Features
nFloating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
nGate drive supply range from 10 to 20V
nUndervoltage lockout for all channels
nOver-current shutdown turns off all six drivers
nIndependent half-bridge dr ivers
nMatched propagation delay for all channels
nOutputs out of phase with inputs
Description
The IR2132 is a high voltage, high speed power
MOSFET and IGBT driv er with three independent high
and lo w side referenced output channels . Proprietary
HVIC technology enables ruggediz ed monolithic con-
struction. Logic inputs are compatible with 5V CMOS
or LSTTL outputs. A ground-referenced operational
amplifier provides analog feedback of bridge current
via an external current sense resistor. A current tr ip
function which terminates all six outputs is also de-
rived from this resistor. An open drain FAULT signal
indicates if an o ver-current or undervoltage shutdo wn
has occurred. The output drivers feature a high pulse
current buffer stage designed for minimum driver
cross-conduction. Propagation delays are matched
to simplify use at high frequencies. The floating chan-
nels can be used to drive N-channel pow er MOSFETs
or IGBTs in the high side configuration which oper-
ate up to 600 volts.
3-PHASE BRIDGE DRIVER
Product Summary
VOFFSET 600V max.
IO+ / - 200 mA / 420 mA
VOUT 10 - 20V
ton/off (typ.) 675 & 425 ns
Deadtime (typ.) 0.8 µs
Packages
Typical Connection
Data Sheet No. PD-6.033E
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-165
IR2132
B-166 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Parameter Value
Symbol Definition Min. Max. Units
VB1,2,3 High Side Floating Supply Voltage VS1,2,3 + 10 VS1,2,3 + 20
VS1,2,3 High Side Floating Offset Voltage Note 1 600
VHO1,2,3 High Side Floating Output Voltage VS1,2,3 VB1,2,3
VCC L ow Side and Logic Fixed Supply Voltage 10 20
VSS Logic Ground -5 5
VLO1,2,3 Low Side Output Voltage 0 VCC
VIN Logic Input Voltage (HIN1,2,3, LIN1,2,3 & ITRIP) VSS VSS + 5
VFLT FAULT Output Voltage VSS VCC
VCAO Operational Amplifier Output Voltage VSS 5
VCA- Operational Amplifier Inverting Input Voltage VSS 5
TAAmbient Temperature -40 12 5 °C
Parameter Value
Symbol Definition Min. Max. Units
VB1,2,3 High Side Floating Supply Voltage -0.3 525
VS1,2,3 High Side Floating Offset Voltage VB1,2,3 - 25 VB1,2,3 + 0.3
VHO1,2,3 High Side Floating Output Voltage VS1,2,3 - 0.3 VB1,2,3 + 0.3
VCC L ow Side and Logic Fixed Supply Voltage -0.3 25
VSS Logic Ground VCC - 25 VCC + 0.3
VLO1,2,3 Low Side Output Voltage -0.3 VCC + 0.3
VIN Logic Input Voltage (HIN1,2,3, LIN1,2,3 & ITRIP) VSS - 0.3 VCC + 0.3
VFLT FAULT Output Voltage VSS - 0.3 VCC + 0.3
VCAO Operational Amplifier Output Voltage VSS - 0.3 V CC + 0.3
VCA- Operational Amplifier Inverting Input Voltage VSS - 0.3 V CC + 0.3
dVS/dt Allowa ble Offset Supply Voltage Transient 50 V/ns
PDPackage Power Dissipation @ TA +25°C (28 Lead DIP) 1.5
(28 Lead SOIC) 1.6 W
(44 Lead PLCC) 2.0
RθJA Thermal Resistance, Junction to Ambient (28 Lead DIP) 83
(28 Lead SOIC) 78 °C/W
(44 Lead PLCC) 63
TJJunction Temperature 150
TSStorage Temperature -55 150 °C
TLLead Temperature (Soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to V S0. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.
Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS).
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested
with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.
