13656.25
14250.00
14843.75
15437.50
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
ODR = 32kSPS
INPUT FREQUENCY = 1kHz
13802-041
Figure 41. FFT Plot, Low Power Mode at 32 kSPS,
Input Frequency (fIN) = 1 kHz, Sinc5 Filter Enabled
–100
–125
THD (dB)
10.0
INPUT FREQUENCY (Hz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
TA = 25°C
VREF = 2.5V
VIN = –0.5dBFS
–120
–115
–110
–105
89.2
168.4
247.6
326.8
406.0
514.9
604.0
703.0
792.1
881.2
960.4
1280.0
1840.0
2400.0
2960.0
3520.0
4080.0
4710.0
5270.0
5830.0
6460.0
7020.0
7580.0
13802-042
Figure 42. THD vs. Input Frequency at 16 kSPS, Low Power Mode,
Sinc5 Filter Enabled
10.0
–100
–135
THD (dB)
INPUT FREQUENCY (Hz)
–130
–125
–120
–115
–110
–105
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
IN
= –0.5dBFS
49.6
89.2
128.8
168.4
208.0
247.6
287.2
326.8
366.4
406.0
455.5
514.9
554.5
604.0
643.6
703.0
742.6
792.1
841.6
881.2
920.8
960.4
13802-043
Figure 43. THD vs. Input Frequency at 4 kSPS, Low Power Mode,
Sinc3 Filter Enabled
Data Sheet AD7771
Rev. A | Page 23 of 99
–100
–140
0.172
4.644
THD (dB)
INPUT VOLTAGE (V)
–135
–130
–125
–120
–115
–110
–105
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
INPUT FREQUENCY = 50Hz
0.344
0.516
0.688
0.860
1.032
1.204
1.376
1.548
1.720
1.892
2.064
2.236
2.408
2.580
2.752
2.924
3.096
3.268
3.440
3.612
3.784
3.956
4.128
4.300
4.472
13802-044
Figure 44. THD vs. Input Voltage at 64 kSPS, High Resolution Mode
–125
1.0
3.3
REFERENCE VOLTAGE (V)
–90
–120
–105
–95
–110
–115
–100
THD (dB)
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
±V
REF
INPUT FREQUENCY = 50Hz
13802-045
Figure 45. THD vs. Reference Voltage at 64 kSPS, High Resolution Mode
–100
–118
212600
THD (dB)
MCLK FREQUENCY (Hz)
–116
–114
–112
–110
–108
–106
–104
–102
535000
857400
1179800
1502200
1824600
2147000
2469400
2791800
3114200
3436600
3759000
4081400
4403800
4726200
5048600
5371000
5693400
6015800
6338200
6660600
6983000
7305400
7627800
7950200
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
TA = 25°C
VREF = 2.5V
INPUT FREQUENCY = 50Hz
13802-046
Figure 46. THD vs. Master Clock Frequency, High Resolution Mode
–100
–140
0.172
4.644
THD (dB)
INPUT VOLTAGE (V)
–135
–130
–125
–120
–115
–110
–105
0.344
0.516
0.688
0.860
1.032
1.204
1.376
1.548
1.720
1.892
2.064
2.236
2.408
2.580
2.752
2.924
3.096
3.268
3.440
3.612
3.784
3.956
4.128
4.300
4.472
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
TA = 25°C
VREF = 2.5V
INPUT FREQUENCY = 50Hz
13802-047
Figure 47. THD vs. Input Voltage at 16 kSPS, Low Power Mode
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
±V
REF
INPUT FREQUENCY = 50Hz
–125
1.0
3.3
REFERENCE VOLTAGE (V)
–90
–120
–105
–95
–110
–115
–100
THD (dB)
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
13802-048
Figure 48. THD vs. Reference Voltage at 16 kSPS, Low Power Mode
–100
–105
–110
–115
–120
–125
THD (dB)
104320
MCLK FREQUENCY (Hz)
265600
426880
588160
749440
910720
1072000
1233280
1394560
1555840
1717120
1878400
2039680
2200960
2362240
2523520
2684800
2846080
3007360
3168640
3329920
3491200
3652480
3813760
3975040
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
INPUT FREQUENCY = 50Hz
13802-049
Figure 49. THD vs. Master Clock Frequency, Low Power Mode
AD7771 Data Sheet
Rev. A | Page 24 of 99
125
80
1000 16000
SNR (dB)
ODR (SPS)
85
90
95
100
105
110
115
120
4000 8000
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
IN
= 0dBFS
13802-050
Figure 50. SNR vs. ODR at 16 kSPS, High Resolution Mode
(AVDDx = 3.6 V, IOVDD = 3.6 V)
115
80
8000 128000
SNR (dB)
ODR (SPS)
85
90
95
100
105
110
32000 64000
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
IN
= 0dBFS
13802-051
Figure 51. SNR vs. ODR at 64 kSPS, High Resolution Mode
(AVDDx = 3.6 V, IOVDD = 3.6 V)
1248
PGA GAIN
108
96
100
98
102
104
106
DYNAMIC RANGE (dB)
T
A
= 25°C
ODR = 16kSPS
13802-052
Figure 52. Dynamic Range vs. PGA Gain at 16 kSPS,
High Resolution Mode
500 2000 4000 8000
ODR (SPS)
120
80
SNR (dB)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
IN
= 0dBF
S
85
90
95
100
105
110
115
13802-053
Figure 53. SNR vs. ODR at 4 kSPS, Low Power Mode
(AVDDx = 3.6 V, IOVDD = 3.6 V)
1000 8000 16000 32000
SNR (dB)
ODR (SPS)
120
80
85
90
95
100
105
110
115
T
A
= 25°C
V
REF = 2.5V
VIN = 0dBFS
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13802-054
Figure 54. SNR vs. ODR at 16 kSPS, Low Power Mode
(AVDDx = 3.6 V, IOVDD = 3.6 V)
108
94
1 2 4 8
DYNAMIC RANGE (dB)
PGA GAIN
T
A
= 25°C
ODR = 4kSPS
98
100
102
104
106
13802-055
Figure 55. Dynamic Range vs. PGA Gain at 4 kSPS,
Low Power Mode
Data Sheet AD7771
Rev. A | Page 25 of 99
104
82
DYNAMIC RANGE (dB)
1 2 4 8
PGA GAIN
T
A
= 25°C
ODR = 64kSPS
84
86
88
90
92
94
96
98
100
102
13802-056
Figure 56. Dynamic Range vs. PGA Gain at 64 kSPS,
High Resolution Mode
0
–40
1 8
OFFSET ERROR (µV)
T
A
= 25°C
V
REF
= 2.5V
V
IN
= 0V
SUPPLY = AVDD1x = 3.3V
–35
–30
–25
–20
–15
–10
–5
2 4
PGA GAIN
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13802-057
Figure 57. Offset Error vs. PGA Gain at 64 kSPS,
High Resolution Mode
0
–25
–20
–15
–10
–5
3.0 3.3 3.6
OFFSET ERROR (µV)
AVDD1x SUPPLY
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
IN
= 0V
13802-058
Figure 58. Offset Error vs. AVDD1x Supply,
High Resolution Mode
105
80
DYNAMIC RANGE (dB)
T
A
= 25°C
ODR = 16kSPS
85
90
95
100
1248
PGA GAIN
13802-059
Figure 59. Dynamic Range vs. PGA Gain at 16 kSPS,
Low Power Mode
0
–35
–30
–25
–15
–5
–20
10
OFFSET ERROR (µV)
T
A
= 25°C
V
REF
= 2.5V
V
IN
= 0V
SUPPLY = AVDD1x = 3.3V
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
1 82 4
PGA GAIN
13802-060
Figure 60. Offset Error vs. PGA Gain at 16 kSPS,
Low Power Mode
3.0 3.3 3.6
AVDD1x SUPPLY
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
T
A
= 25°C
V
REF
= 2.5V
V
IN
= 0V
0
–25
–20
–15
–10
–5
OFFSET ERROR (µV)
13802-061
Figure 61. Offset Error vs. AVDD1x Supply,
Low Power Mode
AD7771 Data Sheet
Rev. A | Page 26 of 99
–50
40
30
20
10
0
–10
–20
–30
–40
–40 –20 020 40 60 80 100 120
OFFSET DRIFT (µV)
TEMPERATURE (°C)
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
AVDD1x = 3.3V
13802-062
Figure 62. Offset Drift vs. Temperature
–0.043
–0.035
–0.026
–0.017
–0.008
0
0.008
0.017
3.0 3.3 3.6
GAIN ERROR (%)
AVDD1x SUPPLY (V)
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
TEMPERATURE = 25°C
GAIN = 1
VREF = 2.5V
VIN = 0dBFS
13802-063
Figure 63. Gain Error vs. AVDD1x Supply, High Resolution Mode
–40
25 105 125
GAIN ERROR (%)
TEMPERATURE (°C)
AVDD1x = 3.3V
VREF = 2.5V
VIN = 0dBFS
–0.400
–0.035
–0.029
–0.023
–0.017
–0.011
–0.005
0
0.005
0.011
0.017
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13802-064
Figure 64. Gain Error vs. Temperature, High Resolution Mode
–20
–15
–10
–5
0
5
10
15
20
25
30
45
40
35
0500168 1000
GAIN ERROR DRIFT (ppm)
TIME (Hours)
13802-065
Figure 65. Gain Error Drift vs. Time
3.0 3.3 3.6
AVDD1x SUPPLY (V)
TEMPERATURE = 25°C
GAIN = 1
V
REF
= 2.5V
V
IN
= 0dBFS
GAIN ERROR (%)
–0.043
–0.035
–0.026
–0.017
–0.008
0
0.008
0.017
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13802-066
Figure 66. Gain Error vs. AVDD1x Supply, Low Power Mode
–0.400
–0.035
–0.029
–0.023
–0.017
–0.011
–0.005
0
0.005
0.011
0.017
–40 25 105 125
GAIN ERROR (%)
TEMPERATURE (°C)
AVDD1x = 3.3V
V
REF
= 2.5V
V
IN
= 0dBFS
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13802-067
Figure 67. Gain Error vs. Temperature, Low Power Mode
Data Sheet AD7771
Rev. A | Page 27 of 99
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
1248
GAIN ERROR (%)
PGA GAIN
HIGH RESOLUTION
LOW POWER
TEMPERATURE = 25°C
AVDD1x = 3.3V
VREF = 2.5V
VIN = 0dBFS
13802-068
Figure 68. Channel Gain Mismatch
0.008
–0.010
–40 125
TUE AS % OF INPUT
TEMPERATURE (°C)
–0.008
–0.006
–0.004
–0.002
0
0.002
0.004
0.006
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
–30 –20 –10 010 20 30 40 50 60 70 80 90 100 110
VREF = 2.5V
VIN = –0.5dBFS
SUPPLY = AVDD1x = 3.3V
13802-069
Figure 69. Total Unadjusted Error (TUE) (as Percent of Input) vs. Temperature,
High Resolution Mode
3
–5
–3
0
2
–1
–4
–2
1
–2.5 –1.5 –0.5 0.5 1.5–2.0 –1.0 01.0 2.0 2.5
INPUT CURRENT (nA)
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))
V
REF
= 2.5V
SUPPLY = AVDD1x = 3.3V
AINx+, V
CM
= 1.95V
AINx–, V
CM
= 1.95V
AINx+; V
CM
= 1.35V
AINx–, V
CM
= 1.35V
13802-070
Figure 70. Input Current vs. Differential Input Voltage,
High Resolution Mode
–40 25 105 125
REFERENCE VOLTAGE DRIFT (mV)
TEMPERATURE (°C)
–6
4
3
2
1
0
–1
–2
–3
–4
–5
13802-071
Figure 71. Internal Reference Voltage Drift
0.006
–0.008
TUE AS % OF INPUT
–0.006
–0.004
–0.002
0
0.002
0.004
–40 125
TEMPERATURE (°C)
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
–30 –20 –10 010 20 30 40 50 60 70 80 90 100 110
V
REF
= 2.5V
V
IN
= –0.5dBFS
SUPPLY = AVDD1x = 3.3V
13802-072
Figure 72. Total Unadjusted Error (TUE) (as Percent of Input) vs.
Temperature, Low Power Mode
1.0
0.8
–0.8
–0.6
0
0.4
0.6
–0.2
–0.4
0.2
INPUT CURRENT (nA)
–2.5 –1.5 –0.5 0.5 1.5–2.0 –1.0 01.0 2.0 2.5
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))
V
REF
= 2.5V
SUPPLY = AVDD1x = 3.3V
AINx+, V
CM
= 1.95V
AINx–, V
CM
= 1.95V
AINx+; V
CM
= 1.35V
AINx–, V
CM
= 1.35V
13802-073
Figure 73. Input Current vs. Differential Input Voltage,
Low Power Mode
AD7771 Data Sheet
Rev. A | Page 28 of 99
10
5
0
–5
–10
–15
ABSOLUTE INPUT CURRENT (nA)
–60 –40 140120
TEMPERATURE (°C)
–20 020 40 60 80 100
AIN0+
AIN0–
AIN2+
AIN2–
VREF = 2.5V
VIN = 2.5V
SUPPLY = AVDD1x = 3.3V
13802-074
Figure 74. Absolute Input Current vs. Temperature, High Resolution Mode
4
–4
–2
1
3
0
–3
–1
2
DIFFERENTIAL INPUT CURRENT (nA)
–2.5 –1.5 –0.5 0.5 1.5–2.0 –1.0 01.0 2.0 2.5
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))
V
REF
= 2.5V
SUPPLY = AVDD1x = 3.3V
AINx+ – AINx–, V
CM
= 1.95V
AINx+ – AINx–, V
CM
= 1.35V
13802-075
Figure 75. Differential Input Current vs. Differential Input Voltage,
High Resolution Mode
14
12
10
8
6
4
2
0
–60 140
DIFFERENTIAL INPUT CURRENT (nA)
TEMPERATURE (°C)
–40 –20 020 40 60 80 100 120
VREF = 2.5V
VIN = 2.5V
SUPPLY = AVDD1x = 3.3V
13802-076
Figure 76. Differential Input Current vs. Temperature,
High Resolution Mode
6
4
2
0
–2
–4
–6
–8
ABSOLUTE INPUT CURRENT (nA)
–60 –40 140120
TEMPERATURE (°C)
–20 020 40 60 80 100
V
REF
= 2.5V
V
IN
= 2.5V
SUPPLY = AVDD1x = 3.3V
AIN0+
AIN0–
AIN2+
AIN2–
13802-077
Figure 77. Absolute Input Current vs. Temperature, Low Power Mode
1.0
0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8
–1.0
V
REF
= 2.5V
SUPPLY = AVDD1x = 3.3V
AINx+ – AINx–, V
CM = 1.95V
AINx+ – AINx–, VCM = 1.35V
DIFFERENTIAL INPUT CURRENT (nA)
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))
–2.5 –1.5 –0.5 0.5 1.5–2.0 –1.0 01.0 2.0 2.5
13802-078
Figure 78. Differential Input Current vs. Differential Input Voltage,
Low Power Mode
12
10
8
6
4
2
0
–40 140120
TEMPERATURE (°C)
DIFFERENTIAL INPUT CURRENT (nA)
–20 020 40 60 80 100
VREF = 2.5V
VIN = 2.5V
SUPPLY = AVDD1x = 3.3V
13802-079
Figure 79. Differential Input Current vs. Temperature,
Low Power Mode
Data Sheet AD7771
Rev. A | Page 29 of 99
0
–140
250.608317
CMRR (dB)
INPUT FREQUENCY (Hz)
–120
–100
–80
–60
–40
–20
11022.185
21793.762
32961.353
43732.93
54504.507
65751.301
76522.878
87294.455
98620.451
109392.029
120163.606
131331.196
142102.773
152874.35
164041.941
174813.518
185585.095
196752.686
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
CM
= 1.65V + 100mV p-p
SUPPLY = AVDD1x = 3.3V + 100mV p-p
13802-080
Figure 80. CMRR vs. Input Frequency at 128 kSPS, High Resolution Mode
0
–160
20014.97
AC PSR (dB)
INPUT FREQUENCY(Hz)
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
460014.31
880013.68
1340013.00
1740012.00
2220012.00
2640011.00
3040010.00
3480010.00
3900009.00
4520008.00
4920008.00
5360007.00
5780006.00
6200006.00
6620005.00
7020004.00
7440004.00
7860003.00
8360002.00
8780002.00
9200001.00
9620001.00
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
TA = 25°C
SUPPLY = AVDD1x = 3.3V+100mVpp
13802-081
Figure 81. AC PSRR vs. Input Frequency at 128 kSPS, High Resolution
Mode
10
–120
ATTENUATION (dB)
25
FREQUENCY (Hz)
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
5144
10263
15382
20501
25620
30739
35858
40977
46096
51215
56334
61453
66572
71691
76810
81929
87048
92167
97286
102405
107524
112643
117762
122881
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13802-082
Figure 82. Filter Profiles at 64 kSPS, High Resolution Mode
0
–140
171.09249
CMRR (dB)
INPUT FREQUENCY (Hz)
–120
–100
–80
–60
–40
–20
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
CM
= 1.65V + 100mV p-p
SUPPLY = AVDD1x = 3.3V + 100mV p-p
10921.382
21829.764
32738.145
43804.62
54554.909
65463.291
76371.673
87438.147
98346.529
109096.818
120163.292
130913.582
141821.964
152572.253
163638.727
174389.017
185139.306
195889.595
13802-083
Figure 83. CMRR vs. Input Frequency at 32 kSPS, Low Power Mode
15.0
0
–160
AC PSR (dB)
INPUT FREQUENCY(Hz)
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10 GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
TA = 25°C
SUPPLY = AVDD1x = 3.3V + 100mV p-p
400014.4
800013.8
1260013.0
1680012.0
2200012.0
2660011.0
3140010.0
3600010.0
4060009.0
4520008.0
4980008.0
5420007.0
5880006.0
6340005.0
6800005.0
7260004.0
7720003.0
8180003.0
8620002.0
9080001.0
9540001.0
13802-084
Figure 84. AC PSRR vs. Input Frequency at 32 kSPS, Low Power Mode
25
FREQUENCY (Hz)
0
–120
ATTENUATION (dB)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
1304
2583
3862
5141
6420
7699
8978
10257
11536
12815
14094
15373
16652
17931
19210
20489
21768
23047
24326
25605
26884
28163
29442
30721
13802-085
Figure 85. Filter Profiles at 16 kSPS, Low Power Mode
AD7771 Data Sheet
Rev. A | Page 30 of 99
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
SUPPLY VOLTAGE (V)
20
18
16
14
12
10
8
6
4
2
0
SUPPLY CURRENT (mA)
AVDD1x
AVDD2x
AVDD4
IOVDD
13802-086
Figure 86. Supply Current vs. Supply Voltage, High Resolution Mode
30
25
20
15
10
5
0
–40
SUPPLY CURRENT (mA)
AVDD1x
AVDD2x
AVDD4
IOVDD
120
TEMPERATURE (°C)
–20 020 40 60 80 100
13802-087
Figure 87. Supply Current vs. Temperature High Resolution Mode
–800
–600
–400
–200
0
200
400
600
800
–35.263
–29.594
–22.185
–15.223
–7.366
–0.405
7.006
14.429
22.067
29.170
36.646
44.122
52.009
58.557
66.064
74.427
81.446
89.252
96.238
105.348
112.092
119.542
123.075
REFERENCE INPUT CURRENT (nA)
TEMPERATURE (°C)
REF1–
REF1+
REF2–
REF2+
13802-088
Figure 88. Reference Input Current vs. Temperature, High Resolution Mode
6
5
4
3
2
1
0
SUPPLY CURRENT (mA)
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
SUPPLY VOLTAGE (V)
AVDD1x
AVDD2x
AVDD4
IOVDD
13802-089
Figure 89. Supply Current vs. Supply Voltage, Low Power Mode
7
6
5
4
3
2
1
0
–40 120
SUPPLY CURRENT (mA)
TEMPERATURE (°C)
–20 020 40 60 80 100
AVDD1x
AVDD2x
AVDD4
IOVDD
13802-090
Figure 90. Supply Current vs. Temperature Low Power Mode
–35.263
–29.594
–22.185
–15.223
–7.366
–0.405
7.006
14.429
22.067
29.170
36.646
44.122
52.009
58.557
66.064
74.427
81.446
89.252
96.238
105.348
112.092
119.542
123.075
REFERENCE INPUT CURRENT (nA)
TEMPERATURE (°C)
–600
–500
–400
–300
–200
–100
0
100
200
300
REF1–
REF1+
REF2–
REF2+
13802-091
Figure 91. Reference Input Current vs. Temperature, Low Power Mode
Data Sheet AD7771
Rev. A | Page 31 of 99
0
80
70
60
50
40
30
20
10
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
SHUTDOWN SUPPLY CURRENTA)
SUPPLY VOLTAGE (V)
AVDD1x
AVDD2x
AVDD4
IOVDD
13802-092
Figure 92. Shutdown Supply Current vs. Supply Voltage
60
50
40
30
20
10
0
POWER CONSUMPTION (mW)
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
SUPPLY VOLTAGE (V)
AVDD1x
AVDD2x
AVDD4
IOVDD
13802-093
Figure 93. Power Consumption per Channel vs. Supply Voltage,
High Resolution Mode
90
80
70
50
60
30
40
10
20
0
POWER DISSIPATION (mW)
–40 120
TEMPERATURE (°C)
–20 020 40 60 80 100
AVDD1x
AVDD2x
AVDD4
IOVDD
13802-094
Figure 94. Power Dissipation vs. Temperature, High Resolution Mode
0
500
400
300
200
100
450
350
250
150
50
–60 –40 –20 020 40 60 80 100 140120
SHUTDOWN SUPPLY CURRENT (µA)
TEMPERATURE (°C)
AVDD1x
AVDD2x
AVDD4
IOVDD
13802-095
Figure 95. Shutdown Supply Current vs. Temperature
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
SUPPLY VOLTAGE (V)
20
18
16
14
12
10
8
6
4
2
0
POWER CONSUMPTION (mW)
AVDD1x
AVDD2x
AVDD4
IOVDD
13802-096
Figure 96. Power Consumption per Channel vs. Supply Voltage,
Low Power Mode
25
20
10
15
5
0
POWER DISSIPATION (mW)
–40 120
TEMPERATURE (°C)
–20 020 40 60 80 100
AVDD1x
AVDD2x
AVDD4
IOVDD
13802-097
Figure 97. Power Dissipation vs. Temperature, Low Power Mode
AD7771 Data Sheet
Rev. A | Page 32 of 99
TERMINOLOGY
Common-Mode Rejection Ratio (CMRR)
CMRR is the ratio of the power in the ADC output at full-scale
frequency, f, to the power of a 100 mV p-p sine wave applied to
the common-mode voltage of AINx+ and AINx− at frequency, fS.
CMRR (dB) = 10 log(Pf/PfS)
where:
Pf is the power at frequency, f, in the ADC output.
PfS is the power at frequency, fS, in the ADC output.
Differential Nonlinearity (DNL) Error
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value.
DNL error is often specified in terms of resolution for which no
missing codes are guaranteed.
Integral Nonlinearity (INL) Error
Integral nonlinearity error refers to the deviation of each individual
code from a line drawn from negative full scale through positive
full scale. The point used as negative full scale occurs ½ LSB before
the first code transition. Positive full scale is a level 1½ LSB beyond
the last code transition. The deviation is measured from the middle
of each code to the true straight line.
Dynamic Range
Dynamic range is the ratio of the rms value of the full-scale
input signal to the rms noise measured for an input. The value
for dynamic range is expressed in decibels.
Channel to Channel Isolation
Channel to channel isolation is a measure of the level of
crosstalk between channels. It is measured by applying a full-scale
frequency sweep sine wave signal to all seven unselected input
channels and determining how much that signal is attenuated in
the selected channel. The value is given for worst case scenarios
across all eight channels of the AD7771.
Intermodulation Distortion
With inputs consisting of sine waves at two frequencies, fA and
fB, any active device with nonlinearities creates distortion
products at the sum and difference frequencies of mfA and nfB,
where m, n = 0,1, 2, 3, and so on. Intermodulation distortion
terms are those for which neither m nor n are equal to 0. For
example, the second-order terms include (fA + fB) and (fAfB and
the third-order terms include (2fA + fB), (2fA − fB), (fA + 2fB), and
(fA − 2fB). The AD7771 is tested using the CCIF standard, where
two input frequencies near the top end of the input bandwidth
are used. In this case, the second-order terms are usually distanced
in frequency from the original sine waves, and the third-order terms
are usually at a frequency close to the input frequencies. As a result,
the second-order and third-order terms are specified separately.
The calculation of the intermodulation distortion is per the THD
specification, where it is the ratio of the rms sum of the individual
distortion products to the rms amplitude of the sum of the
fundamentals, expressed in decibels.
Gain Error
The first transition (from 100 … 000 to 100 … 001) occurs at a
level ½ LSB above nominal negative full scale (−2.49999 V for the
±2.5 V range). The last transition (from 011 … 110 to 011
111) occurs for an analog voltage 1½ LSB below the nominal
full scale (2.49999 V for the ±2.5 V range). The gain error is the
deviation of the difference between the actual level of the last
transition and the actual level of the first transition from the
difference between the ideal levels.
Gain Error Drift
Gain error drift is the ratio of the gain error change due to a
temperature change of 1°C and the full-scale range (2N). It is
expressed in ppm/°C.
Least Significant Bit (LSB)
The least significant bit, or LSB, is the smallest increment that
can be represented by a converter. For a fully differential input
ADC with N bits of resolution, the LSB expressed in volts is
LSB (V) =
N
REF
V
2
2×
The LSB referred to the input is
LSB (VIN) =
N
GAIN
REF
PGA
V
2
2×
Power Supply Rejection Ratio (PSRR)
Variations in power supply affect the full-scale transition but not
the linearity of the converter. PSRR is the maximum change in the
full-scale transition point due to a change in the power supply
voltage from the nominal value.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the actual input signal to
the rms sum of all other spectral components below the Nyquist
frequency, excluding harmonics and dc. The value for SNR is
expressed in decibels.
