 
   
    
SGLS175A − AUGUST 2003 − REVISED APRIL 2008
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DQualified for Automotive Applications
DESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
DOutput Swing Includes Both Supply Rails
DExtended Common-Mode Input Voltage
Range ...0 V to 4.5 V (Min) With 5-V Single
Supply
DNo Phase Inversion
DLow Noise . . . 18 nV/Hz Typ at f = 1 kHz
DLow Input Offset Voltage
950 µV Max at TA = 25°C (TLV2422A)
DLow Input Bias Current ...1 pA Typ
DMicropower Operation ...50 µA Per
Channel
D600- Output Drive
description
The TLV2422 and TLV2422A are dual low-voltage
operational amplifiers from Texas Instruments.
The common-mode input voltage range for this
device has been extended over the typical CMOS
amplifiers making them suitable for a wide range
of applications. In addition, the devices do not
phase invert when the common-mode input is
driven to the supply rails. This satisfies most
design requirements without paying a premium
for rail-to-rail input performance. They also exhibit
rail-to-rail output performance for increased
dynamic range in single- or split-supply
applications. This family is fully characterized at
3-V and 5-V supplies and is optimized for low-voltage operation. The TLV2422 only requires 50 µA of supply
current per channel, making it ideal for battery-powered applications. The TLV2422 also has increased output
drive over previous rail-to-rail operational amplifiers and can drive 600- loads for telecom applications.
Other members in the TLV2422 family are the high-power, TLV2442, and low-power, TLV2432, versions.
The TLV2422, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and
low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In
addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when
interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV2422A is available with
a maximum input offset voltage of 950 µV.
If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output
operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal
for high density, battery-powered equipment.
Copyright 2008, Texas Instruments Incorporated
  !"#$%" & '##% & "! (')*%" %+
#"'%& "!"#$ %" &(!%"& (# %, %#$& "! -& &%#'$%&
&%# .##%/+ #"'%" (#"&&0 "& "% &&#*/ *'
%&%0 "! ** (#$%#&+
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments.
Figure 1
V
OH
− High-Level Output Voltage − V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
5
2
0816243240
IOH − High-Level Output Current − mA
4
1
3
412202836
TA = 85°C
TA = 125°C
TA = −40°C
TA = 25°C
VDD = 5 V
D PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD/GND
VDD+
2OUT
2IN
2IN+
 
   
    
SGLS175A − AUGUST 2003 − REVISED APRIL 2008
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
ORDERING INFORMATION{
TAVIOmax
AT 25°CPACKAGE}ORDERABLE
PART NUMBER TOP-SIDE
MARKING
−40°C to 125°C
950 µVSOIC (D) Tape and reel TLV2422AQDRQ1 2422AQ
−40°C to 125°C2.5 mV SOIC (D) Tape and reel TLV2422QDRQ1 2422Q1
For the most current package and ordering information, see the Package Option Addendum at the end of this document,
or see the TI web site at http://www.ti.com.
Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.
1
1
1111
SGLS175 − AUGUST 2003
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
equivalent schematic (each amplifier)
Q27
R9
Q29Q22
Q23
Q26
Q25
Q24
Q31 Q34 Q36
Q32
Q33 Q35
Q37
D1
Q30
R10
VB3
VB2
VB4
VDD+
VDD−/GND
OUT
R8
R1 R2
Q2 Q5
Q1 Q4
Q3
Q12
Q11
Q10Q6
Q7
Q8
Q9
VB3
VB4
C1
C2
C3
R5
R6
Q13 Q15
Q16
Q17
Q14
Q19
Q18
Q20
Q21
R7
R3 R4
V
B2
IN+
IN−
VB1
COMPONENT
COUNT
Transistors
Diodes
Resistors
Capacitors
69
5
26
6
 
   
    