V
V
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-167
Parameter Value
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
VIH Logic 0” Input Voltage (OUT = LO) 21 2.2
VIL Logic 1 Input Voltage (OUT = HI) 22 0.8
VIT,TH+ ITRIP Input Positive Going Threshold 23 400 490 580
VOH High Level Output Voltage, VBIAS - VO24 100 mV VIN = 0V, IO = 0A
VOL Lo w Lev el Output Voltage, VO25 100 VIN = 5V, IO = 0A
ILK Offset Supply Leakage Current 26 50 VB = VS = 600V
IQBS Quiescent VBS Supply Current 27 15 30 VIN = 0V or 5V
IQCC Quiescent VCC Supply Current 28 3.0 4.0 mA VIN = 0V or 5V
IIN+ Logic 1” Input Bias Current (OUT = HI) 29 450 650 VIN = 0V
IIN- Logic 0” Input Bias Current (OUT = LO) 30 225 400 µ A VIN = 5V
IITRIP+ “High” ITRIP Bias Current 31 75 15 0 ITRIP = 5V
IITRIP- Low” ITRIP Bias Current 32 100 nA ITRIP = 0V
VBSUV+ VBS Supply Undervoltage P ositive Going 33 7 .5 8.35 9 .2
Threshold
VBSUV- VBS Supply Undervoltage Negativ e Going 34 7.1 7.95 8.8
Threshold
VCCUV+ VCC Supply Undervoltage Positive Going 35 8.3 9.0 9.7
Threshold
VCCUV- VCC Supply Undervoltage Negative Going 3 6 8.0 8.7 9.4
Threshold
Ron,FLT FAULT Low On-Resistance 37 55 75
Parameter Value
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
ton Turn-On Propagation Delay 11 500 6 75 850
toff Tur n-Off Propagation Delay 12 300 4 25 550 VIN = 0 & 5V
trTur n-On Rise Time 13 8 0 125 VS1,2,3 = 0 to 600V
tfTurn-Off Fall Time 14 35 55
titrip ITRIP to Output Shutdown Prop. Delay 15 400 660 92 0 V IN, VITRIP = 0 & 5V
tbl ITRIP Blanking Time 400 VITRIP = 1V
tflt ITRIP to FAULT Indication Delay 16 335 590 845 V IN, VITRIP = 0 & 5V
tflt,in Input Filter Time (All Six Inputs) 31 0 VIN = 0 & 5V
tfltclr LIN1,2,3 to FAULT Clear Time 17 6.0 9 .0 12.0 VIN, VITRIP = 0 & 5V
DT Deadtime 18 0.4 0.8 1.2 VIN = 0 & 5V
SR+ Operational Amplifier Slew Rate (+) 19 4.4 6.2
SR- Operational Amplifier Slew Rate (-) 20 2.4 3.2
Dynamic Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V , VS0,1,2,3 = VSS, CL = 1000 pF and T A = 25 °C unless otherwise specified. The dynamic
electr ical characteristics are defined in Figures 3 through 5.
Static Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The VO and IO parameters
are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
V
V/µs
µs
ns
V
µA
IR2132
B-168 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Parameter Value
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
IO+ Output High Shor t Circuit Pulsed Current 38 200 25 0 V O = 0V, VIN = 0V
PW10 µ s
IO- Output Low Shor t Circuit Pulsed Current 39 420 500 VO = 15V, VIN = 5V
PW10 µ s
VOS Operational Amplifer Input Offset Voltage 4 0 30 mV VS0 = VCA- = 0.2V
ICA- CA- Input Bais Current 41 4.0 nA VCA- = 2.5V
CMRR Op. Amp. Common Mode Rejection Ratio 42 60 8 0 VS0=VCA-=0.1V & 5V
PSR R Op. Amp. Power Supply Rejection Ratio 43 55 7 5 V S0 = VCA- = 0.2V
VCC = 10V & 20V
VOH,AMP Op. Amp. High Level Output Voltage 44 5.0 5.2 5.4 V VCA- = 0V, VS0 = 1V
VOL,AMP Op. Amp. Lo w Lev el Output Voltage 45 20 mV VCA- = 1V, VS0 = 0V
ISRC,AMP Op. Amp. Output Source Current 4 6 2.3 4.0 VCA- = 0V, VS0 = 1V
VCAO = 4V
ISRC,AMP Op. Amp. Output Sink Current 47 1.0 2.1 VCA- = 1V, VS0 = 0V
VCAO = 2V
IO+,AMP Operational Amplifier Output High Short 48 4.5 6.5 VCA- = 0V, VS0 = 5V
Circuit Current VCAO = 0V
IO-,AMP Operational Amplifier Output Low Short 49 3.2 5.2 VCA- = 5V, VS0 = 0V
Circuit Current VCAO = 5V
Static Electrical Characteristics -- Continued