Signal-to-(Noise + Distortion) Ratio (SINAD)
SINAD is the ratio of the rms value of the actual input signal to
the rms sum of all other spectral components below the Nyquist
frequency, including harmonics but excluding dc. The value for
SINAD is expressed in decibels.
Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in decibels, between the rms amplitude of
the input signal and the peak spurious signal including harmonics.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic
components to the rms value of a full-scale input signal and
is expressed in decibels.
Data Sheet AD7771
Rev. A | Page 33 of 99
Offset Error
Offset error is the difference between the ideal midscale input
voltage (0 V) and the actual voltage producing the midscale
output code.
Offset Error Drift
Offset error drift is the ratio of the offset error change due to a
temperature change of 1°C and the full-scale code range (2N). It
is expressed in µV/°C.
AD7771 Data Sheet
Rev. A | Page 34 of 99
THEORY OF OPERATION
The AD7771 is an 8-channel, simultaneously sampling, low
noise, 24-bit Σ-Δ ADC with integrated digital filtering per
channel and SRC.
The AD7771 offers two operation modes: high resolution mode,
which offers up to 128 kSPS, and low power mode, which offers
up to 32 kSPS.
The AD7771 employs a Σ-Δ conversion technique to convert
the analog input signal into an equivalent digital word. The
overview of the Σ-Δ technique is that the modulator samples
the input waveform and outputs an equivalent digital word at
the input clock frequency, fCLKIN.
Due to the high oversampling rate, this technique spreads the
quantization noise from 0 Hz to fCLKIN/2 (in the case of the AD7771,
fCLKIN relates to the external clock); therefore, the noise energy
contained in the band of interest is reduced (see Figure 98). To
further reduce the quantization noise, a high order modulator is
employed to shape the noise spectrum so that most of the noise
energy is shifted out of the band of interest (see Figure 99). The
digital filter that follows the modulator removes the large out of
band quantization noise (see Figure 100).
For more information on basic and advanced concepts of Σ-Δ
ADCs, see the MT-022 Tutorial and MT-023 Tutorial.
Digital filtering has certain advantages over analog filtering.
Because digital filtering occurs after the analog-to-digital
conversion process, it can remove noise injected during the
conversion. Analog filtering cannot remove noise injected
during conversion.
QUANTIZATION NOISE
fCLKIN/2
BAND OF INTEREST
13802-098
Figure 98. Σ-Δ ADC Operation, Reduction of Noise Energy Contained in the
Band of Interest (Linear Scale X-Axis)
f
CLKIN/2
NOISE SHAPING
BAND OF INTEREST
13802-099
Figure 99. Σ-Δ ADC Operation, Majority of Noise Energy Shifted Out of the
Band of Interest (Linear Scale X-Axis)
f
CLKIN/2
BAND OF INTEREST
DIGITAL FILTER CUTOFF FREQUENCY
13802-100
Figure 100. Σ-Δ ADC Operation, Removal of Noise Energy from the Band of
Interest (Linear Scale X-Axis)
The Σ-Δ ADC starts the conversions of the input signal after the
supplies generated by the internal LDO regulators become stable.
An external signal is not required to generate the conversions.
ANALOG INPUTS
The AD7771 can be operated in bipolar or unipolar modes and
accepts true differential, pseudo differential, and single-ended
input signals, as shown in Figure 101 through Figure 104.
Table 10 summarizes the maximum differential input signal and
dynamic range for the different input modes.
Table 10. Input Signal Modes
Input Signal Mode
PGA Gain
Maximum Differential Signal
Maximum Peak-to-Peak Signal
True differential All gains ±(VREF/PGAGAIN) 2 × VREF/PGAGAIN
Pseudo differential All gains ±(VREF/PGAGAIN) 2 × VREF/PGAGAIN
Single-ended All gains VREF/PGAGAIN VREF/PGAGAIN
Data Sheet AD7771
Rev. A | Page 35 of 99
BIPOLAR OR UNIPOLAR
TRUE DIFFERENTIAL
AVDD1x – 0.1V
AINx+
AINx+
AVSSx + 0.1V
VCM
V
REF
/PGA
GAIN
13802-101
Figure 101. Σ-Δ ADC Input Signal Configuration, True Differential
BIPOLAR OR UNIPOLAR
PSEUDO DIFFERENTIAL
AVDD1x – 0.1V
AINx+
AINx+
AVSSx + 0.1V
VCM
VREF/PGAGAIN
13802-102
Figure 102. Σ-Δ ADC Input Signal Configuration, Pseudo Differential
BIPOLAR
SINGLE-ENDED
AINx+
AINx+
AVSSx + 0.1V
VREF/PGAGAIN
13802-103
Figure 103. Σ-Δ ADC Input Signal Configuration, Single-Ended Bipolar
V
REF
/PGA
GAIN
UNIPOLAR
SINGLE-ENDED
AINx+
AINx+
+ 0.1V
13802-104
Figure 104. Σ-Δ ADC Input Signal Configuration, Single-Ended Unipolar
The common mode input signal is not limited, but keep the
absolute input signal voltage on any AINx± pin between
AVSSx + 100 mV and AVDD1x 100 mV; otherwise, the input
signal linearity degrades and, if the signal voltage exceeds the
absolute maximum signal rating, damages the device.
Figure 105 shows the maximum and minimum voltage common-
mode range at different PGA gains for a maximum differential
input voltage.
COMMON-MODE VOLTAGE (V)
1.6500
1.2375
0.8250
0.4125
(AVDD1x + AVSSx)/2
–0.4125
PGA GAIN
2 4 81
–0.8250
–1.2375
–1.6500
V
REF
= 2.5V
AVDD1x = 1.65V
AVSSx = –1.65V
TRUE DIFFERENTIAL
PSEUDO DIFFERENTIAL
13802-105
Figure 105. Maximum Common-Mode Voltage Range for a Maximum
Differential Input Signal
The AD7771 provides a common-mode voltage pin (AVDD1x +
AVSSx)/2), VCM, for the single-supply, pseudo differential, or true
differential input configurations.
TRANSFER FUNCTION
The AD7771 can operate with up to a 3.6 V reference, typical
at 2.5 V, a n d converts the differential voltage between the analog
inputs (AINx+ and AINx−) into a digital output. The ADC
converts the voltage difference between the analog input pins
(AINx+ − AINx−) into a digital code on the output. The 24-bit
conversion result is in MSB first, twos complement format, as
shown in Table 11 and Figure 106.
Table 11. Output Codes and Ideal Input Voltages for PGA = 1×
Condition
Analog Input
((AINx+) (AINx−)),
VREF = 2.5 V
Digital Output Code,
Twos Complement
(Hexadecimal)
FS − 1 LSB +2.499999702 V 0x7FFFFF
Midscale + 1 LSB +298 nV 0x000001
Midscale 0 V 0x000000
Midscale − 1 LSB −298 nV 0xFFFFFF
−FS + 1 LSB −2.499999702 V 0x800001
−FS −2.5 V 0x800000
100 ... 000
100 ... 001
100 ... 010
011 ... 101
011 ... 110
011 ... 111
ADC CODE (TWOS COMPLEMENT)
ANALOG INPUT
+FSR – 1.5LSB
+FSR – 1LSB
–FSR + 1LSB
–FSR
–FSR + 0.5LSB
13802-106
Figure 106. Transfer Function
AD7771 Data Sheet
Rev. A | Page 36 of 99
MCLK START
Σ-Δ
MODULATOR
SIGNAL CHAIN FOR CHANNEL x
CONTROL BLOCK
PIN CONTROL
CONTROL
OPTION
PIN OR SPI
DIGITAL
FILTER
SINC3/
SINC5
SRC
GAIN
SCALING
AND
OFFSET
CORRECTION
CONVERSION
DATA INTERFACE
MODE0 TO MODE3 CS SCLK SDO SDI
SYNC_OUT SYNC_IN RESET
DRDY
DOUTx
DCLK
FORMAT0
AND
FORMAT1
AINx+
PGA
GAIN 1, 2, 4, 8
ESD
PROTECTION
AINx–
SPI CONTROL
13802-107
Figure 107. Top Level Core Signal Chain
CORE SIGNAL CHAIN
Each Σ-Δ ADC channel on the AD7771 has an identical signal path
from the analog input pins to the digital output pins. Figure 107
shows a top level implementation of this signal chain. Prior to
each ΣADC, a PGA maps sensor outputs into the ADC inputs,
providing low input current in dc (±8 nA, input current, and
±2 nA differential input current for high resolution mode), an
8 pF input capacitance in ac, and configurable gains of 1, 2, 4,
and 8. See the AN-1392 Application Note for more information.
Each ADC channel has its own Σ-Δ modulator, which oversamples
the analog input and passes the digital representation to the
digital filter block. The data is filtered, scaled for gain and
offset, and is then output on the data interface.
To minimize power consumption, the channels can be
individually disabled.
CAPACITIVE PGA
Each Σ-Δ ADC has a dedicated PGA, offering gain ranges of 1,
2, 4, and 8. This PGA reduces the need for an external input buffer
and allows the user to amplify small sensor signals to use the
full dynamic range of the AD7771.
The PGA maximizes the signal chain dynamic range for small
sensor output signals.
The AD7771 uses chopping of the PGA to minimize offset and
offset drift in the input amplifier, reducing the 1/f noise as well.
For the AD7771, the chopping frequency is set to 128 kHz for
high resolution mode, and 32 kHz for low power mode (see the
AN-1392 Application Note for more information). The chopping
tone is rejected by the sinc3 or sinc5 filters.
To minimize intermodulation effects that may cause an image
in the band of interest, it is recommended to limit the input
signal bandwidth to 2/3 of the chop frequency.
The capacitive PGA common-mode voltage does not depend on
the gain, and can be any value as long as the input signal voltage is
within AVSSx + 100 mV to AVDD1x 100 mV. See Figure 105
for the maximum common-mode voltage at maximum
differential input signals.
INTERNAL REFERENCE AND REFERENCE BUFFERS
The AD7771 integrates a 2.5 V, ±10 ppm/°C (typical), voltage
reference that is disabled at power-up. The buffered reference is
available at Pin 49 and offers up to 10 mA of continuous current.
A 100 nF capacitor is required if the reference is enabled.
In applications where a low noise reference is required, it is
recommended to add a low-pass filter (LPF) with a cutoff
frequency (fCUTOFF) below 10 Hz to the REF_OUT pin. Connect
the output of this filter to REFx+, and connect AVSSx to REFx−.
In this scenario, configure the Σ-Δ reference as external. An
example of performance with and without the output filter is
shown in Figure 108.
115
105
95
85
75
SNR (dB)
0.05 0.50 1.00 2.00 2.50
DIFFERENTIAL INPUT VOLTAGE (V)
V
REF
= INTERNAL REFERENCE
fCUTOFF
= 10Hz
13802-108
Figure 108. SNR Adding External LPF with VREF = Internal Reference and
fCUTOFF = 10 Hz
The AD7771 can be used with an external reference connected
between the REFx+ and REFx− pins. Recommended reference
voltage sources for the AD7771 include the ADR441 and ADR4525
family of low noise, high accuracy voltage references.
Data Sheet AD7771
Rev. A | Page 37 of 99
ADC
MODULATOR
SINC
FILTER
DATA
INTERFACE
CONTROL
MCLK DIVIDER
HIGH RESOLUTION MODE: MCLK/4
LOW POWER MODE: MCLK/8
DCLK DIVIDER
1, 2, 4, 8, 16, 32, 64, 128
DEC RATES = ×16, ×32, ×64, ×128, ×256, ×512, ×1024, ×2048, ×4095.99
MOD_MCLK
DCLKx
DRDY
DOUT3
TO
DOUT0
PGA
AINx+
MCLK
AINx–
13802-109
Figure 109. Clock Generation on the AD7771
The reference buffers can be operated in three different modes:
buffer enabled mode, buffer bypassed mode, and buffer
precharged mode.
In buffer enabled mode, the buffer is fully enabled, minimizing
the current requirements from the external references. Note that
the buffer output voltage headroom is ±100 mV from the rails.
In buffer bypassed mode, the external reference is directly
connected to the ADC reference capacitors; the reference must
provide enough current to correctly charge the internal ADC
reference capacitors. In this mode of operation, a degradation in
crosstalk is expected because the ADC channels are not isolated
from each other.
Buffer precharged (pre-Q) mode is the default operation mode.
It is a hybrid mode where the internal reference buffers are
connected during the initial acquisition time to precharge the
internal ADC reference capacitors. During the final phase of the
acquisition, the reference is connected directly to the ADC
capacitors. This mode has some benefits compared to the buffer
enabled and buffer bypassed modes. In buffer pre-Q mode, the
reference current requirements are minimized compared to
buffer bypassed mode and the noise contribution from the
internal reference buffers is removed (compared to buffer
enabled mode).
In buffer pre-Q mode, the headroom/footroom of the buffer
reference is not applicable because the reference sets the final
voltage in the ADC reference capacitors.
INTEGRATED LDOs
The AD7771 has three internal LDOs to regulate the internal
supplies: two LDOs for the analog block and one LDO for the
digital core. The internal LDOs requires an external 1 µF
decoupling capacitor on the DREGCAP, AREG1CAP, and
the AREG2CAP pins. The LDO slew rate may be low because
it depends on the main supply slew rate; therefore, a hardware
reset generated by pulsing the RESET pin at power-up is required
to guarantee that the digital block initializes correctly.
CLOCKING AND SAMPLING
The AD7771 includes eight Σ-Δ ADC cores. Each ADC receives
the same master clock signal. The AD7771 requires a maximum
external MCLK frequency of 8192 kHz for high resolution mode
and 4096 kHz for low power mode. The MCLK is internally
divided by 4 in high performance mode and by 8 in low power
mode to produce the modulator MCLK (MOD_MCLK) signal
used as the modulator sampling clock for the ADCs. The MCLK
can be decreased to accommodate lower ODRs if the minimum
ODR selected by the sinc3 filter is not low enough. If the external
clock is lower than 250 kHz, set the CLK_QUAL_DIS bit (in
SPI control mode only).
The AD7771 integrates an internal oscillator clock that initializes
the internal registers at power-up. The CLK_SEL pin defines the
external clock used after initialization (see Table 12).
Table 12. Clock Sources
CLK_SEL State Clock Source Connection
0 CMOS Input to XTAL2/MCLK, IOVDD
logic level. XTAL1 must be
tied to DGND.
1 Crystal Connected between XTAL1
and XTAL2/MCLK.
The MCLK signal generates the DCLK output signal, which in
turn clocks the Σ-Δ conversion data from the AD7771, as
shown in Figure 109.
DIGITAL RESET AND SYNCHRONIZATION PINS
An external pulse in the SYNC_IN pin generates the internal
reset of the digital block; this pulse does not affect the data
programmed in the internal registers. A pulse in this pin is
required in two cases as follows:
After updating one or more registers directly related to the
sinc filter (power mode, offset, gain, phase compensation,
and sinc filter).
To synchronize multiple devices.
The pulse in the SYNC_IN pin must be synchronous with MCLK.
AD7771 Data Sheet
Rev. A | Page 38 of 99
There are two different ways to achieve a synchronous pulse if
the controller/processor cannot generate it as follows:
Applying an asynchronous pulse on the START pin, which
is then internally synchronized with the external MCLK
clock, and the resulting synchronous signal is output on
the SYNC_OUT pin.
Trigge ring the SYNC_OUT internally. When the AD7771
is configured in SPI control mode, toggling Bit 0 in the
GENERAL_USER_CONFIG_2 register generates a
synchronous pulse that is output on the SYNC_OUT pin.
The SYNC_IN and SYNC_OUT pins must be externally
connected if internal synchronization is used.
If multiple AD7771 devices must be synchronized, the
SYNC_OUT pin of one device can be connected to multiple
devices. This synchronization method requires the use of a
common MCLK signal for all the AD7771 devices connected,
as shown in Figure 110.
If the START pin is not used, tie it to DGND.
START
SYNC_IN
IOVDD
MCLK SYNC_OUT
START
SYNC_IN
MCLK SYNC_OUT NC
START
SYNC_IN
MCLK SYNC_OUT NC
AD7771
AD7771
AD7771
SYNCHRONIZATION
LOGIC
ASYNCHRONOUS
PULSE
DIGITAL FILTER
SYNCHRONIZATION
LOGIC
DIGITAL FILTER
SYNCHRONIZATION
LOGIC
DIGITAL FILTER
MCLK
IOVDD
13802-110
Figure 110. Multiple AD7771 Devices Synchronization
DIGITAL FILTERING
The AD7771 offers low latency sinc3 and sinc5 filters. Most
precision Σ-Δ ADCs use sinc filters because the sinc filters offer
a low latency path for applications requiring low bandwidth
signals, for example, in control loops or where application
specific postprocessing is required. The digital filter adds notches
at multiples of the sampling frequency.
The digital sinc3 filter implements three main notches, one at
the maximum ODR (128 kHz or 32 kHz, depending on the
power mode) and another two at the ODR frequency selected to
stop noise aliasing into the pass band. The sinc5 filter implements
five notches, one at the maximum ODR (128 kHz or 32 kHz,
depending on the power mode) and another four at the ODR
frequency selected to stop noise aliasing into the pass band.
It is recommended to select the sinc5 digital filter for output
data rates higher than 24 kSPS.
Figure 111 and Figure 112 show the typical filter transfer
function for the high resolution and low power modes using a
decimation rate of 32 samples for the sinc3 and sinc5 filters.
0
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
06432 96 128 160 192 224 256
GAIN (dB)
FREQUENCY (MHz)
13802-111
SINC3
SINC5
Figure 111. Sinc3/Sinc5 Frequency Response in High Resoltuion Mode
0
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
016824 32 40 48 56 64
GAIN (dB)
FREQUENCY (MHz)
13802-112
SINC3
SINC5
Figure 112. Sinc3/Sinc5 Frequency Response in Low Power Mode
The sample rate converter feature allows fine tuning of the
decimation rate, even for noninteger multiples of the decimation
rate. See the Sample Rate Converter (SRC) section for more
information on filter profiles for noninteger decimation rates.
SHUTDOWN MODE
The AD7771 can be placed in shutdown mode by pulling
AVDD2x to ground and connecting 1 MΩ resistance, pulled
low, to XTAL2/MCLK. In this mode, the average current
consumption is reduced to 1 mA, as shown in Figure 113.
Data Sheet AD7771
Rev. A | Page 39 of 99
–40
–0.5
0
0.5
1.0
10
TEMPERATURE (°C)
60 125
I
AVDD1x
I
AVDD2x
I
AVDD4
I
IOVDD
AVDDx = 3.3V
IOVDD = 3.3V
SUPPLY CURRENT (mA)
13802-113
Figure 113. Shutdown Current
CONTROLLING THE AD7771
The AD7771 can be controlled using either pin control mode or
SPI control mode.
Pin control mode allows the AD7771 to be hardwired to predefined
settings that offer a subset of the overall functionality of the
AD7771. In this mode, the SRC and diagnostic features or
extended errors source are not available.
Controlling the AD7771 over the SPI allows the user access to
the full monitoring, diagnostic, and Σ-Δ control functionality.
SPI control offers additional functionality such as offset, gain,
and phase correction per channel, in addition to access to the
flexible SRC to achieve a coherent sampling.
See Table 13 for more details about these different configurations.
PIN CONTROL MODE
In pin control mode, the AD7771 is configured at power-up
based on the level of the mode pins, MODE0, MODE1, MODE2,
and MODE3. These four pins set the following functions on the
AD7771: the mode of operation, the decimation rate/ODR, the
PGA gain, and the reference source, as shown in Table 14.
Due to the limited number of mode pins and the number of
options available, the PGA gain control is grouped into blocks
of 4, and the ODR is selected for the maximum value defined by
the decimation rate; ODR (kHz) = 2048/decimation for high
resolution mode, and ODR (kHz) = 512/decimation for low
power mode.
Depending on the mode selected, the device is configured to
use an external or an internal reference.
The conversion data can be read back using the SPI or the data
output interface, as shown in Table 13. If the data output interface is
used to read back the data from the conversions, the number of
DOUTx lines enabled and the number of clocks required for
the Σ-Δ data transfer are determined by the logic level of the
CONVST_SAR, FORMAT0, and FORMAT1 pins. In this case,
the DCLK2, DCLK1, and DCLK0 pins select the Σ-Δ output
interface and control the DCLKx divide function, which is a
submultiple of MCLK, as shown in Table 15. The DCLKx divide
function sets the frequency of the data output interface DCLKx
signal. The DCLK minimum frequency depends on the
decimation rate and operation mode. See the Data Output
Interface section for more details about the minimum DCLKx
frequenc y.
All the pins that define the AD7771 configuration mode are
reevaluated each time the SYNC_IN pin is pulsed. The typical
connection diagram for pin control mode is shown in Figure 114.
Table 13. Format of the Data Interface
CONVST_SAR State FORMAT1 FORMAT0 Control Mode Data Output Mode
1 0 0 Pin SPI output
0 1 Pin SPI output
1 0 Pin SPI output
1 1 SPI Defined in Register 0x013 and/or Register 0x014
0 0 0 Pin DOUT0, Channel 0 and Channel 1
DOUT1, Channel 2 and Channel 3
DOUT2, Channel 4 and Channel 5
DOUT3, Channel 6 and Channel 7
0 1 Pin DOUT0, Channel 0 to Channel 3
DOUT1, Channel 4 to Channel 7
1 0 Pin DOUT0, Channel 0 to Channel 7
1 1 SPI Defined in Register 0x013 and/or Register 0x014
AD7771 Data Sheet
Rev. A | Page 40 of 99
Table 14. Pin Control Mode Options
Pin State
Decimation
Rate Power Mode
PGA Gain Channel
Reference
Source Filter
MODE3 MODE2 MODE1 MODE0
Channel 0 to
Channel 3
Channel 4 to
Channel 7
0 0 0 0 16 High resolution 1 1 External Sinc5
0 0 0 1 16 High resolution 1 4 External Sinc5
0 0 1 0 32 High resolution 1 1 External Sinc5
0
0
1
1
32
High resolution
1
4
External
Sinc5
0 1 0 0 64 High resolution 1 1 External Sinc5
0 1 0 1 64 High resolution 1 4 External Sinc5
0 1 1 0 128 High resolution 1 1 External Sinc5
0 1 1 1 128 High resolution 1 4 External Sinc5
1
0
0
0
256
High resolution
1
1
External
Sinc5
1 0 0 1 16 High resolution 1 1 Internal Sinc5
1 0 1 0 32 High resolution 1 1 Internal Sinc5
1 0 1 1 64 High resolution 1 1 Internal Sinc5
1 1 0 0 16 Low power 1 1 External Sinc5
1 1 0 1 32 Low power 1 1 External Sinc5
1 1 1 0 64 Low power 1 1 External Sinc3
1 1 1 1 32 Low power 1 1 External Sinc3
Table 15. DCLKx Selection for Pin Control Mode State
DCLK2/SCLK DCLK1/SDI DCLK0/SDO MCLK Divider
0 0 0 1
0
0
1
2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128
Data Sheet AD7771
Rev. A | Page 41 of 99
ADC
DATA
SERIAL
INTERFACE
SPI
CONTROL
INTERFACE
FPGA
OR
DSP
AVDD 3.3V
EXTERNAL
REFERENCE
AVSSx
AVSSx
AIN7+
AIN7–
AIN0+
AIN0–
PGA
VCM
AVDD1x
BUFFER
BUFFER
AD7771
DREGCAP
CONVST_SAR
MODE3
TO
MODE0
REFx+ REFx– REF_OUTAVDD4
AVSSx
AVSSx
AVDD2x
AVDD3.3V AVDD3.3V IOVDD 2V TO 3.6V
AVSSx
AREGxCAP
AVSSx
AVSSx
IOVDD
24-BIT
Σ-Δ
ADC
SINC3/SINC5
SRC
SYNC_IN
DRDY
SYNC_OUT
START
RESET
DCLK
CS
SCLK
SDO
CLK_SEL
XTAL2 DCLK2
TO
DCLK0
XTAL1
DOUT0
DOUT1
SPI/SPORT
SLAVE
INTERFACE
DOUT2
DOUT3
SPI
MASTER
INTERFACE
PGA
VCM
SDI
FORMAT1
AND
FORMAT0
CLOCK
SOURCE
13802-114
Figure 114. Pin Control Mode Connection Diagram with External Reference
ADC
DATA
SERIAL
INTERFACE
SPI
CONTROL
INTERFACE
FPGA
OR
DSP
AVDD 3.3V
AVSSx
AVSSx
AIN7+
AIN7–
AIN0+
AIN0–
PGA
VCM
AVDD1x
BUFFER
FULL BUFFER
BUFFER
AD7771
DREGCAP
CONVST_SAR
GPIO2
TO
GPIO0
REFx+ REFx– REF_OUT AVDD4
AVSSx
AVDD2x
AVDD3.3V IOVDD 2V TO 3.6V
AVSSx
AREGxCAP
AVSSx
AVSSx
IOVDD
AUXAIN+
AUXAIN–
24-BIT
Σ-Δ
ADC
12-BIT
SAR ADC
MUX
DIAGNOSTIC
INPUTS
SINC3/SINC5
SRC
SYNC_IN
DRDY
SYNC_OUT
START
RESET
DCLK
CS
SCLK
SDO
SDI
CLK_SEL
FORMAT0
XTAL2 FORMAT1
IOVDD IOVDD
XTAL1
DOUT0
DOUT1
SPI/SPORT
SLAVE
INTERFACE
DOUT2
DOUT3
SPI
MASTER
INTERFACE
PGA
VCM
CLOCK
SOURCE
13802-115
Figure 115. SPI Control Mode Connection Diagram with Internal Reference
AD7771 Data Sheet
Rev. A | Page 42 of 99
SPI CONTROL
The second option for control and monitoring the AD7771 is
via the SPI. This option allows access to the full functionality
on the AD7771, including access to the SAR converter, phase
synchronization, offset and gain adjustment, diagnostics, and
the SRC. To use the SPI control, set the FORMAT0 and
FORMAT1 pins to logic high.