2
SGLS175 − AUGUST 2003
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 12 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage, VI (any input, see Note 1): C and I suffix 0.3 V to VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VDD+ ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VDD ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: Q suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD .
2. Differential voltages are at IN+ with respect to IN−. Excessive current flows if input is brought below VDD − 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA
25
°
C
DERATING FACTOR
TA = 70
°
C
TA = 85
°
C
TA = 125
°
C
PACKAGE
TA 25 C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70 C
POWER RATING
TA = 85 C
POWER RATING
TA = 125 C
POWER RATING
D725 mW 5.8 mW/°C464 mW 377 mW 145 mW
recommended operating conditions
MIN MAX UNIT
Supply voltage, VDD±2.7 10 V
Input voltage range, VIVDD VDD+0.8 V
Common-mode input voltage, VIC VDD VDD+0.8 V
Operating free-air temperature, TA−40 125 °C
 
   
    
2
SGLS175 − AUGUST 2003
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLV2422-Q1 TLV2422A-Q1
UNIT
PARAMETER
TEST CONDITIONS
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
Input offset voltage
25°C 300 2000 300 950
V
VIO Input offset voltage Full range 2500 1800 µV
VIO
Temperature
coefficient of input
2
2
V/°C
αVIO
coefficient of input
offset voltage Full range 2 2 µV/°C
Input offset voltage
long-term drift (see
Note 4)
VIC = 0,
VO = 0, VDD± = ±1.5 V
,
RS = 50 25°C0.003 0.003 µV/mo
IIO
Input offset current
25°C 0.5 60 0.5 60
pA
IIO Input offset current Full range 150 150 pA
IIB
Input bias current
25°C 1 60 1 60
pA
IIB Input bias current Full range 300 300 pA
VICR
Common-mode input
|VIO| 5 mV,
RS = 50
25°C0
to
2.5
−0.25
to
2.75
0
to
2.5
−0.25
to
2.75
V
VICR
Common-mode input
voltage range |VIO| 5 mV, RS = 50
Full range 0
to
2.2
0
to
2.2
V
High-level output
IOH = −100 µA 25°C 2.97 2.97
V
OH
High-level output
voltage
IOH = −500 A
25°C 2.75 2.75 V
VOH
voltage
IOH = −500 µAFull range 2.5 2.5
V
Low-level output
VIC = 0, IOL = 100 µA 25°C 0.05 0.05
V
OL
Low-level output
voltage
VIC = 0,
IOL = 250 A
25°C 0.2 0.2 V
VOL
voltage
VIC = 0, IOL = 250 µAFull range 0.5 0.5
V
Large-signal
V = 1.5 V,
RL = 10 k
25°C 6 10 6 10
A
VD
Large-signal
differential voltage VIC = 1.5 V,
VO = 1 V to 2 V
R
L
= 10 k
Full range 2 2 V/mV
AVD
differential voltage
amplification
V
O
= 1 V to 2 V
RL = 1 M25°C 700 700
V/mV
ri(d) Differential input
resistance 25°C1012 1012
ri(c) Common-mode input
resistance 25°C1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 130 130
CMRR
Common-mode
VIC = VICR min, VO = 1.5 V,
25°C 70 83 70 83
dB
CMRR
Common-mode
rejection ratio
VIC = VICR min, VO = 1.5 V,
RS = 50 Full range 70 70 dB
kSVR
Supply-voltage
rejection ratio
VDD = 2.7 V to 8 V,
25°C 80 95 80 95
dB
kSVR
rejection ratio
(VDD/VIO)
VDD = 2.7 V to 8 V,
VIC = VDD/2, No load Full range 80 80 dB
IDD
Supply current
VO = 1.5 V,
No load
25°C 100 150 100 150
µA
I
DD
Supply current
V
O
= 1.5 V,
No load
Full range 175 175 µ
A
Full range is −40°C to 125°C for Q level part.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
 
   
    