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and T A = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The V O and IO parameters
are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
mA
dB
mA
Lead Assignments
28 Lead DIP 44 Lead PLCC w/o 12 Leads 28 Lead SOIC (Wide Body)
IR2132 IR2132J IR2132S
Part Number
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-169
Lead
Symbol Description
Logic inputs for high side gate driver outputs (HO1,2,3), out of phase
Logic inputs for low side gate driver output (LO1,2,3), out of phase
Indicates over-current or under voltage lockout (low side) has occurred, negative logic
VCC Low side and logic fixed supply
ITRIP Input for over-current shutdown
CAO Output of current amplifier
CA- Negative input of current amplifier
VSS Logic ground
VB1,2,3 High side floating supplies
HO1,2,3 High side gate drive outputs
VS1,2,3 High side floating supply returns
LO1,2,3 Low side gate drive outputs
VS0 Low side return and positive input of current amplifier
Functional Block Diagram
Lead Definitions
LIN1,2,3
HIN1,2,3
FAULT
IR2132
B-170 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Thickness of Gate Oxide 800Å
Connections Material Poly Silicon
First Width 4 µm
Layer Spacing 6 µm
Thickness 5000Å
Material Al - Si (Si: 1.0% ±0.1%)
Second Width 6 µm
Layer Spacing 9 µm
Thickness 20,000Å
Contact Hole Dimension 8 µm X 8 µm
Insulation La yer Material PSG (SiO2)
Thickness 1.5 µm
Passivation Material PSG (SiO2)
(1) Thickness 1.5 µm
Passivation Material Proprietary*
(2) Thickness Proprietary*
Method of Sa w Full Cut
Method of Die Bond Ablebond 84 - 1
Wire Bond Method Thermo Sonic
Material Au (1.0 mil / 1.3 mil)
Leadframe Material Cu
Die Area Ag
Lead Plating Pb : Sn (37 : 63)
Pac kage Types 28 Lead PDIP & SOIC / 44 Lead PLCC
Materials EME6300 / MP150 / MP190
Remarks: * P atent Pending
Device Information
Process & Design Rule HVDCMOS 4.0 µm
Transistor Count 700
Die Size 126 X 175 X 26 (mil)
Die Outline
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-171
Figure 3. Deadtime Waveform Definitions Figure 4. Input/Output Switching Time W aveform
Definitions
Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit
Figure 5. Overcurrent Shutdown Switching Time
Waveform Definitions Figure 6. Diagnostic Feedback Operational Amplifier
Circuit
CAO
VS0
CA- VSS
VCC
VSS
+
-
LO1,2,3
HO1,2,3
ITRIP
DT DT
tr
ton toff tf
50% 50%
90% 90%
10% 10%
50% 50%
50% 50%
50%
50%
50% 50%
50%
tflt
titrip
tfltclr
FAULT
LIN1,2,3
HIN1,2,3
FAULT
HIN1,2,3
LIN1,2,3
HO1,2,3
LO1,2,3
LIN1,2,3
ITRIP
LO1,2,3
HIN1,2,3
LIN1,2,3
LO1,2,3
HO1,2,3
IR2132
IR2132
B-172 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Measure VCAO1 at V S0 = 0.1V
VCAO2 at VS0 = 5V
CMRR = -20 *LOG
Measure VCAO1 at V CC = 10V
VCAO2 at V CC = 20V
PSRR = -20*LOG VCAO1 - VCAO2
Figure 9. Operational Amplifier Common Mode
Rejection Ratio Measurements Figure 10. Operational Amplifier Power Supply
Rejection Ratio Measurements
Figure 11B. T urn-On Time vs. V oltageFigure 11A. T urn-On Time vs. Temperature
Figure 7. Operational Amplifier Slew Rate
Measurement Figure 8. Operational Amplifier Input Offset Voltage
Measurement
CAO
VS0
CA-
VSS
V
CC
15V
-
+
CAO
+
VS0
VCC
VSS
1k
20k
CA- +
-
0.2V
(10V) (21)
CAO
+
V
S0 V
CC
VSS
0.2V 1k
20k
CA-
15V
+
-
VCAO
21 - 0.2V
VOS =
(VCAO1-0.1V) - (VCAO2-5V)
4.9V (dB)
CAO
VS0
CA-
VSS
VCC
15V
50 pF
+
-
0V
3V
90%
10%
0V
3V T1 T2
V
V
T1
SR+ = V
T2
SR- =
0.00
0.30
0.60
0.90
1.20
1.50
-50 -25 0 25 50 75 100 125
Temperature (°C)
T
urn-On Delay Time (µ
s)
Typ.