In this mode, the SPI can also read the Σ-Δ conversation data by
setting the SPI_SLAVE_MODE_EN bit.
The typical connection diagram for SPI control mode is shown
in Figure 115.
Functionality Available in SPI Control Mode
SPI control of the AD7771 offers the super set of the functions and
diagnostics. The SPI Control Functionality section describes the
functionality and diagnostics offered when in SPI control mode.
Offset and Gain Correction
Offset and gain registers are available for system calibration.
The gain register is preprogrammed during final production for
a PGA gain of 1, but can be overwritten with a new value if
required.
The gain register is 24 bits long and is split across three registers,
CHx_GAIN_UPPER_BYTE, CHx_GAIN_MID_BYTE, and
CHx_GAIN_LOWER_BYTE, which set the gain on a per
channel basis.
The gain value is relative to 0x555555, which represents a gain of 1.
The offset register is 24 bits long and is spread across three byte
registers, CHx_OFFSET_UPPER_BYTE, CHx_OFFSET_MID_
BYTE, and CHx_OFFSET_LOWER_BYTE. The default value is
0x000000 at power-up. Program the offset as a twos complement,
signed 24-bit number. If the channel gain is set to its nominal
value of 0x555555, an LSB of offset register adjustment changes
the digital output by 4/3 LSBs.
As an example of calibration, the offset measured is −200 LSB
(with both AINx± pins connected to the same potential).
An offset adjustment of −150 LSB changes the digital output by
−150 × (−4/3) = 200 LSBs (gain value = 0x555555), representing
this number as two complement, 0xFFFFFF 0x96 + 1 =
0xFFFF70. Program the offset register as follows:
CHx_OFFSET_UPPER_BYTE = 0xFF
CHx_OFFSET_MID_BYTE = 0xFF
CHx_OFFSET_LOWER_BYTE = 0x70
Note that the offset compensation is performed before the gain
compensation. The gain is programmed during final testing for
PGAGAIN = 1. The gain register values can be overwritten; however,
after a reset or power cycle, the gain register values revert to the
hard coded programmed factory setting.
If the gain required is 0.75 of the nominal value (0x555555), the
value that must be programmed is
0x555555 × 0.75 = 0x400000
Then, an LSB of the offset register adjustment changes the digital
output by 4/3 × 0.75 = 1 LSB. Program the gain register as follows:
CHx_GAIN_UPPER_BYTE = 0x40
CHx_GAIN_MID_BYTE = 0x00
CHx_GAIN_LOWER_BYTE = 0x00
SPI Control Functionality
Global Control Functions
The following list details the global control functions of the
AD7771:
High resolution and low power modes of operation
ODR: SRC
Sinc3 and sinc5 filters
VCM buffer power-down
Internal/external reference selection
Enable, pre-Q, or bypassed reference buffer modes
Internal reference power-down
SAR diagnostic mux
SAR power-down
GPIO write/read
SPI SAR conversion readback
SPI slave moderead Σ-Δ results
SDO and DOUTx drive strength
DOUTx mode
DCLK division
Internal LDO bypassed
Cyclic redundancy check (CRC) protection: enabled or
disabled
Per Channel Functions
The following list details the per channel functions of the
AD7771:
PGA gain.
Σ-Δ channel power-down.
Phase delay: synchronization phase offset per channel.
Calibration of offset.
Calibration of gain.
Σ-Δ input signal mux.
Channel error register.
PGA gain.
Phase Adjustment
The AD7771 phase delay can be adjusted to compensate for
phase mismatches between channels due to sensors or signal
channel phase errors connected to the AD7771. Achieve phase
adjustment by programming the CHx_SYNC_OFFSET register.
This programming delays the synchronization signal by a
certain number of modulator clocks (MOD_MCLK) to
individually initiate the digital filter for each Σ-Δ ADC. In other
words, programming the channel with higher phase delay as
CHx_SYNC_OFFSET= 0, any other channel with lower phase,
can be delayed to compensate for the phase mismatch.
Data Sheet AD7771
Rev. A | Page 43 of 99
The phase adjustment register is read after a pulse on the
SYNC_IN pin; consequently, any further changes on the register
have no effect unless a pulse is generated (see the Digital Reset
and Synchronization Pins section for more information on how
to generate a pulse in the pin).
The phase offset register is multiplied internally by a factor (n)
that depends on the decimation rate, as shown in Table 16.
Table 16. Phase Adjustment vs. Decimation Rate
Phase Adjustment Compensation (n) Decimation Rate
×1 ≤255
×2 ≤511
×4
≤1023
×8 ≤2047
×16 4095
The maximum phase delay cannot be equal to or greater than
the decimation rate. If this is the case, the value changes
internally to the decimation rate value minus 1.
When the CHx_SYNC_OFFSET register is written, it automatically
overwrites itself multiplied by the corresponding factor (n), as
defined in Table 16. Because CHx_SYNC_OFFSET is only 8 bits
long, the resulting value is scaled down to fit 8 bits. To determine
whether phase adjustment was clipped or not, see Table 17.
Table 17. Phase Adjustment Clipping
CHx_SYNC_OFFSET × n CHx_SYNC_OFFSET Overwrite
≤255 CHx_SYNC_OFFSET × n
≤511 CHx_SYNC_OFFSET × n/2
≤1023 CHx_SYNC_OFFSET × n/4
≤2047 CHx_SYNC_OFFSET × n/8
≤4095 CHx_SYNC_OFFSET × n/16
As an example, the phase mismatch between Channel 0 and
Channel 1 is 5°, and the ODR is 5 kSPS in high resolution mode. In
this case, the decimation rate is 2048 kHz/5 kHz = 409.6, which
means that the offset register value is multiplied internally by 2.
Assuming an input signal of 50 Hz, the number of MOD_
MCLK pulses required to sample a full period is 2048 kHz/
50 Hz = 40960 > 360°/40960 = 0.00878°.
If a 5° delay is required, the number of MOD_MCLK delays
must be 569 (5°/0.00878°) because the offset register is multiplied
by 2; the final offset register value is 409.6/2 − 569/2, which
gives a negative value. In this case, if the offset value programmed
to the register is higher than 204 (for example, 210 × 2 = 420),
the value is internally changed to 408, resulting in a phase
compensation of 408 × 0.00878° = 3.58°.
PGA Gain
The PGA gain can be selected individually by appropriately select-
ing Bits[7:6] in the CHx_CONFIG register, as shown in Table 18.
Table 18. PGA Gain Settings via CHx_CONFIG
CHx_CONFIG, Bits[7:6] Setting PGA Gain Setting
00
×1
01 ×2
10 ×4
11 ×8
If the Σ-Δ reference is updated, it is recommended to apply a
pulse on the SYNC_IN pin to remove invalid samples during
the transition of the reference.
Decimation
The decimation defines the sampling frequency as follows:
In high resolution mode, the sampling frequency = MCLK/
(4 × decimation)
In low power mode, the sampling frequency = MCLK/
(8 × decimation)
Refer to the Sample Rate Converter (SRC) section for more
information.
GPIOx Pins
If the AD7771 operates in SPI control mode, the mode pins
operate as GPIOx pins, as shown in Figure 116. The GPIOx pins
can be configured as inputs or outputs in any order.
REGISTER
MAP
GPIO0
GPIO1
GPIO2
13802-116
Figure 116. GPIOx Pin Functionality
Configuration control and readback of the GPIOx pins are set
via Bits[2:0] in the GPIO_CONFIG register (0 = input, 1 = output)
and the GPIO_DATA register. Among other uses, the GPIOs
can control an external mux connected to the auxiliary inputs of
the SAR ADC. Use this mux to verify the results on the Σ-Δ ADCs.
In addition, the GPIOx pins can be used to externally trigger a
new decimation rate. Refer to the Sample Rate Converter (SRC)
section for more information about this functionality.
AD7771 Data Sheet
Rev. A | Page 44 of 99
Σ-Δ Reference Configuration
The AD7771 can operate with internal or external references. In
addition, for diagnostic purposes, the analog supply can be used
as a reference, as shown in Table 19. REFx−/REFx+ allow the
selection of a voltage reference where the REFx+ voltage is
lower than the voltage on the REFx− pin.
Table 19. Σ-Δ References
Setting for
ADC_MUX_CONFIG,
Bits[7:6]
Channel 0 to
Channel 3
Channel 4 to
Channel 7
00
REF1+/REF1−
REF2+/REF2−
01 Internal reference Internal reference
10 AVDD1A/AVSS1A AVDD1B/AVSS1B
11 REF1−/REF1+ REF2−/REF2+
Reference buffer operation is described in Table 21. The selected
reference and buffer operation mode affect all channels.
If the Σ-Δ reference is updated, it is recommended to apply a
pulse on the SYNC_IN pin to remove invalid samples during
the transition of the reference.
Power Modes
The AD7771 offers different power modes to improve the power
efficiency, high resolution and low power mode, which can be
controlled via GENERAL_USER_CONFIG_1, Bit 6. To further
reduce the power, additional blocks can be disabled independently,
as described in Table 22.
If the power mode changes, a pulse on the SYNC_IN pin is
required.
Sinc3 and Sinc5 Filters
The AD7771 implements sinc3 and sinc5 digital filters. By
default, the device powers up with the sinc3 filter, but it can be
changed by setting GENERAL_USER_CONFIG_2, Bit 6. If the
sinc filter is changed, a pulse in the SYNC_IN pin is required.
LDO Bypassing
The internal LDOs can be individually bypassed and an external
supply can be applied directly to the AREG1CAP, AREG2CAP,
or DREGCAP pin. Table 20 shows the absolute minimum and
maximum supplies for these pins, as well as the associated
register used to bypass the regulator.
Table 20. LDO Bypassing
LDO
BUFFER_CONFIG_2,
Bits[2:0]1
Supply
Max (V) Min (V)
AREG1CAP 1XX 1.9 1.85
AREG2CAP X1X 1.9 1.85
DREGCAP XX1 1.9 1.65
1 X means don’t care.
Table 21. Reference Buffer Operation Modes
Reference Buffer
Operation Mode REFx+ REFx−
Enabled BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 0 BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 0
Precharged BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 1 BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 1
Disabled BUFFER_CONFIG_1, Bit 4 = 0 BUFFER_CONFIG_1, Bit 3 = 0
Table 22. Additional Disable Power-Down Blocks
Block Register Notes
VCM GENERAL_USER_CONFIG_1, Bit 5 Enabled by default
Reference Buffer BUFFER_CONFIG_1, Bits[4:3] Precharge mode by default
Internal Reference Buffer GENERAL_USER_CONFIG_1, Bit 4 Disabled by default
Σ-Δ Channel
CH_DISABLE, Bits[7:0]
All channels enabled
SAR GENERAL_USER_CONFIG_1, Bit 3 Disabled by default
Internal Oscillator GENERAL_USER_CONFIG_1, Bit 2 Enabled by default
Data Sheet AD7771
Rev. A | Page 45 of 99
DIGITAL SPI
The SPI serial interface on the AD7771 consists of four signals:
CS, SDI, SCLK, and SDO. A typical connection diagram of the
SPI is shown in Figure 117.
DSP/FPGA
AD7771
CS
SCLK
SDI
SDO
13802-117
Figure 117. SPI Control InterfaceAD7771 is the SPI Slave, Digital Signal
Processor (DSP)/Field Programmable Gate Array (FPGA) is the Master
The SPIs operates in Mode 0 and Mode 3, CPOL = 0, CPHA = 0
(Mode 0) or CPOL = 1, CPHA = 1 (Mode 3).
In pin control mode, the SDI can read back the Σ-Δ results,
depending on the level of the CONVST_SAR pin, as described in
Table 13.
In SPI control mode, the SPI transfers data into the on-chip
registers while the SDO pin reads back data from the on-chip
registers or reads the SAR or the Σ-Δ conversions results,
depending on the selected operation mode.
The SDO data source in SPI control mode is defined by the
GENERAL_USER_CONFIG_2 and GENERAL_USER_
CONFIG_3 registers, as described in Table 23.
Table 23. SPI Operation Mode in SPI Control Mode
GENERAL_USER_
CONFIG_2, Bit 5
Setting
GENERAL_USER_
CONFIG_3, Bit 4
Setting1 Mode
0 0 Internal register
0 1 Σ-Δ data conversion
1 X SAR conversion
1 X means don’t care.
In SPI control mode, there are four different levels of input/
output (I/O) strength on the SDO pin that can be selected in
GENERAL_USER_CONFIG_2, Bits[4:3], as described in Table 24.
Table 24. SDO Strength
GENERAL_USER_CONFIG_2, Bits[4:3] Setting Mode
00 Nominal
01 Strong
10
Weak
11 Extra strong
SCLK is the serial clock input for the device. All data transfers
(on either SDO or SDI) occur with respect to this SCLK signal.
The SPI can operate in multiples of eight bits. For example, in
SPI control mode, if the SDO pin is used to read back the data
from the internal register or the SAR ADC, the data frame is
16 bits wide (CRC disabled), as shown in Figure 118, or 24 bits
wide (CRC enabled), as shown in Figure 119. In this case, the
controller can generate one frame of 16 bits or 24 bits (with and
without the CRC enabled), or two or three frames of 8 bits (with
and without the CRC enabled). When the SDO pin reads back
the data from the Σ-Δ channels, 64 bits must be read back from
the controller (in this case, the controller can generate a frame
of 64 bitseither 2 × 32 bits, 4 × 16 bits, or 8 × 8 bits).
SPI CRCChecksum Protection (SPI Control Mode)
The AD7771 has a checksum mode that improves SPI
robustness in SPI control mode. Using the checksum ensures
that only valid data is written to a register and allows data read
from the device to be validated. The SPI CRC can be enabled by
setting the SPI_CRC_TEST_EN bit. If an error occurs during a
register write, the SPI_CRC_ERR is set in the error register.
Enabling the SPI_CRC_TEST_EN bit results in a CRC checksum
being performed on all the R/W operations. When SPI_CRC_
TEST_EN is enabled, an 8-bit CRC word is appended to every
SPI transaction for SAR and register map operations. For more
information on Σ-Δ readback operations, see the CRC Header
section.
To ensure that the register write is successful, it is recommended to
read back the register and verify the checksum.
For CRC checksum calculations, the following polynomial is
always used: x8 + x2 + x + 1. See the SPI Control Mode Checksum
section for more information.
SPI Read/Write Register Mode (SPI Control Mode)
The AD7771 has on-board registers to configure and control
the device.
The registers have 7-bit addressesthe 7-bit register address on
the SDI line selects the register for the read/write function. The
7-bit register address follows the R/W bit in the SDI data. The
8 bits on the SDI line following the 7-bit register address are the
data to be written to the selected register if the SPI is a write
transfer. Data on the SDI line is clocked into the AD7771 on
the rising edge of SCLK, as shown in Figure 3.
The data on the SDO line during the SPI transfer contains the
8-bit 0010 0000 header: 8 bits of register data in the case of a read
(R) operation, or 8 zeros in the case of a write (W) operation.
With the CRC disabled, the basic data frame on the SDI line
during the transfer is 16 bits long, as shown in Figure 118.
When the CRC is enabled, a minimum frame length of 24 SCLK
periods are required on SPI transfers. The 24 bits of data on the
SDO line consist of an 8-bit header (0010 0000), 8 bits of data, and
an 8-bit CRC (see Figure 119).
AD7771 Data Sheet
Rev. A | Page 46 of 99
R/W A6 A5 A4 A3 A2 A1 A0 D6D7 D5 D4 D3 D2 D1 D0
0
SDO
CS
SCLK
SDI
0100000R7 R6 R5 R4 R3 R2 R1 R0
13802-118
Figure 118. 16-Bit SPI TransferCRC Disabled
R/W A6 A5 A4 A3 A2 A1 A0 D6D7 D5 D4 D3 D2 D1 D0 I
CRC7
I
CRC6
I
CRC5
I
CRC4
I
CRC3
I
CRC2
I
CRC1
I
CRC0
0
SDO
CS
SCLK
SDI
0 1 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 I
CRC7
I
CRC6
I
CRC5
I
CRC4
I
CRC3
I
CRC2
I
CRC1
I
CRC0
13802-119
Figure 119. 24-Bit SPI TransferCRC Enabled
SPI SAR Diagnostic Mode (SPI Control Mode)
Setting Bit 5 in the GENERAL_USER_CONFIG_2 register
configures the SDO line to shift out data from the SAR ADC
conversions, as described in Table 23.
In SAR mode, the AD7771 internal registers can be written to,
but any readback command is ignored because the SDO data
frame is dedicated to shift out the conversion results from the
SAR ADC.
To exit this mode of operation, reset Bit 5 in the GENERAL_
USER_CONFIG_2 register.
The data on the SDO line during the SPI transfer contains a
4-bit 0010 header and the 12-bit SAR conversion result if the
CRC is disabled.
When the CRC is enabled, a minimum frame length of 24 SCLK
periods is required on SPI transfers. The 24 bits of data on the
SDO line consist of a 4-bit header (0010), the 12-bit data, and
an 8-bit CRC, as shown in Figure 120.
Per the SPI read/write register mode (see the SPI Read/Write
Register Mode section), the SDI line contains the R/W bit, a 7-bit
register address, the 8-bit data, and an 8-bit CRC (if enabled).
To avoid unwanted writes to the internal register while the SAR
conversions are read back through the SDO line, it is recom-
mended to send a readback command, for example, 0x8000,
to the device, which is ignored because the SDO pin shifts out
the content of the SAR ADC.
If consecutive conversions are performed in the SAR ADC, read
back the result from the previous conversion before a new
conversion is generated. Otherwise, the results are corrupted.
Σ-Δ Data, ADC Mode
In pin control mode, the SPI can be used to read back the Σ-Δ
conversions as described in Table 13. In SPI control mode, the
SPI reads back the Σ-Δ conversions by setting GENERAL_USER_
CONFIG_3, Bit 4, as described in Table 23; in this mode, the
AD7771 internal register can be written to, but any readback
command is ignored because the SDO data frame is dedicated to
shifting out the conversion results from the Σ-Δ ADCs. To
avoid unwanted writes to the internal register, it is recommended
to send a readback command, for example, 0x8000, to the device,
which is ignored because the SDO pin shifts out the content of
the Σ-Δ ADC.
The SDO pin data can be read back in any multiple of 8 bits, for
example, as 64 bits, 2 × 32 bits, 4 × 16 bits, or 8 × 8 bits.
SPI Software Reset
Keeping the SDI pin high during 64 consecutives clocks
generates a software reset.
Data Sheet AD7771
Rev. A | Page 47 of 99
R/W A6 A5 A4 A3 A2 A1 A0 D6D7 D5 D4 D3 D2 D1 D0 I
CRC7
I
CRC6
I
CRC5
I
CRC4
I
CRC3
I
CRC2
I
CRC1
I
CRC0
0
SDO
CS
SCLK
SDI
0 1 0 SAR
11
SAR
10
SAR
9
SAR
8
SAR
6
SAR
7
SAR
5
SAR
4
SAR
3
SAR
2
SAR
1
SAR
0I
CRC7
I
CRC6
I
CRC5
I
CRC4
I
CRC3
I
CRC2
I
CRC1
I
CRC0
13802-120
Figure 120. SAR ADC/Diagnostic ModeCRC Enabled
13802-200
DRDY
CS
SCLK
SDI
SDO
0x800000 0x800000
HEADER CH0 D7CH0 TO D0CH0 HEADER CH1 D23CH1 TO D16CH1
D23CH0 TO D8CH0
Figure 121. SPI Used to Read Back the Σ-Δ ADC Data, in 24-Bit Frames
AD7771 Data Sheet
Rev. A | Page 48 of 99
RMS NOISE AND RESOLUTION
Table 25 through Table 28 show the dynamic range (DR), rms
noise (RTI), effective number of bits (ENOB), and effective
resolution (ER) of the AD7771 for various output data rates and
gain settings. The numbers given are for the bipolar input range
with an external 2.5 V reference. These numbers are typical and
are generated with a differential input voltage of 0 V when the
ADC is continuously converting on a single channel.
It is important to note that the effective resolution is calculated
using the rms noise; 16,384 consecutives samples were used to
calculate the rms noise.
Effective Resolution = log2(Input Range/RMS Noise)
ENOB = (DR − 1.78)/6
HIGH RESOLUTION MODE
Table 25. DR and RTI for High Resolution Mode
Sinc
Filter
Decimation
Rate
Output Data
Rate (SPS)
f−3 dB
(Hz)
Gain = 1 Gain = 2 Gain = 4 Gain = 8
DR
(dB)
RTI
(µV rms)
DR
(dB)
RTI
(µV rms)
DR
(dB)
RTI
(µV rms)
DR
(dB)
RTI
(µV rms)
Sinc5
16
128,000
26542.34
95.1
31.32
91.7
22.68
87.1
19.39
82.0
17.11
32 64,000 13403.14 101.8 14.31 98.5 10.30 94.4 8.41 89.7 7.37
64 32,000 6833.54 107.1 7.90 105.3 4.85 101.5 3.65 96.9 3.14
256 8,000 1906.34 114.4 3.34 113.8 1.84 111.6 1.16 107.9 0.91
Sinc3 128 16,000 4878.83 105.7 9.01 105.2 4.88 103.2 2.99 99.6 2.26
256 8,000 2756.43 112.1 4.32 111.5 2.31 109.3 1.52 105.5 1.19
512 4,000 1695.23 115.8 2.86 115.6 1.51 113.5 0.96 109.5 0.75
1024 1,000 899.33 122.0 1.39 121.6 0.73 119.6 0.47 115.7 0.36
Table 26. ENOB and ER for High Resolution Mode
Sinc
Filter
Decimation
Rate
Output Data
Rate (SPS)
f−3 dB
(Hz)
Gain = 1
Gain = 2
Gain = 4
Gain = 8
ENOB
(Bits)
ER
(Bits)
ENOB
(Bits)
ER
(Bits)
ENOB
(Bits)
ER
(Bits)
ENOB
(Bits)
ER
(Bits)
Sinc5 16 128,000 26542.34 15.5 17.3 14.9 17.8 14.2 18.0 13.3 18.2
32 64,000 13403.14 16.6 18.4 16.1 18.9 15.4 19.2 14.6 19.4
64 32,000 6833.54 17.5 19.3 17.2 20.0 16.6 20.4 15.8 20.6
256 8,000 1906.34 18.7 20.5 18.6 21.4 18.2 22.0 17.6 22.4
Sinc3 128 16,000 4878.83 17.3 19.1 17.2 20.0 16.9 20.7 16.3 21.1
256 8,000 2756.43 18.3 20.1 18.2 21.0 17.9 21.6 17.2 22.0
512 4,000 1695.23 18.9 20.7 18.9 21.7 18.6 22.3 17.9 22.7
1024
1,000
899.33
20.0
21.8
19.9
22.7
19.6
23.3
18.9
23.7
Data Sheet AD7771
Rev. A | Page 49 of 99
LOW POWER MODE
Table 27. DR and RTI for Low Power Mode
Sinc
Filter
Decimation
Rate
Output Data
Rate (SPS)
f−3 dB
(Hz)
Gain = 1 Gain = 2 Gain = 4 Gain = 8
DR
(dB)
RTI
(µV rms)
DR
(dB)
RTI
(µV rms)
DR
(dB)
RTI
(µV rms)
DR
(dB)
RTI
(µV rms)
Sinc5 16 32,000 6833.54 94.3 34.2 90.9 25.04 86.5 20.5 81.3 19.43
32
16,000
3548.74
100.9
15.7
97.8
11.22
93.6
9.0
87.9
8.39
64 8,000 1906.34 106.7 83.3 104.6 5.18 100.6 4.03 96.1 3.46
512 1,000 469.24 117.1 25.2 116.8 1.29 114.4 8.41 110.7 0.67
Sinc3 64 8,000 2756.43 95.5 29.86 95.0 15.26 93.7 8.9 90.8 6.11
128 4,000 1695.23 105.4 9.47 105.1 4.95 102.7 3.21 98.7 2.51
256 2,000 1164.63 111.7 4.62 111.2 2.41 108.9 1.57 104.8 1.27
1024 500 766.68 118.6 2.1 118.2 1.07 116.2 0.7 112.5 0.54
Table 28. ENOB and ER for Low Power Mode
Sinc
Filter
Decimation
Rate
Output Data
Rate (SPS)
f−3 dB
(Hz)
Gain = 1 Gain = 2 Gain = 4 Gain = 8
ENOB
(Bits)
ER
(Bits)
ENOB
(Bits)
ER
(Bits)
ENOB
(Bits)
ER
(Bits)
ENOB
(Bits)
ER
(Bits
Sinc5 16 32,000 6833.54 15.4 17.2 14.8 17.6 14.1 17.9 13.2 18.0
32 16,000 3548.74 16.5 18.3 16.0 18.8 15.3 19.1 14.3 19.2
64
8000
1906.34
17.4
15.9
17.1
19.9
16.4
20.2
15.7
20.5
512 1000 469.24 19.2 17.6 19.1 21.9 18.7 19.2 18.1 22.8
Sinc3 64 8,000 2756.43 15.6 17.4 15.5 18.3 15.3 19.1 14.8 19.6
128 4,000 1695.23 17.2 19.0 17.2 19.9 16.8 20.6 16.1 20.9
256
2,000
1164.63
18.3
20.0
18.2
21.0
17.8
21.6
17.1
21.9
1024 500 766.68 19.4 21.2 19.3 22.2 19.0 22.8 18.4 23.1
AD7771 Data Sheet
Rev. A | Page 50 of 99
DIAGNOSTICS AND MONITORING
SELF DIAGNOSTICS ERROR
The AD7771 includes self diagnostic features to guarantee the
correct operation. If an error is detected, the ALERT pin (Pin 18
when using pin control mode or Pin 16 when using SPI control
mode) is pulled high to generate an external interruption to the
controller. In addition, the header of the Σ-Δ output data
contains an alert bit that informs the controller of a chip error
(see the ADC Conversion OutputHeader and Data section).