2
SGLS175 − AUGUST 2003
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TEST CONDITIONS
TA
TLV2422-Q1,
TLV2422A-Q1
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
VO = 1.1 V to 1.9 V,
RL = 10 k,
25°C 0.01 0.02
SR Slew rate at unity gain VO = 1.1 V to 1.9 V,
CL = 100 pFRL = 10 k
,Full
range 0.008 V/µs
Vn
Equivalent input noise voltage
f = 10 Hz 25°C 100
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 25°C 23
nV/Hz
VN(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 1 Hz 25°C 2.7
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 25°C 4 µV
InEquivalent input noise current 25°C 0.6 fAHz
THD + N
Total harmonic distortion plus noise
VO = 0.5 V to 2.5 V,
f = 1 kHz,
AV = 1
25°C
0.25%
THD + N Total harmonic distortion plus noise
O
f = 1 kHz,
R
L
= 10 kAV = 10 25°C1.8%
Gain-bandwidth product f = 10 kHz,
CL = 100 pFRL = 10 k,25°C 46 kHz
BOM Maximum output-swing bandwidth VO(PP) = 1 V,
RL = 10 k,AV = 1,
CL = 100 pF25°C 8.3 kHz
AV = −1,
To 0.1%
8.6
ts
Settling time
AV = −1,
Step = 0.5 V to 2.5 V,
To 0.1%
25°C
8.6
s
tsSettling time
Step = 0.5 V to 2.5 V,
R
L
= 10 k,
To 0.01%
25°C
16
µs
s
RL = 10 k,
C
L
= 100 pFTo 0.01% 16
φmPhase margin at unity gain
RL = 10 k‡,
CL = 100 pF
25°C62°
Gain margin
R
L
= 10 k
‡,
C
L
= 100 pF
25°C11 dB
Full range is −40°C to 125°C for Q level part.
Referenced to 1.5 V
 
   
    
2
SGLS175 − AUGUST 2003
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLV2422-Q1 TLV2422A-Q1
UNIT
PARAMETER
TEST CONDITIONS
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
Input offset voltage
25°C 300 2000 300 950
V
VIO Input offset voltage Full range 2500 1800 µV
VIO
Temperature
coefficient of input
2
2
V/°C
αVIO
coefficient of input
offset voltage Full range 2 2 µV/°C
Input offset voltage
long-term drift (see
Note 4)
VIC = 0,
VO = 0, VDD± = ±2.5 V
,
RS = 50 25°C0.003 0.003 µV/mo
IIO
Input offset current
25°C 0.5 60 0.5 60
pA
IIO Input offset current Full range 150 150 pA
IIB
Input bias current
25°C 1 60 1 60
pA
IIB Input bias current Full range 300 300 pA
VICR
Common-mode input
|VIO| 5 mV,
RS = 50
25°C0
to
4.5
−0.25
to
4.75
0
to
4.5
−0.25
to
4.75
V
VICR
Common-mode input
voltage range |VIO| 5 mV, RS = 50
Full range 0
to
4.2
0
to
4.2
V
High-level output
IOH = −100 µA 25°C 4.97 4.97
V
OH
High-level output
voltage
IOH = −1 mA
25°C 4.75 4.75 V
VOH
voltage
IOH = −1 mA Full range 4.5 4.5
V
Low-level output
VIC = 2.5 V, IOL = 100 µA 25°C 0.04 0.04
V
OL
Low-level output
voltage
VIC = 2.5 V,
IOL = 500 A
25°C 0.15 0.15 V
VOL
voltage
VIC = 2.5 V, IOL = 500 µAFull range 0.5 0.5
V
Large-signal
V = 2.5 V,
RL = 10 k
25°C 8 12 8 12
A
VD
Large-signal
differential voltage VIC = 2.5 V,
VO = 1 V to 4 V
R
L
= 10 k
Full range 3 3 V/mV
AVD
differential voltage
amplification
V
O
= 1 V to 4 V
RL = 1 M25°C 1000 1000
V/mV
ri(d) Differential input
resistance 25°C1012 1012
ri(c) Common-mode input
resistance 25°C1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 130 130
CMRR
Common-mode
VIC = VICR min, VO = 2.5 V,
25°C 70 90 70 90
dB
CMRR
Common-mode
rejection ratio
VIC = VICR min, VO = 2.5 V,
RS = 50 Full range 70 70 dB
kSVR
Supply-voltage
rejection ratio
VDD = 4.4 V to 8 V,
25°C 80 95 80 95
dB
kSVR
rejection ratio
(VDD/VIO)
VDD = 4.4 V to 8 V,
VIC = VDD/2, No load Full range 80 80 dB
IDD
Supply current
VO = 2.5 V,
No load
25°C 100 150 100 150
µA
I
DD
Supply current
V
O
= 2.5 V,
No load
Full range 175 175 µ
A
Full range is −40°C to 125°C for Q level part.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
 