Min.
Max.
0.00
0.30
0.60
0.90
1.20
1.50
10 12 14 16 18 20
VBIAS Supply Voltage (V)
T
urn-On Delay Time (µ
s)
Max.
Typ.
Min.
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-173
Figure 14A. Turn-Off Fall Time vs. Temperature Figure 14B. Turn-Off Fall Time vs. Voltage
Figure 12A. Turn-Off Time vs. Temperature Figure 12B. Turn-Off Time vs. Voltage
Figure 13A. Turn-On Rise Time vs. Temperature Figure 13B. Turn-On Rise Time vs. Voltage
0.00
0.20
0.40
0.60
0.80
1.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
T
urn-Off Delay Time (µs
)
Typ.
Min.
Max.
0.00
0.20
0.40
0.60
0.80
1.00
10 12 14 16 18 20
VBIAS Supply Voltage (V)
T
urn-Off Delay Time (µs
)
Max.
Typ.
Min.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-On Rise Time (n
s)
Typ.
Max.
0
50
100
150
200
250
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-On Rise Time (n
s)
Max.
Typ.
0
25
50
75
100
125
-50 -25 0 25 50 75 100 125
Temperature (°C)
T
urn-Off Fall Time (ns
)
Typ.
Max.
0
25
50
75
100
125
10 12 14 16 18 20
VBIAS Supply Voltage (V)
T
urn-Off Fall Time (ns
)
Max.
Typ.
IR2132
B-174 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Figure 16A. ITRIP to FAULT Indication Time vs.
Temperature Figure 16B. ITRIP to FAULT Indication Time vs.
Voltage
Figure 15B. ITRIP to Output Shutdown Time vs. VoltageFigure 15A. ITRIP to Output Shutdown Time vs.
Temperature
Figure 17A. LIN1,2,3 to FAULT Clear Time vs.
Temperature Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage
0.00
0.30
0.60
0.90
1.20
1.50
-50 -25 0 25 50 75 100 125
Temperature (°C)
ITRIP to Output Shutdown Delay Time (µs
)
Typ.
Min.
Max.
0.00
0.30
0.60
0.90
1.20
1.50
10 12 14 16 18 20
VBIAS Supply Voltage (V)
ITRIP to Output Shutdown Delay Time (µs
)
Max.
Typ.
Min.
0.0
5.0
10.0
15.0
20.0
25.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
L
IN1,2,3 to FAULT Clear Time (µ
s)
Typ.
Min.
Max.
0.00
0.30
0.60
0.90
1.20
1.50
10 12 14 16 18 20
VCC Supply Voltage (V)
I
TRIP to FAULT Indication Delay Time (µ
s)
Max.
Typ.
Min.
0.00
0.30
0.60
0.90
1.20
1.50
-50 -25 0 25 50 75 100 125
Temperature (°C)
I
TRIP to FAULT Indication Delay Time (µ
s)
Typ.
Min.
Max.
0.0
5.0
10.0
15.0
20.0
25.0
10 12 14 16 18 20
VCC Supply Voltage (V)
L
IN1,2,3 to FAULT Clear Time (µ
s)
Max.
Typ.
Min.
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-175
Figure 19A. Amplifier Slew Rate (+) vs. Temperature Figure 19B. Amplifier Slew Rate (+) vs. Voltage
Figure 18A. Deadtime vs. Temperature Figure 18B. Deadtime vs. Voltag e
Figure 20A. Amplifier Slew Rate (-) vs. Temperature Figure 20B. Amplifier Slew Rate (-) vs. Voltag e
0.0
2.0
4.0
6.0
8.0
10.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier Slew Rate + (V/µ
s)
Typ.