Both the ALERT pin and bit (status header) are automatically
cleared if the error is no longer present. The errors related to the
SPI do not recover automatically; read back the appropriate
register to clear the error. The ALERT pin and bit reset in the
next SPI access after the bit is read back.
If an error detector is manually disabled, it does not generate an
internal error and, consequently, the register map or the
ALERT pin and bit are not triggered.
There are different sources of errors, as described in Table 29. In
pin control code, it is not possible to check the error source, and
some sources of error are not enabled. In SPI control mode, check
the source of an error by reading the appropriate register bit.
The STATUS_REG_x register bits identify the register that
generates an error, as summarized in Table 29.
Table 29. Register Error Source
Bit Name Register Source
ERR_LOC_GEN2 GEN_ERR_REG_2
ERR_LOC_GEN1 GEN_ERR_REG_1
ERR_LOC_CH7 CH7_ERR_REG
ERR_LOC_CH6 CH6_ERR_REG
ERR_LOC_CH5 CH5_ERR_REG
ERR_LOC_CH4 CH4_ERR_REG
ERR_LOC_CH3 CH3_ERR_REG
ERR_LOC_CH2 CH2_ERR_REG
ERR_LOC_CH1 CH1_ERR_REG
ERR_LOC_CH0 CH0_ERR_REG
ERR_LOC_SAT_CH6_7 CH6_7_SAT_ERR
ERR_LOC_SAT_CH4_5 CH4_5_SAT_ERR
ERR_LOC_SAT_CH2_3 CH2_3_SAT_ERR
ERR_LOC_SAT_CH0_1 CH0_1_SAT_ERR
In addition, the STATUS_REG_x registers have a bit that indicates
if any internal error bit is set, CHIP_ERROR. This bit clears if the
error is no longer present and the register is read back.
The INIT_COMPLETE bit in the STATUS_REG_3 indicates
that the device is initialized correctly. This bit is not an error bit but
an indicator.
General Errors
MCLK Switch Error (SPI Control Mode)
After power-up, the AD7771 initiates a clocking handover
sequence to pass clocking control to the external oscillator, or
the CMOS clock. In SPI control mode, if an error occurs in the
handover, the EXT_MCLK_SWITCH_ERR bit is set in the
general error register, GEN_ERR_REG_2.
If EXT_MCLK_SWITCH_ERR is set, this means that the device
is operating using the internal oscillator.
To use a slow external clock (<265 kHz), set the CLK_QUAL_
DIS bit. Setting this bit also clears the error bit.
If the external clock is between 132 kHz and 265 kHz, depending
on the internal synchronization between the internal oscillator
and the external clock, the error may not trigger. However, it is
still recommended to set the CLK_QUAL_DIS bit.
If a slow clock is not in use and the error triggers, a reset is required.
Reset Detection
The AD7771 general error register contains a RESET_DETECTED
bit. This bit is asserted if a reset pulse is applied to the AD7771
and is cleared by reading the general error register. This bit
indicates that the power-on reset (POR) initialized correctly on
the device. In addition, this bit can be used to detect an unexpected
device reset or glitch on the RESET pin. To reset this error signal
in SPI control mode, toggle the SYNC_IN pin or read from the
general error register, GEN_ERR_REG_2. To reset this error
signal in pin control mode, toggle the SYNC_IN pin.
Internal LDO Status
The AD7771 has three internal LDOs to regulate the internal
analog and digital supply rails. The LDOs have internal power
supply monitors. Internal comparators monitor and flag errors
with these supplies after they pass a predetermined limit.
The ALDO1_PSM_ERR, ALDO2_PSM_ERR, and DLDO_PSM_
ERR bits indicate either an LDO malfunction, or, if the LDOs
are bypassed, an incorrect external supply.
The internal analog and digital voltage monitors can be disabled
by appropriately selecting the LDO_PSM_TEST_EN bits.
Use the SAR ADC to verify the error.
Additionally, the levels of the internal monitors can be manually
triggered to check if the detector works correctly by appropriately
setting the LDO_PSM_TRIP_TEST_EN bits. These bits increase
the comparator window threshold above the LDO outputs,
forcing the comparator to trigger.
ROM and Memory Map CRC
If an error is found at power-up during the ROM verification,
or if the internal memory map is corrupted, the AD7771
generates an error and sets MEMMAP_CRC_ERR or ROM_
CRC_ERR, depending on the source of the error.
The checker can be disabled by clearing the MEMMAP_
CRC_TEST_EN and ROM_CRC_TEST_EN bits.
The device must be reset if any of these errors trigger.
Data Sheet AD7771
Rev. A | Page 51 of 99
Σ-Δ ADC Errors
Reference Detect (SPI Control Mode)
In SPI control mode, the AD7771 includes on-chip circuitry to
detect if there is a valid reference for conversions or calibrations. If
the voltage between the selected REFx+ and REFxpins goes
below 0.7 V, the AD7771 detects that it no longer has a valid
reference. CHx_ERR_REF_DET can be interrogated to identify
the affected channel, which clears the bits if the error is no
longer present. The voltage detector can be disabled by clearing
the REF_DET_TEST_EN bit.
Use the Σ ADC diagnostic or the SAR ADC to verify the error.
Overvoltage and Undervoltage Events
The AD7771 includes on-chip overvoltage/undervoltage
circuitry on each analog input pin. When the voltage on an
analog input pin goes above AVDD1x + 0.04 mV, the CHx_
ERR_AINx_OV bit is set. The error disappears if the input
voltage falls below AVDD1x40 mV.
If an undervoltage event occurs (AVSSx − 40 mV), the CHx_
ERR_AINx_UV bit is set. The error disappears if the input
voltage increases to AVSSx + 0.04 V.
The CHx_ERR_AINM_UV, CHx_ERR_AINM_OV, CHx_ERR_
AINP_UV, and CHx_ERR_AINP_OV bits can be read back to
verify the affected channel input, which clears the bits if the
error is no longer present. The overvoltage and undervoltage
detection can be disabled independently by clearing the AINM_
UV_TEST_EN, AINM_OV_TEST_EN, AINP_UV_TEST_EN,
or AINP_OV_TEST_EN bit.
The input voltage can be checked independently with the
SAR ADC.
Modulator Saturation
The AD7771 includes modulator saturation detection on each
of the Σ-Δ ADCs. If 20 consecutive codes for the modulator
are either all 1s or 0s, this condition is flagged as a modulator
saturation event. Reading CHx_ERR_MOD_SAT clears the bit
if the error corrects itself.
Modulator saturation detection can be disabled by clearing the
MOD_SAT_TEST_EN bit.
Note that the modulator input voltage is attenuated internally,
which means that a modulator output of all 1s or 0s represents a
modulator that is out of bounds and that a RESET pulse is required.
Filter Saturation
TheAD7771 includes digital filter saturation detection on each
Σ-Δ ADC channel. This detection indicates that the filter output is
out of bounds, which represents an output code approximately 20%
higher than positive or negative full scale. Reading the CHx_ERR_
FILTER_SAT bit clears the bit if the error corrects itself.
The detection can be disabled by clearing FILTER_SAT_TEST_
EN bit.
Output Saturation
An output saturation event can occur when gain and offset
calibration causes the output from the digital filter to clip at
either positive or negative full scale. The output does not wrap.
Reading the CHx_ERR_OUTPUT_SAT bit clears the bit if the
error corrects itself.
The detection can be disabled by clearing OUTPUT_SAT_
TEST_EN bit.
SPI Transmission Errors (SPI Control Mode)
All SPI errors clear after reading GEN_ERR_REG_1, which
contains the SPI errors. These errors are not recovered automatically
and, consequently, the ALERT pin and the ALERT bit remain
set until the error register is read back.
CRC Checksum Error
If the CRC checksum is enabled by setting the SPI_CRC_
TEST_EN bit, an error bit, SPI_CRC_ERR, is raised if the CRC
message does not match the message computed by the AD7771
internal CRC block. If the CRC message does not match the
internally computed message, the register is not updated.
SCLK Counter
If the number of clocks generated by the controller is not a
multiple of 8 after CS is pulled high, an error bit, SPI_CLK_
COUNT_ERR is raised. The last command multiple of 8 is
executed; however, the SCLK counter can be disabled by setting
the SPI_CLK_COUNT_TEST_EN bit.
Invalid Read
When attempting to read back an invalid register address, the
SPI_INVALID_READ_ERR bit is set.
The invalid readback address detection can be disabled by
setting the SPI_INVALID_READ_TEST_EN bit.
Invalid Write
When attempting to write to an invalid register address, the
SPI_INVALID_WRITE_ERR bit is set.
The invalid write address detection can be disabled by setting
the SPI_INVALID_WRITE_TEST_EN bit.
MONITORING USING THE AD7771 SAR ADC
(SPI CONTROL MODE)
The AD7771 contains an on-chip SAR ADC for chip diagnostics,
system diagnostics, or measurement verification. The SAR ADC
has a 12-bit resolution. The AVDD4 and AVS S4 pins operate in
complete independence of the Σ-Δ ADC supplies and, therefore,
can be used for chip diagnostics in systems where functional
safety is important. The reference for the SAR conversion
process is taken from the SAR ADC supply voltage (AVDD4/
AVSS4) and, therefore, the SAR analog input range is from AVSS4
to AVDD4.
AD7771 Data Sheet
Rev. A | Page 52 of 99
The SAR ADC has a maximum throughput rate of 256 kSPS.
The CONVST_SAR pin initiates a conversion on the SAR ADC.
The maximum allowable frequency of the CONVST_SAR pin is
256 kHz. If consecutive conversions are performed in the SAR
ADC, read back the result from the previous conversion before
a new conversion is generated. Otherwise, the results are
corrupted.
The SAR ADC is only available in SPI control mode. To read
conversion results from the SAR ADC, set the SAR_DIAG_
MODE_EN bit. After this bit is set, all data shifted out from the
SDO pin originates from the SAR ADC conversion, as shown in
Figure 122.
The CONVST_SAR signal can be internally deglitched to avoid
false triggers.
Table 30. SAR Synchronization and Deglitching
CONVST_DEGLITCH_DIS
(Register 0x013, Bits[7:6]) Effect on CONVST_SAR
11 CONVST_SAR goes directly to the SAR
10 CONVST_SAR reaches the SAR when
it is 1.5/MCLK cycles wide
Increase the acquisition time by 1.5/MCLK when the deglitch
circuitry is enabled.
Prior to the SAR ADC, the AD7771 contains an internal
multiplexer. This multiplexer can be configured over the SPI to
set the inputs to the SAR ADC to be either internal circuit
nodes (in the case of diagnostics) or to select the external
AUXAIN+ and AUXAIN− pins.
Along with converting external voltages, the SAR ADC monitors
the internal nodes on the AVDD, IOVDD, and DGND pins, and
the DLDO and analog LDO (ALDO) outputs. Some voltages are
internally attenuated by 6, and the resulting voltage is applied to
the SAR ADC, as shown in Table 31. This is useful because
variations in the power supply voltage can be monitored.
The input multiplexer of the SAR is controlled by the GLOBAL_
MUX_CONFIG register, and the different inputs available are
described in Table 31.
The SAR ADC also contains an SAR driver amplifier, as shown
in Figure 123. This amplifier settles the SAR input to 12-bit
accuracy within the t33 time. This driver amplifier helps
minimize the kickback from the SAR converter to the global
diagnostic mux input circuit nodes.
Use the auxiliary inputs, AUXAIN+ and AUXAIN−, to validate
the Σ-Δ measurements. While operating in SPI control mode,
the AD7771 has three available GPIOx ports controlled via the
SPI. The GPIOx pins can be used to control an external, dual
8:1 multiplexer, which, in turn, samples the eight Σ-Δ channels.
Use this diagnostic in applications where functional safety is
required. This diagnostic aids in removing the need for a
secondary external ADC to validate primary measurements on
the Σ-Δ channels.
Temperature Sensor
The internal die temperature can be measured with an accuracy
of ±C. The differential voltage base emitter (DVBE) is
proportional to the temperature measured referred to 25°C.
Temperature (°C) =
mV2
V6.0
BE
DV
Table 31. SAR Mux Inputs
SAR
Input
Positive
Signal
Negative
Signal Attenuation ÷ 6
0 AUXAIN+ AUXAIN− No
1 DVBE AVSSx No
2
REF1+
REF1−
No
3 REF2+ REF2− No
4 REF_OUT AVSSx No
5 VCM AVSSx No
6 AREG1CAP AVSSx Yes
7 AREG2CAP AVSSx Yes
8 DREGCAP DGND Yes
9 AVDD1A AVSSx Yes
10 AVDD1B AVSSx Yes
11 AVDD2A AVSSx Yes
12 AVDD2B AVSSx Yes
13 IOVDD DGND Yes
14 AVDD4 AVSSx No
15 DGND AVSSx Yes
16 DGND AVSSx Yes
17 DGND AVSSx Yes
18 AVDD4 AVSSx Yes
19
REF1+
AVSSx
No
20 REF2+ AVSSx No
21 AVSSx AVDD4 Yes
CS
SDI
SDO
SET BIT 5
GENERAL_USER_CONFIG_2 REG WRITE TO ADC MUX REGISTER WRITE TO ADC MUX REGISTER
ADC CONVERSION RESULT REG ADC CONVERSION RESULT REG
13802-121
Figure 122. Configuring the AD7771 to Operate the SPI to Read from the SAR ADC
Data Sheet AD7771
Rev. A | Page 53 of 99
SAR DRIVER
CONTROL LOGIC
FIFO
ON-CHIP
DIAGNOSTICS
SPI
AUXAIN+
AUXAIN–
AVDD4
AVSS4
CONVST_SAR
MUX
DEGLITCH
SAR ADC
REF
13802-122
Figure 123. SAR ADC Configuration and Control
Table 32. Σ-Δ Diagnostic
Input Voltage Recommended Voltage Reference Notes/Result
0 Floating Not applicable Not applicable
1 Floating Not applicable Not applicable
2 280 mV differential signal Internal/external PGA gain verification
3 External reference, positive/negative External Positive full scale
4
External reference, negative/positive
External
Negative full scale
5 External reference, negative/negative External Zero scale
6 Internal reference, positive/negative Internal Positive full scale
7 Internal reference, negative/positive Internal Negative full scale
8 Internal reference, positive/positive Internal Zero scale
9
External reference, positive/positive
External
Zero scale
Σ-Δ ADC DIAGNOSTICS (SPI CONTROL MODE)
The AD7771 Σ-Δ ADC diagnostic functions are accessible
through the SPI. The internal mux placed before the PGA has
different inputs, allowing the user to select a zero-scale, positive
full-scale, or negative full-scale input to the Σ-Δ ADC, which
can be converted to verify the correct operation of the
Σ-Δ ADC channel.
The diagnostic mux control signals are shared across all the Σ-Δ
channels. Depending on the diagnostic selected, connect the
Σ-Δ ADC reference to a different reference source to guarantee
that the conversion is within the measurable range.
There are two different ways to enable the diagnostic mux, as
follows:
Setting the CHx_RX bit. This bit enables the input Σ-Δ
mux. The multiplexer inputs are described in Table 32. The
reference used during the conversions are controlled by the
REF_MUX_CTRL bits.
Setting CHx_REF_MONITOR. This bit has the same effect
as enabling the CHx_RX bit and selects the VDD1x/
AVSSx supplies as the main reference.
If the AINx± pin is connected to AVSSx, the input range is
outside the range of AVSSx + 10 0 mV; therefore, results may
differ slightly from the expected value.
Alternatively, the inputs can be used to calibrate gain and offset
errors.
AD7771 Data Sheet
Rev. A | Page 54 of 99
Σ
-∆ OUTPUT DATA
ADC CONVERSION OUTPUT—HEADER AND DATA
The AD7771 Σ-Δ conversion results are output on the DOUT0
to DOUT3 pins or over the SPI, depending on the selected
interface. If the DOUTx interface is selected, the AD7771 acts
as the master in the transmission. If the SPI is selected, the
controller is the master.
The DRDY signal indicates the end of conversion independent of
the interface selected to read back the Σ-Δ conversion. When
the SPI reads back the Σ-Δ conversion, if a new conversion is
completed (DRDY falling edge) before the previous conversion is
read back, the results from previous conversion are overwritten
and, consequently, the previous conversion data is corrupted.
For each channel, the width is 32 bits long: 8 bits for the header
and 24 bits for the Σ-Δ conversion, as shown in Figure 124.
ADC DATA N
N – 1
24-BITS
8-BITS
DOUTx
DRDY
HEADER N
13802-123
Figure 124. ADC Output—8-Bit Header Plus 24-Bit Conversion Data
In pin control mode, the header is fixed to the CRC while in SPI
mode, and can be selected between the CRC and error headers.
CRC Header
The CRC header is the header generated in pin control mode or
in SPI control mode if DOUT_HEADER_FORMAT is set.
As shown in Figure 125, the header consists of an alert bit,
three bits for the ADC channel ID, as shown in Table 33, and
four bits for the CRC.
The alert bit is set high if an error is detected in any channel, as
explained in the General Errors section. The alert bit remains
set to 1 until the error disappears.
ALERT CHANNEL
NUMBER
CHANNEL
NUMBER
CHANNEL
NUMBER CRC CRC CRC CRC
13802-124
Figure 125. CRC Header
Table 33. Channel ID
Channel CH_ID_2 CH_ID_1 CH_ID_0
0 0 0 0
1 0 0 1
2 0 1 0
3
0
1
1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
The CRC generated is eight bits long; the 4 MSBs are placed on the
header for the first channel in the pairing and the 4 LSBs on the
header of the second channel in the pairing, as shown in
Table 34. If a channel is disabled, the 24-bit output data for this
channel is 0x000000.
Table 34. 8-Bit CRC, Header Configuration (Channel 2)
CE 0 1 0 CRC7 CRC6 CRC5 CRC4
Table 35. 8-Bit CRC, Header Configuration (Channel 3)
CE 0 1 1 CRC3 CRC2 CRC1 CRC0
Error Header (SPI Control Mode)
In SPI control mode, the default header can be replaced by an
error header. If the Σ-Δ conversion is read back through the
SPI, disable the CRC by clearing the SPI_CRC_TEST_EN bit. If
the DOUTx interface is used, clear the DOUT_HEADER_
FORMAT bit.
The error header provides information of common error
sources specific for each channel, as shown in Table 36.
Modulator and filter errors are indicated even if the checker for
these errors are specifically disabled, as described in the Σ-Δ
ADC Errors section.
Table 36. Status Header Output
Bits Name Description
7 Alert This bit is set high if any of the enabled diagnostic functions have detected an error, including an
external clock not detected, a memory map bit flip, or an internal CRC error. This bit is not channel specific.
This bit clears if the error is no longer present.
6:4 CH_ID_[2:0] These bits indicate which ADC channel the following conversion data came from (see Table 33).
3 RESET_DETECTED This bit indicates if a reset condition occurs. This bit is not channel specific.
2 MODULATOR_SATURATE This bit indicates that the modulator output is 20 consecutive 0s or 1s. The bit resets automatically
after the error is no longer present.
1 FILTER_SATURATE This bit indicates that the filter output is out of bounds. The bit resets automatically after the error is
no longer present.
0 AIN_OV_UVERROR This bit indicates that there is an AINx± overvoltage/undervoltage condition on the inputs. This bit is
set until the appropriate register is read back and the error is no longer present.
Data Sheet AD7771
Rev. A | Page 55 of 99
SAMPLE RATE CONVERTER (SRC) (SPI CONTROL
MODE)
The AD7771 implements a patented featured called the SRC on
each Σ-Δ channel that allows the user to configure the output
data rate or sampling frequency to any desired value, including
noninteger values. The SRC achieves fine resolution control
over the Σ-Δ ADC ODR, up to 15.2 µSPS. In applications where
the ODR must change based on changes in the input signal to
maintain sampling coherency, the SRC provides fine control
over the ODR. For example, to achieve the highest classification
standard, Class A, in power quality applications, coherency
must be maintained for 0.01 Hz changes in the input power
line. Use the SRC to achieve this sampling frequency accuracy.
In pin control mode, the ODR is fixed per the predefined pin
control options. Consequently, a noninteger number cannot be
selected, as shown in Table 13.
To set the ODR, the user must program up to four registers,
depending on the decimation value: two registers to program the
integer value, N (the effective decimation rate), and two registers
to program the decimal value, the interpolation factor (IF).
The integer value registers are SRC_N_MSB, Bits[3:0] and
SRC_N_LSB, Bits[7:0]. The decimal part value registers are
SRC_IF_MSB, Bits[7:0] and SRC_IF_LSB, Bits[7:0].
As an example, if an output data rate of 2.8 kHz is required, the
decimation rate equates to
High resolution mode = 2048/2.8 = 731.428
Low power mode = 512/2.8 = 182.857
The register values for high resolution mode are as follows:
731 (decimal) = 0x2DB
SRC_N_MSB, Bits[3:0] = 0x02
SRC_N_LSB, Bits[7:0] = 0xDB
0.428 (decimal) = 0.428 × 216 = 28049 (decimal) = 0x6D91
SRC_IF_MSB, Bits[7:0] = 0x6D
SRC_IF_LSB, Bits[7:0] = 0x91
The SRC resolution depends on the decimal number used in the
decimation, as well as the modulator clock (MOD_MCLK), as
follows:
16
216
2
1
232 ×+×+
×
=
DECDEC
MOD
Resolution
MCLK
where:
MODMCLK is the modulator frequency.
DEC is the decimal portion of the decimation rate.
In high resolution mode, for a decimal decimation of 450, the
resolution is defined as
SPS102.15
2
1
45034502
2048
6
16
2216
×=
××+×
The ODR can be updated on the fly, but a new ODR is effective
in three conversion cycles of the Σ-Δ ADCs. This condition
guarantees a smooth transition with no conversion results out
of range.
There are two different ways to change the ODR after a new
value is written in the SRC registers: via software or via
hardware, depending on the SRC_LOAD_SOURCE bit
(SRC_UPDATE register, Bit 7).
If the SRC_LOAD_SOURCE bit is clear, the new ODR value is
updated by setting the SRC_LOAD_UPDATE bit to 1. This bit
must be held high for at least two MLCK periods; return the bit
to 0 before attempting another update.
If SRC_LOAD_SOURCE is set, the GPIO0 pin controls the ODR
update externally. Apply a pulse in the GPIO2 pin, which is then
internally synchronized with the external MCLK clock, and the
resultant synchronous signal is output on the GPIO1 pin.
The GPIO1 and GPIO0 pins must be externally connected.
If multiple AD7771 devices must be synchronized, the GPIO1 pin
of one device can be connected to multiple devices. This synchro-
nization method requires the use of a common MCLK signal for all
the AD7771 devices connected, as shown in Figure 126.
GPIO2
GPIO0
GPIO0
GPIO0
MCLK GPIO1
GPIO2
MCLK GPIO1 NC
GPIO2
MCLK GPIO1 NC
AD7771
AD7771
AD7771
SYNCHRONIZATION
LOGIC
PULSE
DIGITAL FILTER
SYNCHRONIZATION
LOGIC
DIGITAL FILTER
SYNCHRONIZATION
LOGIC
DIGITAL FILTER
MCLK
13802-125
Figure 126. Hardware ODR Update
AD7771 Data Sheet
Rev. A | Page 56 of 99
SRC Bandwidth
The sinc3 and sinc5 filters architecture allows the user to select
a noninteger value as the decimation range This versatility
means that the filter notches must be adjusted dynamically:
two notches (sinc3) or four notches (sinc5) at the variable
frequency, and one fixed notch to remove the PGA chopping
tone. Consequently, the traditional formula for the −0.1 dB and
−3 dB bandwidth must be adjusted depending on the selected
decimation rate.
The bandwidth transfer function is not linear but can be
approximated by using a linear function.
Figure 127 to Figure 130 show the correction factor for the
−0.1 dB and −3 dB bandwidth, respectively. In low power mode,
the offset must be divided by 4. For example, for sinc5 when the
ODR = 1000 SPS, the −0.1 dB point is
BW = 0.0377 × 1000 +
4
355
.
49
= 50.03 Hz
7
0
1
2
3
4
5
6
010050
–0.1dB FREQUENCY (kHz)
ODR (kHz)
13802-126
y = 0.049x + 120.41
Figure 127. −0.1 dB Correction Factor, Sinc3 Filter Enabled
6
0
1
2
3
4
5
010050
–0.1dB FREQUENCY (kHz)
ODR (kHz)
13802-127
y = 0.0377x + 49.355
Figure 128. −0.1 dB Correction Factor, Sinc5 Filter Enabled
40
0
5
10
15
20
25
30
35
010050
–3dB FREQUENCY (kHz)
ODR (kHz)
13802-128
y = 0.2653x + 634.03
Figure 129. −3 dB Correction Factor, Sinc3 Filter Enabled
30
0
5
10
15
20
25
010050
–3dB FREQUENCY (kHz)
ODR (kHz)
13802-129
y = 0.2053x + 263.94
Figure 130. −3 dB Correction Factor, Sinc5 Filter Enabled
SRC Group Delay
The SRC group delay depends on the selected ODR and is
defined by the following equation:
SRC Group Delay =
ODRNSRC
NSRCPM
×
+
_
_
where:
PM is a constant equal to 8.
SRC_N is the integer value of the programmed ODR.
ODR is the programmed output data rate.
When using the sinc5 filter, the equation that defines the group
delay is
SRC Group Delay =
ODRNSRC
NSRCPM
×
×+
_
_2
The latency is the contribution of the group delay and the
calibration time.
Latency = Group Delay + tCAL
In high resolution mode, the calibration delay is defined as 62 ×
tMCLK, with a maximum error of 2 × tMCLK. In low power mode,
the calibration delay is defined as 121 × tMCLK, with a maximum
error of 4 × tMCLK. tMCLK is the modulator period and is 488 ns in
high resolution mode and 1.9 µs in low power mode.
Data Sheet AD7771
Rev. A | Page 57 of 99
Settling Time
The settling time is defined by the contribution of all the internal
stages, the filter delay, and the block calibration.