   
    
2
SGLS175 − AUGUST 2003
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLV2422-Q1,
TLV2422A-Q1
UNIT
PARAMETER
TEST CONDITIONS
TA
MIN TYP MAX
UNIT
VO = 1.5 V to 3.5 V,
RL = 10 k,
25°C 0.01 0.02
SR Slew rate at unity gain VO = 1.5 V to 3.5 V,
CL = 100 pF
RL = 10 k
,
Full
0.008
V/µs
SR
Slew rate at unity gain
CL = 100 pF
Full
range 0.008
V/µs
Vn
Equivalent input noise voltage
f = 10 Hz 25°C 100
nV/Hz
VnEquivalent input noise voltage f = 1 kHz 25°C 18
nV/Hz
VN(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 1 Hz 25°C 1.9
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 25°C 2.8 µV
InEquivalent input noise current 25°C 0.6 fAHz
THD + N
Total harmonic distortion plus noise
VO = 1.5 V to 3.5 V,
f = 1 kHz,
AV = 1
25°C
0.24%
THD + N Total harmonic distortion plus noise
O
f = 1 kHz,
R
L
= 10 kAV = 10 25°C1.7%
Gain-bandwidth product f = 10 kHz,
CL = 100 pFRL =10 k,25°C 52 kHz
BOM Maximum output-swing bandwidth VO(PP) = 2 V,
RL = 10 k,AV = 1,
CL = 100 pF25°C 5.3 kHz
AV = −1,
To 0.1%
8.5
ts
Settling time
AV = −1,
Step = 1.5 V to 3.5 V,
To 0.1%
25°C
8.5
s
tsSettling time
Step = 1.5 V to 3.5 V,
R
L
= 10 k,
To 0.01%
25°C
15.5
µs
s
RL = 10 k,
C
L
= 100 pFTo 0.01% 15.5
φmPhase margin at unity gain
RL = 10 k‡,
CL = 100 pF
25°C66°
Gain margin
R
L
= 10 k
‡,
C
L
= 100 pF
25°C11 dB
Full range is −40°C to 125°C for Q level part.
Referenced to 2.5 V
 
   
    
2
SGLS175 − AUGUST 2003
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
2,3
VIO Input offset voltage
Distribution
vs Common-mode input voltage
2,3
4,5
αVIO Input offset voltage temperature coefficient Distribution 6,7
IIB/IIO Input bias and input offset currents vs Free-air temperature 8
VOH High-level output voltage vs High-level output current 9,11
VOL Low-level output voltage vs Low-level output current 10,12
VO(PP) Maximum peak-to-peak output voltage vs Frequency 13
IOS
Short-circuit output current
vs Supply voltage
14
IOS Short-circuit output current
vs Supply voltage
vs Free-air temperature
14
15
VID Differential input voltage vs Output voltage 16,17
Differential gain vs Load resistance 18
AVD
Large-signal differential voltage amplification
vs Frequency
19,20
AVD Differential voltage amplification
vs Frequency
vs Free-air temperature
19,20
21,22
zoOutput impedance vs Frequency 23,24
CMRR
Common-mode rejection ratio
vs Frequency
25
CMRR Common-mode rejection ratio
vs Frequency
vs Free-air temperature
25
26
kSVR
Supply-voltage rejection ratio
vs Frequency
27,28
kSVR Supply-voltage rejection ratio
vs Frequency
vs Free-air temperature
27,28
29
IDD Supply current vs Supply voltage 30
SR
Slew rate
vs Load capacitance
31
SR Slew rate
vs Load capacitance
vs Free-air temperature
31
32
VOInverting large-signal pulse response 33,34
VOVoltage-follower large-signal pulse response 35,36
VOInverting small-signal pulse response 37,38
VOVoltage-follower small-signal pulse response 39,40
VnEquivalent input noise voltage vs Frequency 41, 42
Noise voltage (referred to input) Over a 10-second period 43
THD + N Total harmonic distortion plus noise vs Frequency 44,45
Gain-bandwidth product
vs Supply voltage
46
Gain-bandwidth product
vs Supply voltage
vs Free-air temperature
46
47
φm
Phase margin
vs Frequency
19,20
φmPhase margin
vs Frequency
vs Load capacitance
19,20
48
Gain margin vs Load capacitance 49
B1Unity-gain bandwidth vs Load capacitance 50
 