Min.
0.0
2.0
4.0
6.0
8.0
10.0
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier Slew Rate + (V/µ
s)
Min.
Typ.
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier Slew Rate - (V/µ
s)
Typ.
Min.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier Slew Rate - (V/µ
s)
Min.
Typ.
0.00
0.50
1.00
1.50
2.00
2.50
-50 -25 0 25 50 75 100 125
Temperature (°C)
D
eadtime (µs
)
Typ.
Min.
Max.
0.00
0.50
1.00
1.50
2.00
2.50
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Deadtime (µs
)
Max.
Typ.
Min.
IR2132
B-176 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Figure 22A. Logic “1” Input Threshold vs. Temperature Figure 22B. Logic “1” Input Threshold vs. Voltag e
Figure 21A. Logic “0” Input Threshold vs. Temperature Figure 20B. Logic “0” Input Threshold vs. Voltag e
Figure 23A. ITRIP Input Positive Going Threshold
vs. Temperature Figure 23B. ITRIP Input Positive Going Threshold
vs. Voltag e
0
150
300
450
600
750
-50 -25 0 25 50 75 100 125
Temperature (°C)
ITRIP Input Positive Going Threshold (mV
)
Typ.
Min.
Max.
0
150
300
450
600
750
10 12 14 16 18 20
VCC Supply Voltage (V)
I
TRIP Input Positive Going Threshold (mV
)
Max.
Typ.
Min.
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
L
ogic "0" Input Threshold (V
)
Min.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Supply Voltage (V)
L
ogic "0" Input Threshold (V
)
Min.
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
L
ogic "1" Input Threshold (V
)
Max.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Supply Voltage (V)
L
ogic "1" Input Threshold (V
)
Max.
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-177
Figure 25A. Low Level Output vs. Temperature Figure 25B. Low Level Output vs. Voltag e
Figure 24A. High Level Output vs. Temperature Figure 24B. High Level Output vs. Voltage
Figure 26A. Offset Supply Leakage Current
vs. Temperature Figure 26B. Offset Supply Leakage Current vs. Voltage
0.00
0.20
0.40
0.60
0.80
1.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
H
igh Level Output Voltage (V
)
Max.
0.00
0.20
0.40
0.60
0.80
1.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
L
ow Level Output Voltage (V
)
Max.
0.00
0.20
0.40
0.60
0.80
1.00
10 12 14 16 18 20
VBIAS Supply Voltage (V)
H
igh Level Output Voltage (V
)
Max.
0.00
0.20
0.40
0.60
0.80
1.00
10 12 14 16 18 20
VBIAS Supply Voltage (V)
L
ow Level Output Voltage (V
)
Max.
0
100
200
300
400
500
0 100 200 300 400 500 600
VB Boost Voltage (V)
O
ffset Supply Leakage Current (µA
)
Max.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
O
ffset Supply Leakage Current (µA
)
Max.
IR2132
B-178 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Figure 28A. VCC Supply Current vs. Temperature Figure 28B. V CC Supply Current vs. Voltage
Figure 27A. VBS Supply Current vs. Temperature Figure 27B. VBS Supply Current vs. Voltage
Figure 29A. Logic “1” Input Current vs. Temperature Figure 29A. Logic “1” Input Current vs. Voltag e
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
BS Supply Current (µA
)
Typ.
Max.
0
20
40
60
80
100
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
V
BS Supply Current (µA
)
Max.
Typ.
0.0
2.0
4.0
6.0
8.0
10.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
CC Supply Current (mA
)
Typ.
Max.
0.0
2.0
4.0
6.0
8.0
10.0
10 12 14 16 18 20
VCC Supply Voltage (V)
V
CC Supply Current (mA
)
Max.
Typ.
0.00
0.25
0.50
0.75
1.00
1.25
-50 -25 0 25 50 75 100 125
Temperature (°C)
L
ogic "1" Input Bias Current (mA
)
Typ.
Max.
0.00
0.25
0.50
0.75
1.00
1.25
10 12 14 16 18 20
VCC Supply Voltage (V)
L
ogic "1" Input Bias Current (mA
)
Max.