When using the sinc3 filter option, the filter delay is defined as
3/ODR. In some extreme cases, such as when an external pulse is
applied, this value may increase to 4/ODR. If using the sinc5 filter,
the filter delay is defined as 5/ODR, or 6/ODR for extreme cases.
DATA OUTPUT INTERFACE
The Σ-Δ output data interface is defined by the CONVST_SAR,
FORMAT0, and FORMAT1 pins in pin control mode at power-up.
The FORMATx pins cannot be changed dynamically. Table 14
shows the available options for pin control mode. If the device
is configured in SPI control mode, the SPI_SLAVE_MODE_
EN bit enables the SPI to transmit the Σ-Δ ADC conversion
results, as shown in Table 23.
DOUT3 to DOUT0 Data Interface
Standalone Mode
In standalone mode, the AD7771 interface acts as a master.
There are three different DOUT configurations, configurable
through the FORMATx pins in pin control mode, as shown in
Figure 131 through Figure 133, or via the DOUT_FORMAT bits,
Bits[7:6], in SPI control mode, as described in Table 37.
Figure 134, Figure 135, and Figure 136 show the expected data
outputs for different DOUTx output modes.
Table 37. DOUTx Channels
DOUT_FORMAT Bits/
FORMATx Pins
Number of DOUTx
Lines Enabled Associated Channels
00 4 DOUT0Channel 0 and Channel 1
DOUT1Channel 2 and Channel 3
DOUT2Channel 4 and Channel 5
DOUT3Channel 6 and Channel 7
01 2 DOUT0Channel 0, Channel 1, Channel 2, and Channel 3
DOUT1Channel 4, Channel 5, Channel 6, and Channel 7
10 or 11 1 DOUT0Channel 0, Channel 1, Channel 2, Channel 3, Channel 4, Channel 5,
Channel 6, and Channel 7
DOUT0
DOUT1
DOUT2
DOUT3
DCLK
DRDY
FORMAT1
DAISY-CHAINING IS
NOT POSSIBLE IN THIS FORMAT
FORMAT0
AD7771
CH 0 CH 1
CH 0 CH 1
CH 0 CH 1
CH 0 CH 1
13802-130
DGND
DOUT0: CH 0, CH 1
DOUT1: CH 2, CH 3
DOUT2: CH 4, CH 5
DOUT3: CH 6, CH 7
0
0
00
Figure 131. FORMATx Pin ConfigurationFORMAT0 = 0, FORMAT1 = 0
DOUT0
DOUT1
DCLK
DRDY
FORMAT1
IOVDD
DAISY-CHAINING IS
POSSIBLE IN THIS FORMAT
DGND
FORMAT0
CH 0, CH 1, CH 2, CH 3
OUTPUT ON DOUT0
CH 4, CH 5, CH 6, CH 7
OUTPUT ON DOUT1
01
1
0
AD7771
CH 4 CH 5 CH 6 CH 7
CH 0 CH 1 CH 2 CH 3
13802-131
Figure 132. FORMATx Pin ConfigurationFORMAT0 = 1, FORMAT1 = 0
DOUT0
DCLK
DRDY
FORMAT1
IOVDD
DAISY-CHAINING IS
POSSIBLE IN THIS FORMAT
DGND
FORMAT0
CH 0 TO CH 7
OUTPUT ON DOUT0
10
0
1
AD7771
CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7
13802-132
Figure 133. FORMATx Pin ConfigurationFORMAT0 = 0, FORMAT1 = 1
AD7771 Data Sheet
Rev. A | Page 58 of 99
CH0-S0 CH1-S0
CH2-S0 CH3-S0
CH0-S1 CH1-S1
CH2-S1 CH3-S1
DCLK
DRDY
DOUT0
SAMPLE N SAMPLE N + 1
DOUT1
CH4-S0 CH5-S0
CH6-S0 CH7-S0
CH4-S1 CH5-S1
CH6-S1 CH7-S1
DOUT0
DOUT1
13802-133
Figure 134. FORMAT0 = 0, FORMAT1 = 0Each DOUTx Outputs Two ADC Conversions (S0 Means Sample 0 and S1 Means Sample 1)
CH0-S0 CH1-S0 CH2-S0 CH3-S0
CH7-S0CH4-S0 CH5-S0 CH6-S0
CH0-S1 CH1-S1 CH2-S1 CH3-S1
CH7-S1CH4-S1 CH5-S1 CH6-S1
DCLK
DRDY
DOUT0
SAMPLE N SAMPLE N + 1
DOUT1
DOUT3
DOUT2
13802-134
Figure 135. FORMAT0 = 0, FORMAT1 = 1Channel 0 to Channel 3 Share DOUT0, and Channel 4 to Channel 7 Share DOUT1 (S0 Means Sample 0 and S1 Means Sample 1)
DCLK
DRDY
DOUT0
SAMPLE N SAMPLE N + 1 SAMPLE N + 2
DOUT3
DOUT2
DOUT1
CH0-S0 CH1-S0 CH2-S0 CH...-S0 CH6-S0 CH7-S0 CH0-S1 CH0-S2 CH0-S3CH1-S1 CH2-S1 CH...-S1 CH6-S1 CH7-S2 CH1-S2 CH2-S2 CH...-S2 CH6-S2 CH7-S2
13802-135
Figure 136. FORMAT0 = 1, FORMAT1 = 0Channel 0 to Channel 7 Output on DOUT0 Only (S0 Means Sample 0 and S1 Means Sample 1)
Data Sheet AD7771
Rev. A | Page 59 of 99
Daisy-Chain Mode
Daisy-chaining devices allows numerous devices to use the
same data interface lines by cascading the outputs of multiple
ADCs from separate AD7771 devices. In daisy-chain configura-
tion, only one device has a direct connection between the
DOUTx interface and the digital host. For the AD7771, daisy-
chain capability is implemented by cascading DOUT0 and DOUT1
through a number of devices, or by just using DOUT0 (the
number of DOUTx pins available depends on the selected
DOUTx mode). The ability to daisy-chain devices and the limit
on the number of devices that can be handled by the chain is
dependent on the selected DOUTx mode and the decimation
rate employed.
When operating in daisy-chain mode, it is required that all
AD7771 devices in the chain are correctly synchronized. See
the Digital Reset and Synchronization Pins section for more
information.
This feature is especially useful for reducing the component
count and wiring connections in, for example, isolated
multiconverter applications or for systems with a limited
interfacing capacity.
For daisy-chain operation, there are two different configurations
possible, as described in Table 38.
Using the FORMATx = 10 mode, DOUT2 acts as an input pin, as
shown in Figure 137. In this case, the DOUT0 pin of the AD7771
devices is cascaded to the DOUT2 pin of the next device in the
chain. Data readback is analogous to clocking a shift register
where data is clocked on the rising edge of DCLK.
Table 38. DOUTx Modes in Daisy-Chain Operation
DOUT_FORMAT Bits/
FORMATx Pins Number of DOUTx Lines Enabled Associated Channels
01 2 DOUT0Channel 0 to Channel 3 and DOUT2
DOUT1Channel 4 to Channel 7 and DOUT3
DOUT2input channel
DOUT3input channel
10 1 DOUT0Channel 0 to Channel 7 and DOUT2
DOUT2—input channel
U2 S0 CH0 TO CH7
U2 S0 CH0 TO CH7
U1 S0 CH0 TO CH7
0
0
U2 S0 CH0 TO CH7
U1 S0 CH0 TO CH7
0
U2 S1 CH0 TO CH7
U2 S1 CH0 TO CH7
U1 S1 CH0 TO CH7
0
0
U2 S1 CH0 TO CH7
U2 S3 CH0 TO CH7
0
U2 S0 CH0 TO CH7
U2 S0 CH0 TO CH7
U1 S1 CH0 TO CH7
0
U2 DOUT0
U1 DOUT2/DIN0
U1 DOUT0
U2 DOUT2/DIN0
DRDY
DCLK
U2
DOUT2/DIN0 DOUT0
U2
DOUT2/DIN0 DOUT0
13802-136
Figure 137. Daisy-Chain Connection Mode, FORMAT0 = 1, FORMAT1 = 0 (S0 Means Sample 0 and S1 Means Sample 1); When Connected in Daisy-Chain Mode,
DOUT2 Acts as an Input Pin, Represented by DIN0
AD7771 Data Sheet
Rev. A | Page 60 of 99
Minimum DCLKx Frequency
Select the DCLKx frequency ratio in such a way that the data is
completely shifted out before a new conversion is completed;
otherwise, the previous conversion is overwritten and the trans-
mission becomes corrupt. The minimum DCLKx frequency ratio
is defined by the decimation rate, the operation mode, and the
lines enabled on the DOUT3 to DOUT0 data interface as
described in the following equations:
In standalone, high resolution mode,
DCLKMIN_RATIO < Decimation/(8 × DOUT_FORMAT)
In standalone, low power mode,
DCLKMIN_RATIO < Decimation/(4 × DOUT_FORMAT)
In daisy-chain, high resolution mode,
DCLKMIN_RATIO < Decimation/(8 × Devices × DOUTx Channels)
In daisy-chain, low power mode,
DCLKMIN_RATIO < Decimation/(4 × Devices × DOUTx Channels)
As an example, when operating in master interface mode,
FORMATx = 01, the DOUT0 and DOUT1 pins shift out four
Σ-Δ channels each and, assuming a maximum output rate in
high resolution mode, the decimation = 128.
DCLKMIN < 128/(8 × 4) = 4
If the DCLKMIN_RATIO is selected above the necessary minimum,
a Logic 0 is continuously transmitted until a new sample is
available.
An example in daisy-chain mode, assuming FORMATx = 01,
and with three devices connected and a decimation rate of 256
in high resolution mode, is as follows:
DCLKMIN_RATIO < 256/(8 × 3 × 4) = 2.66 = 2
The different ratios are summarized in Table 39.
Table 39. Available DCLK Ratios
DCLK_CLK_DIV (SPI Control Mode),
DCLKx (Pin Control Mode) DCLKx Ratio
000 1
001 2
010 4
011 8
100
16
101 32
110 64
111 128
There are maximum achievable ODRs and minimum DCLKx
frequencies required for a given DOUTx pin configuration, as
shown in Table 40 and Table 41.
Table 40. Maximum ODRs and Minimum DCLKx
Frequencies in High Resolution Mode
Decimation
Rate
ODR
(kSPS)
Minimum DCLKx (kHz)1
1 × DOUTx 2 × DOUTx 4 × DOUTx
4095 0.500122 128 64 32
2048 1 256 128 64
1024 2 512 256 128
512 4 1024 512 256
256 8 2048 1024 512
128 16 4096 2048 1024
64 32 8192 4096 2048
32 64 N/A 8192 4096
16 128 N/A N/A 8192
1 N/A means not applicable.
Table 41. Maximum ODRs and Minimum DCLK
Frequencies in Low Power Mode
Decimation
Rate
ODR
(kSPS)
Minimum DCLKx (kHz)
1 × DOUTx
2 × DOUTx
4 × DOUTx
2048
0.25
64
32
16
1024 0.5 128 64 32
512 1 256 128 64
256 2 512 256 128
128 4 1024 512 256
64 8 2048 1024 512
32 16 4096 2048 1024
16 32 N/A1 4096 2048
1 N/A means not applicable.
If the AD7771 operates in SPI control mode, it is possible to
adjust the DOUTx strength, which can be selected in the
DOUT_DRIVE_STR bits, as described in Table 42.
Table 42. DOUTx Strength
DOUT_DRIVE_STR Mode
00 Nominal
01 Strong
10
Weak
11 Extra strong
SPI
The SPI gives the user flexibility to read the conversion from the
Σ-Δ ADC where the processor or microcontroller is the master.
When a new conversion is completed, the DRDY signal is
toggled to indicate that data can be accessed. When DRDY
toggles, the internal channel counter is reset and the next SPI
read originates from Channel 0 again. Conversely, after the last
channel data is read, all successive reads before the next DRDY
signal originate from Channel 7 (LSB).
Data Sheet AD7771
Rev. A | Page 61 of 99
CH0_HEADER _+_CH0_8_BITS_MSB CH0_16_BITS_LSB
13802-137
CS
SDO
Figure 138. SPI Readback, 16 Bits per Frame
CS
SDO
CH0_HEADER _+_CH0_16_BITS_MSB CH0_8_BITS_LSB_+_CH1_HEADER_+CH1_8_BITS_MSB
13802-138
Figure 139. SPI Readback, 24 Bits per Frame
The SPI operates in multiples of 8 bits per frame; Figure 138 shows
a readback example in 16 bits per frames, and Figure 139 shows a
readback in 24 bits per frame.
Note that if the device is configured in SPI control mode, the
AD7771 generates a software reset if the SDI pin is sampled
high for 64 consecutive clocks. To avoid a reset or unwanted
register writes, it is recommended to transfer a 0x8000 command,
which generates a readback command that is ignored by the
device, as explained in the SPI Software Reset section.
CALCULATING THE CRC CHECKSUM
The AD7771 implements two different CRC checksum
generators, one for the Σ-Δ results and another for the SPI
control mode.
The AD7771 uses a CRC polynomial to calculate the CRC
checksum value. The 8-bit CRC polynomial used is x8 + x2 + x + 1.
The polynomial is aligned so that its MSB is adjacent to the
leftmost Logic 1 of the data. An exclusive OR (XOR) function is
applied to the data to produce a new, shorter number. The
polynomial is again aligned so that its MSB is adjacent to the
leftmost Logic 1 of the new result, and the procedure is
repeated. This process is repeated until the original data is
reduced to a value less than the polynomial. This is the 8-bit
checksum.
An example of CRC calculation for 12-bit data is shown in
Table 43.
Table 43. Example CRC Calculation for 12-Bit Data1
Data 0 1 1 0 0 1 0 0 1 1 1 0
Polynomial 1 0 0 0 0 0 1 1
1 0 0 1 0 1 0 1 1 0
1 0 0 0 0 0 1 1
CRC 0 1 0 1 1 1 1 0
1 This table represents the division of the data; blank cells are for formatting
purposes.
Σ-Δ CRC Checksum
The CRC message is calculated internally by the AD7771 on
ADC pairs. The CRC is calculated using the ADC output data
from two ADCs and Bits[7:4] from the header. Therefore, 56 bits
are used to calculate the 8-bit CRC. This CRC is split between
the two channel headers. The CRC data covers channel pairings
as follows: Channel 0 and Channel 1, Channel 2 and Channel 3,
Channel 4 and Channel 5, and Channel 6 and Channel 7.
To generate the checksum, the data is left shifted by eight bits to
create a number ending in eight Logic 1s.
The CRC is calculated from 56 bits across two consecutive/
channel pairings (Channel 0 and Channel 1, Channel 2 and
Channel 3, Channel 4 and Channel 5, Channel 6, and Channel 7).
The 56 bits consist of the alert bit, the 3 bits for the first ADC
pairing channel, and the 24 bits of data of each pairing channel.
For example, for the second channel pairing, Channel 2 and
Channel 3,
56 bits = alert bit + 3 ADC channel bits (010) + 24 data bits
(Channel 2) + alert bit + 3 ADC channel bits (011) +
24 data bits (Channel 3)
SPI Control Mode Checksum
The CRC message is calculated internally by the AD7771. The
data transferred to the AD7771 uses the R/W bit, a 7-bit address,
and 8 bits of data for the CRC calculation.
The CRC calculated and appended to the data that is shifted
out uses a 0010 0000 header and 8 bits of data for the register
readback, as well as the 0010 header and 12 bits of SAR conversion
data for the SAR readback transfers.
AD7771 Data Sheet
Rev. A | Page 62 of 99
REGISTER SUMMARY
Table 44. Register Summary
Reg. Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x000
CH0_CONFIG
[7:0]
CH0_GAIN
CH0_REF_
MONITOR
CH0_RX
RESERVED
0x00
/W R
0x001 CH1_CONFIG [7:0] CH1_GAIN CH1_REF_
MONITOR
CH1_RX RESERVED 0x00 R/W
0x002
CH2_CONFIG
[7:0]
CH2_GAIN
CH2_REF_
MONITOR
CH2_RX
RESERVED
0x00
R/W
0x003 CH3_CONFIG [7:0] CH3_GAIN CH3_REF_
MONITOR
CH3_RX RESERVED 0x00 R/W
0x004 CH4_CONFIG [7:0] CH4_GAIN CH4_REF_
MONITOR
CH4_RX RESERVED 0x00 R/W
0x005 CH5_CONFIG [7:0] CH5_GAIN CH5_REF_
MONITOR
CH5_RX RESERVED 0x00 R/W
0x006 CH6_CONFIG [7:0] CH6_GAIN CH6_REF_
MONITOR
CH6_RX RESERVED 0x00 R/W
0x007 CH7_CONFIG [7:0] CH7_GAIN CH7_REF_
MONITOR
CH7_RX RESERVED 0x00 R/W
0x008 CH_DISABLE [7:0] CH7_
DISABLE
CH6_
DISABLE
CH5_DISABLE CH4_
DISABLE
CH3_
DISABLE
CH2_
DISABLE
CH1_
DISABLE
CH0_
DISABLE
0x00 R/W
0x009 CH0_SYNC_
OFFSET
[7:0] CH0_SYNC_OFFSET 0x00 R/W
0x00A CH1_SYNC_
OFFSET
[7:0] CH1_SYNC_OFFSET 0x00 R/W
0x00B CH2_SYNC_
OFFSET
[7:0] CH2_SYNC_OFFSET 0x00 R/W
0x00C CH3_SYNC_
OFFSET
[7:0] CH3_SYNC_OFFSET 0x00 R/W
0x00D CH4_SYNC_
OFFSET
[7:0] CH4_SYNC_OFFSET 0x00 R/W
0x00E CH5_SYNC_
OFFSET
[7:0] CH5_SYNC_OFFSET 0x00 R/W
0x00F
CH6_SYNC_
OFFSET
[7:0]
CH6_SYNC_OFFSET
0x00
R/W
0x010 CH7_SYNC_
OFFSET
[7:0] CH7_SYNC_OFFSET 0x00 R/W
0x011 GENERAL_
USER_
CONFIG_1
[7:0] ALL_
CH_DIS_
MCLK_EN
POWER-
MODE
PDB_VCM PDB_
REFOUT_BUF
PDB_
SAR
PDB_
RC_OSC
SOFT_RESET 0x24 R/W
0x012 GENERAL_
USER_
CONFIG_2
[7:0] RESERVED FILTER_
MODE
SAR_DIAG_
MODE_EN
SDO_DRIVE_STR DOUT_DRIVE_STR SPI_SYNC 0x09 R/W
0x013 GENERAL_
USER_
CONFIG_3
[7:0] CONVST_
DEGLITCH_DIS
RESERVED SPI_SLAVE_
MODE_EN
RESERVED CLK_
QUAL_DIS
0x80 R/W
0x014 DOUT_FORMAT [7:0] DOUT_FORMAT DOUT_
HEADER_
FORMAT
RESERVED DCLK_CLK_DIV RESERVED 0x20 R/W
0x015 ADC_MUX_
CONFIG
[7:0] REF_MUX_CTRL MTR_MUX_CTRL RESERVED 0x00 R/W
0x016 GLOBAL_MUX_
CONFIG
[7:0] GLOBAL_MUX_CTRL RESERVED 0x00 R/W
0x017 GPIO_CONFIG [7:0] RESERVED GPIO_OP_EN 0x00 R/W
0x018 GPIO_DATA [7:0] RESERVED GPIO_READ_DATA GPIO_WRITE_DATA 0x00 R/W
0x019 BUFFER_
CONFIG_1
[7:0] RESERVED REF_BUF_
POS_EN
REF_
BUF_
NEG_EN
RESERVED 0x38 R/W
0x01A BUFFER_
CONFIG_2
[7:0] REF-
BUFP_
PREQ
REF-
BUFN_
PREQ
RESERVED PDB_
ALDO1_OVR
DRV
PDB_
ALDO2_
OVRDRV
PDB_
DLDO_
OVRDRV
0xC0 R/W
0x01C CH0_OFFSET_
UPPER_BYTE
[7:0] CH0_OFFSET_ALL[23:16] 0x00 R/W
0x01D
CH0_OFFSET_
MID_BYTE
[7:0]
CH0_OFFSET_ALL[15:8]
0x00
R/W
Data Sheet AD7771
Rev. A | Page 63 of 99
Reg.
Name
Bits
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
R/W
0x01E CH0_OFFSET_
LOWER_BYTE
[7:0] CH0_OFFSET_ALL[7:0] 0x00 R/W
0x01F
CH0_GAIN_
UPPER_BYTE
[7:0]
CH0_GAIN_ALL[23:16]
0x00
R/W
0x020 CH0_GAIN_
MID_BYTE
[7:0] CH0_GAIN_ALL[15:8] 0x00 R/W
0x021 CH0_GAIN_
LOWER_BYTE
[7:0] CH0_GAIN_ALL[7:0] 0x00 R/W
0x022 CH1_OFFSET_
UPPER_BYTE
[7:0] CH1_OFFSET_ALL[23:16] 0x00 R/W
0x023 CH1_OFFSET_
MID_BYTE
[7:0] CH1_OFFSET_ALL[15:8] 0x00 R/W
0x024 CH1_OFFSET_
LOWER_BYTE
[7:0] CH1_OFFSET_ALL[7:0] 0x00 R/W
0x025 CH1_GAIN_
UPPER_BYTE
[7:0] CH1_GAIN_ALL[23:16] 0x00 R/W
0x026 CH1_GAIN_
MID_BYTE
[7:0] CH1_GAIN_ALL[15:8] 0x00 R/W
0x027 CH1_GAIN_
LOWER_BYTE
[7:0] CH1_GAIN_ALL[7:0] 0x00 R/W
0x028 CH2_OFFSET_
UPPER_BYTE
[7:0] CH2_OFFSET_ALL[23:16] 0x00 R/W
0x029 CH2_OFFSET_
MID_BYTE
[7:0] CH2_OFFSET_ALL[15:8] 0x00 R/W
0x02A CH2_OFFSET_
LOWER_BYTE
[7:0] CH2_OFFSET_ALL[7:0] 0x00 R/W
0x02B CH2_GAIN_
UPPER_BYTE
[7:0] CH2_GAIN_ALL[23:16] 0x00 R/W
0x02C CH2_GAIN_
MID_BYTE
[7:0] CH2_GAIN_ALL[15:8] 0x00 R/W
0x02D CH2_GAIN_
LOWER_BYTE
[7:0] CH2_GAIN_ALL[7:0] 0x00 R/W
0x02E
CH3_OFFSET_
UPPER_BYTE
[7:0]
CH3_OFFSET_ALL[23:16]
0x00
R/W
0x02F CH3_OFFSET_
MID_BYTE
[7:0] CH3_OFFSET_ALL[15:8] 0x00 R/W
0x030 CH3_OFFSET_
LOWER_BYTE
[7:0] CH3_OFFSET_ALL[7:0] 0x00 R/W
0x031 CH3_GAIN_
UPPER_BYTE
[7:0] CH3_GAIN_ALL[23:16] 0x00 R/W
0x032 CH3_GAIN_
MID_BYTE
[7:0] CH3_GAIN_ALL[15:8] 0x00 R/W
0x033 CH3_GAIN_
LOWER_BYTE
[7:0] CH3_GAIN_ALL[7:0] 0x00 R/W
0x034 CH4_OFFSET_
UPPER_BYTE
[7:0] CH4_OFFSET_ALL[23:16] 0x00 R/W
0x035 CH4_OFFSET_
MID_BYTE
[7:0] CH4_OFFSET_ALL[15:8] 0x00 R/W
0x036 CH4_OFFSET_
LOWER_BYTE
[7:0] CH4_OFFSET_ALL[7:0] 0x00 R/W
0x037 CH4_GAIN_
UPPER_BYTE
[7:0] CH4_GAIN_ALL[23:16] 0x00 R/W
0x038 CH4_GAIN_
MID_BYTE
[7:0] CH4_GAIN_ALL[15:8] 0x00 R/W
0x039
CH4_GAIN_
LOWER_BYTE
[7:0]
CH4_GAIN_ALL[7:0]
0x00
R/W
0x03A CH5_OFFSET_
UPPER_BYTE
[7:0] CH5_OFFSET_ALL[23:16] 0x00 R/W
0x03B
CH5_OFFSET_
MID_BYTE
[7:0]
CH5_OFFSET_ALL[15:8]
0x00
R/W
0x03C CH5_OFFSET_
LOWER_BYTE
[7:0] CH5_OFFSET_ALL[7:0] 0x00 R/W
0x03D CH5_GAIN_
UPPER_BYTE
[7:0] CH5_GAIN_ALL[23:16] 0x00 R/W
0x03E CH5_GAIN_
MID_BYTE
[7:0] CH5_GAIN_ALL[15:8] 0x00 R/W
AD7771 Data Sheet
Rev. A | Page 64 of 99
Reg.