   
    
2
SGLS175 − AUGUST 2003
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
DISTRIBUTION OF TLV2422
INPUT OFFSET VOLTAGE
Percentage of Amplifiers − %
16
14
12
10
8
6
4
2
0−0.4 VIO − Input Offset Voltage − mV
452 Amplifiers from 1 Wafer Lot
18
−0.3
VDD = 3 V
RL = 10 k
TA = 25°C
−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Figure 3
454 Amplifiers from 1 Wafer Lot
DISTRIBUTION OF TLV2422
INPUT OFFSET VOLTAGE
Percentage of Amplifiers − %
20
15
10
5
0
VDD = 5 V
RL = 10 k
TA = 25°C
−0.4 VIO − Input Offset Voltage − mV
−0.3 −0.2−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Figure 4
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
−0.5
2
1
0
−1
−2 0 0.5 1 2.5 3
VIC − Common-Mode Input Voltage − V
2
1.5 VDD = 3 V
VIO − Input Offset Voltage − mV
0.5
−0.5
−1.5
1.5
Figure 5
VDD = 5 V
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
2
1
0
−1
−2
1.5
0.5
−0.5
−1.5
−0.5 0 0.5 1 2.5 5
VIC − Common-Mode Input Voltage − V
21.5 3 4.543.5
VIO − Input Offset Voltage − mV
 
   
    
2
SGLS175 − AUGUST 2003
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
10
5
0−4 −3 −2 −1 0 1
15
20
25
234
32 Amplifiers From 1 Wafer Lot
VDD = ± 1.5 V
TA = 25°C to 125°C
Percentage of Amplifiers − %
DISTRIBUTION OF TLV2422 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO − Temperature Coefficient µV/°C
Figure 7
10
5
0−4 −3 −2 −1 0 1
15
20
25
234
32 Amplifiers From 1 Wafer Lot
VDD = ± 2.5 V
TA = 25°C to 125°C
Percentage of Amplifiers − %
DISTRIBUTION OF TLV2422 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO − Temperature Coefficient µV/°C
Figure 8
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
−55
200
120
80
40
0−40 0 25 85 125
TA − Free-Air Temperature − °C
70
IIB
160
IIO
VDD = ±2.5 V
IIB − Input Bias and Input Offset Currents − pAand IIO
Figure 9
VOH− High-Level Output Voltage − V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
3
2
1
036 91215
IOH − High-Level Output Current − mA
TA = 85°C
VDD = 3 V
2.5
1.5
0.5
TA = 125°C
TA = 0°C
TA = 25°C
 
   
    