Typ.
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-179
Figure 31A. “High” ITRIP Current vs. Temperature Figure 31B. “High” ITRIP Current vs. Voltag e
Figure 30A. Logic “0” Input Current vs. Temperature Figure 30B. Logic “0” Input Current vs. Volta g e
Figure 32A. Low” ITRIP Current vs. Temperature Figure 32B. Low” ITRIP Current vs. Voltag e
0
100
200
300
400
500
10 12 14 16 18 20
VCC Supply Voltage (V)
"High" ITRIP Bias Current (µA
)
Max.
Typ.
0.00
0.25
0.50
0.75
1.00
1.25
-50 -25 0 25 50 75 100 125
Temperature (°C)
L
ogic "0" Input Bias Current (mA
)
Typ.
Max.
0.00
0.25
0.50
0.75
1.00
1.25
10 12 14 16 18 20
VCC Supply Voltage (V)
L
ogic "0" Input Bias Current (mA
)
Max.
Typ.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (°C)
"
Low" ITRIP Bias Current (nA
)
Max.
0
100
200
300
400
500
10 12 14 16 18 20
VCC Supply Voltage (V)
"Low" ITRIP Bias Current (µA
)
Max.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
"High" ITRIP Bias Current (µA
)
Typ.
Max.
IR2132
B-180 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Figure 35. V CC Undervoltag e (+) vs. Temperature Figure 36. VCC Undervoltage (-) vs. Temperature
Figure 33. VBS Undervoltag e (+) vs. Temperature Figure 34. VBS Undervoltag e (-) vs. Temperature
Figure 37A. FAULT L ow On Resistance vs.
Temperature Figure 37B. FAULT L ow On Resistance vs. Voltag e
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
BS Undervoltage Lockout + (V
)
Typ.
Min.
Max.
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
VBS Undervoltage Lockout - (V
)
Typ.
Min.
Max.
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
CC Undervoltage Lockout + (V
)
Typ.
Min.
Max.
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
V
CC Undervoltage Lockout - (V
)
Typ.
Min.
Max.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (°C)
F
AULT- Low On Resistance (ohm
s)
Typ.
Max.
0
50
100
150
200
250
10 12 14 16 18 20
VCC Supply Voltage (V)
F
AULT- Low On Resistance (ohm
s)
Max.
Typ.
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-181
Figure 39A. Output Sink Current vs. Temperature Figure 39B. Output Sink Current vs. Voltag e
Figure 38A. Output Source Current vs. Temperature Figure 38B. Output Source Current vs. Voltage
Figure 40A. Amplifier Input Offset vs. Temperature Figure 40B. Amplifier Input Offset vs. Voltage
0
150
300
450
600
750
-50 -25 0 25 50 75 100 125
Temperature (°C)
O
utput Sink Current (mA
)
Min.
Typ.
0
125
250
375
500
625
750
10 12 14 16 18 20
VBIAS Supply Voltage (V)
O
utput Sink Current (mA
)
Min.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
O
utput Source Current (mA
)
Min.
Typ.
0
100
200
300
400
500
10 12 14 16 18 20
VBIAS Supply Voltage (V)
O
utput Source Current (mA
)
Min.
Typ.
0
10
20
30
40
50
10 12 14 16 18 20
VCC Supply Voltage (V)
A
mplifier Input Offset Voltage (mV)
Max.
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier Input Offset Voltage (mV
)
Max.
IR2132
B-182 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Figure 42A. Amplifier CMRR vs. Temperature Figure 42B. Amplifier CMRR vs. Voltag e
Figure 41A. CA- Input Current vs. Temperature Figure 41B. CA- Input Current vs. Voltage
Figure 43A. Amplifier PSRR vs. Temperature Figure 43B. Amplifier PSRR vs. Voltag e
0.0
2.0
4.0
6.0
8.0
10.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
CA- Input Bias Current (nA
)
Max.
0.0
2.0
4.0
6.0
8.0
10.0
10 12 14 16 18 20
VCC Supply Voltage (V)
CA- Input Bias Current (nA
)
Max.
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier CMRR (dB
)
Typ.
Min.
0
20
40
60
80
100
10 12 14 16 18 20
VCC Supply Voltage (V)
A
mplifier CMRR (dB
)
Min.