Name
Bits
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
R/W
0x03F CH5_GAIN_
LOWER_BYTE
[7:0] CH5_GAIN_ALL[7:0] 0x00 R/W
0x040
CH6_OFFSET_
UPPER_BYTE
[7:0]
CH6_OFFSET_ALL[23:16]
0x00
R/W
0x041 CH6_OFFSET_
MID_BYTE
[7:0] CH6_OFFSET_ALL[15:8] 0x00 R/W
0x042 CH6_OFFSET_
LOWER_BYTE
[7:0] CH6_OFFSET_ALL[7:0] 0x00 R/W
0x043 CH6_GAIN_
UPPER_BYTE
[7:0] CH6_GAIN_ALL[23:16] 0x00 R/W
0x044 CH6_GAIN_
MID_BYTE
[7:0] CH6_GAIN_ALL[15:8] 0x00 R/W
0x045 CH6_GAIN_
LOWER_BYTE
[7:0] CH6_GAIN_ALL[7:0] 0x00 R/W
0x046 CH7_OFFSET_
UPPER_BYTE
[7:0] CH7_OFFSET_ALL[23:16] 0x00 R/W
0x047 CH7_OFFSET_
MID_BYTE
[7:0] CH7_OFFSET_ALL[15:8] 0x00 R/W
0x048 CH7_OFFSET_
LOWER_BYTE
[7:0] CH7_OFFSET_ALL[7:0] 0x00 R/W
0x049 CH7_GAIN_
UPPER_BYTE
[7:0] CH7_GAIN_ALL[23:16] 0x00 R/W
0x04A CH7_GAIN_
MID_BYTE
[7:0] CH7_GAIN_ALL[15:8] 0x00 R/W
0x04B CH7_GAIN_
LOWER_BYTE
[7:0] CH7_GAIN_ALL[7:0] 0x00 R/W
0x04C CH0_ERR_REG [7:0] RESERVED CH0_ERR_
AINM_UV
CH0_ERR_
AINM_OV
CH0_ERR_
AINP_UV
CH0_ERR_
AINP_OV
CH0_ERR_
REF_DET
0x00 R
0x04D CH1_ERR_REG [7:0] RESERVED CH1_ERR_
AINM_UV
CH1_ERR_
AINM_OV
CH1_ERR_
AINP_UV
CH1_ERR_
AINP_OV
CH1_ERR_
REF_DET
0x00 R
0x04E CH2_ERR_REG [7:0] RESERVED CH2_ERR_
AINM_UV
CH2_ERR_
AINM_OV
CH2_ERR_
AINP_UV
CH2_ERR_
AINP_OV
CH2_ERR_
REF_DET
0x00 R
0x04F
CH3_ERR_REG
[7:0]
RESERVED
CH3_ERR_
AINM_UV
CH3_ERR_
AINM_OV
CH3_ERR_
AINP_UV
CH3_ERR_
AINP_OV
CH3_ERR_
REF_DET
0x00
R
0x050 CH4_ERR_REG [7:0] RESERVED CH4_ERR_
AINM_UV
CH4_ERR_
AINM_OV
CH4_ERR_
AINP_UV
CH4_ERR_AI
NP_OV
CH4_ERR_
REF_DET
0x00 R
0x051 CH5_ERR_REG [7:0] RESERVED CH5_ERR_
AINM_UV
CH5_ERR_
AINM_OV
CH5_ERR_
AINP_UV
CH5_ERR_
AINP_OV
CH5_ERR_
REF_DET
0x00 R
0x052 CH6_ERR_REG [7:0] RESERVED CH6_ERR_
AINM_UV
CH6_ERR_
AINM_OV
CH6_ERR_
AINP_UV
CH6_ERR_
AINP_OV
CH6_ERR_
REF_DET
0x00 R
0x053 CH7_ERR_REG [7:0] RESERVED CH7_ERR_
AINM_UV
CH7_ERR_
AINM_OV
CH7_ERR_
AINP_UV
CH7_ERR_
AINP_OV
CH7_ERR_
REF_DET
0x00 R
0x054 CH0_1_SAT_
ERR
[7:0] RESERVED CH1_ERR_
MOD_SAT
CH1_ERR_
FILTER_SAT
CH1_ERR_
OUTPUT_
SAT
CH0_ERR_
MOD_SAT
CH0_ERR_
FILTER_SAT
CH0_ERR_
OUTPUT_
SAT
0x00 R
0x055 CH2_3_SAT_
ERR
[7:0] RESERVED CH3_ERR_
MOD_SAT
CH3_ERR_
FILTER_SAT
CH3_ERR_
OUTPUT_
SAT
CH2_ERR_
MOD_SAT
CH2_ERR_
FILTER_SAT
CH2_ERR_
OUTPUT_
SAT
0x00 R
0x056 CH4_5_SAT_
ERR
[7:0] RESERVED CH5_ERR_
MOD_SAT
CH5_ERR_
FILTER_SAT
CH5_ERR_
OUTPUT_
SAT
CH4_ERR_
MOD_SAT
CH4_ERR_
FILTER_SAT
CH4_ERR_
OUTPUT_
SAT
0x00 R
0x057 CH6_7_SAT_
ERR
[7:0] RESERVED CH7_ERR_
MOD_SAT
CH7_ERR_
FILTER_SAT
CH7_ERR_
OUTPUT_
SAT
CH6_ERR_
MOD_SAT
CH6_ERR_
FILTER_SAT
CH6_ERR_
OUTPUT_
SAT
0x00 R
0x058 CHX_ERR_
REG_EN
[7:0] OUTPUT_
SAT_
TEST_EN
FILTER_
SAT_
TEST_EN
MOD_SAT_
TEST_EN
AINM_UV_
TEST_EN
AINM_OV_
TEST_EN
AINP_UV_
TEST_EN
AINP_OV_
TEST_EN
REF_DET_
TEST_EN
0xFE R/W
0x059
GEN_ERR_
REG_1
[7:0]
RESERVED
MEMMAP_
CRC_ERR
ROM_CRC_
ERR
SPI_CLK_
COUNT_
ERR
SPI_
INVALID_
READ_ERR
SPI_
INVALID_
WRITE_ERR
SPI_CRC_
ERR
0x00
R
0x05A GEN_ERR_
REG_1_EN
[7:0] RESERVED MEMMAP_
CRC_TEST_EN
ROM_CRC_
TEST_EN
SPI_CLK_
COUNT_
TEST_EN
SPI_
INVALID_
READ_
TEST_EN
SPI_
INVALID_
WRITE_
TEST_EN
SPI_CRC_
TEST_EN
0x3E R/W
0x05B GEN_ERR_
REG_2
[7:0] RESERVED RESET_
DETECTED
EXT_MCLK_
SWITCH_ERR
RESERVED ALDO1_
PSM_ERR
ALDO2_
PSM_ERR
DLDO_
PSM_ERR
0x00 R
0x05C GEN_ERR_
REG_2_EN
[7:0] RESERVED RESET_
DETECT_EN
RESERVED LDO_PSM_TEST_EN LDO_PSM_TRIP_TEST_EN 0x3C R/W
Data Sheet AD7771
Rev. A | Page 65 of 99
Reg.
Name
Bits
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
R/W
0x05D STATUS_REG_1 [7:0] RESERVED CHIP_ERROR ERR_LOC_
CH4
ERR_LOC_
CH3
ERR_LOC_
CH2
ERR_LOC_
CH1
ERR_LOC_C
H0
0x00 R
0x05E
STATUS_REG_2
[7:0]
RESERVED
CHIP_ERROR
ERR_LOC_
GEN2
ERR_LOC_
GEN1
ERR_LOC_
CH7
ERR_LOC_
CH6
ERR_LOC_C
H5
0x00
R
0x05F STATUS_REG_3 [7:0] RESERVED CHIP_ERROR INIT_
COMPLETE
ERR_LOC_
SAT_CH6_
7
ERR_LOC_
SAT_CH4_5
ERR_LOC_
SAT_CH2_3
ERR_LOC_
SAT_CH0_1
0x00 R
0x060 SRC_N_MSB [7:0] RESERVED SRC_N_ALL[11:8] 0x00 R/W
0x061 SRC_N_LSB [7:0] SRC_N_ALL[7:0] 0x80 R/W
0x062 SRC_IF_MSB [7:0] SRC_IF_ALL[15:8] 0x00 R/W
0x063 SRC_IF_LSB [7:0] SRC_IF_ALL[7:0] 0x00 R/W
0x064 SRC_UPDATE [7:0] SRC_
LOAD_
SOURCE
RESERVED SRC_LOAD_
UPDATE
0x00 R/W
AD7771 Data Sheet
Rev. A | Page 66 of 99
REGISTER DETAILS
CHANNEL 0 CONFIGURATION REGISTER
Address: 0x000, Reset: 0x00, Name: CH0_CONFIG
AFE Ga in
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH0_GAIN (R/W ) [2:0] RESERVED
[5] CH0_REF_MONITOR (R/W)
[3 ] RESERVED
[4] CH0_RX (R/W)
Table 45. Bit Descriptions for CH0_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH0_GAIN AFE Gain 0x0 R/W
00 Gain = 1
01
Gain = 2
10 Gain = 4
11 Gain = 8
5 CH0_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH0_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
CHANNEL 1 CONFIGURATION REGISTER
Address: 0x001, Reset: 0x00, Name: CH1_CONFIG
AFE Ga in
11: Gain = 8.
10: Gain = 4.
01: Gain = 2.
00: Gain = 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH1_GAIN (R/W ) [2:0] RESERVED
[5] CH1_REF_MONITOR (R/W)
[3 ] RESERVED
[4] CH1_RX (R/W)
Table 46. Bit Descriptions for CH1_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6]
CH1_GAIN
AFE Gain
0x0
R/W
00 Gain = 1
01 Gain = 2
10 Gain = 4
11 Gain = 8
5 CH1_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4
CH1_RX
Channel Meter Mux Rx Mode
0x0
R/W
[3:0] RESERVED Reserved 0x0 R/W
Data Sheet AD7771
Rev. A | Page 67 of 99
CHANNEL 2 CONFIGURATION REGISTER
Address: 0x002, Reset: 0x00, Name: CH2_CONFIG
AFE Ga in
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH2_GAIN (R/W ) [2:0] RESERVED
[5] CH2_REF_MONITOR (R/W)
[3 ] RESERVED
[4] CH2_RX (R/W)
Table 47. Bit Descriptions for CH2_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH2_GAIN AFE Gain 0x0 R/W
00 Gain = 1
01 Gain = 2
10 Gain = 4
11
Gain = 8
5 CH2_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH2_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0]
RESERVED
Reserved
0x0
R/W
CHANNEL 3 CONFIGURATION REGISTER
Address: 0x003, Reset: 0x00, Name: CH3_CONFIG
AFE Ga in
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH3_GAIN (R/W ) [2:0] RESERVED
[5] CH3_REF_MONITOR (R/W)
[3 ] RESERVED
[4] CH3_RX (R/W)
Table 48. Bit Descriptions for CH3_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH3_GAIN AFE Gain 0x0 R/W
00 Gain = 1
01 Gain = 2
10 Gain = 4
11 Gain = 8
5 CH3_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH3_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
AD7771 Data Sheet
Rev. A | Page 68 of 99
CHANNEL 4 CONFIGURATION REGISTER
Address: 0x004, Reset: 0x00, Name: CH4_CONFIG
AFE Ga in
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH4_GAIN (R/W ) [2:0] RESERVED
[5] CH4_REF_MONITOR (R/W)
[3 ] RESERVED
[4] CH4_RX (R/W)
Table 49. Bit Descriptions for CH4_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH4_GAIN AFE Gain 0x0 R/W
00 Gain = 1
01 Gain = 2
10 Gain = 4
11
Gain = 8
5 CH4_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH4_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0]
RESERVED
Reserved
0x0
R/W
CHANNEL 5 CONFIGURATION REGISTER
Address: 0x005, Reset: 0x00, Name: CH5_CONFIG
AFE Ga in
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH5_GAIN (R/W ) [2:0] RESERVED
[5] CH5_REF_MONITOR (R/W)
[3 ] RESERVED
[4] CH5_RX (R/W)
Table 50. Bit Descriptions for CH5_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH5_GAIN AFE Gain 0x0 R/W
00 Gain = 1
01 Gain = 2
10 Gain = 4
11 Gain = 8
5 CH5_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH5_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
Data Sheet AD7771
Rev. A | Page 69 of 99
CHANNEL 6 CONFIGURATION REGISTER
Address: 0x006, Reset: 0x00, Name: CH6_CONFIG
AFE Ga in
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH6_GAIN (R/W ) [2:0] RESERVED
[5] CH6_REF_MONITOR (R/W)
[3 ] RESERVED
[4] CH6_RX (R/W)
Table 51. Bit Descriptions for CH6_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH6_GAIN AFE Gain 0x0 R/W
00 Gain = 1
01 Gain = 2
10 Gain = 4
11
Gain = 8
5 CH6_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH6_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0]
RESERVED
Reserved
0x0
R/W
CHANNEL 7 CONFIGURATION REGISTER
Address: 0x007, Reset: 0x00, Name: CH7_CONFIG
AFE Ga in
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH7_GAIN (R/W ) [2:0] RESERVED
[5] CH7_REF_MONITOR (R/W)
[3 ] RESERVED
[4] CH7_RX (R/W)
Table 52. Bit Descriptions for CH7_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH7_GAIN AFE Gain 0x0 R/W
00 Gain = 1
01 Gain = 2
10 Gain = 4
11 Gain = 8
5 CH7_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH7_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
AD7771 Data Sheet
Rev. A | Page 70 of 99
DISABLE CLOCKS TO ADC CHANNEL REGISTER
Address: 0x008, Reset: 0x00, Name: CH_DISABLE
Channel 7 Disable Channel 0 Disable
Channel 6 Disable Channel 1 Disable
Channel 5 Disable Channel 2 Disable
Channel 4 Disable Channel 3 Disable
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] CH7_DISABLE (R/W ) [0] CH0_DISABLE (R/W)
[6] CH6_DISABLE (R/W ) [1] CH1_DISABLE (R/W)
[5] CH5_DISABLE (R/W ) [2] CH2_DISABLE (R/W)
[4] CH4_DISABLE (R/W ) [3] CH3_DISABLE (R/W)
Table 53. Bit Descriptions for CH_DISABLE
Bits Bit Name Settings Description Reset Access
7 CH7_DISABLE Channel 7 Disable 0x0 R/W
6 CH6_DISABLE Channel 6 Disable 0x0 R/W
5 CH5_DISABLE Channel 5 Disable 0x0 R/W
4 CH4_DISABLE Channel 4 Disable 0x0 R/W
3 CH3_DISABLE Channel 3 Disable 0x0 R/W
2 CH2_DISABLE Channel 2 Disable 0x0 R/W
1 CH1_DISABLE Channel 1 Disable 0x0 R/W
0 CH0_DISABLE Channel 0 Disable 0x0 R/W
CHANNEL 0 SYNC OFFSET REGISTER
Address: 0x009, Reset: 0x00, Name: CH0_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_SYNC_OFFSET (R/W )
Table 54. Bit Descriptions for CH0_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH0_SYNC_OFFSET Channel Sync Offset 0x0 R/W
CHANNEL 1 SYNC OFFSET REGISTER
Address: 0x00A, Reset: 0x00, Name: CH1_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_SYNC_OFFSET (R/W )
Table 55. Bit Descriptions for CH1_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH1_SYNC_OFFSET Channel Sync Offset 0x0 R/W
CHANNEL 2 SYNC OFFSET REGISTER
Address: 0x00B, Reset: 0x00, Name: CH2_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_SYNC_OFFSET (R/W )
Table 56. Bit Descriptions for CH2_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH2_SYNC_OFFSET Channel Sync Offset 0x0 R/W
Data Sheet AD7771
Rev. A | Page 71 of 99
CHANNEL 3 SYNC OFFSET REGISTER
Address: 0x00C, Reset: 0x00, Name: CH3_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_SYNC_OFFSET (R/W )
Table 57. Bit Descriptions for CH3_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH3_SYNC_OFFSET Channel Sync Offset 0x0 R/W
CHANNEL 4 SYNC OFFSET REGISTER
Address: 0x00D, Reset: 0x00, Name: CH4_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_SYNC_OFFSET (R/W )
Table 58. Bit Descriptions for CH4_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0]
CH4_SYNC_OFFSET
Channel Sync Offset
0x0
R/W
CHANNEL 5 SYNC OFFSET REGISTER
Address: 0x00E, Reset: 0x00, Name: CH5_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_SYNC_OFFSET (R/W )
Table 59. Bit Descriptions for CH5_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH5_SYNC_OFFSET Channel Sync Offset 0x0 R/W
CHANNEL 6 SYNC OFFSET REGISTER
Address: 0x00F, Reset: 0x00, Name: CH6_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_SYNC_OFFSET (R/W )
Table 60. Bit Descriptions for CH6_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH6_SYNC_OFFSET Channel Sync Offset 0x0 R/W
CHANNEL 7 SYNC OFFSET REGISTER
Address: 0x010, Reset: 0x00, Name: CH7_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_SYNC_OFFSET (R/W )
Table 61. Bit Descriptions for CH7_SYNC_OFFSET
Bits
Bit Name
Settings
Description
Reset
Access
[7:0] CH7_SYNC_OFFSET Channel Sync Offset 0x0 R/W
AD7771 Data Sheet
Rev. A | Page 72 of 99
GENERAL USER CONFIGURATION 1 REGISTER
Address: 0x011, Reset: 0x24, Name: GENERAL_USER_CONFIG_1
If all SD channels are disabled, setting
this bit high allows DCLK to continue
toggling
Soft Reset
11: 1s t write.
10: 2nd write.
01: No Effect.
00: No Effect.
Power Mode
1: High Resolution.
0: Low Power (1/4)
Power-Down signal for internal oscillator.
Active Low
Power-Down VCM Buffer. Active Low
Power-Down SAR. Active Low
Power-Down Internal Reference Output
Buffer. Active Low
0
0
1
0
2
1
3
0
4
0
5
1
6
0
7
0
[7] ALL_CH_DIS_MCLK_EN (R/W ) [1:0] SOFT_RESET (R/W)
[6] POWERMODE (R/W )
[2] PDB_RC_OSC (R/W)
[5] PDB_VCM (R/W)
[3] PDB_SAR (R/W )
[4] PDB_REFOUT_BUF (R/W )
Table 62. Bit Descriptions for GENERAL_USER_CONFIG_1
Bits Bit Name Settings Description Reset Access
7 ALL_CH_DIS_MCLK_EN If all Σ-Δ channels are disabled, setting this bit high allows DCLK to
continue toggling.
0x0 R/W
6 POWERMODE Power Mode. 0x0 R/W
0 Low power (1/4).
1 High resolution.
5 PDB_VCM Power-Down VCM Buffer. Active low. 0x1 R/W
4 PDB_REFOUT_BUF Power-Down Internal Reference Output Buffer. Active low. 0x0 R/W
3 PDB_SAR Power-Down SAR. Active low. 0x0 R/W
2 PDB_RC_OSC Power-Down Signal for Internal Oscillator. Active low. 0x1 R/W
[1:0] SOFT_RESET Soft Reset 0x0 R/W
00 No effect
01 No effect
10 2nd write
11 1st write
Data Sheet AD7771
Rev. A | Page 73 of 99
GENERAL USER CONFIGURATION 2 REGISTER
Address: 0x012, Reset: 0x09, Name: GENERAL_USER_CONFIG_2
SYNC pulse generated thru SPI
1:
STARTb pin in the control module.
This bit is ANDed with the value on
0:
generate a pulse in /SYNC_IN pin.
on STARTb pin in the control module,
This signal is ANDed with the value
0=Sinc3. 1=Sinc5
DOUT Drive Strength
11: Extra Strong.
10: Weak.
01: Strong.
00: Nominal.
Sets SPI interface to read back SAR
result on SDO
SDO Drive Strength
11: Extra Strong.
10: Weak.
01: Strong.
00: Nominal.
0
1
1
0
2
0
3
1
4
0
5
0
6
0
7
0
[7 ] RESERVED [0] SPI_SYNC (R/W)
[6] FILTER_MODE (R/W)
[2:1] DOUT_DRIVE_STR (R/W)
[5] SAR_DIAG_MODE_EN (R/W)
[4:3] SDO_DRIVE_STR (R/W)
Table 63. Bit Descriptions for GENERAL_USER_CONFIG_2
Bits Bit Name Settings Description Reset Access
7 RESERVED Reserved. 0x0 R/W
6 FILTER_MODE 0 = Sinc3. 1 = Sinc5. 0x0 R/W
5 SAR_DIAG_MODE_EN Sets SPI interface to read back SAR result on SDO. 0x0 R/W
[4:3] SDO_DRIVE_STR SDO Drive Strength. 0x1 R/W
00 Nominal.
01
Strong.
10 Weak.
11 Extra Strong.
[2:1] DOUT_DRIVE_STR DOUTx Drive Strength. 0x0 R/W
00
Nominal.
01 Strong.
10 Weak.
11 Extra Strong.
0 SPI_SYNC Sync pulse generated through SPI. 0x1 R/W
0 This signal is ANDed with the value on START pin in the control module to
generate a pulse in SYNC_IN pin.
1 This bit is ANDed with the value on START pin in the control module.
AD7771 Data Sheet
Rev. A | Page 74 of 99
GENERAL USER CONFIGURATION 3 REGISTER
Address: 0x013, Reset: 0x80, Name: GENERAL_USER_CONFIG_3
Disable deglitching of CONVST_SAR
pin
11: No deglitch circuit.
10: CONVST_SAR Deglitch 1.5/ MCLK.
01: Reserved.
00: Reserved.
Disables the clock qualifier check
if the user requires to use an MCLK
signal < 265kHz.
Enable to SPI slave mode to read
back ADC on SDO
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
1
[7:6] CONVST_DEGLITCH_DIS (R/W) [0] CLK_QUAL_DIS (R/W)
[5 ] RESERVED
[3 :1] RESERVED
[4] SPI_SLAVE_MODE_EN (R/W )
Table 64. Bit Descriptions for GENERAL_USER_CONFIG_3
Bits Bit Name Settings Description Reset Access
[7:6] CONVST_DEGLITCH_DIS Disable deglitching of CONVST_SAR pin. 0x2 R/W
00 Reserved.
01 Reserved.
10 CONVST_SAR deglitch 1.5/MCLK.
11 No deglitch circuit.
5 RESERVED Reserved. 0x0 R/W
4 SPI_SLAVE_MODE_EN Enable to SPI slave mode to read back ADC on SDO. 0x0 R/W
[3:2] RESERVED Reserved. 0x0 R/W
1 RESERVED Reserved. 0x0 R/W
0 CLK_QUAL_DIS Disables the clock qualifier check if the user requires to use an MCLK
signal <265 kHz.
0x0 R/W
DATA OUTPUT FORMAT REGISTER
Address: 0x014, Reset: 0x20, Name: DOUT_FORMAT
Data out format
11: 1 DOUT Lines.
10: 1 DOUT Lines.
01: 2 DOUT Lines.
00: 4 DOUT Lines.
Dout header format
1: CRC Header.
0: Status Header.
Divide MCLK
111: Divide by 128.
110: Divide by 64.
101: Divide by 32.
100: Divide by 16.
011: Divide by 8.
010: Divide by 4.
001: Divide by 2.
000: Divide by 1.
0
0
1
0
2
0
3
0
4
0
5
1
6
0
7
0
[7:6] DOUT_FORMAT (R/W) [0] RESERVED
[5] DOUT_HEADER_FORMAT (R/W )
[3:1] DCLK_CLK_DIV (R/W)
[4 ] RESERVED
Table 65. Bit Descriptions for DOUT_FORMAT
Bits Bit Name Settings Description Reset Access
[7:6] DOUT_FORMAT Data Out Format 0x0 R/W
00
4 DOUTx lines
01 2 DOUTx lines
10 1 DOUTx lines
11 1 DOUTx line
5 DOUT_HEADER_FORMAT DOUTx Header Format 0x1 R/W
0 Status header
1 CRC header
4 RESERVED Reserved 0x0 R/W
Data Sheet AD7771
Rev. A | Page 75 of 99
Bits Bit Name Settings Description Reset Access
[3:1] DCLK_CLK_DIV Divide MCLK 0x0 R/W
000 Divide by 1
001 Divide by 2
010 Divide by 4
011
Divide by 8
100 Divide by 16
101 Divide by 32
110 Divide by 64
111 Divide by 128
0 RESERVED Reserved 0x0 R/W
MAIN ADC METER AND REFERENCE MUX CONTROL REGISTER
Address: 0x015, Reset: 0x00, Name: ADC_MUX_CONFIG
SD ADC Reference Mux
11: External Reference REFx-/REFx+.
10: External Supply AVDD1x/AVSSx.
01: Internal Reference.
00: External Reference REFx+/REFx-
SD ADC Meter Mux
1001: External Reference REFx+/REFx+.
1000: Internal Reference +/+.
0111: Internal Reference -/+.
0110: Internal Reference +/-
0101: External Reference REFx-/REFx-
0100: External Reference REFx-/REFx+.
0011: External Reference REFx+/REFx-
0010: 280mV.
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] REF_MUX_CTRL (R/W) [1 :0] RESERVED
[5:2] MTR_MUX_CTRL (R/W )
Table 66. Bit Descriptions for ADC_MUX_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] REF_MUX_CTRL Σ-Δ ADC Reference Mux. 0x0 R/W
00 External reference REFx+/REFx−.
01 Internal reference.
10 External supply AVDD1x/AVSSx.
11 External reference REFx/REFx+.
[5:2] MTR_MUX_CTRL Σ-Δ ADC Meter Mux. 0x0 R/W
0010 280 mV.
0011 External reference REFx+/REFx−.
0100 External reference REFx/REFx+.
0101 External reference REFx/REFx−.
0110 Internal reference +/−.
0111
Internal reference −/+.
1000 Internal reference +/+.
1001 External reference REFx+/REFx+.
[1:0] RESERVED Reserved. 0x0 R/W
AD7771 Data Sheet
Rev. A | Page 76 of 99
GLOBAL DIAGNOSTICS MUX REGISTER
Address: 0x016, Reset: 0x00, Name: GLOBAL_MUX_CONFIG
Global SAR diagnostics mux control
10101: AVSSx AVDD4. Attenuated.
10100: REF2+ AVSSx.
10011: REF1+ AVSSx.
...
00010: REF1P REF1N.
00001: DVBE AVSSx.
00000: AU XAi n+ AU XAin -
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:3] GLOBAL_MUX_CTRL (R/W) [2:0] RESERVED
Table 67. Bit Descriptions for GLOBAL_MUX_CONFIG
Bits Bit Name Settings Description Reset Access
[7:3]
GLOBAL_MUX_CTRL
Global SAR Diagnostics Mux Control.
0x0
R/W
00000 AUXAIN+/AUXAIN−.
00001 DVBE/AVSSx.
00010 REF1+/REF1−.
10011 REF2+/REF2−.
10100 REF_OUT/AVSSx.
10101 VCM/AVSSx.
10110 AREG1CAP/AVSSx.
10111 AREG2CAP/AVSSx.
11000 DREGCAP/DGND.
11001 AVDD1A/AVSSx.
11010 AVDD1B/AVSSx.
11011 AVDD2A/AVSSx.
11100 AVDD2B/AVSSx.
11101 IOVDD/DGND.
11110 AVDD4/AVSSx.
11111 DGND/AVSSx.
10000
DGND/AVSSx.