2
SGLS175 − AUGUST 2003
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
VOL− Low-Level Output Voltage − V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0
1.6
1
0.4
012 3 4 5
IOL − Low-Level Output Current − mA
TA = 85°C
VDD = 3 V
1.2
0.8
0.2
TA = 125°C
TA = −40°C
TA = 25°C
0.6
1.4
Figure 11
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
5
2
0816243240
IOH − High-Level Output Current − mA
4
1
3
412202836
TA = 85°C
TA = 125°C
TA = −40°C
TA = 25°C
VDD = 5 V
VOH− High-Level Output Voltage − V
Figure 12
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0
1
0.4
012 3 4 5
IOL − Low-Level Output Current − mA
TA = 85°C
VDD = 5 V
1.2
0.8
0.2
TA = 125°C
TA = −40°C
TA = 25°C
0.6
VOH− High-Level Output Voltage − V
Figure 13
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VDD = 5 V RL = 10 k
TA = 25°C
4
1
5
3
0
102103104106
f − Frequency − Hz
VO(PP)− Maximum Peak-to-Peak Output Voltage − V
2
105
VDD = 3 V
 
   
    
2
SGLS175 − AUGUST 2003
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
IOS− Short-Circuit Output Current − mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
2
20
−5
−20
−30 34567
VDD − Supply Voltage − V
10
−10
−25
−15
15
VO = VDD/2
VIC = VDD/2
TA = 25°C
30
0
5
25
8910
Figure 15
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
−55
2
−4
−8 0 70 125
0
−6
−2
−40 25 85
VDD = 5 V
8
6
4
VID = −100 mV
VID = 100 mV
TA − Free-Air Temperature − °C
IOS− Short-Circuit Output Current − mA
Figure 16
VID − Differential Input Voltage −
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
0
0
−600
−1000 123
−200
−800
−400
0.5 1.5 2.5
600
400
200
VO − Output Voltage − V
1000
800
µV
VDD = 3 V
RL = 10 k
TA = 25°C
Figure 17
012345
VDD = 5 V
RL = 10 k
TA = 25°C
VID − Differential Input Voltage −
0
−600
−1000
−200
−800
−400
600
400
200
1000
800
µV
VO − Output Voltage − V
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
 
   
    
2
SGLS175 − AUGUST 2003
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Differential Gain − V/mV
DIFFERENTIAL GAIN
vs
LOAD RESISTANCE
10
10
11000
100
100
10000
1000
VID = 5 V
RL − Load Resistance − k
VID = 3 V
Figure 18
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
50
30
10
−50
f − Frequency − Hz
40
20
0
AVD− Large-Signal Differential
104105
Voltage Amplification − dB
−45
−90
m
φ− Phase Margin − °
VDD = 3 V
RL = 10 k
CL = 100 pF
106
−10
−30
−20
−40
103
180
45
0
90
135
GAIN
PHASE
Figure 19
 
   
    
2
SGLS175 − AUGUST 2003
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
60
40
20
−40
f − Frequency − Hz
50
30
10
AVD− Large-Signal Differential
103104
Voltage Amplification − dB
m
φ− Phase Margin − °
105
0
−20
−10
−30
106
−45
−90
180
45
0
90
135
GAIN
PHASE
VDD = 5 V
RL = 10 k
CL = 100 pF
Figure 20
Figure 21
TA − Free-Air Temperature − °C
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
−75
10
1
100
−50
10000
1000
VDD = 3 V
RL = 10 k
−25 0 25 50 75 100 125
AVD− Differential Voltage Amplication − V/mV
RL = 1 M
Figure 22
TA − Free-Air Temperature − °C
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
−75
10
1
100
−50
10000
1000
VDD = 5 V
RL = 10 k
−25 0 25 50 75 100 125
AVD− Differential Voltage Amplication − V/mV
RL = 1 M
 
   
    
2
SGLS175 − AUGUST 2003
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 23
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
100
10
1
f − Frequency − Hz
102103105
VDD = 3 V
TA = 25°C
104
AV = 10
AV = 1
AV = 100
zo− Output Impedance −
Figure 24
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
100
10
1
f − Frequency − Hz
102103105
VDD = 5 V
TA = 25°C
104
AV = 10
AV = 1
AV = 100
zo− Output Impedance −
Figure 25
80
40
0
f − Frequency − Hz
100
60
20
CMRR − Common-Mode Rejection Ratio − dB
102103106
TA = 25°C
104105
VDD = 3 V
VDD = 5 V
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Figure 26
CMRR − Common-Mode Rejection Ratio − dB
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
−55
91
90
88
86
84 −40 25 70 85 125
TA − Free-Air Temperature − °C
89
87
85
0
94
93
92
VDD = 3 V
VDD = 5 V
 