Typ.
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
A
mplifier PSRR (dB
)
Typ.
Min.
0
20
40
60
80
100
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier PSRR (dB
)
Min.
Typ.
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-183
Figure 45A. Amplifier Low Level Output vs.
Temperature Figure 45B. Amplifier Low Level Output vs. Voltage
Figure 44A. Amplifier High Level Output vs.
Temperature Figure 44B. Amplifier High Level Output vs. Voltage
Figure 46A. Amplifier Output Source Current vs.
Temperature Figure 46B. Amplifier Output Source Current vs.
Voltage
4.50
4.80
5.10
5.40
5.70
6.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier High Level Output Voltage (V
)
Typ.
Min.
Max.
4.50
4.80
5.10
5.40
5.70
6.00
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier High Level Output Voltage (V
)
Max.
Typ.
Min.
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
A
mplifier Low Level Output Voltage (mV
)
Max.
0
20
40
60
80
100
10 12 14 16 18 20
VCC Supply Voltage (V)
A
mplifier Low Level Output Voltage (mV
)
Max.
0.0
2.0
4.0
6.0
8.0
10.0
10 12 14 16 18 20
VCC Supply Voltage (V)
A
mplifier Output Source Current (mA
)
Typ.
Min.
0.0
2.0
4.0
6.0
8.0
10.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
A
mplifier Output Source Current (mA
)
Typ.
Min.
IR2132
B-184 CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL
Figure 48A. Amplifier Output High Short Circuit
Current vs. Temperature Figure 48B. Amplifier Output High Short Circuit
Current vs. Voltag e
Figure 47A. Amplifier Output Sink Current vs.
Temperature Figure 47B. Amplifier Output Sink Current vs. Voltag e
Figure 49A. Amplifier Output Low Short Circuit Current
vs. Temperature Figure 49B. Amplifier Output Low Short C ircuit Current
vs. Voltag e
0.0
3.0
6.0
9.0
12.0
15.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
O
utput High Short Circuit Current (mA
)
Typ.
Max.
0.0
3.0
6.0
9.0
12.0
15.0
10 12 14 16 18 20
VCC Supply Voltage (V)
Output Low Short Circuit Current (mA
)
Max.
Typ.
0.0
3.0
6.0
9.0
12.0
15.0
10 12 14 16 18 20
VCC Supply Voltage (V)
O
utput High Short Circuit Current (mA
)
Max.
Typ.
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
A
mplifier Output Sink Current (mA
)
Typ.
Min.
0.0
3.0
6.0
9.0
12.0
15.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Output Low Short Circuit Current (mA
)
Typ.
Max.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Supply Voltage (V)
A
mplifier Output Sink Current (mA
)
Typ.
Min.
IR2132
CONTROL INTEGRATED CIRCUIT DESIGNERS MANUAL B-185
Figure 52. IR2132 TJ vs. Frequency (IRF840)
RGATE = 15
, VCC = 15V Figure 53. IR2132 TJ vs. Frequency (IRF450)
RGATE = 10
, VCC = 15V
Figure 50. IR2132 TJ vs. Frequency (IRF820)
RGATE = 33
, VCC = 15V Figure 51. IR2132 TJ vs. Frequency (IRF830)
RGATE = 20
, VCC = 15V
Figure 54. Maximum VS Negative Offset vs. VBS Supply
Voltage
20
25
30
35
40
45
50
1E+2 1E+3 1E+4 1E+5
Frequency (Hz)
J
unction Temperature (°C
)
320V
160V
0V
480V
20
40
60
80
100
1E+2 1E+3 1E+4 1E+5
Frequency (Hz)
J
unction Temperature (°C
)
320V
160V
0V
480V
20
25
30
35
40
45
50
1E+2 1E+3 1E+4 1E+5
Frequency (Hz)
J
unction Temperature (°C
)
320V
160V
0V
480V
20
40
60
80
100
120
140
1E+2 1E+3 1E+4 1E+5
Frequency (Hz)
J
unction Temperature (°C
)
320V
160V
0V
480V
-15.0
-12.0
-9.0
-6.0
-3.0
0.0
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
VS Offset Supply Voltage (V
)
Typ.