10001 DGND/AVSSx.
10010 AVDD4/AVSSx.
10011 REF1+/AVSSx.
10100 REF2+/AVSSx.
10101 AVSSx/AVDD4. Attenuated.
[2:0] RESERVED Reserved. 0x0 R/W
GPIO CONFIGURATION REGISTER
Address: 0x017, Reset: 0x00, Name: GPIO_CONFIG
GPIO input/output
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:3] RESERVED [2:0] GPIO_OP_EN (R/W)
Table 68. Bit Descriptions for GPIO_CONFIG
Bits Bit Name Settings Description Reset Access
[7:3] RESERVED Reserved. 0x0 R/W
[2:0] GPIO_OP_EN GPIO Input/Output 0x0 R/W
Data Sheet AD7771
Rev. A | Page 77 of 99
GPIO DATA REGISTER
Address: 0x018, Reset: 0x00, Name: GPIO_DATA
Value sent to GPIO pins
Data read from GPIO pins
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :6] RESERVED [2:0] GPIO_W RITE_DATA (R/W)
[5:3] GPIO_READ_DATA (R)
Table 69. Bit Descriptions for GPIO_DATA
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved. 0x0 R/W
[5:3] GPIO_READ_DATA Data Read from the GPIO Pins 0x0 R
[2:0] GPIO_WRITE_DATA Value Sent to the GPIO Pins 0x0 R/W
BUFFER CONFIGURATION 1 REGISTER
Address: 0x019, Reset: 0x38, Name: BUFFER_CONFIG_1
Reference buffer positive enable Reference buffer negative enable
0
0
1
0
2
0
3
1
4
1
5
0
6
0
7
0
[7] RESERVED [0] RESERVED
[6] RESERVED [1] RESERVED
[5] RESERVED [2] RESERVED
[4] REF_BUF_POS_EN (R/W) [3] REF_BUF_NEG_EN (R/W)
Table 70. Bit Descriptions for BUFFER_CONFIG_1
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 REF_BUF_POS_EN Reference Buffer Positive Enable 0x1 R/W
3 REF_BUF_NEG_EN Reference Buffer Negative Enable 0x1 R/W
[2:0] RESERVED Reserved 0x0 R/W
BUFFER CONFIGURATION 2 REGISTER
Address: 0x01A, Reset: 0xC0, Name: BUFFER_CONFIG_2
Reference buffer positive precharge
enable
DRegCap Overdrive Enable.
Reference buffer negative precharge
enable
AReg2Cap Overdrive Enable
AReg1Cap Overdrive Enable
0
0
1
0
2
0
3
0
4
0
5
0
6
1
7
1
[7] REFBUFP_PREQ (R/W ) [0] PDB_DLDO_OVRDRV (R/W)
[6] REFBUFN_PREQ (R/W )
[1] PDB_ALDO2_OVRDRV (R/W )
[5 :3] RESERVED
[2] PDB_ALDO1_OVRDRV (R/W )
Table 71. Bit Descriptions for BUFFER_CONFIG_2
Bits Bit Name Settings Description Reset Access
7 REFBUFP_PREQ Reference Buffer Positive Precharge Enable 0x1 R/W
6 REFBUFN_PREQ Reference Buffer Negative Precharge Enable 0x1 R/W
[5:3] RESERVED Reserved 0x0 R/W
2
PDB_ALDO1_OVRDRV
AREG1CAP Overdrive Enable
0x0
R/W
1 PDB_ALDO2_OVRDRV AREG2CAP Overdrive Enable 0x0 R/W
0 PDB_DLDO_OVRDRV DREGCAP Overdrive Enable 0x0 R/W
AD7771 Data Sheet
Rev. A | Page 78 of 99
CHANNEL 0 OFFSET UPPER BYTE REGISTER
Address: 0x01C, Reset: 0x00, Name: CH0_OFFSET_UPPER_BYTE
Combined Offset register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_OFFSET_ALL[23:16] (R/W)
Table 72. Bit Descriptions for CH0_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_OFFSET_ALL[23:16] Combined Offset Register Channel 0 0x0 R/W
CHANNEL 0 OFFSET MIDDLE BYTE REGISTER
Address: 0x01D, Reset: 0x00, Name: CH0_OFFSET_MID_BYTE
Combined Offset register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_OFFSET_ALL[15:8] (R/W)
Table 73. Bit Descriptions for CH0_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_OFFSET_ALL[15:8] Combined Offset Register Channel 0 0x0 R/W
CHANNEL 0 OFFSET LOWER BYTE REGISTER
Address: 0x01E, Reset: 0x00, Name: CH0_OFFSET_LOWER_BYTE
Combined Offset register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_OFFSET_ALL[7:0] (R/W)
Table 74. Bit Descriptions for CH0_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_OFFSET_ALL[7:0] Combined Offset Register Channel 0 0x0 R/W
CHANNEL 0 GAIN UPPER BYTE REGISTER
Address: 0x01F, Reset: 0x00, Name: CH0_GAIN_UPPER_BYTE
Combined gain register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_GAIN_ALL[23:16] (R/W)
Table 75. Bit Descriptions for CH0_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_GAIN_ALL[23:16] Combined Gain Register Channel 0 0x0 R/W
CHANNEL 0 GAIN MIDDLE BYTE REGISTER
Address: 0x020, Reset: 0x00, Name: CH0_GAIN_MID_BYTE
Combined gain register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_GAIN_ALL[15:8] (R/W)
Table 76. Bit Descriptions for CH0_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0]
CH0_GAIN_ALL[15:8]
Combined Gain Register Channel 0
0x0
R/W
Data Sheet AD7771
Rev. A | Page 79 of 99
CHANNEL 0 GAIN LOWER BYTE REGISTER
Address: 0x021, Reset: 0x00, Name: CH0_GAIN_LOWER_BYTE
Combined gain register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_GAIN_ALL[7:0] (R/W)
Table 77. Bit Descriptions for CH0_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_GAIN_ALL[7:0] Combined Gain Register Channel 0 0x0 R/W
CHANNEL 1 OFFSET UPPER BYTE REGISTER
Address: 0x022, Reset: 0x00, Name: CH1_OFFSET_UPPER_BYTE
Combined offset register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_OFFSET_ALL[23:16] (R/W)
Table 78. Bit Descriptions for CH1_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_OFFSET_ALL[23:16] Combined Offset Register Channel 1 0x0 R/W
CHANNEL 1 OFFSET MIDDLE BYTE REGISTER
Address: 0x023, Reset: 0x00, Name: CH1_OFFSET_MID_BYTE
Combined offset register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_OFFSET_ALL[15:8] (R/W)
Table 79. Bit Descriptions for CH1_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_OFFSET_ALL[15:8] Combined Offset Register Channel 1 0x0 R/W
CHANNEL 1 OFFSET LOWER BYTE REGISTER
Address: 0x024, Reset: 0x00, Name: CH1_OFFSET_LOWER_BYTE
Combined offset register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_OFFSET_ALL[7:0] (R/W)
Table 80. Bit Descriptions for CH1_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_OFFSET_ALL[7:0] Combined Offset Register Channel 1 0x0 R/W
CHANNEL 1 GAIN UPPER BYTE REGISTER
Address: 0x025, Reset: 0x00, Name: CH1_GAIN_UPPER_BYTE
Combined gain register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_GAIN_ALL[23:16] (R/W)
Table 81. Bit Descriptions for CH1_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_GAIN_ALL[23:16] Combined Gain Register Channel 1 0x0 R/W
AD7771 Data Sheet
Rev. A | Page 80 of 99
CHANNEL 1 GAIN MIDDLE BYTE REGISTER
Address: 0x026, Reset: 0x00, Name: CH1_GAIN_MID_BYTE
Combined gain register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_GAIN_ALL[15:8] (R/W)
Table 82. Bit Descriptions for CH1_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_GAIN_ALL[15:8] Combined Gain Register Channel 1 0x0 R/W
CHANNEL 1 GAIN LOWER BYTE REGISTER
Address: 0x027, Reset: 0x00, Name: CH1_GAIN_LOWER_BYTE
Combined gain register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_GAIN_ALL[7:0] (R/W)
Table 83. Bit Descriptions for CH1_GAIN_LOWER_BYTE
Bits
Bit Name
Settings
Description
Reset
Access
[7:0] CH1_GAIN_ALL[7:0] Combined Gain Register Channel 1 0x0 R/W
CHANNEL 2 OFFSET UPPER BYTE REGISTER
Address: 0x028, Reset: 0x00, Name: CH2_OFFSET_UPPER_BYTE
Combined offset register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_OFFSET_ALL[23:16] (R/W)
Table 84. Bit Descriptions for CH2_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH2_OFFSET_ALL[23:16] Combined Offset Register Channel 2 0x0 R/W
CHANNEL 2 OFFSET MIDDLE BYTE REGISTER
Address: 0x029, Reset: 0x00, Name: CH2_OFFSET_MID_BYTE
Combined offset register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_OFFSET_ALL[15:8] (R/W)
Table 85. Bit Descriptions for CH2_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH2_OFFSET_ALL[15:8] Combined Offset Register Channel 2 0x0 R/W
CHANNEL 2 OFFSET LOWER BYTE REGISTER
Address: 0x02A, Reset: 0x00, Name: CH2_OFFSET_LOWER_BYTE
Combined offset register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_OFFSET_ALL[7:0] (R/W)
Table 86. Bit Descriptions for CH2_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH2_OFFSET_ALL[7:0] Combined Offset Register Channel 2 0x0 R/W
Data Sheet AD7771
Rev. A | Page 81 of 99
CHANNEL 2 GAIN UPPER BYTE REGISTER
Address: 0x02B, Reset: 0x00, Name: CH2_GAIN_UPPER_BYTE
Combined gain register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_GAIN_ALL[23:16] (R/W)
Table 87. Bit Descriptions for CH2_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH2_GAIN_ALL[23:16] Combined Gain Register Channel 2 0x0 R/W
CHANNEL 2 GAIN MIDDLE BYTE REGISTER
Address: 0x02C, Reset: 0x00, Name: CH2_GAIN_MID_BYTE
Combined gain register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_GAIN_ALL[15:8] (R/W)
Table 88. Bit Descriptions for CH2_GAIN_MID_BYTE
Bits
Bit Name
Settings
Description
Reset
Access
[7:0] CH2_GAIN_ALL[15:8] Combined Gain Register Channel 2 0x0 R/W
CHANNEL 2 GAIN LOWER BYTE REGISTER
Address: 0x02D, Reset: 0x00, Name: CH2_GAIN_LOWER_BYTE
Combined gain register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_GAIN_ALL[7:0] (R/W)
Table 89. Bit Descriptions for CH2_GAIN_LOWER_BYTE
Bits
Bit Name
Settings
Description
Reset
Access
[7:0] CH2_GAIN_ALL[7:0] Combined Gain Register Channel 2 0x0 R/W
CHANNEL 3 OFFSET UPPER BYTE REGISTER
Address: 0x02E, Reset: 0x00, Name: CH3_OFFSET_UPPER_BYTE
Combined offset register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_OFFSET_ALL[23:16] (R/W)
Table 90. Bit descriptions for CH3_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH3_OFFSET_ALL[23:16] Combined Offset Register Channel 3 0x0 R/W
CHANNEL 3 OFFSET MIDDLE BYTE REGISTER
Address: 0x02F, Reset: 0x00, Name: CH3_OFFSET_MID_BYTE
Combined offset register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_OFFSET_ALL[15:8] (R/W)
Table 91. Bit Descriptions for CH3_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0]
CH3_OFFSET_ALL[15:8]
Combined Offset Register Channel 3
0x0
R/W
AD7771 Data Sheet
Rev. A | Page 82 of 99
CHANNEL 3 OFFSET LOWER BYTE REGISTER
Address: 0x030, Reset: 0x00, Name: CH3_OFFSET_LOWER_BYTE
Combined offset register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_OFFSET_ALL[7:0] (R/W)
Table 92. Bit Descriptions for CH3_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH3_OFFSET_ALL[7:0] Combined Offset Register Channel 3 0x0 R/W
CHANNEL 3 GAIN UPPER BYTE REGISTER
Address: 0x031, Reset: 0x00, Name: CH3_GAIN_UPPER_BYTE
Combined gain register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_GAIN_ALL[23:16] (R/W)
Table 93. Bit Descriptions for CH3_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH3_GAIN_ALL[23:16] Combined Gain Register Channel 3 0x0 R/W
CHANNEL 3 GAIN MIDDLE BYTE REGISTER
Address: 0x032, Reset: 0x00, Name: CH3_GAIN_MID_BYTE
Combined gain register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_GAIN_ALL[15:8] (R/W)
Table 94. Bit Descriptions for CH3_GAIN_MID_BYTE
Bits
Bit Name
Settings
Description
Reset
Access
[7:0] CH3_GAIN_ALL[15:8] Combined Gain Register Channel 3 0x0 R/W
CHANNEL 3 GAIN LOWER BYTE REGISTER
Address: 0x033, Reset: 0x00, Name: CH3_GAIN_LOWER_BYTE
Combined gain register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_GAIN_ALL[7:0] (R/W)
Table 95. Bit Descriptions for CH3_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH3_GAIN_ALL[7:0] Combined Gain Register Channel 3 0x0 R/W
CHANNEL 4 OFFSET UPPER BYTE REGISTER
Address: 0x034, Reset: 0x00, Name: CH4_OFFSET_UPPER_BYTE
Combined offset register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_OFFSET_ALL[23:16] (R/W)
Table 96. Bit Descriptions for CH4_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_OFFSET_ALL[23:16] Combined Offset Register Channel 4 0x0 R/W
Data Sheet AD7771
Rev. A | Page 83 of 99
CHANNEL 4 OFFSET MIDDLE BYTE REGISTER
Address: 0x035, Reset: 0x00, Name: CH4_OFFSET_MID_BYTE
Combined offset register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_OFFSET_ALL[15:8] (R/W)
Table 97. Bit Descriptions for CH4_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_OFFSET_ALL[15:8] Combined Offset Register Channel 4 0x0 R/W
CHANNEL 4 OFFSET LOWER BYTE REGISTER
Address: 0x036, Reset: 0x00, Name: CH4_OFFSET_LOWER_BYTE
Combined offset register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_OFFSET_ALL[7:0] (R/W)
Table 98. Bit Descriptions for CH4_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_OFFSET_ALL[7:0] Combined Offset Register Channel 4 0x0 R/W
CHANNEL 4 GAIN UPPER BYTE REGISTER
Address: 0x037, Reset: 0x00, Name: CH4_GAIN_UPPER_BYTE
Combined gain register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_GAIN_ALL[23:16] (R/W)
Table 99. Bit Descriptions for CH4_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_GAIN_ALL[23:16] Combined Gain Register Channel 4 0x0 R/W
CHANNEL 4 GAIN MIDDLE BYTE REGISTER
Address: 0x038, Reset: 0x00, Name: CH4_GAIN_MID_BYTE
Combined gain register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_GAIN_ALL[15:8] (R/W)
Table 100. Bit Descriptions for CH4_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_GAIN_ALL[15:8] Combined Gain Register Channel 4 0x0 R/W
CHANNEL 4 GAIN LOWER BYTE REGISTER
Address: 0x039, Reset: 0x00, Name: CH4_GAIN_LOWER_BYTE
Combined gain register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_GAIN_ALL[7:0] (R/W)
Table 101. Bit Descriptions for CH4_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_GAIN_ALL[7:0] Combined Gain Register Channel 4 0x0 R/W
AD7771 Data Sheet
Rev. A | Page 84 of 99
CHANNEL 5 OFFSET UPPER BYTE REGISTER
Address: 0x03A, Reset: 0x00, Name: CH5_OFFSET_UPPER_BYTE
Combined offset register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_OFFSET_ALL[23:16] (R/W)
Table 102. Bit Descriptions for CH5_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_OFFSET_ALL[23:16] Combined Offset Register Channel 5 0x0 R/W
CHANNEL 5 OFFSET MIDDLE BYTE REGISTER
Address: 0x03B, Reset: 0x00, Name: CH5_OFFSET_MID_BYTE
Combined offset register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_OFFSET_ALL[15:8] (R/W)
Table 103. Bit Descriptions for CH5_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_OFFSET_ALL[15:8] Combined Offset Register Channel 5 0x0 R/W
CHANNEL 5 OFFSET LOWER BYTE REGISTER
Address: 0x03C, Reset: 0x00, Name: CH5_OFFSET_LOWER_BYTE
Combined offset register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_OFFSET_ALL[7:0] (R/W)
Table 104. Bit Descriptions for CH5_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_OFFSET_ALL[7:0] Combined Offset Register Channel 5 0x0 R/W
CHANNEL 5 GAIN UPPER BYTE REGISTER
Address: 0x03D, Reset: 0x00, Name: CH5_GAIN_UPPER_BYTE
Combined gain register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_GAIN_ALL[23:16] (R/W)
Table 105. Bit Descriptions for CH5_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_GAIN_ALL[23:16] Combined Gain Register Channel 5 0x0 R/W
CHANNEL 5 GAIN MIDDLE BYTE REGISTER
Address: 0x03E, Reset: 0x00, Name: CH5_GAIN_MID_BYTE
Combined gain register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_GAIN_ALL[15:8] (R/W)
Table 106. Bit Descriptions for CH5_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_GAIN_ALL[15:8] Combined Gain Register Channel 5 0x0 R/W
Data Sheet AD7771
Rev. A | Page 85 of 99
CHANNEL 5 GAIN LOWER BYTE REGISTER
Address: 0x03F, Reset: 0x00, Name: CH5_GAIN_LOWER_BYTE
Combined gain register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_GAIN_ALL[7:0] (R/W)
Table 107. Bit Descriptions for CH5_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_GAIN_ALL[7:0] Combined Gain Register Channel 5 0x0 R/W
CHANNEL 6 OFFSET UPPER BYTE REGISTER
Address: 0x040, Reset: 0x00, Name: CH6_OFFSET_UPPER_BYTE
Combined offset register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_OFFSET_ALL[23:16] (R/W)
Table 108. Bit Descriptions for CH6_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_OFFSET_ALL[23:16] Combined Offset Register Channel 6 0x0 R/W
CHANNEL 6 OFFSET MIDDLE BYTE REGISTER
Address: 0x041, Reset: 0x00, Name: CH6_OFFSET_MID_BYTE
Combined offset register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_OFFSET_ALL[15:8] (R/W)
Table 109. Bit Descriptions for CH6_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_OFFSET_ALL[15:8] Combined Offset Register Channel 6 0x0 R/W
CHANNEL 6 OFFSET LOWER BYTE REGISTER
Address: 0x042, Reset: 0x00, Name: CH6_OFFSET_LOWER_BYTE
Combined offset register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_OFFSET_ALL[7:0] (R/W)
Table 110. Bit Descriptions for CH6_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_OFFSET_ALL[7:0] Combined Offset Register Channel 6 0x0 R/W
CHANNEL 6 GAIN UPPER BYTE REGISTER
Address: 0x043, Reset: 0x00, Name: CH6_GAIN_UPPER_BYTE
Combined gain register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_GAIN_ALL[23:16] (R/W)
Table 111. Bit Descriptions for CH6_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_GAIN_ALL[23:16] Combined Gain Register Channel 6 0x0 R/W
AD7771 Data Sheet
Rev. A | Page 86 of 99
CHANNEL 6 GAIN MIDDLE BYTE REGISTER
Address: 0x044, Reset: 0x00, Name: CH6_GAIN_MID_BYTE
Combined gain register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_GAIN_ALL[15:8] (R/W)
Table 112. Bit Descriptions for CH6_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_GAIN_ALL[15:8] Combined Gain Register Channel 6 0x0 R/W
CHANNEL 6 GAIN LOWER BYTE REGISTER
Address: 0x045, Reset: 0x00, Name: CH6_GAIN_LOWER_BYTE
Combined gain register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_GAIN_ALL[7:0] (R/W)
Table 113. Bit Descriptions for CH6_GAIN_LOWER_BYTE
Bits
Bit Name
Settings
Description
Reset
Access
[7:0] CH6_GAIN_ALL[7:0] Combined Gain Register Channel 6 0x0 R/W
CHANNEL 7 OFFSET UPPER BYTE REGISTER
Address: 0x046, Reset: 0x00, Name: CH7_OFFSET_UPPER_BYTE
Combined offset register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_OFFSET_ALL[23:16] (R/W)
Table 114. Bit Descriptions for CH7_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_OFFSET_ALL[23:16] Combined Offset Register Channel 7 0x0 R/W
CHANNEL 7 OFFSET MIDDLE BYTE REGISTER
Address: 0x047, Reset: 0x00, Name: CH7_OFFSET_MID_BYTE
Combined offset register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_OFFSET_ALL[15:8] (R/W)
Table 115. Bit Descriptions for CH7_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_OFFSET_ALL[15:8] Combined Offset Register Channel 7 0x0 R/W
CHANNEL 7 OFFSET LOWER BYTE REGISTER
Address: 0x048, Reset: 0x00, Name: CH7_OFFSET_LOWER_BYTE
Combined offset register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_OFFSET_ALL[7:0] (R/W)
Table 116. Bit Descriptions for CH7_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_OFFSET_ALL[7:0] Combined Offset Register Channel 7 0x0 R/W
Data Sheet AD7771
Rev. A | Page 87 of 99
CHANNEL 7 GAIN UPPER BYTE REGISTER
Address: 0x049, Reset: 0x00, Name: CH7_GAIN_UPPER_BYTE
Combined gain register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_GAIN_ALL[23:16] (R/W)
Table 117. Bit Descriptions for CH7_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_GAIN_ALL[23:16] Combined Gain Register Channel 7 0x0 R/W
CHANNEL 7 GAIN MIDDLE BYTE REGISTER
Address: 0x04A, Reset: 0x00, Name: CH7_GAIN_MID_BYTE
Combined gain register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_GAIN_ALL[15:8] (R/W)
Table 118. Bit Descriptions for CH7_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_GAIN_ALL[15:8] Combined Gain Register Channel 7 0x0 R/W
CHANNEL 7 GAIN LOWER BYTE REGISTER
Address: 0x04B, Reset: 0x00, Name: CH7_GAIN_LOWER_BYTE
Combined gain register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_GAIN_ALL[7:0] (R/W)
Table 119. Bit Descriptions for CH7_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_GAIN_ALL[7:0] Combined Gain Register Channel 7 0x0 R/W
CHANNEL 0 STATUS REGISTER
Address: 0x04C, Reset: 0x00, Name: CH0_ERR_REG
Channel 0 - Reference detect error
AIN0- undervoltage error
AIN0+ overvoltage error
AIN0- overvoltage error
AIN0+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :5] RESERVED [0] CH0_ERR_REF_DET (R)
[4] CH0_ERR_AINM_UV (R)
[1] CH0_ERR_AINP_OV (R)
[3] CH0_ERR_AINM_OV (R)
[2] CH0_ERR_AINP_UV (R)
Table 120. Bit Descriptions for CH0_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH0_ERR_AINM_UV Channel 0AIN0− Undervoltage Error 0x0 R
3 CH0_ERR_AINM_OV Channel 0—AIN0− Overvoltage Error 0x0 R
2 CH0_ERR_AINP_UV Channel 0AIN0+ Undervoltage Error 0x0 R
1
CH0_ERR_AINP_OV
Channel 0AIN0+ Overvoltage Error
0x0
R
0
CH0_ERR_REF_DET
Channel 0Reference Detect Error
0x0
R
AD7771 Data Sheet
Rev. A | Page 88 of 99
CHANNEL 1 STATUS REGISTER
Address: 0x04D, Reset: 0x00, Name: CH1_ERR_REG
Channel 1 - Reference detect error
AIN1- undervoltage error
AIN1+ overvoltage error
AIN1- overvoltage error
AIN1+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :5] RESERVED [0] CH1_ERR_REF_DET (R)
[4] CH1_ERR_AINM_UV (R)
[1] CH1_ERR_AINP_OV (R)
[3] CH1_ERR_AINM_OV (R)
[2] CH1_ERR_AINP_UV (R)
Table 121. Bit Descriptions for CH1_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH1_ERR_AINM_UV Channel 1AIN1− Undervoltage Error 0x0 R
3 CH1_ERR_AINM_OV Channel 1AIN1− Overvoltage Error 0x0 R
2 CH1_ERR_AINP_UV Channel 1AIN1+ Undervoltage Error 0x0 R
1 CH1_ERR_AINP_OV Channel 1AIN1+ Overvoltage Error 0x0 R
0
CH1_ERR_REF_DET