   
    
2
SGLS175 − AUGUST 2003
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 27
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
80
40
0
f − Frequency − Hz
120
60
20
101103106
104105
K
100
102
VDD = 3 V
TA = 25°C
− Supply-Voltage Rejection Ratio − dB
SVR
KSVR+
KSVR−
Figure 28
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
80
40
0
f − Frequency − Hz
120
60
20
101103106
104105
K
100
102
VDD = 5 V
TA = 25°C
− Supply-Voltage Rejection Ratio − dB
SVR
KSVR+
KSVR−
Figure 29
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
−55
94
92
90 −40 25 70 85 125
TA − Free-Air Temperature − °C
0
100
98
96
VDD = 2.7 V to 8 V
k − Supply-Voltage Rejection Ratio − dB
SVR
Figure 30
IDD− Supply Current −
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
0
100
40
0246
80
20
60
135
160
140
120
VDD − Supply Voltage − V
VO = VDD/2
No Load
79810
TA = 25°C
TA = 85°C
TA = −40°C
µA
 
   
    
2
SGLS175 − AUGUST 2003
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 31
SLEW RATE
vs
LOAD CAPACITANCE
0.02
0.01
0
CL − Load Capacitance − pF
0.03
0.015
0.005
102103106
VDD = 3 V
AV = −1
TA = 25°C
104105
SR+
SR−
0.025
SR − Slew Rate − V/µs
Figure 32
SLEW RATE
vs
FREE-AIR TEMPERATURE
−55
15
10
5−40 25 70 85 125
TA − Free-Air Temperature − °C
0
30
25
20
VDD = 5 V
RL = 10 k
CL = 100 pF
AV = 1
SR − Slew Rate − V/ms
Figure 33
INVERTING LARGE-SIGNAL
PULSE RESPONSE
−1000 −600 −200
t − Time − µs
200 600 10000
− Output Voltage − mVVO
VDD = 3 V
RL = 10 k
CL = 100 pF
AV = −1
TA = 25°C
2000
1500
500
−500
−2000
1000
0
−1000
−1500
Figure 34
4
3
1
−1
−4
2
0
−2
−3
INVERTING LARGE-SIGNAL
PULSE RESPONSE
−1000 −600 −200
t − Time − µs
200 600 10000
− Output Voltage − mVVO
VDD = 5 V
RL = 10 k
CL = 100 pF
AV = −1
TA = 25°C
 
   
    
2
SGLS175 − AUGUST 2003
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 35
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
−1000
2000
1500
500
−500
−2000 −600 −200
t − Time − µs
1000
0
−1000
200 600 10000
−1500
− Output Voltage − mVVO
VDD = 3 V
RL = 10 k
CL = 100 pF
AV = 1
TA = 25°C
Figure 36
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
−1000
2000
1500
500
−500
−2000 −600 −200
t − Time − µs
1000
0
−1000
200 600 10000
−1500
− Output Voltage − mVVO
VDD = 5 V
RL = 10 k
CL = 100 pF
AV = 1
TA = 25°C
Figure 37
INVERTING SMALL-SIGNAL
PULSE RESPONSE
−5
400
300
100
−100
−400 −3 −1
t − Time − µs
200
0
−200
1350
−300
− Output Voltage − mVVO
VDD = 3 V
RL = 10 k
CL = 100 pF
AV = −1
TA = 25°C
24
−4 −2
Figure 38
INVERTING SMALL-SIGNAL
PULSE RESPONSE
VDD = 5 V
RL = 10 k
CL = 100 pF
AV = −1
TA = 25°C
400
300
100
−100
−400
200
0
−200
−300
− Output Voltage − mVVO
−5 −3 −1
t − Time − µs
13502 4
−4 −2
 