Channel 1Reference Detect Error
0x0
R
CHANNEL 2 STATUS REGISTER
Address: 0x04E, Reset: 0x00, Name: CH2_ERR_REG
Channel 2 - Reference detect error
AIN2- undervoltage error
AIN2+ overvoltage error
AIN2- overvoltage error
AIN2+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :5] RESERVED [0] CH2_ERR_REF_DET (R)
[4] CH2_ERR_AINM_UV (R)
[1] CH2_ERR_AINP_OV (R)
[3] CH2_ERR_AINM_OV (R)
[2] CH2_ERR_AINP_UV (R)
Table 122. Bit Descriptions for CH2_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH2_ERR_AINM_UV Channel 2AIN2− Undervoltage Error 0x0 R
3 CH2_ERR_AINM_OV Channel 2AIN2− Overvoltage Error 0x0 R
2 CH2_ERR_AINP_UV Channel 2AIN2+ Undervoltage Error 0x0 R
1 CH2_ERR_AINP_OV Channel 2AIN2+ Overvoltage Error 0x0 R
0 CH2_ERR_REF_DET Channel 2Reference Detect Error 0x0 R
Data Sheet AD7771
Rev. A | Page 89 of 99
CHANNEL 3 STATUS REGISTER
Address: 0x04F, Reset: 0x00, Name: CH3_ERR_REG
Channel 3 - Reference detect error
AIN3- undervoltage error
AIN3+ overvoltage error
AIN3- overvoltage error
AIN3+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :5] RESERVED [0] CH3_ERR_REF_DET (R)
[4] CH3_ERR_AINM_UV (R)
[1] CH3_ERR_AINP_OV (R)
[3] CH3_ERR_AINM_OV (R)
[2] CH3_ERR_AINP_UV (R)
Table 123. Bit Descriptions for CH3_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH3_ERR_AINM_UV Channel 3—AIN3− Undervoltage Error 0x0 R
3 CH3_ERR_AINM_OV Channel 3AIN3− Overvoltage Error 0x0 R
2 CH3_ERR_AINP_UV Channel 3AIN3+ Undervoltage Error 0x0 R
1 CH3_ERR_AINP_OV Channel 3AIN3+ Overvoltage Error 0x0 R
0
CH3_ERR_REF_DET
Channel 3Reference Detect Error
0x0
R
CHANNEL 4 STATUS REGISTER
Address: 0x050, Reset: 0x00, Name: CH4_ERR_REG
Channel 4 - Reference detect error
AIN4- undervoltage error
AIN4+ overvoltage error
AIN4- overvoltage error
AIN4+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :5] RESERVED [0] CH4_ERR_REF_DET (R)
[4] CH4_ERR_AINM_UV (R)
[1] CH4_ERR_AINP_OV (R)
[3] CH4_ERR_AINM_OV (R)
[2] CH4_ERR_AINP_UV (R)
Table 124. Bit Descriptions for CH4_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH4_ERR_AINM_UV Channel 4AIN4− Undervoltage Error 0x0 R
3 CH4_ERR_AINM_OV Channel 4AIN4− Overvoltage Error 0x0 R
2 CH4_ERR_AINP_UV Channel 4AIN4+ Undervoltage Error 0x0 R
1 CH4_ERR_AINP_OV Channel 4AIN4+ Overvoltage Error 0x0 R
0 CH4_ERR_REF_DET Channel 4Reference Detect Error 0x0 R
AD7771 Data Sheet
Rev. A | Page 90 of 99
CHANNEL 5 STATUS REGISTER
Address: 0x051, Reset: 0x00, Name: CH5_ERR_REG
Channel 5 - Reference detect error
AIN5- undervoltage error
AIN5+ overvoltage error
AIN5- overvoltage error
AIN5+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :5] RESERVED [0] CH5_ERR_REF_DET (R)
[4] CH5_ERR_AINM_UV (R)
[1] CH5_ERR_AINP_OV (R)
[3] CH5_ERR_AINM_OV (R)
[2] CH5_ERR_AINP_UV (R)
Table 125. Bit Descriptions for CH5_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH5_ERR_AINM_UV Channel 5AIN5− Undervoltage Error 0x0 R
3 CH5_ERR_AINM_OV Channel 5AIN5− Overvoltage Error 0x0 R
2 CH5_ERR_AINP_UV Channel 5AIN5+ Undervoltage Error 0x0 R
1 CH5_ERR_AINP_OV Channel 5AIN5+ Overvoltage Error 0x0 R
0
CH5_ERR_REF_DET
Channel 5Reference Detect Error
0x0
R
CHANNEL 6 STATUS REGISTER
Address: 0x052, Reset: 0x00, Name: CH6_ERR_REG
Channel 6 - Reference detect error
AIN6- undervoltage error
AIN6+ overvoltage error
AIN6- overvoltage error
AIN6+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :5] RESERVED [0] CH6_ERR_REF_DET (R)
[4] CH6_ERR_AINM_UV (R)
[1] CH6_ERR_AINP_OV (R)
[3] CH6_ERR_AINM_OV (R)
[2] CH6_ERR_AINP_UV (R)
Table 126. Bit Descriptions for CH6_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH6_ERR_AINM_UV Channel 6AIN6− Undervoltage Error 0x0 R
3 CH6_ERR_AINM_OV Channel 6AIN6− Overvoltage Error 0x0 R
2 CH6_ERR_AINP_UV Channel 6AIN6+ Undervoltage Error 0x0 R
1 CH6_ERR_AINP_OV Channel 6—AIN6+ Overvoltage Error 0x0 R
0 CH6_ERR_REF_DET Channel 6Reference Detect Error 0x0 R
Data Sheet AD7771
Rev. A | Page 91 of 99
CHANNEL 7 STATUS REGISTER
Address: 0x053, Reset: 0x00, Name: CH7_ERR_REG
Channel 7 - Reference detect error
AIN7- undervoltage error
AIN7+ overvoltage error
AIN7- overvoltage error
AIN7+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :5] RESERVED [0] CH7_ERR_REF_DET (R)
[4] CH7_ERR_AINM_UV (R)
[1] CH7_ERR_AINP_OV (R)
[3] CH7_ERR_AINM_OV (R)
[2] CH7_ERR_AINP_UV (R)
Table 127. Bit Descriptions for CH7_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R
4 CH7_ERR_AINM_UV Channel 7AIN7− Undervoltage Error 0x0 R
3 CH7_ERR_AINM_OV Channel 7AIN7− Overvoltage Error 0x0 R
2 CH7_ERR_AINP_UV Channel 7AIN7+ Undervoltage Error 0x0 R
1 CH7_ERR_AINP_OV Channel 7AIN7+ Overvoltage Error 0x0 R
0
CH7_ERR_REF_DET
Channel 7Reference Detect Error
0x0
R
CHANNEL 0/CHANNEL 1 DSP ERRORS REGISTER
Address: 0x054, Reset: 0x00, Name: CH0_1_SAT_ERR
Channel 0 - ADC conversion has
exceeded limits and has been clamped
Channel 1 - Modulator output saturation
error
Channel 0 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 1 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 0 - Modulator output saturation
error
Channel 1 - ADC conversion has
exceeded limits and has been clamped
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :6] RESERVED [0] CH0_ERR_OUTPUT_SAT (R)
[5] CH1_ERR_MOD_SAT (R)
[1] CH0_ERR_FILTER_SAT (R)
[4] CH1_ERR_FILTER_SAT (R)
[2] CH0_ERR_MOD_SAT (R)
[3] CH1_ERR_OUTPUT_SAT (R)
Table 128. Bit Descriptions for CH0_1_SAT_ERR
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5
CH1_ERR_MOD_SAT
Channel 1Modulator output saturation error
0x0
R
4 CH1_ERR_FILTER_SAT Channel 1Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
0x0 R
3 CH1_ERR_OUTPUT_SAT Channel 1ADC conversion has exceeded limits and is clamped 0x0 R
2 CH0_ERR_MOD_SAT Channel 0Modulator output saturation error 0x0 R
1 CH0_ERR_FILTER_SAT Channel 0—Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
0x0 R
0 CH0_ERR_OUTPUT_SAT Channel 0ADC conversion has exceeded limits and is clamped 0x0 R
AD7771 Data Sheet
Rev. A | Page 92 of 99
CHANNEL 2/CHANNEL 3 DSP ERRORS REGISTER
Address: 0x055, Reset: 0x00, Name: CH2_3_SAT_ERR
Channel 2 - ADC conversion has
exceeded limits and has been clamped
Channel 3 - Modulator output saturation
error
Channel 2 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 3 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 2 - Modulator output saturation
error
Channel 3 - ADC conversion has
exceeded limits and has been clamped
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :6] RESERVED [0] CH2_ERR_OUTPUT_SAT (R)
[5] CH3_ERR_MOD_SAT (R)
[1] CH2_ERR_FILTER_SAT (R)
[4] CH3_ERR_FILTER_SAT (R)
[2] CH2_ERR_MOD_SAT (R)
[3] CH3_ERR_OUTPUT_SAT (R)
Table 129. Bit Descriptions for CH2_3_SAT_ERR
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5 CH3_ERR_MOD_SAT Channel 3Modulator output saturation error 0x0 R
4 CH3_ERR_FILTER_SAT Channel 3Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
0x0 R
3 CH3_ERR_OUTPUT_SAT Channel 3ADC conversion has exceeded limits and is clamped 0x0 R
2 CH2_ERR_MOD_SAT Channel 2—Modulator output saturation error 0x0 R
1 CH2_ERR_FILTER_SAT Channel 2Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
0x0 R
0
CH2_ERR_OUTPUT_SAT
Channel 2ADC conversion has exceeded limits and has been clamped
0x0
R
CHANNEL 4/CHANNEL 5 DSP ERRORS REGISTER
Address: 0x056, Reset: 0x00, Name: CH4_5_SAT_ERR
Channel 4 - ADC conversion has
exceeded limits and has been clamped
Channel 5 - Modulator output saturation
error
Channel 4 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 5 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 4 - Modulator output saturation
error
Channel 5 - ADC conversion has
exceeded limits and has been clamped
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :6] RESERVED [0] CH4_ERR_OUTPUT_SAT (R)
[5] CH5_ERR_MOD_SAT (R)
[1] CH4_ERR_FILTER_SAT (R)
[4] CH5_ERR_FILTER_SAT (R)
[2] CH4_ERR_MOD_SAT (R)
[3] CH5_ERR_OUTPUT_SAT (R)
Table 130. Bit Descriptions for CH4_5_SAT_ERR
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5 CH5_ERR_MOD_SAT Channel 5Modulator output saturation error 0x0 R
4 CH5_ERR_FILTER_SAT Channel 5Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
0x0 R
3 CH5_ERR_OUTPUT_SAT Channel 5ADC conversion has exceeded limits and is clamped 0x0 R
2 CH4_ERR_MOD_SAT Channel 4Modulator output saturation error 0x0 R
1 CH4_ERR_FILTER_SAT Channel 4Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
0x0 R
0 CH4_ERR_OUTPUT_SAT Channel 4ADC conversion has exceeded limits and is clamped 0x0 R
Data Sheet AD7771
Rev. A | Page 93 of 99
CHANNEL 6/CHANNEL 7 DSP ERRORS REGISTER
Address: 0x057, Reset: 0x00, Name: CH6_7_SAT_ERR
Channel 6 - ADC conversion has
exceeded limits and has been clamped
Channel 7 - Modulator output saturation
error
Channel 6 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 7 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 6 - Modulator output saturation
error
Channel 7 - ADC conversion has
exceeded limits and has been clamped
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :6] RESERVED [0] CH6_ERR_OUTPUT_SAT (R)
[5] CH7_ERR_MOD_SAT (R)
[1] CH6_ERR_FILTER_SAT (R)
[4] CH7_ERR_FILTER_SAT (R)
[2] CH6_ERR_MOD_SAT (R)
[3] CH7_ERR_OUTPUT_SAT (R)
Table 131. Bit descriptions for CH6_7_SAT_ERR
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5 CH7_ERR_MOD_SAT Channel 7Modulator output saturation error 0x0 R
4 CH7_ERR_FILTER_SAT Channel 7Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
0x0 R
3 CH7_ERR_OUTPUT_SAT Channel 7ADC conversion has exceeded limits and is clamped 0x0 R
2 CH6_ERR_MOD_SAT Channel 6Modulator output saturation error 0x0 R
1 CH6_ERR_FILTER_SAT Channel 6Filter result has exceeded a reasonable level, before offset and
gain calibration are applied
0x0 R
0
CH6_ERR_OUTPUT_SAT
Channel 6ADC conversion has exceeded limits and is clamped
0x0
R
CHANNEL 0 TO CHANNEL 7 ERROR REGISTER ENABLE REGISTER
Address: 0x058, Reset: 0xFE, Name: CHX_ERR_REG_EN
ADC conversion error test enable Reference detect test enable
Filter saturation error test enable AINx+ overvoltage test enable
Enable error flag for Modulator saturation AINx+ undervoltage test enable
AINx- undervoltage test enable AINx- overvoltage test enable
0
0
1
1
2
1
3
1
4
1
5
1
6
1
7
1
[7] OUTPUT_SAT_TEST_EN (R/W) [0 ] REF_DET_TEST_ EN (R/W )
[6] FILTER_SAT_TEST_EN (R/W) [1] AINP_OV_TEST_EN (R/W)
[5] MOD_SAT_TEST_EN (R/W) [2] AINP_UV_TEST_EN (R/W )
[4] AINM_UV_TEST_EN (R/W) [3] AINM_OV_TEST_EN (R/W )
Table 132. Bit Descriptions for CHX_ERR_REG_EN
Bits Bit Name Settings Description Reset Access
7 OUTPUT_SAT_TEST_EN ADC Conversion Error Test Enable 0x1 R/W
6 FILTER_SAT_TEST_EN Filter Saturation Test Enable 0x1 R/W
5 MOD_SAT_TEST_EN Enable Error Flag for Modulator Saturation 0x1 R/W
4 AINM_UV_TEST_EN AINx− Undervoltage Test Enable 0x1 R/W
3 AINM_OV_TEST_EN AINx− Overvoltage Test Enable 0x1 R/W
2 AINP_UV_TEST_EN AINx+ Undervoltage Test Enable 0x1 R/W
1 AINP_OV_TEST_EN AINx+ Overvoltage Test Enable 0x1 R/W
0 REF_DET_TEST_EN Reference Detect Test Enable 0x0 R/W
AD7771 Data Sheet
Rev. A | Page 94 of 99
GENERAL ERRORS REGISTER 1
Address: 0x059, Reset: 0x00, Name: GEN_ERR_REG_1
SPI CRC error
A CRC of the memory map contents
is run periodically to check for errors SPI invalid write address
A CRC of the fuse contents is run
periodically to check for errors in
the fuses
SPI invalid read address
SPI clock counter error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :6] RESERVED [0] SPI_CRC_ERR (R)
[5] MEMMAP_CRC_ERR (R)
[1] SPI_INVALID_WRITE_ERR (R)
[4] ROM_CRC_ERR (R) [2] SPI_INVALID_READ_ERR (R)
[3] SPI_CLK_COUNT_ERR (R)
Table 133. Bit Descriptions for GEN_ERR_REG_1
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5 MEMMAP_CRC_ERR A CRC of the memory map contents is run periodically to check for errors 0x0 R
4 ROM_CRC_ERR A CRC of the fuse contents is run periodically to check for errors in the fuses 0x0 R
3 SPI_CLK_COUNT_ERR SPI clock counter error 0x0 R
2 SPI_INVALID_READ_ERR SPI invalid read address 0x0 R
1 SPI_INVALID_WRITE_ERR SPI invalid write address 0x0 R
0 SPI_CRC_ERR SPI CRC error 0x0 R
GENERAL ERRORS REGISTER 1 ENABLE
Address: 0x05A, Reset: 0x3E, Name: GEN_ERR_REG_1_EN
Table 134. Bit Descriptions for GEN_ERR_REG_1_EN
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5 MEMMAP_CRC_TEST_EN Memory Map CRC Test Error Enable 0x1 R/W
4 ROM_CRC_TEST_EN Fuse CRC Test Enable 0x1 R/W
3 SPI_CLK_COUNT_TEST_EN SPI Clock Counter Test Enable 0x1 R/W
2 SPI_INVALID_READ_TEST_EN SPI Invalid Read Address Test Enable 0x1 R/W
1 SPI_INVALID_WRITE_TEST_EN SPI Invalid Write Address Test Enable 0x1 R/W
0 SPI_CRC_TEST_EN SPI CRC Error Test Enable 0x0 R/W
Data Sheet AD7771
Rev. A | Page 95 of 99
GENERAL ERRORS REGISTER 2
Address: 0x05B, Reset: 0x00, Name: GEN_ERR_REG_2
DRegCap power supply error
Reset detected
AReg2Cap power supply error
Clock not switched over
AReg1Cap power supply error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [0] DLDO_PSM_ERR (R)
[5] RESET_DETECTED (R)
[1] ALDO2_PSM_ERR (R)
[4] EXT_MCLK_SW ITCH_ERR (R)
[2] ALDO1_PSM_ERR (R)
[3] RESERVED
Table 135. Bit Descriptions for GEN_ERR_REG_2
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5 RESET_DETECTED Reset Detected 0x0 R
4 EXT_MCLK_SWITCH_ERR Clock Not Switched Over 0x0 R
3 RESERVED Reserved 0x0 R
2 ALDO1_PSM_ERR AREG1CAP Power Supply Error 0x0 R
1
ALDO2_PSM_ERR
AREG2CAP Power Supply Error
0x0
R
0
DLDO_PSM_ERR
DREGCAP Power Supply Error
0x0
R
GENERAL ERRORS REGISTER 2 ENABLE
Address: 0x05C, Reset: 0x3C, Name: GEN_ERR_REG_2_EN
LDO PSM trip test enable
11: 11 - Run trip detect test on DRegCap.
10: 10 - Run trip detect test on AReg2Cap.
1: 01 - Run trip detect test on AReg1Cap.
0: 00 - No trip detect test enabled.
Reset detect enable
LDO PSM test EN
11:
on all LDOs.
11 - Run power supply monitor test
10:
on DRegCap.
10 - Run power supply monitor test
1:
on ARegxCap.
01 - Run power supply monitor test
0:
enabled.
00 - No power supply monitor test
0
0
1
0
2
1
3
1
4
0
5
1
6
0
7
0
[7 :6] RESERVED [1:0] LDO_PSM_TRIP_TEST_EN (R/W)
[5 ] RESET_DETECT_EN (R/W )
[3:2] LDO_PSM_test_EN (R/W)
[4 ] RESERVED
Table 136. Bit Descriptions for GEN_ERR_REG_2_EN
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5 RESET_DETECT_EN Reset Detect Enable 0x1 R/W
4 RESERVED Reserved 0x1 R/W
[3:2] LDO_PSM_TEST_EN LDO PSM Test Enable 0x3 R/W
0 00No power supply monitor test enabled
1 01Run power supply monitor test on AREGxCAP
10 10Run power supply monitor test on DREGCAP
11 11Run power supply monitor test on all LDOs
[1:0] LDO_PSM_TRIP_TEST_EN LDO PSM Trip Test Enable 0x0 R/W
0 00No trip detect test enabled
1 01Run trip detect test on AREG1CAP
10 10Run trip detect test on AREG2CAP
11 11Run trip detect test on DREGCAP
AD7771 Data Sheet
Rev. A | Page 96 of 99
ERROR STATUS REGISTER 1
Address: 0x05D, Reset: 0x00, Name: STATUS_REG_1
An error specific to CH0_ERR_REG
is active
Set high if any error bit is high
An error specific to CH1_ERR_REG
is active
An error specific to CH4_ERR_REG
is active
An error specific to CH2_ERR_REG
is active
An error specific to CH3_ERR_REG
is active
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :6] RESERVED [0] ERR_LOC_CH0 (R)
[5] CHIP_ERROR (R)
[1] ERR_LOC_CH1 (R)
[4] ERR_LOC_CH4 (R)
[2] ERR_LOC_CH2 (R)
[3] ERR_LOC_CH3 (R)
Table 137. Bit Descriptions for STATUS_REG_1
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5 CHIP_ERROR Set this bit high if any error bit is high 0x0 R
4 ERR_LOC_CH4 An error specific to CH4_ERR_REG is active 0x0 R
3 ERR_LOC_CH3 An error specific to CH3_ERR_REG is active 0x0 R
2 ERR_LOC_CH2 An error specific to CH2_ERR_REG is active 0x0 R
1 ERR_LOC_CH1 An error specific to CH1_ERR_REG is active 0x0 R
0 ERR_LOC_CH0 An error specific to CH0_ERR_REG is active 0x0 R
ERROR STATUS REGISTER 2
Address: 0x05E, Reset: 0x00, Name: STATUS_REG_2
An error specific to CH5_ERR_REG
is active
Set high if any error bit is high
An error specific to CH6_ERR_REG
is active
An error specific to GEN_ERR_REG_2
is active
An error specific to CH7_ERR_REG
is active
An error specific to GEN_ERR_REG_1
is active
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :6] RESERVED [0] ERR_LOC_CH5 (R)
[5] CHIP_ERROR (R)
[1] ERR_LOC_CH6 (R)
[4] ERR_LOC_GEN2 (R)
[2] ERR_LOC_CH7 (R)
[3] ERR_LOC_GEN1 (R)
Table 138. Bit Descriptions for STATUS_REG_2
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5 CHIP_ERROR Set high if any error bit is high 0x0 R
4 ERR_LOC_GEN2 An error specific to GEN_ERR_REG_2 is active 0x0 R
3 ERR_LOC_GEN1 An error specific to GEN_ERR_REG_1 is active 0x0 R
2 ERR_LOC_CH7 An error specific to CH7_ERR_REG is active 0x0 R
1 ERR_LOC_CH6 An error specific to CH6_ERR_REG is active 0x0 R
0 ERR_LOC_CH5 An error specific to CH5_ERR_REG is active 0x0 R
Data Sheet AD7771
Rev. A | Page 97 of 99
ERROR STATUS REGISTER 3
Address: 0x05F, Reset: 0x00, Name: STATUS_REG_3
An error specific to CH0_1_SAT_ERR
reg is active
Set high if any error bit is high
An error specific to CH2_3_SAT_ERR
reg is active
Fuse initialization is complete. Device
is ready to receive commands
An error specific to CH4_5_SAT_ERR
reg is active
An error specific to CH6_7_SAT_ERR
reg is active
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7 :6] RESERVED [0] ERR_LOC_SAT_CH0_1 (R)
[5] CHIP_ERROR (R)
[1] ERR_LOC_SAT_CH2_3 (R)
[4] INIT_COMPLETE (R)
[2] ERR_LOC_SAT_CH4_5 (R)
[3] ERR_LOC_SAT_CH6_7 (R)
Table 139. Bit Descriptions for STATUS_REG_3
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved 0x0 R
5 CHIP_ERROR Set high if any error bit is high. 0x0 R
4 INIT_COMPLETE Fuse initialization is complete. Device is ready to receive commands. 0x0 R
3 ERR_LOC_SAT_CH6_7 An error specific to CH6_7_SAT_ERR register is active. 0x0 R
2 ERR_LOC_SAT_CH4_5 An error specific to CH4_5_SAT_ERR register is active. 0x0 R
1 ERR_LOC_SAT_CH2_3 An error specific to CH2_3_SAT_ERR register is active. 0x0 R
0 ERR_LOC_SAT_CH0_1 An error specific to CH0_1_SAT_ERR register is active. 0x0 R
DECIMATION RATE (N) MSB REGISTER
Address: 0x060, Reset: 0x00, Name: SRC_N_MSB
SRC N Combined
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:4] RESERVED [3:0] SRC_N_ALL[11:8] (R/W)
Table 140. Bit Descriptions for SRC_N_MSB
Bits Bit Name Settings Description Reset Access
[7:4] RESERVED Reserved 0x0 R
[3:0] SRC_N_ALL[11:8] SRC N Combined 0x0 R/W
DECIMATION RATE (N) LSB REGISTER
Address: 0x061, Reset: 0x80, Name: SRC_N_LSB
SRC N Combined
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
1
[7:0] SRC_N_ALL[7:0] (R/W)
Table 141. Bit Descriptions for SRC_N_LSB
Bits Bit Name Settings Description Reset Access
[7:0] SRC_N_ALL[7:0] SRC N Combined 0x0 R/W
DECIMATION RATE (IF) MSB REGISTER
Address: 0x062, Reset: 0x00, Name: SRC_IF_MSB
SRC IF ALL
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] SRC_IF_ALL[15:8] (R/W)
Table 142. Bit Descriptions for SRC_IF_MSB
Bits
Bit Name
Settings
Description
Reset
Access
[7:0]
SRC_IF_ALL[15:8]
SRC IF All
0x0
R/W
AD7771 Data Sheet
Rev. A | Page 98 of 99
DECIMATION RATE (IF) LSB REGISTER
Address: 0x063, Reset: 0x00, Name: SRC_IF_LSB
SRC IF ALL
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] SRC_IF_ALL[7:0] (R/W)
Table 143. Bit Descriptions for SRC_IF_LSB
Bits Bit Name Settings Description Reset Access
[7:0] SRC_IF_ALL[7:0] SRC IF All 0x0 R/W
SRC LOAD SOURCE AND LOAD UPDATE REGISTER
Address: 0x064, Reset: 0x00, Name: SRC_UPDATE
Select which option to load an SRC
update
Assert bit to load SRC registers into
SRC
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] SRC_LOAD_SOURCE (R/W ) [0] SRC_LOAD_UPDATE (R/W )
[6 :1] RESERVED
Table 144. Bit Descriptions for SRC_UPDATE
Bits Bit Name Settings Description Reset Access
7 SRC_LOAD_SOURCE Selects which option to load an SRC update 0x0 R/W
[6:1] RESERVED Reserved 0x0 R
0 SRC_LOAD_UPDATE Asserts bit to load SRC registers into SRC 0x0 R/W
Data Sheet AD7771
Rev. A | Page 99 of 99
OUTLINE DIMENSIONS
0.50
BSC
BOTTOM VIEW
TOP VIEW
PIN 1
INDICATOR
7.70
7.60 SQ
7.50
0.45
0.40
0.35
0.80
0.75
0.70 0.05 MAX
0.02 NOM
0.203 REF
COPLANARITY
0.08
0.30
0.25
0.18
04-10-2017-A
9.10
9.00 SQ
8.90
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
0.20 MIN
7.50 REF
COMPLIANT TO JEDEC STANDARDS MO-220-WMMD
1
64
16
17
49
48
32
33
PKG-004396
SIDE VIEW
EXPOSED
PAD
PIN 1
INDIC AT OR AREA OPTIONS
(SEE DETAIL A)
DETAIL A
(JEDEC 95)
SEATING
PLANE
Figure 140. 64-Lead Lead Frame Chip Scale Package [LFCSP]
9 mm × 9 mm Body and 0.75 mm Package Height
(CP-64-15)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
AD7771BCPZ −40°C to +125°C 64-Lead Lead Frame Chip Scale Package [LFCSP] CP-64-15
AD7771BCPZ-RL −40°C to +125°C 64-Lead Lead Frame Chip Scale Package [LFCSP] CP-64-15
EVAL-AD7771FMCZ
Evaluation Board
EVAL-SDP-CH1Z SDP Controller Board
1 Z = RoHS Compliant Part.
©20172018 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13802-0-6/18(A)