   
    
2
SGLS175 − AUGUST 2003
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 39
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
−5
400
300
100
−100
−400 −2 −1
t − Time − µs
200
0
−200
0
−300
− Output Voltage − mVVO
VDD = 3 V
RL = 10 k
CL = 100 pF
AV = 1
TA = 25°C
−4 −3 3412 5
Figure 40
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
−5
400
300
100
−100
−400 −2 −1
t − Time − µs
200
0
−200
0
−300
− Output Voltage − mVVO
VDD = 5 V
RL = 10 k
CL = 100 pF
AV = 1
TA = 25°C
−4 −3 3412 5
Figure 41
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
120
80
40
0
f − Frequency − Hz
10 102104
VDD = 3 V
TA = 25°C
103
60
20
Hz− Equivalent Input Noise Voltage − nV/Vn
100
Figure 42
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
f − Frequency − Hz
10 102104
VDD = 5 V
TA = 25°C
103
Hz− Equivalent Input Noise Voltage − nV/Vn
120
80
40
0
60
20
100
 
   
    
2
SGLS175 − AUGUST 2003
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
024 6810
t − Time − s
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
400
200
−200
−600
−1200
0
−400
−800
−1000
Noise Voltage − nV
Over a 10 Second Period
800
600
1000
13579
NOISE VOLTAGE OVER A 10-SECOND PERIOD
Figure 43
Figure 44
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
1
0.01
f − Frequency − Hz
100
10
0.1
101102105
VDD = 3 V
RL = 10 k
TA = 25°C
103104
THD +N − Total Harmonic Distortion Plus Noise − %
AV = 10
AV = 1
Figure 45
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
10
0.1
0.001
f − Frequency − Hz
100
1
0.01
101102105
VDD = 5 V
RL = 10 k
TA = 25°C
103104
THD +N − Total Harmonic Distortion Plus Noise − %
AV = 10
AV = 1
 
   
    
2
SGLS175 − AUGUST 2003
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 46
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
3
80
60
40
20 4 678
VDD − Supply Voltage − V
70
50
30
Gain-Bandwidth Product − kHz
RL = 10 k
CL = 100 pF
f = 10 kHz
TA = 25°C
5
Figure 47
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
−50
80
60
40
20
0−25 25 50 75 125
TA − Free-Air Temperature − °C
50
30
10
Gain-Bandwidth Product − kHz
VDD = 5 V
RL = 10 k
CL = 100 pF
f = 10 kHz
0 100
70
Figure 48
PHASE MARGIN
vs
LOAD CAPACITANCE
80
40
0
CL − Load Capacitance − pF
120
60
20
10 102105
103104
100
m
φ− Phase Margin − °
Rnull = 1000
Rnull = 100
Rnull = 0
RL = 10 k
TA = 25°CRnull = 500
Rnull = 200
Figure 49
GAIN MARGIN
vs
LOAD CAPACITANCE
40
20
0
CL − Load Capacitance − pF
30
10
10 102105
103104
Gain Margin − dB
Rnull = 1000
Rnull = 100
Rnull = 0
RL = 10 k
TA = 25°CRnull = 500
Rnull = 200
 
   
    
2
SGLS175 − AUGUST 2003
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
40
20
0
CL − Load Capacitance − pF
60
30
10
10 102105
103104
50
B1 − Unity-Gain Bandwidth − kHz
Figure 50
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2422AQDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2422AQDRQ1 ACTIVE SOIC D 8 TBD Call TI Call TI
TLV2422QDRG4Q1 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2422QDRQ1 ACTIVE SOIC D 8 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLV2422-Q1, TLV2422A-Q1 :
Catalog: TLV2422, TLV2422A
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 2
Military: TLV2422M, TLV2422AM
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Military - QML certified for Military and Defense Applications
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated