CX23885
PCI Express Video and Broadcast
Audio Decoder
Data Sheet
DSH-201010p2
February 2009
© 2008, 2009, Conexant Systems, Inc.
All Rights Reserved.
Information in this document is provided in connection with Conexant Systems, Inc. (“Conexant”) products. These materials are provided by
Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no responsibility for errors or
omissions in these materials. Conexant may make changes to this document at any time, without notice. Conexant advises all customers to
ensure that they have the latest version of this document and to verify, before placing orders, that information being relied on is current and
complete. Conexant makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to its specifications and product descriptions.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Conexant’s Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.
THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE
AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. CONEXANT FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF
THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. CONEXANT SHALL NOT BE
LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST
REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.
Conexant products are not intended for use in medical, lifesaving or life sustaining applications. Conexant customers using or selling Conexant
products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages resulting from such
improper use or sale.
The following are trademarks of Conexant Systems, Inc.: Conexant® and the Conexant C symbol. Product names or services listed in this
publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their
respective owners.
For additional disclaimer information, please consult Conexant’s Legal Information posted at www.conexant.com which is incorporated by
reference.
Conexant Lead-free products are China RoHS Compliant:
Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions
to conexant.tech.pubs@conexant.com. For technical questions, contact your local Conexant sales office or field applications engineer.
2Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Ordering Information
Revision History
Model Number Description Package
CX23885* PCI Express Video and Broadcast Audio
Decoder
128-pin ETQFP (lead-free)
*Lead-free (Pb Free) and RoHS compliant
Revision Date Description
p1 June 27, 2008 Preliminary release.
p2 February 4, 2009 P2 release
*Added Section 1.14, Crystal Oscillator.
DSH-201010p2 Conexant 3
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885
PCI Express Video and Broadcast Audio
Decoder
The CX23885 brings Conexant Systems’ long heritage of audio and video
capture solutions to systems that enable PCI ExpressTM bus architectures. The
family of devices integrates all the functions required to perform television and
external A/V capture on personal computers or consumer electronic devices.
The integrated worldwide video decoder and audio decoder can be used for a
high performance, cost effective, basic analog television capture, or can be used
as the base for more complex multiple tuner configurations. The devices can
support capture of two simultaneous digital television transport streams, two
simultaneous analog streams, or a combination of analog and digital capture.
This latest generation of devices further integrates components found on a
typical video capture card such as video ADC anti-alias filter components, and
analog to digital converters for stereo audio capture.
Quality video is accomplished by using 10-bit video ADCs and a full 10-bit video
data path. For high-quality audio, a minimum of 16-bit audio resolution through
the entire audio data path ensures high fidelity audio, whether it comes from the
integrated broadcast audio decoder, the sigma-delta ADCs, or from an external
serial audio source.
The device are packaged in a 14x14 mm, lead-free 128-pin ETQFP.
Preliminary Information
This document contains information on a new product. The parametric information,
although not fully characterized, is the result of testing initial devices.
Distinguishing Features
PCI Express 1.0a compliant
Worldwide audio and video
decoding
Automatic video and broadcast
audio standard detection and
configuration
Flexible video input mux supporting
composite, S-Video, and
component inputs with integrated
anti-alias filtering
Integrated sigma-delta stereo audio
ADCs with 4:2 mux
Audio sample rate converters on all
inputs and outputs
Two MPEG transport stream
ports—parallel and serial
Two I2C master ports
Macrovision 1.0 detection
compliant
Programmable VBI data slicer for
data services such as closed
caption, WSS, and program guides
Infrared transmitter and receiver
logic
Auxiliary/Audio Phase Locked Loop
(PLL) clock for general use
Support for MPEG-2 encoding
when used with the CX23417
4Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Functional Block Diagram
3
2
3 CVBS
or
Luma
Inputs
Analog
Front End
CH 1
10-Bit
Video
ADC
Video
Decoder
NTSC/PAL/
SECAM
Parallel TS/PS Input
Port or BT.656/VIP1.1
Input or Output
Clock, Data[7:0],
Start, Valid
Clock, Data,
Start, Valid
Serial TS/PS
Input Port
Color Space
Converter
and
Formatter
RISC Engine
and
DMA Controller
SRAM Butters
Color Space
Converter and
Formatter
Baseband
Audio
Vol/Tone/
Balance/Mute
Audio
Decoder
BTSC/EIAJ/
A2/NICAM/
AM
Analog
Front End
CH 2
10-Bit
Video/SIF
ADC
Analog
Front End
CH 3
3 CVBS,
Luma,
Chroma,
SIF, or
Pb Inputs
2 CVBS,
Luma,
Chroma,
SIF, or
Pr Inputs
L/R 1
Audio In
L/R 2
Audio In
18-Bit
Audio
ADCs GPIO
GPIO x24
UART
RS232
Serial Audio
In/Out
16 to 24-Bit
32, 44.1, 48,
96 kHz
I2C Master 1 SCL{1}
SDA{1}
I2C Master 2 SCL{2}
SDA{2}
PCI
Express
TL
DLL
MAC
x1
PCI
Express
PHY
I/F
x1
PCI
Express
Audio
Master
Clock
System
PLL
Aux/Audio
PLL
Crystal
Amplifier
Video
PLL
Single Crystal
Frequency
Serial TS/PS Input
Port or BT.656/VIP1.1
Input or Output
Clock, Data,
Start, Valid
DSH-201010p2 Conexant 5
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
Contents
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
1 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 Analog Video Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Integrated Clamping and Automatic Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Flexible Decoder Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 High Performance Luma and Chroma Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Video Processing Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 High Quality Scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Pixel Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Vertical Blanking Interval Slicing and Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.9 Stereo Broadcast Audio Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.10 Audio Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.11 Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.12 PCI Express Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.13 Communication and General Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.14 Crystal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Memory Mapped Registers: Application Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Device Control #2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 PCI Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 PCI Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 PCI Interrupt Masked Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.5 Video A Interrupt Mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.6 Video A Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.7 Video A Interrupt Masked Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.8 Video A Interrupt Set Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.9 Video B Interrupt Mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.10 Video B Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.11 Video B Interrupt Masked Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.12 Video B Interrupt Set Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.13 Video C Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.14 Video C Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CX23885 Data Sheet
6Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
3.2.15 Video C Interrupt Masked Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.16 Video C Interrupt Set Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.17 Audio Internal Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.18 Audio Internal Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.19 Audio Internal Interrupt Masked Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.20 Audio Internal Interrupt Set Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.21 Audio External Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.22 Audio External Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.23 Audio External Interrupt Masked Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.24 Audio External Interrupt Set Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Memory Mapped Registers: DMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.1 APB DMAC Current Buffer Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 APB DMAC Current Table Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.3 APB DMAC Buffer Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.4 APB DMAC Table Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Memory Mapped Registers: Miscellaneous Utilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Timer Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Timer Limit Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.3 GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.4 GPIO Interrupts Sensitivity Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.5 Soft Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.6 GPIO (417 Microcontroller Interface) RW Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.7 GPIO (417 Microcontroller) Output Enable, Low Active. . . . . . . . . . . . . . . . . . . . . . . 61
3.4.8 GPIO (417 Microcontroller) Output Enable, Low Active. . . . . . . . . . . . . . . . . . . . . . . 62
3.4.9 Clock Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.10 Pad Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Memory Mapped Registers: Video A Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.1 Video A General Purpose Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.2 Video A General Purpose Counter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.3 Video A DMA Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.4 Video A VIP Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.5 Video A Pixel Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.6 Video A VBI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Memory Mapped Registers: Video B Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.1 Video B General Purpose Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.2 Video B General Purpose Counter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.3 Video B DMA Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6.4 Video B Source Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6.5 Video B TS Line Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6.6 Video B TS HW SOP Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.6.7 Video B TS General Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.8 Video B TS Bad Packet Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6.9 Video B TS SOP Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6.10 Video B TS Fifo Overflow Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6.11 Video B TS Valid Miscellaneous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6.12 Video B TS Clock Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6.13 Video B VIP Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
DSH-201010p2 Conexant 7
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet
3.6.14 Video B Pixel Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7 Memory Mapped Registers: Video C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7.1 Video C General Purpose Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7.2 Video C General Purpose Counter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7.3 Video C DMA Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7.4 Video C TS Line Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7.5 Video C TS HW SOP Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7.6 Video C TS General Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.7.7 Video C TS Bad Packet Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.7.8 Video C TS SOP Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.7.9 Video C TS Fifo Overflow Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7.10 Video C TS Valid Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7.11 Video C TS Clock Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.8 Memory Mapped Registers: Internal Audio Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8.1 Audio Internal General Purpose Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8.2 Audio Internal General Purpose Counter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8.3 Audio Internal DMA Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8.4 Audio Internal Line Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.8.5 Audio Internal Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.9 Memory Mapped Registers: External Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.9.1 Audio External DMA Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.9.2 Audio External General Purpose Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.9.3 Audio External General Purpose Counter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.9.4 Audio External DMA Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.9.5 Audio External Line Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.9.6 Audio External Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.10 Memory Mapped Registers: I2C Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.10.1 I2C Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.10.2 I2C Write Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.10.3 I2C Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.10.4 I2C Read Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.10.5 I2C Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.11 Memory Mapped Registers: UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.11.1 UART TxD/RxD Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.11.2 UART Baud Rate Divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.11.3 UART Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.11.4 UART FIFO Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.12 Rider Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.12.1 Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.12.2 Accessing PCI Express Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.12.3 Accessing Rider Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.12.4 Register Access Exception - Vital Product Data (VPD) . . . . . . . . . . . . . . . . . . . . . . 98
3.12.5 Register Type Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.12.6 Read-Only Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.12.7 Read-Write Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.12.8 Read-Only; Write-1-to-Clear Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.12.9 Sticky Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.12.10 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
CX23885 Data Sheet
8Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
3.12.11 Interrupt Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.12.12 PCI Express Registers - PCI Compatible Header . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.12.13 PCI Device and Vendor ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.12.14 PCI Status and Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.12.15 PCI Class Code and Revision ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.12.16 PCI Base Address Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.12.17 PCI Base Address Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.12.18 PCI Subsystem and Subsystem Vendor ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.12.19 PCI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.12.20 PCI Express Registers: Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.12.21 PCI Express Device Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.12.22 PCI Express Device Status and Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.12.23 PCI Express Link Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.12.24 PCI Express Link Status and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.12.25 Power Management Interface Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.12.26 Power Management Control/Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.12.27 Vital Product Data Capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.12.28 VPD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.12.29 Message Signaled Interrupt Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.12.30 MSI Address Lower 32 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.12.31 MSI Address Upper 32 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.12.32 MSI Data Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.12.33 PCI Express Registers: Extended Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.12.34 AER Uncorrectable Error Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.12.35 AER Uncorrectable Error Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.12.36 AER Uncorrectable Error Severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.12.37 AER Correctable Error Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.12.38 AER Correctable Error Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.12.39 AER Capability and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.12.40 AER Header Log 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.12.41 AER Header Log 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.12.42 AER Header Log 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.12.43 AER Header Log 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.12.44 Port VC Capability Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.12.45 Port VC Status and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.12.46 VC Resource 0 Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.12.47 VC Resource 0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.12.48 VC Resource 1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.12.49 VC Resource 1 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.12.50 VC Resource 2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.12.51 VC Resource 2 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.12.52 VC Resource 3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.12.53 VC Resource 3 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.12.54 VC Arbitration Table Entries 0–7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.12.55 VC Arbitration Table Entries 8–15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.12.56 VC Arbitration Table Entries 16–23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
DSH-201010p2 Conexant 9
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet
3.12.57 VC Arbitration Table Entries 24–31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.12.58 VC Arbitration Table Entries 32–39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.12.59 VC Arbitration Table Entries 40–47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.12.60 VC Arbitration Table Entries 48–55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.12.61 VC Arbitration Table Entries 56–63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.13 Rider Registers – Global. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.13.1 Rider Status 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.13.2 Rider Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.13.3 Rider Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.14 Rider Registers: Transaction Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.14.1 Transaction Layer Status 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.14.2 TL Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.14.3 Transmit Queue Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.14.4 AL Request Root Complex Lower Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.14.5 AL Request Root Complex Upper Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.14.6 AL Request Endpoint Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.14.7 AL Request Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.14.8 AL Request Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.14.9 Transaction Layer Test Control (Flow Control). . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.14.10 Receive Buffer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.14.11 Virtual Channel Resources 0 and 1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.14.12 Virtual Channel Resources 2 and 3 Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.14.13 Virtual Channel Resource 0 Initial Flow Control Credits . . . . . . . . . . . . . . . . . . . 133
3.14.14 Virtual Channel Resource 2 Initial Flow Control Credits . . . . . . . . . . . . . . . . . . . 134
3.14.15 Virtual Channel Resource 3 Initial Flow Control Credits . . . . . . . . . . . . . . . . . . . 134
3.15 Rider Registers: Data Link Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
3.15.1 Data Link Layer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.15.2 Replay Timeout Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.15.3 ACK Latency Timeout Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.16 Rider Registers: MAC Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
3.16.1 MAC Layer Status 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.16.2 MAC Layer Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.16.3 MAC Layer Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.16.4 MAC Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.16.5 MAC Loopback Master Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.16.6 MAC L0s Exit Latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.17 Audio and Video Core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.17.1 Serial Slave Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.17.1.1 Host Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.17.1.2 Host Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.17.1.3 Host Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.18 Chip Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.18.1 Baseband Analog Front End and General Chip Configuration Registers . . . . . . . 143
3.18.1.1 Chip Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.18.1.2 Baseband AFE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.18.1.3 Video PLL Integer/Post Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.18.1.4 Video PLL Fractional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
CX23885 Data Sheet
10 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
3.18.1.5 Auxiliary PLL Integer/Post Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.18.1.6 Auxiliary PLL Fractional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.18.1.7 System PLL Integer/Post Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.18.1.8 System PLL Fractional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.18.1.9 Pin Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.18.1.10 Audio I/O Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.18.1.11 Audio Lock Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.18.1.12 Audio Lock Control 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.18.1.13 Power-Down Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.18.1.14 AFE Diagnostic Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.18.1.15 AFE Diagnostics Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.18.1.16 PLL Diagnostic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.18.1.17 AFE Clock Out Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.18.1.18 DLL1 Diagnostic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.18.1.19 GPIO[23:19] Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.18.1.20 GPIO [23:19] Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.18.1.21 IFADC Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.19 IR Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.19.1 Infrared Remote registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.19.1.1 Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.19.1.2 Transmit Clock Divider Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.19.1.3 Receive Clock Divider Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.19.1.4 Transmit Carrier Duty Cycle Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.19.1.5 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.19.1.6 Interrupt Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.19.1.7 Low Pass Filter Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.19.1.8 FIFO Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.20 Video Decoder Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.20.1 Basic Video Decoder Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.20.1.1 Output Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.20.1.2 Output Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3.20.1.3 General Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
3.20.1.4 Interrupt Status and Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
3.20.1.5 Luma Data Path Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
3.20.1.6 Horizontal Scaling Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
3.20.1.7 Vertical Scaling Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
3.20.1.8 Chroma Data Path Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
3.20.1.9 VBI Line Data Type Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
3.20.1.10 VBI Line Data Type Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3.20.1.11 VBI Line Data Type Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3.20.1.12 VBI Line Data Type Control 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3.20.1.13 VBI Line Data Type Control 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
3.20.1.14 VBI Frame Code Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
3.20.1.15 VBI Miscellaneous Config1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
3.20.1.16 VBI Miscellaneous Config2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
3.20.1.17 VBI Payload 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
3.20.1.18 VBI Payload 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
DSH-201010p2 Conexant 11
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet
3.20.1.19 VBI Custom Mode 1, Config1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
3.20.1.20 VBI Custom Mode 1, Config2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
3.20.1.21 VBI Custom Mode 1, Config3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
3.20.1.22 VBI Custom Mode 2, Config1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.20.1.23 VBI Custom Mode 2, Config2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3.20.1.24 VBI Custom Mode 2, Config3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3.20.1.25 VBI Custom Mode 3, Config1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
3.20.1.26 VBI Custom Mode 3, Config2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
3.20.1.27 VBI Custom Mode 3, Config3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
3.20.1.28 Horizontal Timing Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
3.20.1.29 Vertical Timing Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
3.20.1.30 Sample Rate Convert and Comb Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
3.20.1.31 Chroma Config and VBI Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
3.20.1.32 Field Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
3.20.1.33 Miscellaneous Timing Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
3.20.1.34 DFE Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
3.20.1.35 DFE Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
3.20.1.36 DFE Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
3.20.1.37 PLL Loop Filter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
3.20.1.38 Horizontal Timing Loop Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
3.20.1.39 White Crush Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
3.20.1.40 Soft Reset Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
3.20.1.41 Version ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
3.20.1.42 VBI Passthrough Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
3.21 Audio Decoder Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
3.21.1 8051 Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
3.21.2 Format Detection and Subcarrier Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
3.21.3 User Preference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
3.21.4 8051 Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.21.5 General Control/Interrupt Control/Rev Number/Soft Reset . . . . . . . . . . . . . . . . . . 214
3.21.6 Audio Analog AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
3.21.7 Phase Fix/Dematrix/Analog Demod Source Select/Prescaler . . . . . . . . . . . . . . . . 216
3.21.8 Path 1 Source Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
3.21.9 Path 1 Volume/Balance Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3.21.10 Path 1 Equalizer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3.21.11 Path 1 Soft Clip Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3.21.12 Path 2 Source Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
3.21.13 Path 2 Volume/Balance Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
3.21.14 Path 2 Equalizer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
3.21.15 Path 2 Soft Clip Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
3.21.16 Sample Rate Converter Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
3.21.17 Sample Rate Converter Loop Filter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 226
3.21.18 SRC1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
3.21.19 SRC2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
3.21.20 SRC3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
3.21.21 SRC4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
CX23885 Data Sheet
12 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
3.21.22 SRC5 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
3.21.23 SRC6 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
3.21.24 Output Selects/Bypass Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
3.21.25 I2S Input Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
3.21.26 I2S Output Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
3.21.27 Autoconfiguration Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
3.22 Audio ADC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
3.22.1 Delta-Sigma ADC Miscellaneous Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
3.22.2 Delta-Sigma ADC Miscellaneous Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
3.22.3 Chopper Clocks Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
3.22.4 Chopper Clock Reference and Bandgap Divide Settings . . . . . . . . . . . . . . . . . . . 235
3.22.5 Chopper Clock S2D Divide Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
3.22.6 Bandgap Testing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3.22.7 SD2 MUX Control for Right Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3.22.8 SD2 MUX Control for Left Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3.22.9 S2D Bias and Startup Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
3.22.10 Delta-Sigma ADC Amplifier Bias Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
3.22.11 Miscellaneous Testing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
3.22.12 Power Down Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
3.22.13 DS and S2D Stability Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
3.22.14 Dynamic Dither Amplitude Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
3.22.15 Digital Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
3.22.16 Digital Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
3.22.17 I2S_TX_CFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
4 Thermal/Mechanical
Information. 243
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.2 Center Pad Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.3 Mechanical Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
5 Electrical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
5.1 DC Electrical Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
5.2 AC Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6 Connecting the CX23885 to the CX23417. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
6.1 CX23885 and CX23417 Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
DSH-201010p2 Conexant 13
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
Figures
Figure 1. Fundamental Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 2. Overtone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 3. External Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 5. CFG Block, Device Core, and Transaction Layer Interfaces . . . . . . . . . . . . . . . . . . . . . 96
Figure 6. Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 7. 128-Pin ETQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Figure 8. Exposed Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
CX23885 Data Sheet
14 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
DSH-201010p2 Conexant 15
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
Tables
Table 1. External Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 2. External Component Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 3. Pin List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 4. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 5. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Table 6. Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Table 7. Signal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Table 8. Clock Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Table 9. Control Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Table 10. Power Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Table 11. CX23885 and CX23417 Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
CX23885 Data Sheet
16 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
DSH-201010p2 Conexant 17
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
1Functional Overview
The CX23885 brings Conexant Systems’ fifth generation of video decoding technology
to PCI Express-enabled personal computers. Third generation broadcast audio
decoding is integrated on chip to provide high fidelity TV stereo. The product is ideally
suited for products that need to capture audio and video from analog or digital sources
and deliver that data over PCI Express.
1.1 Analog Video Inputs
The CX23885 integrates two high-performance 10-bit ADCs and provides a full 10-bit
data path through the video decoder to maintain optimum end-to-end video quality.
Eight analog inputs are provided with flexible analog muxing that can be configured for
one or a combination of the following audio and video inputs:
Eight composite inputs
Four Y/C inputs
Two composite with one Y/C, one YPbPr, and one sound IF
Four composite with four sound IF
One composite with two YPbPr and one sound IF
Time multiplexing the various inputs to the chroma and sound ADC allows for the
simultaneous digitalization of Pb and Pr inputs in component mode, or chroma with
sound-IF for supporting Y/C sources with broadcast audio. All video inputs have
integrated anti-alias filters, eliminating the need for external filter components.
1.2 Integrated Clamping and Automatic Gain
Control
DC restoration and Automatic Gain Control (AGC) are provided to compensate for
sources with differing average picture levels. Manual gain control is also supported.
Gain values can be read from and written to the device, allowing for the calibration of
each input and facilitating fast switching from one source to another.
18 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Functional Overview CX23885 Data Sheet
1.3 Flexible Decoder Rates
The video data path includes a sample rate converter to enable multiple pixel rates
and to track any timing fluctuations that may be present within the video source. With
the sample rate converter, the user can program the device to decode video at output
pixel rates of either 13.5 MHz for an ITU-R BT.656 compliant output stream or at 12.27
MHz and 14.75 MHz for NTSC and PAL/SECAM square pixel rates, respectively. The
sample rate converter with internal FIFO monitors the horizontal timing of the input
source to create a fixed number of samples per line. It controls a PLL to slowly adjust
the FIFO level such that short-term jitter in the input source is filtered out of the
digitized video stream. This provides stable video data and output clocks, even with
sources like VCRs that can have inherently unstable timing.
1.4 High Performance Luma and Chroma Separation
Luma/chroma separation of composite video sources is accomplished through a 5-line
adaptive chroma comb filter for NTSC and PAL standards. The adaptive comb filter
looks across five lines of incoming video and determines which of the five lines are
appropriately correlated enough to average together. Depending on the amount of
correlation among the lines, two or three lines are averaged together to form the
resulting combed filtered line. In the case where no correlation exists between lines,
the decoder automatically falls back to chroma band-pass and luma notch filtering.
The output of the chroma comb filter is also remodulated and fed back into the luma
channel. The result is a high- quality image with reduced cross-chrominance and
cross-luminance artifacts—such as dot crawl, hanging dots, rainbow effects—that
restore full bandwidth to luminance data from composite sources. Additionally, we
have a SECAM “Bell” filter to improve SECAM luminance and chroma separation. This
is because SECAM uses an FM modulated signal carrier that is always present,
regardless of whether or not there is color information being broadcast. This results in
a visible artifact in the luminance at the carrier frequency. To eliminate this effect, an
“Inverse Bell” filter is applied at the encoder to attenuate color frequencies near the Dr
and Db carriers. Thus, if little or no color information is present in the signal, the
carriers will be reduced in amplitude.
1.5 Video Processing Functions
Back-end video processing functions include contrast, brightness, hue, saturation, and
scaling. In addition, the luma data path provides white crush compensation for sources
that exceed sync tip to white level ratios. The decoder also provides four sets of
selectable peaking filters for sharpening the image. The luma data output range is
selectable so that luma codes can be limited to the nominal ITU-R BT.656 code range,
or can support values below black level, or can use the entire 10-bit range of values
where 0 is black level, and 1023 is nominal white. Additional chroma functions include
AGC to compensate for attenuated color subcarriers, a color killer for true black and
white sources, and coring for limiting low-level chroma noise.
DSH-201010p2 Conexant 19
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Functional Overview
1.6 High Quality Scaling
Arbitrary horizontal and vertical scaling is available, from full resolution down to an 8:1
ratio (icon size).To maintain a high-quality scaled image, multi-tap polyphase
interpolation is used. The horizontal luma scaler uses 6-tap, 63-phase FIR
interpolation between horizontal source samples, while the horizontal chroma scaler
uses 4-tap, 63-phase interpolation. Line store memory is integrated into the decoder
so that the vertical scaler—depending on the horizontal scaling ratio—can use from 2-
tap to 5-tap, seven-phase interpolation between lines.
1.7 Pixel Formatting
Two pixel formatting engines are available for converting video samples into the
following formats:
YUY2
RGB24
RGB32
RGB555
1.8 Vertical Blanking Interval Slicing and Decoding
An integrated VBI data slicer supports a variety of data standards: WST, Closed
Caption, WSS, VITC, as well as programming guide information like Gemstar 1x,
Gemstar 2x, and VPS. Decoded data for closed caption, WSS, and Gemstar services
is available through either a register read or can be inserted as ancillary data within
the ITU-R BT.656 data stream. For high-bit rate services such as WST, NABTS, VPS,
and VITC, data is provided on the pixel output port and can be inserted as ancillary
data as well. There is independent control of what data service is to be sliced/decoded
for every line of each field in the vertical interval. Programmability is also provided
such that custom data slicing can be accomplished for data services that do not
comply with one of the standards already supported.
20 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Functional Overview CX23885 Data Sheet
1.9 Stereo Broadcast Audio Decoding
The CX23885 integrates a stereo broadcast audio decoder capable of demodulating
all of the worldwide audio standards: BTSC, EIAJ, A2, NICAM, FM (standard and high-
deviation modes), and AM. The sound IF output from the tuner interfaces directly with
the CX23885, eliminating the need for external sound demodulation chips. Dual
language, subchannel, and Secondary Audio Formats (SAP) are also supported for
broadcasts that transmit multilingual capability. Simultaneous dual language can be
supported with different languages on each channel of the stereo left/right pair. The
audio decoder has automatic standard detection and configuration through an on-
board microprocessor so that no user intervention is necessary to set up the decoder
for the various standards. This is especially useful in geographic regions where
different audio standards may be received on a channel-by-channel basis.
1.10 Audio Interfaces
Demodulated broadcast audio is available through two interfaces, serial audio output
or embedded in the ITU-R BT.656/VIP pixel port as ancillary data. The serial audio
output port can supply audio samples from the broadcast decoder or from the serial
audio input port. An internal sample rate converter allows for selection of 32 kHz, 44.1
kHz, 48 kHz, or 96 kHz sample rate for easy system integration. This sample rate
conversion is available for both the serial audio (input and output) and BT.656/VIP
interfaces, independent of one another. In the BT.656/VIP mode, audio samples are
embedded into the video stream and are tagged as ancillary data during the horizontal
blanking interval. This allows for the capture of audio samples on systems that do not
provide serial audio interfaces. The serial audio interfaces support programmable
master/slave modes and 16- to 32-bit sample widths.
The CX23885 features baseband analog audio input integrating a stereo 16-bit delta-
sigma analog to digital converter including multi-stage decimation filter. It supports up
to 192 kHz internal sample rate, minimum 88 dB SNR, 17.6 kHz bandwidth, and 0.1
dB passband ripple. One of two stereo 2.0 Vrms full-scale inputs can be selected via
register control. This audio is routed through the audio processing block to be output
I2S or DMA’d over PCI Express.
DSH-201010p2 Conexant 21
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Functional Overview
1.11 Audio Processing
In addition to the demodulation of broadcast audio in the CX23885, premium functions
such as three-band equalization, volume, balance, mute, and automatic volume
control are independently available on both the broadcast audio and serial audio data
streams. The audio samples can also be locked to the incoming video stream to
ensure that the audio samples are rate-matched to the video, eliminating the need for
MPEG encoders to drop or repeat frames in order to keep the video and audio in sync.
The entire audio data path is a minimum of 16 bits wide to maintain CD quality
performance levels throughout the audio signal chain.
1.12 PCI Express Bus
The CX23885 features a PCI Express single lane (x1) link compliant to base
Specification 1.0a. This PCI Express single-function endpoint offers a dual simplex 2.5
Gbps upstream port supporting 8 upstream channels on VC0/TC0–TC7. The
bidirectional, point-to-point, packet-based high throughput is implemented through a
layered architecture. The physical layer is composed of an internally PIPE compliant,
logical subblock consisting of the Media Access Layer (MAC) and the Physical Coding
Sublayer (PCS), and the electrical subblock consisting of the Physical Media
Attachment Layer (PMA). Physical Layer Packets (PLPs) originate at the transmitter
(Tx) and terminate at the receiver (Rx). Above the Physical Layer is the Data Link
Layer (DLL) processing DLLPs which facilitate link initialization and training, link power
management, TLP flow control, and the acknowledgement of successful TLP delivery
across the link. Above the DLL is the Transaction Layer (TL) processing split-
transaction protocol based link traffic consisting of up to 128 byte TLPs. Above the TL
is the Application Layer (AL) supporting the DMA streaming infrastructure, Tx/Rx
buffering, decode, and execution of RISC instructions, register and memory access,
interrupts, and overall QoS management balancing traffic priorities, latencies, and
bandwidth.
1.13 Communication and General Features
A hardware interrupt pin is available along with a maskable interrupt status register so
that the device can notify the system when internal events occur without the need to
implement polling schemes.
Other convenient features consist of the following:
Programmable infrared transmitter/receiver logic, able to modulate or demodulate
low data rate consumer remote control protocols
General purpose I/O pins
Power-down pin or register-controlled power-down levels
1.2 V, 1.8 V, 3.3 V power supply configuration available with an external pass
transistor
PLL output for either supplying a video locked 256x/384x oversample audio clock
or a general purpose user programmable clock for minimizing PCB component
count
Small package size: a 128-pin, 14x14 mm ETQFP
Lead-free package
22 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Functional Overview CX23885 Data Sheet
1.14 Crystal Oscillator
The AFE contains a crystal oscillator circuit to produce a low-jitter clock reference for
the audio/video decoder. Three crystal frequencies are supported: 28.636MHz for
operation without IF sampling feature, and 49.920MHz and 56.010MHz for IF
sampling.
The clock reference is used for the ADC sample clocks and the reference clock for the
PLLs. This clock reference is also used by the front-end digital logic that directly
interfaces to the ADC modules.
The crystal oscillator has a dedicated power supply pin, VAA_XTAL, which should be
carefully decoupled to the VSS_XTAL pin in order to minimize board noise from
coupling into the reference clock.
Either a passive crystal circuit can be connected to XTI and XTO or a square wave
clock signal can be fed into XTI through an AC coupling capacitor of 10nF, XTO being
grounded through another similar capacitor.
Figures 1 through 3 illustrate the crystal configuration connections: third overtone,
fundamental crystals, and single-ended inputs. Table 1 lists the crystal specifications,
and Table 2 lists the external component specifications for operation at different
frequencies.
Table 1. External Crystal Specifications
Frequency 28.636 MHz 49.920 MHz 56.010 MHz
Tolerance ± 25 ppm (CL = 27 and
33 pF)
± 25 ppm ± 25 ppm
Temperature stability ± 25 ppm (0 °C to 70 °C) ± 25 ppm (0 °C to 70 °C) ± 25 ppm (0 °C to 70 °C)
Aging stability ± 15 ppm / 4 yrs ± 15 ppm / 4 yrs ± 15 ppm / 4 yrs
Oscillator Mode Fundamental Third overtone Third overtone
Calibration Mode Parallel resonant Parallel resonant Parallel resonant
Load Capacitance 20 pF, nom 18 pF, max 18 pF, max
Shunt Capacitance 7 pF, max 7 pF, max 7 pF, max
Series Resistance 80 Ω max @ 500 μW
drive level
80 Ω max @ 500 μW drive
level
80 Ω max @ 500 μW drive
level
Operating Temperature 0 °C to 70 °C0 °C to 70 °C0 °C to 70 °C
DSH-201010p2 Conexant 23
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Functional Overview
Figure 1. Fundamental Mode
Figure 2. Overtone Mode
Figure 3. External Drive
C1 C2
XTI XTO
R1C4
C1 C2
XTI XTO
R1C4
L1
C3
XTI XTO
10 nF10 nF
Sig
24 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Functional Overview CX23885 Data Sheet
Table 2. External Component Specifications
Frequency 28.636 MHz 49.920 MHz 56.010 MHz
C1 27 pF 15 pF 12 pF
C2 33 pF 15 pF 12 pF
C3 Not populated 10 nF 10 nF
C4 120 pF 120 pF 120 pF
L1 Not populated 0.82 μH0.68 μH
R1 50 50 50
DSH-201010p2 Conexant 25
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
2Pin Descriptions
Table 3 lists the pins and their functions. Figure 4 provides a pinout diagram.
Table 3. Pin List (1 of 10)
Pin Name Pin Number Dir Type Description
VIN3 1 I As Composite or Luma signal input to ADC1. The signal
passes through on-chip analog multiplexers before
passing through a gain stage, an anti-alias filter stage,
and into ADC1. Unused inputs should not be
connected.
VAA_CH1 2 Ap Analog channel 1 (clamp, single-to-diff, VGA, filter)
power. VAA_CH1 = 3.3 V nominal.
VIN4 3 I As Chroma, Sound IF, or Pb signal input to ADC2 or
Luma, Composite signal input to ADC1. This signal
passes through on-chip analog multiplexers before
passing through a gain stage, an anti-alias filter stage,
and into either ADC1 or ADC2. In color component
(Pb, Pr) input mode, the Pb component should be
connected to one of these pins, and the Pr component
should be connected to the Pr pins (VIN7, VIN8).
Unused inputs should not be connected.
VSS_CH1 4 Ap Analog channel 1 (clamp, single-to-diff, VGA, filter)
ground
VIN5 5 I As Chroma, Sound IF, or Pb signal input to ADC2 or
Luma, Composite signal input to ADC1. This signal
passes through on-chip analog multiplexers before
passing through a gain stage, an anti-alias filter stage,
and into either ADC1 or ADC2. In color component
(Pb, Pr) input mode, the Pb component should be
connected to one of these pins, and the Pr component
should be connected to the Pr pins (VIN7, VIN8).
Unused inputs should not be connected.
IREF 6 O Ar Current reference pin. Connect 30 kΩ, 1% precision
resistor to ground.
26 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Pin Descriptions CX23885 Data Sheet
VIN6 7 I As Chroma, Sound IF, or Pb signal input to ADC2 or
Luma, Composite signal input to ADC1. This signal
passes through on-chip analog multiplexers before
passing through a gain stage, an anti-alias filter stage,
and into either ADC1 or ADC2. In color component
(Pb, Pr) input mode, the Pb component should be
connected to one of these pins, and the Pr component
should be connected to the Pr pins (VIN7, VIN8).
Unused inputs should not be connected.
SD2_NEG2 8 Ar Negative input of single-to-differential converter. Tie to
analog ground through AC coupling capacitor for
common mode noise rejection. The capacitor should
match the value used on the analog inputs.
VIN7 9 I As Chroma, Sound IF or Pr signal input to ADC2 or Luma,
Composite signal input to ADC1. This signal passes
through on-chip analog multiplexers before passing
through a gain stage, an anti-alias filter stage, and into
either ADC1 or ADC2. In color component (Pb, Pr)
input mode, the Pr component should be connected to
this pin, and the Pb should be connected to a Pb pin
(VIN4, VIN5, VIN6).
Unused inputs should not be connected.
VAA_CH2 10 Ap Analog channel 2 (clamp, single-to-diff, VGA, filter)
power. VAA_CH2 = 3.3 V nominal.
VIN8 11 I As Chroma, Sound IF, or Pr signal input to ADC2 or
Luma, Composite signal input to ADC1. This signal
passes through on-chip analog multiplexers before
passing
through a gain stage, an anti-alias filter stage, and into
either ADC1 or ADC2. In color component (Pb, Pr)
input mode, the Pr component should be connected to
this pin, and the Pb should be connected to a Pb pin
(VIN4, VIN5, VIN6). Unused inputs should not be
connected.
VSS_CH2 12 Ap Analog channel 2 (clamp, single-to-diff, VGA, filter)
ground
VSS_XTAL 13 Ap Crystal oscillator ground. Connect to analog ground.
XTI 14 I As 28.63636 or MHz crystal oscillator input, or single-
ended clock oscillator input. Used for PLL clock
reference and ADC sample clock. IC master clock for
whole chip.
XTO 15 I/O As Crystal buffer return, or DC reference input for single-
ended clock oscillator mode.
VAA_XTAL 16 Ap Crystal oscillator power. VAA_XTAL = 3.3 V nominal.
Connect to VAA.
Table 3. Pin List (2 of 10)
Pin Name Pin Number Dir Type Description
DSH-201010p2 Conexant 27
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Pin Descriptions
VAA_DS1 17 Ap Delta-sigma audio ADC power.
VSS_DS1 18 Ap Delta-sigma audio ADC ground
VREFP_DS 19 O Ar Delta-sigma audio ADC positive reference voltage
VREFM_DS 20 O Ar Delta-sigma audio ADC negative reference voltage
ASUB_DS 21 Ap Delta-sigma audio ADC substrate tie
VR1 22 I As Right channel audio input 1
VR_NEG 23 I As Right channel negative input
VR2 24 I As Right channel audio input 2
VL1 25 I As Left channel audio input 1
VL_NEG 26 I As Left channel negative input
VL2 27 I As Left channel audio input 2
VSS_DS2 28 Ap Delta-sigma audio ADC ground
VAA_DS2 29 Ap Delta-sigma audio ADC power
VOUT_REG 30 O Ar Internal regulator output signal. Connect to base of
NPN transistor (q2n4401).
VIN_REG 31 I Ar Internal regulator input signal. Connect to emitter of
NPN transistor (q2n4401).
VAA_REG 32 Ap Power for PCI Express internal voltage regulator
VDDA 33 Ap PCI Express receiver power supply. Connect to analog
1.2 V.
RXP 34 I D PCI Express receiver differential pair. Connect to
PERp0.
VSSA 35 Ap PCI Express receiver ground.
RXM 36 I D PCI Express receiver differential pair. Connect to
PERn0.
VDDA 37 Ap PCI Express receiver power supply. Connect to analog
1.2 V.
REF_RES 38 O Ar Reference resistor for internal bias voltage generation.
Connect to 3.0 kΩ ±1% resistor to ground.
ATEST 39 O D Reserved
VDDRO 40 Ap PCI Express power. Connect to 1.8 V.
VSSRO 41 Ap PCI Express ground. Connect to ground.
Table 3. Pin List (3 of 10)
Pin Name Pin Number Dir Type Description
28 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Pin Descriptions CX23885 Data Sheet
VDDTO 42 Ap PCI Express transmitter oscillator power supply.
Connect to analog 1.8 V.
VSSTO 43 Ap PCI Express transmitter oscillator ground. Connect to
ground.
VDDT 44 Ap PCI Express transmitter driver power supply. Connect
to 1.8 V.
TXP 45 O D PCI Express transmitter differential pair. Connect to
PETp0.
VSST 46 Ap PCI Express transmitter driver ground. Connect to
ground.
TXM 47 O D PCI Express receiver differential pair. Connect to
PETn0.
VDDT 48 Ap PCI Express transmitter driver power supply. Connect
to 1.8 V.
VSSTA 49 Ap PCI Express transmitter driver ground. Connect to
ground.
VDDTA 50 Ap PCI Express analog PLL power. Connect to 1.2 V.
REFCLKP 51 I D PCI Express differential pair reference clock. Connect
to REFCLK+.
REFCLKM 52 I D PCI Express differential pair reference clock. Connect
to REFCLK–.
GPIO[15] 53 I/O D General Purpose I/O
Configurable multifunction status/control pin
VDD 54 Dp Digital core logic power
TEST 55 I D Puts chip in test mode for ATE/Debug testing. Active-
high.
PERST_N 56 I D PCI Express reset input, active low
RESET_OUT_N 57 O D Buffered output PERST_N combined with internal
POR, soft reset, and hot PCI reset
VDD 58 Dp Digital core logic power
GPIO[14] 59 I/O D General Purpose I/O
Configurable multifunction status/control pin
Table 3. Pin List (4 of 10)
Pin Name Pin Number Dir Type Description
DSH-201010p2 Conexant 29
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Pin Descriptions
IRQ_N (GPIO[16]) 60 I/O D When UART_GPIO_EN bit is cleared in the
MC417_GPIO_CTL register:
This is an Interrupt input, active-low (external A/V
decoder), or output from AV_CORE.
When UART_GPIO_EN bit is set in the
MC417_GPIO_CTL register:
This is a General Purpose I/O Configurable
multifunction status/control pin.
URX(GPIO[17]) 61 I/O D When UART_GPIO_EN bit is cleared in the
MC417_GPIO_CTL register:
UART receive input
When UART_GPIO_EN bit is set in the
MC417_GPIO_CTL register:
This is a General Purpose I/O Configurable
multifunction status/control pin.
UTX(GPIO[18] 62 I/O D When UART_GPIO_EN bit is cleared in the
MC417_GPIO_CTL register:
UART transmit output
When UART_GPIO_EN bit is set in the
MC417_GPIO_CTL register:
This is a General Purpose I/O Configurable
multifunction status/control pin.
VDDIO 63 Dp Digital I/O pad power
GPIO[13] 64 I/O D General Purpose I/O
Configurable multifunction status/control pin
GPIO[12] 65 I/0 D General Purpose I/O
Configurable multifunction status/control pin
VDD 66 Dp Digital core logic power
GPIO[11] 67 I/O General Purpose I/O
Configurable multifunction status/control pin
TS2_SOP 68 I/O D Start of packet indicator input or Data Request output
TS2_VAL 69 I D Valid indicator for TS2.
TS2_CLK 70 I D Transport stream input clock. All other TS2 signals
sampled at rising edge of TS2_CLK
TS2_DAT 71 I D Transport stream input serial data
TS1_SOP 72 I/O D TS input mode: Start of packet indicator input or Data
Request Output
TS1_VAL 73 I D Valid indicator for TS1.
Table 3. Pin List (5 of 10)
Pin Name Pin Number Dir Type Description
30 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Pin Descriptions CX23885 Data Sheet
TS1_CLK 74 I/O D Transport stream input clock. All other TS1 signals
sampled at rising edge of TS1_CLK
VDD 75 Dp Digital core logic power
GPIO[10] 76 I/O D General Purpose I/O
Configurable multifunction status/control pin
TS1_DAT[0] 77 I/O D Multiplexed pin function.
1. TS input mode: This can be a serial transport/
program stream data bit or a parallel transport/
program stream data bit[0].
2. Video input mode: Data bit[0] of ITU-656 or VIP
source
3. Video output mode: Data bit[0] of internally
decoded video
TS1_DAT[1] 78 I/O D Multiplexed pin function.
1. TS input mode: Parallel transport or program
stream data bit[1]
2. Video input mode: Data bit[1] of ITU-656 or VIP
source
3. Video output mode: Data bit[1] of internally
decoded video
TS1_DAT[2] 79 I/O D Multiplexed pin function.
1. TS input mode: Parallel transport or program
stream data bit[2]
2. Video input mode: Data bit[2] of ITU-656 or VIP
source
3. Video output mode: Data bit[2] of internally
decoded video
TS1_DAT[3] 80 I/O D Multiplexed pin function.
1. TS input mode: Parallel transport or program
stream data bit[3]
2. Video input mode: Data bit[3] of ITU-656 or VIP
source
3. Video output mode: Data bit[3] of internally
decoded video
TS1_DAT[4] 81 I/O D Multiplexed pin function.
1. TS input mode: Parallel transport or program
stream data bit[4]
2. Video input mode: Data bit[4] of ITU-656 or VIP
source
3. Video output mode: Data bit[4] of internally
decoded video
Table 3. Pin List (6 of 10)
Pin Name Pin Number Dir Type Description
DSH-201010p2 Conexant 31
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Pin Descriptions
TS1_DAT[5] 82 I/O D Multiplexed pin function.
1. TS input mode: Parallel transport or program
stream data bit[5]
2. Video input mode: Data bit[5] of ITU-656 or VIP
source
3. Video output mode: Data bit[5] of internally
decoded video
TS1_DAT[6] 83 I/O D Multiplexed pin function.
1. TS input mode: Parallel transport or program
stream data bit[6]
2. Video input mode: Data bit[6] of ITU-656 or VIP
source
3. Video output mode: Data bit[6] of internally
decoded video
TS1_DAT[7] 84 I/O D Multiplexed pin function.
1. TS input mode: Parallel transport or program
stream data bit[7]
2. Video input mode: Data bit[7] of ITU-656 or VIP
source
3. Video output mode: Data bit[7] of internally
decoded video
VDDIO 85 Dp Digital I/O pad power
GPIO[9] 86 I/O D General Purpose I/O
Configurable multifunction status/control pin
GPIO[8] 87 I/O D General Purpose I/O
Configurable multifunction status/control pin
VDD 88 Dp Digital core logic power
GPIO[0] 89 I/O D General Purpose I/O
Configurable multi-function status/control pin
GPIO[1] 90 I/O D General Purpose I/O
Configurable multi-function status/control pin
GPIO[2] 91 I/O D General Purpose I/O
Configurable multi-function status/control pin
GPIO[3] 92 I/O D General Purpose I/O
Configurable multi-function status/control pin
SDA1 93 O D I2C-compatible serial data
SCL1 94 I/O D I2C-compatible serial clock output
GPIO[4] 95 I/O D General Purpose I/O
Configurable multifunction status/control pin
Table 3. Pin List (7 of 10)
Pin Name Pin Number Dir Type Description
32 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Pin Descriptions CX23885 Data Sheet
VDD 96 Dp Digital core logic power
SDA2 97 O D I2C-compatible serial data
SCL2 98 I/O D I2C-compatible serial clock output
VDDIO 99 Dp Digital I/O pad power
GPIO[5] 100 I/O D General Purpose I/O
Configurable multifunction status/control pin
GPIO[6] 101 I/O D General Purpose I/O
Configurable multifunction status/control pin
VDD 102 Dp Digital core logic power
I2S_BCLK(GPIO[23]) 103 I/O D When GPIO2_OUT_ENABLE_N bit is set in the
GPIO2_OUT_EN_REG register:
I2S bit clock for sampling serial data
When GPIO2_OUT_ENABLE_N bit is cleared in the
GPIO2_OUT_EN_REG register:
This is a General Purpose I/O
Configurable multifunction status/control pin.
I2S_WCLK
(GPIO[22])
104 I/O D When GPIO2_OUT_ENABLE_N bit is set in the
GPIO2_OUT_EN_REG register:
I2S word clock to frame data word boundaries
When GPIO2_OUT_ENABLE_N bit is cleared in the
GPIO2_OUT_EN_REG register:
This is a General Purpose I/O
Configurable multifunction status/control pin.
I2S_SDAT(GPIO[21]) 105 I/O D When GPIO2_OUT_ENABLE_N bit is set in the
GPIO2_OUT_EN_REG register:
I2S serial data
When GPIO2_OUT_ENABLE_N bit is cleared in the
GPIO2_OUT_EN_REG register:
This is a General Purpose I/O
Configurable multifunction status/control pin.
IR_RX (GPIO[19]) 106 I/O D When GPIO2_OUT_ENABLE_N bit is set in the
GPIO2_OUT_EN_REG register:
Infrared remote control receiver input
When GPIO2_OUT_ENABLE_N bit is cleared in the
GPIO2_OUT_EN_REG register:
This is a General Purpose I/O
Configurable multifunction status/control pin.
Table 3. Pin List (8 of 10)
Pin Name Pin Number Dir Type Description
DSH-201010p2 Conexant 33
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Pin Descriptions
IR_TX (GPIO[20]) 107 I/O D When GPIO2_OUT_ENABLE_N bit is set in the
GPIO2_OUT_EN_REG register:
Infrared transmitter output
When GPIO2_OUT_ENABLE_N bit is cleared in the
GPIO2_OUT_EN_REG register:
This is a General Purpose I/O
Configurable multifunction status/control pin.
Reserved 108 Reserved pin. Not connected.
Reserved 109 Reserved pin. Not connected.
VDD 110 Dp Digital I/O pad power
GPIO[7] 111 I/O D General Purpose I/O
Configurable multifunction status/control pin
VDDO_PLL 112 Ap Isolated Aux PLL output pad power
AUX_PLL_CLK 113 O D Aux PLL output
VSSO_PLL 114 Ap Isolated Aux PLL output pad ground
VSS_PLL 115 Ap Analog PLL ground
VAA_PLL 116 Ap Analog PLL power
Reserved 117 Reserved pin. Should not be connected.
Reserved 118 Reserved pin. Should not be connected.
Reserved 119 Reserved pin. Should not be connected.
Reserved 120 Reserved pin. Should not be connected.
VAA_ADC2 121 Ap ADC core power. VAA_ADC = 3.3 V nominal.
VSS_ADC2 122 Ap ADC core ground
VSS_ADC1 123 Ap ADC core ground
VAA_ADC1 124 Ap ADC core power. VAA_ADC = 3.3 V nominal.
ASUB 125 Ap ADC core substrate ground
VIN1 126 I As Composite or Luma signal input to ADC1. The signal
passes through on-chip analog multiplexers before
passing through a gain stage, an anti-alias filter stage,
and into ADC1. Unused inputs should not be
connected.
S2D_NEG1 127 I Ar Negative input of single-to-differential converter. Tie to
analog ground through AC coupling capacitor for
common mode noise rejection. The capacitor should
match the value used on the analog inputs.
Table 3. Pin List (9 of 10)
Pin Name Pin Number Dir Type Description
34 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Pin Descriptions CX23885 Data Sheet
VIN2 128 I As Composite or Luma signal input to ADC1. The signal
passes through on-chip analog multiplexers before
passing through a gain stage, an anti-alias filter stage,
and into ADC1. Unused inputs should not be
connected.
Exposed Pad Tie to digital ground (must be connected).
Legend for Pin Type
R
Od
As
Ap
Dp
Ar
D
Active resistive pullup
Open-drain pads with glitch filters
Analog signal
Analog power or ground
Digital power or ground
Analog reference, for connection to external component
Digital signal
Table 3. Pin List (10 of 10)
Pin Name Pin Number Dir Type Description
DSH-201010p2 Conexant 35
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Pin Descriptions
Figure 4. Pinout Diagram
102740_002
CX23885
128-pin ETQFP
11 7
11 6
11 5
114
11 3
11 2
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
TXM
VSSTA
REFCLKP
REFCLKM
GPIO[15]
TXP
VSSTO
GPIO[13]
RXP
VSSA
VDDA
RXM
VDDA
REF_RES
Reserved
VDDRO
VSSRO
VDDTO
VDDT
VSST
VDD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
95
94
93
92
91
90
89
88
87
86
96
127
126
125
124
123
122
121
120
119
11 8
128
VIN5
IREF
VSS_CH1
SD2_NEG2
VIN7
VIN6
VIN8
VSS_CH2
VAA_CH2
VAA_CH1
VIN4
VAA_DS1
VAA_XTAL
ASUB_DS
VR1
VR_NEG
VR2
VL1
VL_NEG
VL2
VSS_DS2
VAA_DS2
VOUT_REG
VIN_REG
TEST
PERST_N
RESET_OUT_N
VDD
GPIO[14]
VDD
VDDIO
TS2_VAL
TS2_SOP
TS1_VAL
GPIO[1]
GPIO[0]
VDD
TS1_DAT[5]
TS1_DAT[4]
TS1_DAT[3]
VDDIO
TS1_DAT[7]
TS1_DAT[6]
TS1_DAT[2]
TS1_DAT[1]
TS1_DAT[0]
UTX(GPIO[18])
URX(GPIO[17])
TS1_SOP
TS2_CLK
TS2_DAT
VDD
TS1_CLK
GPIO[2]
GPIO[3]
SDA_1
SCL_1
VDD
VAA_ADC1
VSS_ADC1
ASUB
SDA_2
VIN1
S2D_NEG1
VIN2
VSS_ADC2
VAA_ADC2
IR_TX(GPIO[20])
VAA_PLL
I2S_WCLK(GPIO[22])
VSS_PLL
VSSO_PLL
AUX_PLL_CLK
VDDO_PLL
VDD
Reserved
I2S_SDAT(GPIO[21])
Reserved
IR_RX(GPIO[19])
I2S_BCLK(GPIO[23])
VDDIO
VDD
IRQ_N(GPIO[16])
SCL_2
VDDT
VDDTA
VIN3
VSS_XTAL
XTI
XTO
VSS_DS1
VREFP_DS
VREFM_DS
VAA_REG GPIO[12]
GPIO[11]
GPIO[10]
GPIO[9]
GPIO[8]
GPIO[4]
GPIO[5]
GPIO[6]
GPIO[7]
RESERVED
RESERVED
RESERVED
RESERVED
36 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Pin Descriptions CX23885 Data Sheet
DSH-201010p2 Conexant 37
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
3Registers
3.1 Register Map
Table 4. Register Map
Register Type Description
RO Read-only
WO Write-only
RW Read/Write
RW* Read/Write, but data may not be same as written at a later time.
RR Same as RW, but writing a 1 resets corresponding bit location, writing 0 has no effect.
RWp Read-only, Write-only shared port, data written cannot be read. Only accessible by DMAC.
Rp Read-only port. Only accessible by DMAC.
Wd Write-only, operates on other data entering register.
GENERAL NOTE:
1. Unused register bits will read back 0.
38 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.2 Memory Mapped Registers: Application Layer
3.2.1 Device Control #2
3.2.2 PCI Interrupt Mask
Register: DEV_CNTRL2 Address: 0x0004000
Bits Type Default Name Description
[31:6] RO 26’b0 Reserved
[5] WO 1’b0 RUN_RISC A value of 1 enables the RISC controller. A
value of 0 holds the RISC controller in a reset
state.
[4:0] RO 5’b0 Reserved
Register: PCI_INT_MSK Address: 0x00040010
Bits Type Default Name Description
[31:28] RO 4’b0 Reserved
[27] RW 1’b0 AV_CORE_MSK Set when AV_CORE interrupt condition occurs.
Cleared by clearing interrupt bits in AV_CORE
interrupt status register.
A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[26] RW 1’b0 UART_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[25] RW 1’b0 IRQN_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
DSH-201010p2 Conexant 39
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[24] RW 1’b0 GPIO1_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[23] RW 1’b0 GPIO0_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks
the pending request.
[22] RW 1’b0 TM_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[21] RW 1’b0 I2C_3_RACK_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[20] RW 1’b0 I2C_3_MSK Set when an I2C #3 read or write operation has
completed.
[19] RW 1’b0 I2C_2_RACK_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[18] RW 1’b0 I2C_2_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[17] RW 1’b0 I2C_1_RACK_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
40 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[16] RW 1’b0 I2C_1_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[15:3] RW 3’b0 Reserved
[12] RW 1’b0 APB_DMA_BERR_M
SK
A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[11] RW 1’b0 AL_WR_BERR_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[10] RW 1’b0 AL_RD_BERR_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[9] RW 1’b0 RISC_WR_BERR_MS
K
A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[8] RW 1’b0 RISC_RD_BERR_MS
K
A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[7] RW 1’b0 RESERVED
[6] RW 1’b0 RESERVED
[5] RW 1’b0 RESERVED
[4] RW 1’b0 AUD_EXT_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
DSH-201010p2 Conexant 41
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[3] RW 1’b0 AUD_INT_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[2] RW 1’b0 VID_C_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[1] RW 1’b0 VID_B_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
[0] RW 1’b0 VID_A_MSK A value of 1 enables the corresponding interrupt
bit location in the PCI_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
42 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.2.3 PCI Interrupt Status
Register: PCI_INT_STAT Address: 0x00040014
Bits Type Default Name Description
[31:28] RO 4’h0 Reserved
[27] RO 1’b0 AV_CORE_INT Set when AV_CORE interrupt condition occurs.
Cleared by clearing interrupt bits in AV_CORE
interrupt status register.
[26] RO 1’b0 UART_INT Set when UART interrupt condition occurs.
Cleared by clearing interrupt bits in UART_ISR.
[25] RR 1’b0 IRQN_INT Set when GPIO interrupt condition occurs on pin
IRQN pin, also called GPIO[4].
[24] RR 1’b0 GPIO1_INT Set when GPIO interrupt condition occurs on pin
GPIO[23].
[23] RR 1’b0 GPIO0_INT Set when GPIO interrupt condition occurs on pin
GPIO[22].
[22] RR 1’b0 TM_INT Set when timer TM_CNT reaches its limit
TM_LMT.
[21] RR 1’b0 I2C_3_RACK Set when an I2C #3 read or write operation has
completed successfully. Latched on rising edge of
I2C_2_INT. Intended for status only. Typically
masked off.
[20] RR 1’b0 I2C_3_INT Set when an I2C #3 read or write operation has
completed.
[19] RR 1’b0 I2C_2_RACK Set when an I2C #2 read or write operation has
completed successfully. Latched on rising edge of
I2C_3_INT. Intended for status only. Typically
masked off.
[18] RR 1’b0 I2C_2_INT Set when an I2C #2 read or write operation has
completed.
[17] RR 1’b0 I2C_1_RACK Set when an I2C #1 read or write operation has
completed successfully. Latched on rising edge of
I2C_1_INT. Intended for status only. Typically
masked off.
[16] RR 1’b0 I2C_1_INT Set when an I2C #1 read or write operation has
completed.
[15:13] RO 3’b0 Reserved
[12] RR 1’b0 APB_DMA_BERR_INT Set when the BERR signal is asserted to the ASB
master during an APB DMA.
DSH-201010p2 Conexant 43
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[11] RR 1’b0 AL_WR_BERR_INT Set when the BERR signal is asserted to the AL
ASB master during a write transfer.
[10] RR 1’b0 AL_RD_BERR_INT Set when the BERR signal is asserted to the AL
ASB master during a read transfer.
[9] RR 1’b0 RISC_WR_BERR_INT Set when the BERR signal is asserted to the RISC
controller during a write transfer.
[8] RR 1’b0 RISC_RD_BERR_INT Set when the BERR signal is asserted to the RISC
controller during a read transfer.
[7] RO 1’b0 Reserved
[6] RO 1’b0 Reserved
[5] RO 1’b0 Reserved
[4] RO 1’b0 AUD_EXT_INT Set when an external audio interrupt condition
occurs. Cleared by clearing the bits of the Audio
EXT Interrupt Status register.
[3] RO 1’b0 AUD_INT_INT Set when an internal audio interrupt condition
occurs. Cleared by clearing the bits of the Audio
INT Interrupt Status register.
[2] RO 1’b0 VID_C_INT Set when a Video C interrupt condition occurs.
Cleared by clearing the bits of the Video C
Interrupt Status register.
[1] RO 1’b0 VID_B_INT Set when a Video B interrupt condition occurs.
Cleared by clearing the bits of the Video B
Interrupt Status register.
[0] RO 1’b0 VID_A_INT Set when a Video A interrupt condition occurs.
Cleared by clearing the bits of the Video A
Interrupt Status register.
44 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.2.4 PCI Interrupt Masked Status
Register: PCI_INT_MSTAT Address: 0x00040018
Bits Type Default Name Description
[31:28] RO 4’b0 Reserved
[27] RO 1’b0 AV_CORE_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[26] RO 1’b0 UART_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[25] RO 1’b0 IRQN_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[24] RO 1’b0 GPIO1_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[23] RO 1’b0 GPIO0_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[22] RO 1’b0 TM_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[21] RO 1’b0 I2C_3_RACK_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[20] RO 1’b0 I2C_3_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[19] RO 1’b0 I2C_2_RACK_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[18] RO 1’b0 I2C_2_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[17] RO 1’b0 I2C_1_RACK_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[16] RO 1’b0 I2C_1_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[15:13] RO 3’b0 RESERVED
DSH-201010p2 Conexant 45
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[12] RO 1’b0 APB_DMA_BERR_MST
AT
These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[11] RO 1’b0 AL_WR_BERR_MSTA
T
These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[10] RO 1’b0 AL_RD_BERR_MSTA
T
These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[9] RO 1’b0 RISC_WR_BERR_MS
TAT
These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[8] RO 1’b0 RISC_RD_BERR_MS
TAT
These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[7] RO 1’b0 RESERVED
[6] RO 1’b0 RESERVED
[5] RO 1’b0 RESERVED
[4] RO 1’b0 AUD_EXT_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[3] RO 1’b0 AUD_INT_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[2] RO 1’b0 VID_C_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[1] RO 1’b0 VID_B_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
[0] RO 1’b0 VID_A_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
46 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.2.5 Video A Interrupt Mask
3.2.6 Video A Interrupt Status
Register: VID_A_INT_MSK Address: 0x00040020
Bits Type Default Name Description
[31:18] RO 14’b0 Reserved
[17:0] RW 18’b0 VID_A_INT_MSK A value of 1 enables the corresponding interrupt
bit location in the VID_A_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until the
device driver clears or masks the pending request.
Register VID_A_INT_STAT Address: 0x00040024
Bits Type Default Name Description
[31:18] RO 14’b0 Reserved
[17] RR 1’b0 VBI_A_OPC_ERR Set when the RISC controller detects a
reserved/unused opcode in the VBI A
instruction sequence.
[16] RR 1’b0 VID_A_OPC_ERR Set when the RISC controller detects a
reserved/unused opcode in the video A
instruction sequence.
[15:14] RO 2’b0 Reserved
[13] RR 1’b0 VBI_A_SYNC Set when number of lines or bytes do not match
the VBI A RISC program expectations.
[12] RR 1’b0 VID_A_SYNC Set when number of lines or bytes do not match
the video A RISC program expectations.
[11:10] RO 2’b0 Reserved
[9] RR 1’b0 VBI_A_OF Set when VBI A FIFO overflow condition is
being handled.
[8] RR 1’b0 VID_A_OF Set when video A FIFO overflow condition is
being handled.
[7:6] RO 2’b0 Reserved
[5] RR 1’b0 VBI_A_RISCI2 Set when the IRQ2 bit in a VBI A RISC
instruction is set.
DSH-201010p2 Conexant 47
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.2.7 Video A Interrupt Masked Status
3.2.8 Video A Interrupt Set Status
3.2.9 Video B Interrupt Mask
[4] RR 1’b0 VID_A_RISCI2 Set when the IRQ2 bit in a video A RISC
instruction is set.
[3:2] RO 2’b0 Reserved
[1] RR 1’b0 VBI_A_RISCI1 Set when the IRQ1 bit in a VBI A RISC
instruction is set.
[0] RR 1’b0 VID_A_RISCI1 Set when the IRQ1 bit in a video A RISC
instruction is set.
Register: VID_A_INT_MSTAT Address: 0x00040028
Bits Type Default Name Description
[31:18] RO 14’b0 Reserved
[17:0] RO 18’b0 VID_A_INT_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
Register VID_A_INT_SSTAT Address: 0x0004002C
Bits Type Default Name Description
[31:18] RO 14’b0 Reserved
[17:0] WO 18’b0 VID_INT_SSTAT Writing a 1 to these bits will set the corresponding
bits in the status register.
Register: VID_B_INT_MSK Address: 0x00040030
Bits Type Default Name Description
[31:21] RO 11’b0 Reserved
[20:0] RW 21’b0 VID_B_INT_MSK A value of 1 enables the corresponding interrupt
bit location in the VID_B_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until
the device driver clears or masks the pending
request.
48 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.2.10 Video B Interrupt Status
Register: VID_B_INT_STAT Address: 0x00040034
Bits Type Default Name Description
[31:21] RO 11’b0 Reserved
[20] RR 1’b0 TS_BAD_PCKT Set when the MPEG transport stream interface
detects an error (either of the three status check
bits are set and the appropriate error condition is
detected).
[19:18] RO 2’b0 Reserved
[17] RR 1’b0 VBI_B_OPC_ERR Set when the RISC controller detects a reserved/
unused opcode in the VBI B instruction
sequence.
[16] RR 1’b0 VID_B_OPC_ERR Set when the RISC controller detects a reserved/
unused opcode in the video B instruction
sequence.
[15:14] RO 2’b0 Reserved
[13] RR 1’b0 VBI_B_SYNC Set when number of lines or bytes do not match
the VBI B RISC program expectations.
[12] RR 1’b0 VID_B_SYNC Set when number of lines or bytes do not match
the video B RISC program expectations.
[11:10] RO 2’b0 Reserved
[9] RR 1’b0 VBI_B_OF Set when VBI B FIFO overflow condition is being
handled.
[8] RR 1’b0 VID_B_OF Set when video B FIFO overflow condition is
being handled.
[7:6] RO 2’b0 Reserved
[5] RR 1’b0 VBI_B_RISCI2 Set when the IRQ2 bit in a VBI B RISC
instruction is set.
[4] RR 1’b0 VID_B_RISCI2 Set when the IRQ2 bit in a video B RISC
instruction is set.
[3:2] RO 2’b0 Reserved
[1] RR 1’b0 VBI_B_RISCI1 Set when the IRQ1 bit in a VBI B RISC
instruction is set.
[0] RR 1’b0 VID_B_RISCI1 Set when the IRQ1 bit in a video B RISC
instruction is set.
DSH-201010p2 Conexant 49
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.2.11 Video B Interrupt Masked Status
3.2.12 Video B Interrupt Set Status
3.2.13 Video C Interrupt Mask
Register: VID_B_INT_MSTAT Address: 0x00040038
Bits Type Default Name Description
[31:21] RO 11’b0 Reserved
[20:0] RO 21’b0 VID_B_INT_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
Register: VID_B_INT_SSTAT Address: 0x0004003C
Bits Type Default Name Description
[31:18] RO 14’b0 Reserved
[17:0] WO 18’b0 VID_INT_SSTAT Writing a 1 to these bits will set the
corresponding bits in the status register.
Register: VID_C_INT_MSK Address: 0x00040040
Bits Type Default Name Description
[31:21] RO 11’b0 Reserved
[20:0] RW 21’b0 VID_C_INT_MSK A value of 1 enables the corresponding interrupt
bit location in the VID_C_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until
the device driver clears or masks the pending
request.
50 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.2.14 Video C Interrupt Status
3.2.15 Video C Interrupt Masked Status
Register: VID_C_INT_STAT Address: 0x00040044
Bits Type Default Name Description
[31:21] RO 11’b0 Reserved
[20] RR 1’b0 TS_BAD_PCKT Set when the MPEG transport stream interface
detects an error (either of the three status check
bits are set and the appropriate error condition is
detected).
[19:17] RO 3’b0 Reserved
[16] RR 1’b0 VID_C_OPC_ERR Set when the RISC controller detects a reserved/
unused opcode in the instruction sequence.
[15:13] RO 3’b0 Reserved
[12] RR 1’b0 VID_C_SYNC Set when number of lines or bytes do not match
the video RISC program expectations.
[11:9] RO 3’b0 Reserved
[8] RR 1’b0 VID_C_OF Set when video FIFO overflow condition is being
handled.
[7:5] RO 3’b0 Reserved
[4] RR 1’b0 VID_C_RISCI2 Set when the IRQ2 bit in a video RISC
instruction is set.
[3:1] RO 3’b0 Reserved
[0] RR 1’b0 VID_C_RISCI1 Set when the IRQ1 bit in a video RISC
instruction is set.
Register: VID_C_INT_MSTAT Address: 0x00040048
Bits Type Default Name Description
[31:21] RO 11’b0 Reserved
[20:0] RO 21’b0 VID_C_INT_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
DSH-201010p2 Conexant 51
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.2.16 Video C Interrupt Set Status
3.2.17 Audio Internal Interrupt Mask
3.2.18 Audio Internal Interrupt Status
Register: VID_C_INT_SSTAT Address: 0x0004004C
Bits Type Default Name Description
[31:17] RO 15’b0 Reserved
[16:0] WO 17’b0 VID_C_INT_SSTAT Writing a 1 to these bits will set the
corresponding bits in the status register.
Register: AUDIO_INT_INT_MSK Address: 0x00040050
Bits Type Default Name Description
[31:18] RO 14’b0 Reserved
[17:0] RW 18’b0 AUD_INT_INT_MSK A value of 1 enables the corresponding interrupt
bit location in the AUD_INT_INT_STAT register.
Unmasking a bit may generate an interrupt
immediately due to a previously pending
condition. The interrupt remains asserted until
the device driver clears or masks the pending
request.
Register: AUD_INT_INT_STAT Address: 0x00040054
Bits Type Default Name Description
[31:18] RO 14’b0 Reserved
[17] RR 1’b0 AUD_INT_B_OPC_ERR Set when the RISC controller detects a
reserved/unused opcode in the internal
audio B instruction sequence.
[16] RR 1’b0 AUD_INT_A_OPC_ERR Set when the RISC controller detects a
reserved/unused opcode in the internal
audio A instruction sequence.
[15:14] RO 2’b0 Reserved
[13] RR 1’b0 AUD_INT_B_SYNC Set when number of lines or bytes do not
match the internal audio B RISC program
expectations.
52 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.2.19 Audio Internal Interrupt Masked Status
3.2.20 Audio Internal Interrupt Set Status
[12] RR 1’b0 AUD_INT_A_SYNC Set when number of lines or bytes do not
match the internal audio A RISC program
expectations.
[11:10] RO 2’b0 Reserved
[9] RR 1’b0 AUD_INT_B_OF Set when internal audio B FIFO overflow
condition is being handled.
[8] RR 1’b0 AUD_INT_A_OF Set when internal audio A FIFO overflow
condition is being handled.
[7:6] RO 2’b0 Reserved
[5] RR 1’b0 AUD_INT_B_RISCI2 Set when the IRQ2 bit in an internal audio
B RISC instruction is set.
[4] RR 1’b0 AUD_INT_A_RISCI2 Set when the IRQ2 bit in an internal audio
A RISC instruction is set.
[3:2] RO 2’b0 Reserved
[1] RR 1’b0 AUD_INT_B_RISCI1 Set when the IRQ1 bit in an internal audio
B RISC instruction is set.
[0] RR 1’b0 AUD_INT_A_RISCI1 Set when the IRQ1 bit in an internal audio
A RISC instruction is set.
Register: AUD_INT_INT_MSTAT Address: 0x00040058
Bits Type Default Name Description
[31:18] RO 14’b0 Reserved
[17:0] RO 18’b0 AUD_INT_INT_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
Register: AUD_INT_INT_SSTAT Address: 0x0004005C
Bits Type Default Name Description
[31:18] RO 14’b0 Reserved
[17:0] WO 18’b0 AUD_INT_INT_SSTAT Writing a 1 to these bits will set the
corresponding bits in the status register.
DSH-201010p2 Conexant 53
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.2.21 Audio External Interrupt Mask
3.2.22 Audio External Interrupt Status
Register: AUDIO_EXT_INT_MSK Address: 0x00040060
Bits Type Default Name Description
[31:17] RO 15’b0 Reserved
[16:0] RW 17’b0 AUD_EXT_INT_MSK A value of 1 enables the corresponding
interrupt bit location in the
AUD_EXT_INT_STAT register. Unmasking a bit
may generate an interrupt immediately due to a
previously pending condition. The interrupt
remains asserted until the device driver clears
or masks the pending request.
Register: AUD_EXT_INT_STAT Address: 0x00040064
Bits Type Default Name Description
[31:17] RO 15’b0 Reserved
[16] RR 1’b0 AUD_EXT_OPC_ERR Set when the RISC controller detects a
reserved/unused opcode in the external
audio instruction sequence.
[15:13] RO 3’b0 Reserved
[12] RR 1’b0 AUD_EXT_SYNC Set when number of lines or bytes do not
match the external audio RISC program
expectations.
[11:9] RO 3’b0 Reserved
[8] RR 1’b0 AUD_EXT_OF Set when external audio FIFO overflow
condition is being handled.
[7:5] RO 3’b0 Reserved
[4] RR 1’b0 AUD_EXT_RISCI2 Set when the IRQ2 bit in an external audio
RISC instruction is set.
[3:1] RO 3’b0 Reserved
[0] RR 1’b0 AUD_EXT_RISCI1 Set when the IRQ1 bit in an external audio
RISC instruction is set.
54 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.2.23 Audio External Interrupt Masked Status
3.2.24 Audio External Interrupt Set Status
Register: AUD_EXT_INT_MSTAT Address: 0x00040068
Bits Type Default Name Description
[31:17] RO 15’b0 Reserved
[16:0] RO 17’b0 AUD_EXT_INT_MSTAT These bits are the logical AND of the
corresponding bits in the status and mask
registers.
Register: AUD_EXT_INT_SSTAT Address: 0x0004006C
Bits Type Default Name Description
[31:17] RO 15’b0 Reserved
[16:0] WO 17’b0 AUD_EXT_INT_SSTAT Writing a 1 to these bits will set the
corresponding bits in the status register.
DSH-201010p2 Conexant 55
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.3 Memory Mapped Registers: DMAC
3.3.1 APB DMAC Current Buffer Pointer
Register: DMA1_PTR1 (qword) Address: 0x00100000
Register: DMA2_PTR1 (qword) Address: 0x00100004
Register: DMA3_PTR1 (qword) Address: 0x00100008
Register: DMA4_PTR1 (qword) Address: 0x0010000C
Register: DMA5_PTR1 (qword) Address: 0x00100010
Register: DMA6_PTR1 (dword) Address: 0x00100014
Register: DMA7_PTR1 (dword) Address: 0x00100018
Register: DMA8_PTR1 (dword) Address: 0x0010001C
Bits Type Default Name Description
[31:24] RO 8’b0 Reserved
[23:2] RO 22’hxxxxxx DMA{x}_PTR1 Current DMA qword or dword address pointer.
Points to next qword or qword transfer location
within source or destination buffer. Always
dword-aligned.
[1:0] RO 2’b00 Reserved
56 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.3.2 APB DMAC Current Table Pointer
Register: DMA1_PTR2 Address: 0x00100040
Register: DMA2_PTR2 Address: 0x00100044
Register: DMA3_PTR2 Address: 0x00100048
Register: DMA4_PTR2 Address: 0x0010004C
Register: DMA5_PTR2 Address: 0x00100050
Register: DMA6_PTR2 Address: 0x00100054
Register: DMA7_PTR2 Address: 0x00100058
Register: DMA8_PTR2 Address: 0x0010005C
Bits Type Default Name Description
[31:24] RO 8’b0 Reserved
[23:2] RW* 22’hxxxxxx DMA{x}_PTR2 Current DMA CDT address pointer. Points to
current CDT entry. Always dword-aligned.
[1:0] RO 2’b00 Reserved
DSH-201010p2 Conexant 57
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.3.3 APB DMAC Buffer Limit
Register: DMA1_CNT1 (oword) Address: 0x00100080
Register: DMA2_CNT1 (oword) Address: 0x00100084
Register: DMA3_CNT1 (oword) Address: 0x00100088
Register: DMA4_CNT1 (oword) Address: 0x0010008C
Register: DMA5_CNT1 (oword) Address: 0x00100090
Register: DMA6_CNT1 (qword) Address: 0x00100094
Register: DMA7_CNT1 (qword) Address: 0x00100098
Register: DMA8_CNT1 (qword) Address: 0x0010009C
Bits Type Default Name Description
[31:11] RO 21’b0 Reserved
[10:0] RW* 11’hxxx DMA{x}_CNT1 Initialize to DMA buffer size in # of owords or
qwords. Increments during DMA data transfers
and reloads when next CDT pointer is fetched.
58 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.3.4 APB DMAC Table Size
Register: DMA1_CNT2 Address: 0x001000C0
Register: DMA2_CNT2 Address: 0x001000C4
Register: DMA3_CNT2 Address: 0x001000C8
Register: DMA4_CNT2 Address: 0x001000CC
Register: DMA5_CNT2 Address: 0x001000D0
Register: DMA6_CNT2 Address: 0x001000D4
Register: DMA7_CNT2 Address: 0x001000D8
Register: DMA8_CNT2 Address: 0x001000DC
Bits Type Default Name Description
[31:11
]
RO 21’b0 Reserved
[10:0] RW* 11’hxxx DMA{x}_CNT2 Initialize to DMA CDT size in # of qwords.
DSH-201010p2 Conexant 59
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.4 Memory Mapped Registers: Miscellaneous
Utilities
3.4.1 Timer Counters
3.4.2 Timer Limit Values
Register: TM_CNT_LDW Address: 0x00110000
Bits Type Default Name Description
[31:0] RO 32’b0 TM_CNT_LDW Lower dword of timer. The timer increments
every 96 ns, from 0 to the limit value, then resets
to 0 and counts again. The maximum value
provides for ~312 days. The upper 16-bits of the
timer are captured for reading at the
TM_CNT_UW register whenever the
TM_CNT_LDW register is read.
Register: TM_CNT_UW Address: 0x00110004
Bits Type Default Name Description
[31:16] RO 16’b0 Reserved
[15:0] RO 16’b0 TM_CNT_UW Upper 16-bits of the 48-bit timer, captured at the
time the lower 32-bits were read. The timer
increments every 96 ns, from 0 to the limit value,
then resets to 0 and counts again. The maximum
value provides for ~312 days.
Register: TM_LMT_LDW Address: 0x00110008
Bits Type Default Name Description
[31:0] RW 32’b0 TM_LMT_LDW When the current count value of the timer
reaches the limit value, an interrupt TM_INT is
set. The periodic timer interrupt event rate is =
10.4 MHz / (TM_LMT + 1). If TM_LMT is set to 0,
TM_CNT remains reset.
Register: TM_LMT_UW Address: 0x0011000C
Bits Type Default Name Description
[31:16] RO 16’b0 Reserved
[15:0] RW 16’b0 TM_LMT_UW When the current count value of the timer
reaches the limit value, an interrupt TM_INT is
set. The periodic timer interrupt event rate is =
10.4 MHz / (TM_LMT + 1). If TM_LMT is set to 0,
TM_CNT remains reset. TM_CNT is reset
whenever TM_LMT_UW is written.
60 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.4.3 GPIO
3.4.4 GPIO Interrupts Sensitivity Mode
3.4.5 Soft Reset
Register: GP0_IO Address: 0x00110010
Bits Type Default Name Description
[31:24] RO 8’h00 Reserved
[23:16] RW 8’h00 GP_OE A value of 1 enables corresponding GP_IO bit to
be output on the GPIO pin.
A value of 0 enables corresponding GP_IO bit to
be input on the GPIO pin.
[15:8] RO 8’h00 GP_IN The values from the GPIO pins.
[7:0] RW* 8’h00 GP_OUT The values to drive out on the GPIO pin. This is a
don’t-care if GP_OE is set to 0.
Register: GPIO_ISM Address: 0x00110014
Bits Type Default Name Description
[6:4] WO 3’b000 GP_ISM_SNS Sensitivity mode for interrupt inputs GPIO[TBD].
0 = level-sensitive
1 = edge-sensitive
[2:0] WO 3’b000 GP_ISM_POL Polarity control for interrupt inputs GPIO[TBD].
1 = active-hi or posedge
0 = active-lo or negedge
Note this control inverted from SPIPE for active
low interrupts default.
Register: SOFT_RESET Address: 0x0011001C
Bits Type Default Name Description
[31:1] R0 31’b0 Reserved
[0] RW 1’b0 SOFT_RESET Software reset register bit, writing this bit to 1 will
generate reset pulse that reset whole Pecos
except PCI-Express Physical layer.
DSH-201010p2 Conexant 61
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.4.6 GPIO (417 Microcontroller Interface) RW Data
3.4.7 GPIO (417 Microcontroller) Output Enable, Low Active
Register: MC417_RWD Address: 0x0011002
Bits Type Default Name Description
[31:16] RO 16'b 0 Reserved
[15:0] RW* 16'b 0 MC417_GPIO_RWD Read/Write data register.
The values to drive out on the MC417
GPIO[18:3] pin.
When the RD/WR register is read, each bit reads
back either the PAD input value if the pad is
configured as an input or the latched output
value if it is configured as an output.
MC417 GPIO[18:3] is mapped to pads {UTX,
URX, IRQ_N, GPIO[15:4], select one of
GPIO[3:0] by MC417_GPIO_SEL}
Register: MC417_OEN Address: 0x00110024
Bits Type Default Name Description
[31:16] RO 16'b 0 Reserved
[15:0] RW* 16'h FFFF MC417_GPIO_OEN Output Enable of GPIO[18:3] pins
When MC417 GPIO Mode is activated,
GPIO[18:3] is mapped to {UTX, URX, IRQ_N,
GPIO[15:4], select one of GPIO[3:0] by
MC417_GPIO_SEL}
62 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.4.8 GPIO (417 Microcontroller) Output Enable, Low Active
Register: MC417_CTL Address: 0x00110028
Bits Type Default Name Description
[31:6] RO 26'b 0 Reserved
[5:4] RW 2'b 11 MC417_SPD_CTL Pad drive strength (or speed) for GPIO[18:4]
pins to be used for 417 microcontroller interface
00 = medium
01 = slow
1x = fast
[3] RO 1'b 0 Reserved
[2:1] RW 2'b 11 MC417_GPIO_SEL Select one of 4 GPIO[3:0] pins as MC417 I/F pin,
default is 2'b11 indicating GPIO[3] is selected as
MC417 GPIO I/F
MC417_GPIO_SEL[1:0] = 2'b11: GPIO[3] is
selected for MC417 I/F pin
MC417_GPIO_SEL[1:0] = 2'b10: GPIO[2] is
selected for MC417 I/F pin
MC417_GPIO_SEL[1:0] = 2'b01: GPIO[1] is
selected for MC417 I/F pin
MC417_GPIO_SEL[1:0] = 2'b00: GPIO[0] is
selected for MC417 I/F pin
[0] RW 1'b 0 UART_GPIO_EN A value of 1 will enable the GPIO[18:16] pins &
GPIO[11] pin for
microcontroller interface
DSH-201010p2 Conexant 63
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.4.9 Clock Delay
Register: CLK_DELAY Address: 0x00110048
Bits Type Default Name Description
[31:20] RO 12’h000 Reserved
[19:16] RW 4’h0 JTCK_DLY_SEL Select programmable delay for JTCK from 0
buffer delay (4’h0) to 15 buffers delay (4’hF).
[15:12] RW 4’h0 PCLK_DLY_SEL Select programmable delay for 62.5 MHz pclk
from 0 buffer delay (4’h0) to 15 buffers delay
(4’hF).
[11:8] RW 4’h1 BCLK_N_DLY_SEL Select programmable delay for 125 MHz bclk_n
from 0 buffer delay (4’h0) to 15 buffers delay
(4’hF).
[7:4] RW 4’h1 BCLK_DLY_SEL Select programmable delay for 125 MHz bclk
from 0 buffer delay (4’h0) to 15 buffers delay
(4’hF).
[3:0] RW 4’h2 MCLK_DLY_SEL Select programmable delay for 250 MHz mclk
from 0 buffer delay (4’h0) to 15 buffers delay
(4’hF).
64 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.4.10 Pad Control
Register: PAD_CTRL Address: 0x0011004C
Bits Type Default Name Description
[31:26] RO 6’b000000 Reserved
[25:24] RW 2’b00 MISC_SPD Pad drive strength (or speed) for miscellaneous
pins, RESET_OUT_N and TEST, PERST_N
(these are input only for now and not testable):
00 = medium
01 = slow
1x = fast
[23:22] RW 2’b01 GPIO_SPD Pad drive strength (or speed) for GPIO, IRQN
pins:
00 = medium
01 = slow
1x = fast
[21:20] RW 2’b01 UART_SPD Pad drive strength (or speed) for UART interface
pins, UTX, URX:
00 = medium
01 = slow
1x = fast
[19:18] RW 2’b00 TS2_SPD Pad drive strength (or speed) for TS2 interface
pins, TS2_SOP, TS2_DATA, TS2_VAL, and
TS2_CLK:
00 = medium
01 = slow
1x = fast
[17:16] RW 2’b00 TS1_SPD Pad drive strength (or speed) for TS1 interface
pins, TS1_DATA, TS1_VAL, TS1_CLK, and
TS1_SOP:
00 = medium
01 = slow
1x = fast
[15:10] RO 6’b000000 Reserved
[9] RW 1’b1 I2C2_MODE Puts I2C#2 SCL and SDA pads into I2C mode.
0 = I2C2_SDA, I2C2_SCL pads in general-
purpose I/O mode
1 = I2C2_SDA, I2C2_SCL pads in I2C mode
DSH-201010p2 Conexant 65
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[8] RW 1’b1 I2C1_MODE Puts I2C#1 SCL and SDA pads into I2C mode.
2 = I2C1_SDA, I2C1_SCL pads in general-
purpose I/O mode
3 = I2C1_SDA, I2C1_SCL pads in I2C mode
[7:3] RO 5’b00000 Reserved
[2] RW 1’b0 TS2_SOP_OE When set, enables the output driver for the
TS2_SOP pin, the Transport Stream 2 start-of-
packet pin.
0 = TS2_SOP in input mode
1 = TS2_SOP in output mode
[1] RW 1’b0 TS1_SOP_OE When set, enables the output driver for the
TS1_SOP pin, the Transport Stream 1 start-of-
packet pin.
0 = TS1_SOP in input mode
1 = TS1_SOP in output mode
[0] RW 1’b0 TS1_OE When set, enables the output driver for the
followingTS1 (Transport Stream 1) data, clock,
and valid pins:
TS1_VAL
TS1_CLK
TS1_DATA[7:0]
To summarize:
0 ts1 pins in input mode
1 ts1 pins in output mode
66 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.5 Memory Mapped Registers: Video A Interface
3.5.1 Video A General Purpose Counter
3.5.2 Video A General Purpose Counter Control
3.5.3 Video A DMA Control
Register: VID_A_GPCNT Address: 0x00130020
Register: VBI_A_GPCNT Address: 0x00130024
Bits Type Default Name Description
[31:16] RO 16’b0 Reserved
[15:0] RO 16’b0 {x}_GP_CNT General purpose counter used by RISC
program.
Register: VID_A_GPCNT_CTL Address: 0x00130030
Register: VBI_A_GPCNT_CTL Address: 0x00130034
Bits Type Default Name Description
[1:0] WO 2’b00 {x}_GPCTL General purpose counter control used by RISC
program:
00 = no change
01 = increment
10 = reserved
11 = reset to 0
Register: VID_A_DMA_CTL Address: 0x00130040
Bits Type Default Name Description
[7:6] RO 2’b0 Reserved
[5] RW 1’b0 VBI_A_RISC_EN VBI RISC controller enable.
[4] RW 1’b0 VID_A_RISC_EN Video RISC controller enable.
[3:2] RO 2’b0 Reserved
[1] RW 1’b0 VBI_A_FIFO_EN VBI FIFO enable.
[0] RW 1’b0 VID_A_FIFO_EN Video FIFO enable.
DSH-201010p2 Conexant 67
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.5.4 Video A VIP Control
3.5.5 Video A Pixel Format
Register: VID_A_VIP_CTRL Address: 0x00130080
Bits Type Default Name Description
[31:1] RO 31’h00000000 Reserved
[0] RW 1’b0 VIP_MODE This bit is used to specify the format of the
input data, vip 1.1 or vip 2.0.
1’b0 = VIP 1.1
1’b1 = VIP 2.0
Register: VID_A_PIXEL_FRMT Address: 0x00130084
Bits Type Default Name Description
[31:5] RO 28’h0000000 Reserved
[4] RW 1’b0 VID_A_GAMMA_FACT
OR
Gamma Correction removal factor selection
for video channel A.
1’b0 = 2.2 factor (NTSC)
1’b1 = 2.8 factor (PAL & SECAM)
[3] RW 1’b1 VID_A_GAMMA_DIS A value of 0 enables gamma correction
removal for Video channel A. The inverse
gamma correction factor of 2.2 or 2.8 is
determined by the vid_a_gamma_factor
register bit.
1’b0 = enables gamma correction removal
1’b1 = disables gamma correction removal
[2:0] RW 3’b000 VID_A_FORMAT Video A Color Format
000 = RGB32
001 = RGB24
010 = RGB16
011 = RGB15
100 = YUV2 4:2:2
101 = BtYUV 4:1:1
110 = Y8 (Gray scale)
111 = Y210 (10-bit YCrCb 4:2:2)
68 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.5.6 Video A VBI Control
Register: VID_A_VBI_CTRL Address: 0x00130088
Bits Type Default Name Description
[31:2] RO 30’h00000000 Reserved
[1:0] RW 2’b00 VID_A_VIP_EXT VBI select extension enable
This field determines which lines get captured
as vbi data independent of the lines that are
captured for the video data.
2’b00 = DMA buffer for VBI data will contain
VBLANK number of lines
2’b01 = DMA buffer for VBI data will contains
(VBLANK +1) number of lines
2’b10 = DMA buffer for VBI data will contains
(VBLANK +2) number of lines
2’b01 = DMA buffer for VBI data will contains
(VBLANK +3) number of lines
DSH-201010p2 Conexant 69
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.6 Memory Mapped Registers: Video B Interface
3.6.1 Video B General Purpose Counter
3.6.2 Video B General Purpose Counter Control
Register: VID_B_DMA Address: 0x00130100
Register: VBI_B_DMA Address: 0x00130108
Bits Type Default Name Description
[63:0] RW 64’bx {x}_DMA qword port for DMA destination
access.
Register: VID_B_GPCNT Address: 0x00130120
Register: VBI_B_GPCNT Address: 0x00130124
Bits Type Default Name Description
[31:16] RO 16’b0 Reserved
[15:0] RO 16’b0 {x}_GP_CNT General purpose counter used by
RISC program.
Register: VID_B_GPCNT_CTL Address: 0x00130134
Register: VBI_B_GPCNT_CTL Address: 0x00130138
Bits Type Default Name Description
[1:0] WO 2’b00 {x}_GPCTL General purpose counter control used
by RISC program:
00 = no change
01 = increment
10 = reserved
11 = reset to 0
70 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.6.3 Video B DMA Control
3.6.4 Video B Source Select
3.6.5 Video B TS Line Length
Register: VID_B_DMA_CTL Address: 0x00130140
Bits Type Default Name Description
[7:6] RO 2’b0 Reserved
[5] RW 1’b0 VBI_B_RISC_EN VBI RISC controller enable
[4] RW 1’b0 VID_B_RISC_EN Video RISC controller enable
[3:2] RO 2’b0 Reserved
[1] RW 1’b0 VBI_B_FIFO_EN VBI FIFO enable
[0] RW 1’b0 VID_B_FIFO_EN Video FIFO enable
Register: VID_B_SRC_SEL Address: 0x00130144
Bits Type Default Name Description
[31:1] RO 31’b0 Reserved
[0] RW 1’b0 VID_B_SRC_SEL Video B source select
0 = External 656 Video
1 = Parallel MPEG Video
Register: VID_B_LNGTH Address: 0x00130150
Bits Type Default Name Description
[31:12] RO 20’b0 Reserved
[11:0] RW 12’b0 VID_B_LN_LNGTH Transport stream line length in bytes.
DSH-201010p2 Conexant 71
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.6.6 Video B TS HW SOP Control
Register: VID_B_HW_SOP_CTL Address: 0x00130154
Bits Type Default Name Description
[31:24] RO 8’b0 Reserved
[23:16] RW 8’d47 APB_STRT_BYTE Byte start pattern that is searched for
in the mpeg transport stream that
signals start of transport stream. This
is issued every mpeg packet.
[15:4] RW 12’d188 APB_PKT_LNGTH Used to sync/mark detect SOP
[3] RW 1’b0 APB_CAP_ALL A value of 1 allows all data of a
punctured clock stream to be
captured. A value of 0 will result in the
first two packets to be lost. This bit
must only be set to 1 when in
punctured clock mode.
[2] RW 1’b0 APB_AUTO_SOP A value of 1 eliminates the need for
an external start of packet in
punctured clock mode. It must only be
used with APB_SOP_SEL = 00. A
value of 0 allows all other start of
packet modes to be used.
[1:0] RW 2’b00 APB_STRT_FLTR_CNT Defines the number of apb_strt_bytes
that need to be detected before the
mpeg fec interface is declared as
being in sync.
72 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.6.7 Video B TS General Control
Register: VID_B_GEN_CTL Address: 0x00130158
Bits Type Default Name Description
[31:9] RO 23’b0 Reserved
[8] RW 1’b0 APB_DREQ_POL Polarity of Data Request output
signal.
0 = The polarity is active high. Data
Request will be high when the TS-
CLK_EN register bit that drives it is
high.
1 = The polarity is active low. Data
Request will be low when the
TS_CLK_EN register bit that drives it
is high.
[7] WO 1’b0 APB_STAT_CLR Active-High reset for stat registers.
[6] WO 1’b0 APB_SW_RST Active-High Software reset. Writing a
1 to this bit causes the MPEG TS
logic to be held in reset for 128 pclk
cycles.
[5] RW 1’b0 APB_ERR_ACK Determines whether the interface is in
an error ack mode. This is only valid
while APB_PUNC_CLK is active.
[4] RW 1’b0 APB_BIT_RVRS This reverses each byte-wide input
one byte at a time.
[3] RW 1’b1 APB_SMODE Input Mode Select.
0 – Parallel Mode
1 – Serial Mode
[2] RW 1’b0 APB_PUNC_CLK Determines whether the TS interface
is operating in punctured clock mode.
[1] RW 1’b0 APB_MCLK_POL Polarity of MPEG generated MCLK.
Default means TS inputs are negedge
driven. When asserted high TS inputs
are negedge sampled and assumed
posedge driven.
[0] RO 1’b0 MPEG_IN_SYNC Active-high “in sync” indicator for
MPEG.
DSH-201010p2 Conexant 73
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.6.8 Video B TS Bad Packet Status
3.6.9 Video B TS SOP Status
Register: VID_B_BD_PKT_STATUS Address: 0x0013015C
Bits Type Default Name Description
[31:13] RO 19’b0 Reserved
[12] RW 1’b0 APB_BAD_PKT_CHK Enables bad pkt status and
mpeg_bad_pkt interrupt
[11:0] RO 12’h000 MPG_BAD_PKT_STAT Bad pkt counter status. When
enabled,
counter output is incremented every
time a packet number of bytes
received is less than or greater than
the expected programmed number of
bytes. Counter status is updated at
the falling edge of TS_BAD_PKT
interrupt, generated by the internal
mpeg_ts.
Register: VID_B_SOP_STATUS Address: 0x00130160
Bits Type Default Name Description
[31:17] RO 15’b0 Reserved
[16] RW 1’b0 APB_TSSOP_POL Polarity select
0 – Active High (default)
1 – Active Low
[15:14] RW 2’b00 APB_SOP_SEL SOP Format.
00–- detects rising edge of TSSOP
input
01–- detects rising edge of TSVALERR
input
10–- detects rise and fall edge of
TSSOP input
11 – detects start byte in data stream
[13] RW 1’b0 APB_SOP_BYTEWIDE SOP width select. Byte wide is only an
option in serial mode.
0 – Bit width
1 – Byte width
[12] RW 1’b0 APB_SOP_SYNC_CHK Enables bad sop status and
mpeg_bad_pkt interrupt
[11:0] RO 12’h000 MPG_BAD_SOP_STAT Bad SOP counter status. When
enabled,
counter output is incremented every
time there is a SOP mis-compare.
Counter status is updated at the falling
edge of TS_BAD_PKT interrupt,
generated by the internal mpeg_ts.
74 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.6.10 Video B TS Fifo Overflow Status
3.6.11 Video B TS Valid Miscellaneous
Register: VID_B_FIFO_OVFL_STAT Address: 0x00130164
Bits Type Default Name Description
[31:13] RO 19’b0 Reserved
[12] RW 1’b0 APB_FIFO_OVFL_CHK Enables FIFO overflow status and
mpeg_bad_pkt
[11:0] RO 12’h000 MPG_FIFO_OVFL_STAT When enabled the counter output is
incremented every time the mpeg TS
FIFO overflows. Counter status is
updated at the falling edge of
TS_BAD_PKT interrupt, generated by
the internal mpeg_ts.
Register: VID_B_VLD_MISC Address: 0x00130168
Bits Type Default Name Description
[31:14] RO 18’b0 Reserved
[13] RW 1’b0 APB_TSVALERR_POL Control for polarity of tsvalerr input.
0 – Active-High (Default)
1 – Active-Low
[12] RW 1’b0 APB_VAL_SEL Selects whether tsvalerr is active.
0–- selects the external tsvalerr
(default)
1–- internally generated valid
[11:0] RW 12’h000 APB_VAL_LNGTH Programmable valid length. Used
when mode requires TS to be
terminated after a count vs. the input
valid (tsvalerr)
DSH-201010p2 Conexant 75
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.6.12 Video B TS Clock Enable
3.6.13 Video B VIP Control
Register: VIDB_TS_CLK_EN Address: 0x0013016C
Bits Type Default Name Description
[31:1] RO 31’b0 Reserved
[0] RW 1’b1 VID_TS_CLK_EN TS_CLK enable for TS1
0 = disable TS_CLK
1 = enable TS_CLK
This register bit will also drive the Data
Request output signal to the device that is the
source of the MPEG TS. The Data Request
signal will share a pin with the Start Of Packet
input signal, as they are not needed
simultaneously.
Register: VID_B_VIP_CTRL Address: 0x00130180
Bits Type Default Name Description
[31:1] RO 31’h00000000 Reserved
[0] RW 1’b0 VID_B_VIP_MODE This bit is used to specify the format of the
input data, vip 1.1 or vip 2.0.
1’b0 = VIP 1.1
1’b1 = VIP 2.0
76 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.6.14 Video B Pixel Format
Register: VID_B_PIXEL_FRMT Address: 0x00130184
Bits Type Default Name Description
[31:5] RO 28”h0000000 Reserved
[4] RW 1’b0 VID_B_GAMMA_FACT
OR
Gamma Correction removal factor selection
for video channel B.
1’b0 = 2.2 factor (NTSC)
1’b1 = 2.8 factor (PAL & SECAM)
[3] RW 1’b1 VID_B_GAMMA_DIS A value of 0 enables gamma correction
removal for Video channel B. The inverse
gamma correction factor of 2.2 or 2.8 is
determined by the vid_a_gamma_factor
register bit.
1’b0 = enables gamma correction removal
1’b1 = disables gamma correction removal
[2:0] RW 3’b000 VID_B_FORMAT Video B Color Format
000 = RGB32
001 = RGB24
010 = RGB16
011 = RGB15
100 = YUV2 4:2:2
101 = BtYUV 4:1:1
110 = Y8 (Gray scale)
111 = Y210 (10-bit YCrCb 4:2:2)
DSH-201010p2 Conexant 77
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.7 Memory Mapped Registers: Video C Interface
3.7.1 Video C General Purpose Counter
3.7.2 Video C General Purpose Counter Control
3.7.3 Video C DMA Control
Register: VID_C_GPCNT Address: 0x00130220
Bits Type Default Name Description
[31:16] RO 16’b0 Reserved
[15:0] RO 16’b0 {x}_GP_CNT General purpose counter used by RISC
program.
Register: VID_C_GPCNT_CTL Address: 0x00130230
Bits Type Default Name Description
[1:0] WO 2’b00 {x}_GPCTL General purpose counter control used by RISC
program:
00 = no change
01 = increment
10 = reserved
11 = reset to 0
Register: VID_C_DMA_CTL Address: 0x00130240
Bits Type Default Name Description
[7:5] RO 3’b0 Reserved
[4] RW 1’b0 VID_C_RISC_EN Video RISC controller enable
[3:1] RO 3’b0 Reserved
[0] RW 1’b0 VID_C_FIFO_EN Video FIFO enable
78 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.7.4 Video C TS Line Length
3.7.5 Video C TS HW SOP Control
Register: VID_C_LNGTH Address: 0x00130250
Bits Type Default Name Description
[31:12] RO 20’b0 Reserved
[11:0] RW 12’b0 VID_C_LN_LNGTH Transport stream line length in bytes
Register: VID_C_HW_SOP_CTL Address: 0x00130254
Bits Type Default Name Description
[31:24] RO 8’b0 Reserved
[23:16] RW 8’h47 APB_STRT_BYTE Byte start pattern that is searched for
in the mpeg transport stream that
signals start of transport stream. This
is issued every mpeg packet.
[15:4] RW 12’hBC APB_PKT_LNGTH Used to sync/mark detect SOP
[3] RW 1’b0 APB_CAP_ALL A value of 1 allows all data of a
punctured clock stream to be
captured. A value of 0 will result in the
first two packets to be lost. This bit
must only be set to 1 when in
punctured clock mode.
[2] RW 1’b0 APB_AUTO_SOP A value of 1 eliminates the need for
an external start of packet in
punctured clock mode. It must only be
used with APB_SOP_SEL = 00. A
value of 0 allows all other start of
packet modes to be used.
[1:0] RW 2’b00 APB_STRT_FLTR_CNT Defines the number of apb_strt_bytes
that need to be detected before the
mpeg fec interface is declared as
being in sync.
DSH-201010p2 Conexant 79
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.7.6 Video C TS General Control
Register: VID_C_GEN_CTL Address: 0x00130258
Bits Type Default Name Description
[31:9] RO 23’b0 Reserved
[8] RW 1’b0 APB_DREQ_POL Polarity of Data Request output
signal.
0 = the polarity is active high. Data
Request will be high when the
TS_CLK_EN register bit that drives it
is high.
1 = the polarity is active low. Data
Request will be low when the
TS_CLK_EN register bit that drives it
is high.
[7] WO 1’b0 APB_STAT_CLR Active-High reset for stat registers.
[6] WO 1’b0 APB_SW_RST Active-High Software reset. Writing a
1 to this bit causes the MPEG TS
logic to be held in reset for 128 pclk
cycles.
[5] RW 1’b0 APB_ERR_ACK Determines whether the interface is in
an error ack mode. This is only valid
while APB_PUNC_CLK is active.
[4] RW 1’b0 APB_BIT_RVRS This reverses each byte-wide input
one byte at a time.
[3] RW 1’b1 APB_SMODE Input Mode Select.
0 – Parallel Mode
1 – Serial Mode
[2] RW 1’b0 APB_PUNC_CLK Determines whether the TS interface
is operating in punctured clock mode.
[1] RW 1’b0 APB_MCLK_POL Polarity of MPEG generated MCLK.
Default means TS inputs are negedge
driven. When asserted high TS inputs
are negedge sampled and assumed
posedge driven.
[0] RO 1’b0 MPEG_IN_SYNC Active-high “in sync” indicator for
MPEG.
80 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.7.7 Video C TS Bad Packet Status
3.7.8 Video C TS SOP Status
Register: VID_C_BD_PKT_STATUS Address: 0x0013025C
Bits Type Default Name Description
[31:13] RO 19’b0 Reserved
[12] RW 1’b0 APB_BAD_PKT_CHK Enables bad pkt status and
mpeg_bad_pkt interrupt
[11:0] RO 12’h000 MPG_BAD_PKT_STAT Bad pkt counter status. When enabled,
counter output is incremented every
time a packet number of bytes
received is less than or greater than
the expected programmed number of
bytes. Counter status is updated at the
falling edge of TS_BAD_PKT interrupt,
generated by the internal mpeg_ts.
Register: VID_C_SOP_STATUS Address: 0x00130260
Bits Type Default Name Description
[31:17] RO 15’b0 Reserved
[16] RW 1’b0 APB_TSSOP_POL Polarity select
0 = Active High (default)
1 = Active Low
[15:14] RW 2’b00 APB_SOP_SEL SOP Format.
00 = detects rising edge of TSSOP
input
01 = detects rising edge of TSVALERR
input
10 = detects rise and fall edge of
TSSOP input
11 = detects start byte in data stream
[13] RW 1’b0 APB_SOP_BYTEWIDE SOP width select. Byte wide is only an
option in serial mode.
0 = Bit width
1 = Byte width
[12] RW 1’b0 APB_SOP_SYNC_CHK Enables bad sop status and
mpeg_bad_pkt interrupt
[11:0] RO 12’h000 MPG_BAD_SOP_STAT Bad SOP counter status. When
enabled,
counter output is incremented every
time there is a SOP mis-compare.
Counter status is updated at the
falling edge of TS_BAD_PKT
interrupt, generated by the internal
mpeg_ts.
DSH-201010p2 Conexant 81
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.7.9 Video C TS Fifo Overflow Status
3.7.10 Video C TS Valid Miscellaneous
Register: VID_C_FIFO_OVFL_STAT Address: 0x00130264
Bits Type Default Name Description
[31:13] RO 19’b0 Reserved
[12] RW 1’b0 APB_FIFO_OVFL_CHK Enables FIFO overflow status and
mpeg_bad_pkt.
[11:0] RO 12’h000 MPG_FIFO_OVFL_STAT When enabled the counter output is
incremented every time the mpeg TS
FIFO overflows. Counter status is
updated at the falling edge of
TS_BAD_PKT interrupt, generated by
the internal mpeg_ts.
Register: VID_C_VLD_MISC Address: 0x00130268
Bits Type Default Name Description
[31:14] RO 18’b0 Reserved
[13] RW 1’b0 APB_TSVALERR_POL Control for polarity of tsvalerr input.
0 = Active-High (Default)
1 = Active-Low
[12] RW 1’b0 APB_VAL_SEL Selects whether tsvalerr is active.
0 = selects the external tsvalerr (default)
1 = internally generated valid
[11:0] RW 12’h000 APB_VAL_LNGTH Programmable valid length. Used when
mode requires TS to be terminated after
a count vs. the input valid (tsvalerr)
82 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.7.11 Video C TS Clock Enable
Register: VIDC_TS_CLK_EN Address: 0x0013026C
Bits Type Default Name Description
[31:1] RO 31’b0 Reserved
[0] RW 1’b0 VIDC_TS_CLK_EN TS_CLK_enable for TS2
0 =disable TS_CLK
1 = enable TS_CLK
This register bit will also drive the Data
Request output signal to the device that
is the source of the MPEG TS. The Data
Request signal will share a pin with the
Start Of Packet input signal, as they are
not needed simultaneously.
[12] RW 1’b0 APB_VAL_SEL Selects whether tsvalerr is active.
0 = selects the external tsvalerr (default)
1 = internally generated valid
[11:0] RW 12’h000 APB_VAL_LNGTH Programmable valid length. Used when
mode requires TS to be terminated after
a count vs. the input valid (tsvalerr)
DSH-201010p2 Conexant 83
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.8 Memory Mapped Registers: Internal Audio
Interface
3.8.1 Audio Internal General Purpose Counter
3.8.2 Audio Internal General Purpose Counter Control
3.8.3 Audio Internal DMA Control
Register: AUD_INT_A_GPCNT Address: 0x00140020
Register: AUD_INT_B_ GPCNT Address: 0x00140024
Bits Type Default Name Description
[31:16] RO 16’b0 Reserved
[15:0] RO 16’b0 {x}_GP_CNT General purpose counter used by RISC
program.
Register: AUD_INT_A_GPCNT_CTL Address: 0x00140030
Register: AUD_INT_B_GPCNT_CTL Address: 0x00140034
Bits Type Default Name Description
[1:0] WO 2’b00 {x}_GPCTL General purpose counter control used
by RISC program:
00 = no change
01 = increment
10 = reserved
11 = reset to 0
Register: AUD_INT_DMA_CTL Address: 0x00140040
Bits Type Default Name Description
[7:6] RO 2’b0 Reserved
[5] RW 1’b0 AUD_INT_B_RISC_EN Internal audio B RISC controller enable
[4] RW 1’b0 AUD_INT_A_RISC_EN Internal audio A RISC controller enable
[3:2] RO 2’b0 Reserved
[1] RW 1’b0 AUD_INT_B_FIFO_EN Internal audio B FIFO enable
[0] RW 1’b0 AUD_INT_A_FIFO_EN Internal audio A FIFO enable
84 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.8.4 Audio Internal Line Length
3.8.5 Audio Internal Mode Selection
Register: AUD_INT_A_LNGTH Address: 0x00140050
Register: AUD_INT_B_LNGTH Address: 0x00140054
Bits Type Default Name Description
[31:12] RO 20’b0 Reserved
[11:0] RW 12’b0 AUD{x}_LNGTH Internal audio line length in bytes
Register: AUD_INT_A_MODE Address: 0x00140058
Register: AUD_INT_B_MODE Address: 0x0014005C
Bits Type Default Name Description
[31:1] RO 20’b0 Reserved
[0] RW 1’b0 AUD{x}_MODE Internal audio mode:
1 = 32 bits input mode (16 bits L/R)
0 = 48 bits input mode (24 bits L/R)
DSH-201010p2 Conexant 85
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.9 Memory Mapped Registers: External Audio
Interface
3.9.1 Audio External DMA Port
3.9.2 Audio External General Purpose Counter
3.9.3 Audio External General Purpose Counter Control
Register: AUD_EXT_DMA Address: 0x00140100
Bits Type Default Name Description
[63:0] RW
p
64’bx {x}_DMA qword port for DMA destination access
Register: AUD_EXT_GPCNT Address: 0x00140120
Bits Type Default Name Description
[31:16] RO 16’b0 Reserved
[15:0] RO 16’b0 {x}_GP_CNT General purpose counter used by RISC
program
Register: AUD_EXT_GPCNT_CTL Address: 0x00140130
Bits Type Default Name Description
[1:0] WO 2’b00 {x}_GPCTL General purpose counter control used
by RISC program:
00 = no change
01 = increment
10 = reserved
11 = reset to 0
86 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.9.4 Audio External DMA Control
3.9.5 Audio External Line Length
3.9.6 Audio External Mode Selection
Register: AUD_EXT_DMA_CTL Address: 0x00140140
Bits Type Default Name Description
[7:5] RO 3’b0 Reserved
[4] RW 1’b0 AUD_EXT_RISC_EN External audio RISC controller enable
[3:1] RO 3’b0 Reserved
[0] RW 1’b0 AUD_EXT_FIFO_EN External audio FIFO enable
Register: AUD_EXT_LNGTH Address: 0x00140150
Bits Type Default Name Description
[31:12] RO 20’b0 Reserved
[11:0] RW 12’b0 AUD_EXT_LN_LNGTH External audio line length in bytes
Register: AUD_EXT_A_MODE Address: 0x00140158
Bits Type Default Name Description
[31:1] RO 20’b0 Reserved
[0] RW 1’b0 AUD_EXT_MODE External audio input mode:
1 = 32 bits input mode (16 bits L/R)
0 = 48 bits input mode (24 bits L/R)
DSH-201010p2 Conexant 87
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.10 Memory Mapped Registers: I2C Master
The I2C protocol defines a method to send and receive a variable number of bytes via
a serial bus that interconnects several IC's. Corona contains an I2C master than can
drive this bus, and the registers below provide the programmable interface to three
I2C masters. There are three sets of registers, one for each I2C master.
First, some background is useful on the basic I2C protocol. The basic I2C protocol for
writes:
1. Send Start sequence (SDA falls while SCL is high)
2. Send 7-bit Device Address
3. Send R/W bit, set to 0
4. Check for Slave Ack, and if received, continue
5. Send variable number of bytes, checking for Ack after each byte
6. Optionally send Stop (SDA rises while SCL is high)
The basic I2C protocol for reads:
1. Send Start (SDA falls while SCL is high)
2. Send 7-bit Device Address
3. Send R/W bit, set to 1
4. Check for Slave Ack, and if received, turnaround bus to let slave drive bus
5. Receive variable number of bytes, send Ack after each byte until done
6. Optionally send stop (SDA rises while SCL is high)
The Stop condition is not important for most slaves, since the next Start (or repeated
Start) will re-initialize its state the same as a Stop would. The Stop is important for
multi-master systems, and as it's a way for a master to relinquish control of the bus.
But while I2C defines only this simple mechanism of transmitting or receiving a
variable number of bytes to/from a specific device address, it is customary for devices
to define the first N bytes of a write (one to three bytes have been observed) as a
subaddress. This subaddress typically functions as an index into a register map. Also,
it is typical for slave devices to support the concept that the byte transmitted after this
subaddress goes to the location specified by that subaddress, and each subsequent
byte goes to an auto incrementing address from the initial point. Reads work in a
similar manner, but since reads cycles do not have a means to send a subaddress, the
convention is that reads come from the last subaddress sent on a write transaction.
Thus, a read of a specific subaddress is often accomplished by transmitting the
subaddress bytes through a write, followed by a read transaction. Each byte from the
read is assumed to come from auto incrementing addresses, starting at the
subaddress sent by the write.
The idea of the programmable register interface described in the following sections is
to allow software to flexibly execute the basic I2C protocol, while providing some
convenience features for devices that conform to a typical subaddress model. The
hardware provides three methods for software to interface to the I2C bus:
1. Software Mode. Directly toggle the SCL and SDA lines, thereby implementing the
protocol through software. (All other modes are hardware mode.)
2. Simple Mode. For writes, specify the Device Address, the number of bytes to send
(0 to 4), and the data bytes themselves. For reads, specify the Device Address,
the number of bytes to receive, and read the received bytes from a register.
I2C_SADDR_LEN is set to 0 for this mode. The I2C_DATA_LEN specifies the
number of bytes to send or receive.
3. Subaddress Mode. This supports directly the subaddress model. For writes, the
hardware automatically inserts a subaddress before the data bytes. The number
of subaddress bytes to insert is controlled by I2C_SADDR_LEN, which can be 1
to 3. For reads, the hardware will automatically insert a subaddress write before
receiving data bytes. This mode provides a couple of features for software. First,
because the subaddress field has an auto increment feature, software need not
88 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
re-write this field each time if is doing multiple write or read transactions to
sequential addresses. Second, the hardware knows which bytes to send to set the
subaddress before issuing a read transaction.
Thus, an important feature is the ability to specify both the number of address bytes,
and the number of data bytes in any given I2C cycle. The hardware also provides
some additional features to optimize hardware mode operation:
1. Extend mode. This allows software to generate any length I2C transaction by
repeatedly accessing the register set. This eliminates the inefficiency of re-
sending the device address and subaddress bytes. By setting I2C_EXTEND,
each time an I2C transaction is triggered, the hardware will just continue the
previous transaction, transmitting or receiving the number of bytes specified in
I2C_DATA_LEN. No Stop or Start transitions will be generated. The current I2C
transaction will be extended until the I2C_EXTEND bit is disabled.
2. Simple read mode. The hardware can support a subaddress field on writes, but
disable the feature that sends an I2C write transaction to set subaddress field
prior to reads. This prevents unnecessary write transactions if the slave device is
keeping track of the subaddress anyway. Set I2C_READ_SA to 0 for simple read
mode.
To trigger a hardware mode I2C cycle, simple write to the I2C{X}_CNTRL dword. For
writes, software should have already written the I2C{X}_DATA and I2C{X}_ADDR
registers. Software can launch another I2C operation after the I2C_XFER_RDY bit is
set. For reads, software should write the I2C{X}_ADDR register before initiating the
read with a write to the I2C{X}_CNTRL dword. After the I2C_XFER_RDY bit is set, the
read data will be available in the I2C{X}_DATA register.
DSH-201010p2 Conexant 89
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.10.1 I2C Address
This DWORD contains address information. Note that the R/W bit, normally bundled
with the I2C Device Address, is not included here, but is specified in the control word.
A write must be performed to the I2C{x}_CTRL register to initiate an I2C transaction.
Register: I2C1_ADDR Address: 0x00180000
Register: I2C2_ADDR Address: 0x00190000
Register: I2C3_ADDR Address: 0x001A0000
Bits Type Default Name Description
[31:25] RW 7’h00 I2C_DADDR I2C Device Address. These 7 bits contain the
device address. Note that the 7 bits are left
justified within the byte. These bits are transmitted
for every transaction, after the Start transition is
generated.
[24] RO 1’b0 Reserved
[23:0] RW 1’b1 I2C_SADDR I2C subaddress. For I2C Writes only, these bytes
are sent after the device address is sent. The
I2C_SADDR_LEN field determines how many
bytes are sent, which can be 0 to 3. The
subaddress is right-justified within the three-byte
field, such that if only one byte is transmitted, it
will come from I2C_SADDR[7:0]. The address will
be incremented with each I2C byte transaction, if
I2C_SADDR_INC is set.
90 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.10.2 I2C Write Data
This register contains the data bytes to send in a write transaction. If
I2C_SADDR_LEN is set to something other than zero, then these bytes will come after
the subaddress field is transmitted. Otherwise, these bytes define all of the bytes that
are sent. The number of bytes sent depends on the I2C_DATA_LEN parameter, which
can be 0 to 4. The counting and transmitting starts at the least-significant byte
(I2C_WDATA[7:0]). A write must be performed to the I2C{x}_CTRL register to initiate
an I2C transaction.
3.10.3 I2C Control
Writing to this register will trigger an I2C read or write operation based on the
I2C_READ_WRN bit.
Register: I2C1_WDATA Address: 0x00180004
Register: I2C2_WDATA Address: 0x00190004
Register: I2C3_WDATA Address: 0x001A0004
Bits Type Default Name Description
[31:0] RW 0x0 I2C_WDATA I2C Write Data. Write data is transmitted least-
significant byte first.
Register: I2C1_CTRL Address: 0x00180008
Register: I2C2_CTRL Address: 0x00190008
Register: I2C3_CTRL Address: 0x001A0008
Bits Type Default Name Description
[31:24] RW 8’h9D,
8’h27,
8’h27
I2C_PERIOD Period of I2C Clock
For 12C1_CTRL:
I2C_PERIOD = Period (ns) / 16 (pclk period) * 4 –
1
Default is set for 99.5 kHz operation (to be less
than or equal to 100 kHz).
For 12C1_CTRL:
I2C_PERIOD = Period (ns) / 16 (pclk period) * 4 –
1
Default is set for 391 kHz operation (to be less
than or equal to 400 kHz)
For 12C1_CTRL:
I2C_PERIOD = Period (ns) / 16 (pclk period) * 4
Default is set for 1.95 MHz operation (to be less
than 2.0 MHz)
[23:22] RO 2’b0 Reserved
DSH-201010p2 Conexant 91
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[21] RO 1’b1 I2C_SCL_IN Reading this bit provides access to the buffered
SCL input pin.
[20] RO 1’b1 I2C_SDA_IN Reading this bit provides access to the buffered
SDA input pin.
[19:18] RO 2’b0 Reserved
[17] RW 1’b1 I2C_SCL_OUT A value of 1 releases the SCL output, and a 0
forces the SCL output low. This override is for
direct software control of the bus. Set I2C_SOFT
to 1 to enable this bit.
[16] RW 1’b1 I2C_SDA_OUT A value of 1 releases the SDA output, and a 0
forces the SDA output low. This override is for
direct software control of the bus. Set I2C_SOFT
to 1 to enable this bit.
[15] RO 1’b0 Reserved
[14:12] RW 3’b001 I2C_DATA_LEN Data Length in Bytes. Determines number of
bytes to send from I2C_DATA after subaddress
field. The I2C engine begins transmitting with
I2C_WDATA[7:0] and proceeds to the MSB for
writes. Similarly, for reads, the I2C engine stores
read data first in I2C_RDATA[7:0] and proceeds to
the MSB.
For writes, the action is as follows:
0 = send no data bytes
1 = write I2C_WDATA[7:0]
2 = write I2C_WDATA[15:0]
3 = write I2C_WDATA[23:0]
4 = write I2C_WDATA[31:0]
5-7 = reserved
For writes, the action is as follows:
0 = read no data bytes
1 = read to I2C_RDATA[7:0]
2 = read to I2C_RDATA[15:0]
3 = read to I2C_RDATA[23:0]
4 = read to I2C_RDATA[31:0]
5-7 = reserved
If the logic automatically generates a write to set
the subaddress for a read operation, then this field
is a don’t-care for the write, and should be set
based on the number of bytes to read.
[11] RW 1’b1 I2C_SADDR_INC Address Auto Increment. When set, the
subaddress field in I2C_SADDR[23:0] is
automatically incremented.
[10] RO 1’b0 Reserved
92 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[9:8] RW 2’b10 I2C_SADDR_LEN Address Length in Bytes. Determines the number
of bytes to send from I2C1_ADDR as subaddress
field of the I2C write transaction. This field follows
the device address. The transmission starts with
most-significant byte, and which byte this is
depends on I2C_SADDR_LEN. The significance
of the subaddress field is that it can support an
auto increment feature compared with data bytes.
0 = send/read no subaddress field bytes
1 = write/read I2C_SADDR[7:0]
2 = write/read I2C_SADDR[15:0]
3 = write/read I2C_SADDR[23:0]
[7:6] RO 2’b00 Reserved
[5] RW 1’b0 I2C_SOFT I2C mode. When set, software drives the SDA and
SCL directly through the I2C_SDA and I2C_SCL
register bits.
0 = hardware.
1 = software.
[4] RW 1’b0 I2C_NOSTOP I2C stop mode.
0 = transmit stop at end of transaction.
1 = do not transmit stop at end of transaction.
Hold SCL low.
[3] RW 1’b0 I2C_EXTEND I2C Extend Mode.
0 = each transaction ends with a STOP (unless
I2C_NOSTOP is set) and returns to idle.
1 = Transaction does end with a STOP, and does
not go back to IDLE. The SCL signal remains low.
The next transaction will result in data
transmission or reception only according to
I2C_READ_WRN and I2C_DATA_LEN, without
START or device address transmission.
Note: do not change the I2C_READ_WRN bit
while in Extend mode.
To exit extend mode, send last data transaction
without I2C_EXTEND mode = 0.
[2] RW 1’b0 I2C_SYNC I2C synchronization.
0 = disallows the slave to insert wait states.
1 = allows the slave to insert bit-level clock wait
states.
[1] RW 1’b0 I2C_READ_SA I2C Read with subaddress. When set, I2C read
transaction is preceded with I2C write transaction
that sets subaddress field. This can be used to
avoid unnecessary writes if the I2C slave already
has an internal subaddress register set.
0 = I2C read operations result in a single I2C read
transaction to the Device Address
1 = I2C read operations results in an I2C write
transaction to set the subaddress field, followed
by a read transaction.
[0] RW 1’b0 I2C_READ_WRN I2C Read/Write bit.
0 = Issue I2C Write transaction
1 = Issue I2C Read operation subject to
I2C_READ_SA bit.
DSH-201010p2 Conexant 93
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.10.4 I2C Read Data
The returned data from I2C reads is stored here. The number of bytes received
depends on the I2C_DATA_LEN parameter, which can be 0 to 4. The counting and
storing of received data starts at the least-significant byte (I2C_RDATA[7:0]). A write
must be performed to the I2C{x}_CTRL register to initiate an I2C transaction.
3.10.5 I2C Status
This address contains status information.
Register: I2C1_RDATA Address: 0x0018000C
Register: I2C2_RDATA Address: 0x0019000C
Register: I2C3_RDATA Address: 0x001A000C
Bits Type Default Name Description
[31:0] RO 0x0 I2C_RDATA I2C Read Data. Read data is stored in least-
significant byte first.
Register: I2C1_STAT Address: 0x00180010
Register: I2C2_STAT Address: 0x00190010
Register: I2C3_STAT Address: 0x001A0010
Bits Type Default Name Description
[1] RO 1’b0 I2C_XFER_IN_PROG Read or Write transaction is in progress.
[0] RO 1’b0 I2C_RACK Received ack successfully. Indicates that slave
acknowledged all transmitted bytes. Valid when
transaction is no longer in progress.
94 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.11 Memory Mapped Registers: UART
3.11.1 UART TxD/RxD Control
3.11.2 UART Baud Rate Divisor
Register: UART_CTL Address: 0x001B0000
Bits Type Default Name Description
[31:8] RO 24’b0 Reserved
[7] RW 1’b0 LOOP_BACK_EN Connects TxD and RxD internally for loopback
testing.
[6:4] RO 3’b0 Reserved
[3:2] RW 2’b0 RX_TRG_SZ RX trigger size (before RxD interrupt).
00 = 1 byte
01 = 4 byte
10 = 8 byte
11 = 12 byte
[1] RW 1’b0 RX_EN Enable receiver, reset when disabled.
[0] RW 1’b0 TX_EN Enable transmitter, reset when disabled.
Register: UART_BRD Address: 0x001B0004
Bits Type Default Name Description
[31:16] RO 16’b0 Reserved
[15:0] RW 16’h0197 BRD Divide 62.5 MHz clock by this value to generate
16X baud rate clock. Default value generates
9600 baud.
Register: Reserved Address: 0x001B0008
Bits Type Default Name Description
[31:0] RW 32’b0 Reserved
DSH-201010p2 Conexant 95
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.11.3 UART Interrupt Status Register
3.11.4 UART FIFO Status
Register: UART_ISR Address: 0x001B000C
Bits Type Default Name Description
[31:9] RO 23’b0 Reserved
[8] RW 1’b0 RXD_TIMEOUT RxD timeout interrupt. Interrupt if RX idle for 4
character periods and data is in RX FIFO.
[7] RW 1’b0 RXD_TIMEOUT_EN Enable RX timeout interrupt
[6] RW 1’b0 FRM_ERR_EN Frame error interrupt enable. A logic 1 enables
interrupts on detected frame error.
[5] RW 1’b0 RXD_RDY_EN Receive buffer trigger level interrupt enable. A
logic 1 enables an interrupt when the RX buffer
is ready.
[4] RW 1’b0 TXD_EMPTY_EN Transmit buffer empty interrupt enable. A logic 1
enables interrupts when the transmit buffer
becomes empty.
[3] RR 1’b0 RXD_OVERFLOW Receive data buffer overflow. This bit is set when
a byte is received while the RxD buffer is full
(RXD_CNT == 16). Cleared when written with a
1.
[2] RR 1’b0 FRM_ERR Frame error pending. Set when a framing error
occurs. Cleared when written with a 1. Received
data should be ignored when this bit is set.
[1] RR 1’b0 RXD_RDY Receive buffer ready. Set when the RX buffer
has reached trigger level. Cleared when written
with a 1.
[0] RR 1’b0 TXD_EMPTY Transmitter empty pending. Set when the
transmit buffer becomes empty. Cleared when
written with a 1.
Register: UART_CNT Address: 0x001B0010
Bits Type Default Name Description
[31:13] RO 19’b0 Reserved
[12:8] RW 5’b0 TXD_CNT # of bytes in TxD FIFO.
[7:5] RO 3’b0 Reserved
[4:0] RW 5’b0 RXD_CNT # of bytes in RxD FIFO.
96 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12 Rider Registers
This module contains all of the registers required to configure and debug Rider. Two
categories of registers are implemented: PCI Express Registers and Rider Registers.
The PCI Express registers are described in the PCI Express Base Specification, and
are used to configure and operate the PCI Express interface. These registers can only
be written using PCI Express Configuration Write transactions.
Rider is a term used to identify the PCI Express PIPE-compliant Endpoint Controller
Core. The Rider Registers provide extra configuration, controllability, and observability
of the Rider core. These registers can only be written by the Application Layer.
Figure 5 shows the interfaces between the CFG block, the Device Core, and the
Transaction Layer.
Figure 5. CFG Block, Device Core, and Transaction Layer Interfaces
102740_003
Application Layer
Interface Interface
Transaction Layer (TL)
Data Link Layer (DLL)
MAC Layer (MACL)
PCI Express Registers
Rider Registers
Device Core
Rider
Read
Read and
Write
Read and
Write
Internal
Bus
CFG Block
Read
0001
2FF1
3FF1
3001
Configuration
Transactions
Memory
Transactions
DSH-201010p2 Conexant 97
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.1 Address Space
The PCI Express Base Specification uses 4096 bytes for the PCI and PCI Express
configuration space. However, the PCI Express features implemented in Rider require
less than 512 bytes. Figure 6 shows the address space used by Rider for PCI Express
registers and Rider registers.
Figure 6. Address Space
3.12.2 Accessing PCI Express Registers
PCI Express Registers can only be written by PCI Express configuration transactions
because they are tightly controlled by the host operating system. If another entity was
able to adjust the PCI Express Registers without the host operating system knowing
about the change, the performance and stability of the PCI Express link or the entire
fabric could be adversely affected.
The Application Layer interface provides a convenient method for the driver or another
entity to observe the values of the PCI Express registers. Since none of the PCI
express registers are cleared upon being read, the application layer read activity will
not interfere with the PCI Express configuration or operation.
102740_004
Footnote:
(1) This space is available for other use.
(2) PCI Express Configuration Transactions always read zeros from this space.
000h
Not Used by
Rider(1) (2)
Rider
Registers
Extended
Capability
Structures
Capability
Structures
PCI
Compatible
Header
FFFh
400h
3FFh
300h
2FFh
100h
0FFh
040h
03Fh
PCI Express Extended
Configuration Space
PCI Configuration Space
98 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.3 Accessing Rider Registers
The Rider registers are used to observe and adjust the behavior of Rider above and
beyond what is available in the PCI Express registers defined in the PCI Express Base
Specification. In order to ensure compliance with the PCI Express Specification, these
registers’ default values conform to the specification.
The Application Layer interface is used to read and write Rider registers. While it is
possible to read the values of the Rider registers using configuration read
transactions, it is not anticipated that the device driver will use this method.
3.12.4 Register Access Exception - Vital Product Data (VPD)
Vital Product Data (VPD) registers are writable from both the Application Layer and the
Transaction Layer. Specifically, the flag bit in the VPD Capabilities Header and the
VPD Data register need to be able to be written by both agents. The VPD protocol as
described in the Conventional PCI Specification is relied upon to avoid conflicting
writes to these fields.
3.12.5 Register Type Restrictions
In general, PCI Express Registers cannot be written or cleared via the Application
Layer regardless of the register type. Similarly, Rider Registers cannot be written or
cleared via PCI Express Configuration Transactions. A small number of PCI Express
RO Registers can be written by the Application Layer after reset for initialization.
3.12.6 Read-Only Registers
The value of Read-Only registers can be set by hardwiring values, by the Application
Layer initializing values after reset, or by assigning the value to a signal inside of
Rider.
3.12.7 Read-Write Registers
Read-Write registers are assigned default values listed. They are implemented as flip-
flops inside the CFG block and may be written by the Configuration Write Transactions
if they are PCI Express Registers or via the Application Layer interface if they are
Rider registers.
3.12.8 Read-Only; Write-1-to-Clear Registers
Read-Only; Write-1-to-Clear registers are used as status registers. They are asserted
when the corresponding signal inside of Rider is asserted, but are only cleared when a
1 is written to them. This type of register is implemented as a flip-flop inside of the
CFG block.
3.12.9 Sticky Registers
Sticky bits are preserved during hot reset, or cold/warm reset if auxiliary power is
available.
All registers are the outputs of flip-flops. Flip-flops associated with Sticky Read-Only
registers are reset using the signal PE_VAUX_RST_N. All other registers are reset
using PE_FUND_RST_N.
DSH-201010p2 Conexant 99
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.10 Initialization
After reset, the register bit CFG_LOCK_INIT_REGS at address RDR_RDRCTL1 is
cleared, which permits the Application Layer to write values to PCI Express Registers
that are required for initialization. The Application Layer can use any method it
chooses to obtain the initialization values.
The initialization process can be divided into three phases: MAC, DLL, and TL. After
the Application Layer initializes the registers required for the LTSSM, it sets the
CFG_MAC_INIT_DONE bit of the RDR_RDRCTL1 register, which allows the LTSSM
to proceed with link training. Next, after the Application Layer initializes the registers
required for flow control initialization of VC0, it sets the CFG_DLL_INIT_DONE bit of
the RDR_RDRCTL1 register, which allows the DLL to begin flow control initialization
for VC0. Lastly, after the Application Layer initializes the registers required for PCI
Express Configuration and Enumeration, it sets the CFG_TL_INIT_DONE bit of the
RDR_RDRCTL1 register, which allows the TL to respond to configuration requests.
This three phase process is provided so that link training and flow control initialization
can commence prior to all register initialization being complete. If the Application
Layer can accomplish all register initialization within the time-outs specified in the PCI
Express Base Specification, all three CFG_*_INIT_DONE bits may be set at once.
The application layer may set the CFG_LOCK_INIT_REGS bit to prevent changes to
the initialization registers.
3.12.11 Interrupt Generation
The CFG block generates two interrupts to the Application Layer. The interrupt
LINERDR_REQ_CPL_INT indicates when a transfer request has been completed. It is
tied directly to CFG_REQ_COMPLETE_INT (RDR_RDRSTAT0[0]). The interrupt line
RDR_MISC_INT indicates when other events occur. It is the logical OR of the masked
signals CFG_VPD_REQ_INT, CFG_REQ_INVALID_INT, CFG_PWR_STATE_INT,
CFG_SLOT_PWR_INT, CFG_VEN_DEF_MSG_INT, and
CFG_HOT_PLUG_MSG_INT (RDR_RDRSTAT0[13:8]).
3.12.12 PCI Express Registers - PCI Compatible Header
The Type column in this section represents the type of register from the perspective of
the Transaction Layer. Register fields in this section cannot be written by the
Application Layer unless indicated by an asterisk (*) in the Type column, in which case
they can be written by the Application Layer when CFG_LOCK_INIT_REGS is not set.
100 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.13 PCI Device and Vendor ID
3.12.14 PCI Status and Command
Register: RDR_CFG0 Address: 0x50000
Bits Type Default Name Description
[31:16] RO 16’h 8852 CFG_DEVICE_ID Device ID based on BOND_OPTION input to
Rider. Device ID values for each bond option are
set during pre-synthesis configuration of Rider
IP.
[15:0] RO 16’h 14f1 CFG_VENDOR_ID Vendor ID. Set during pre-synthesis
configuration of Rider IP.
Register: RDR_CFG1 Address: 0x50004
Bits Type Default Name Description
[31:31] RR 1‘b0 CFG_STAT_DET_P
ERR
Set if Poisoned TLP is received.
[30:30] RR 1‘b0 CFG_STAT_SIG_SE
RR
Set when fatal or non-fatal error message is sent
and CFG_CMD_SERR_EN is set.
[29:29] RR 1‘b0 CFG_STAT_RCV_M
A
Set when completion is received (by Rider) with
Unsupported Request status.
[28:28] RR 1‘b0 CFG_STAT_RCV_T
A
Set when completion is received (by Rider) with
Completer Abort status.
[27:27] RR 1‘b0 CFG_STAT_SIG_TA Set when completion is sent (by Rider) with
Completer Abort status.
[26:25] RO 2’b0 Reserved
[24:24] RR 1‘b0 CFG_STAT_MD_PE
RR
Set when a poisoned completion is received or a
write request being sent is poisoned. Can only
be set when CFG_CMD_PERR_RESP_EN bit is
set.
[23:20] RO 4’b1 Reserved
[19:19] RO 1‘b0 TL_INTX_MSG_OUTST
AND
Indicates INTx message is outstanding.
[18:11] RO 8‘b0 Reserved
[10:10] RW 1‘b0 CFG_GEN_INTX_DI
S
Disables ability to generate INTx messages.
DSH-201010p2 Conexant 101
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.15 PCI Class Code and Revision ID
[9:9] RO 1‘b0 Reserved
[8:8] RW 1‘b0 CFG_CMD_SERR_
EN
Enables detected fatal and non-fatal errors to be
reported to Root Complex.
[7:7] RO 1‘b0 Reserved
[6:6] RW 1‘b0 CFG_CMD_PERR_
RSP_EN
Enables ability to set the Master Data Parity
Error bit (PE_STAT_MD_PERR).
[5:3] RO 3‘b0 Reserved
[2:2] RW 1‘b0 CFG_CMD_BUS_M
STR_EN
Enables ability to issue memory requests,
including MSI messages.
[1:1] RW 1‘b0 CFG_CMD_MEM_E
N
Enables memory decoder and allows device to
accept memory transactions.
[0:0] RO 1‘b0 Reserved
Register: RDR_CFG2 Address: 0x50008
Bits Type Default Name Description
[31:24] RO 8’h04 CFG_CLASS_CODE Class Code. Set during pre-synthesis
configuration of Rider IP.
[23:16] RO 8‘b0 CFG_SUBCLASS_C
ODE
Subclass Code. Set during pre-synthesis
configuration of Rider IP.
[15:8] RO 8‘b0 CFG_PGM_INTF Programming Interface. Set during pre-synthesis
configuration of Rider IP.
[7:0] RO 8‘b2 CFG_REV_ID Revision ID of the device. Set during pre-
synthesis configuration of Rider IP.
Register: Reserved Address: 0x5000c
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
102 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.16 PCI Base Address Register 0
3.12.17 PCI Base Address Register 1
Register: RDR_CFG4 Address: 0x50010
Bits Type Default Name Description
[31:21] RW 11‘b0 CFG_BA0 Lower part of Base Address 0.
[20:0] RO 21‘b0 Reserved
Register: RDR_CFG5 Address: 0x50014
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_BA1 If RDR_CFG4[2] is set, this field is the upper 32
bits of base address at RDR_CFG4. Otherwise,
this register is read-only.
Register: Reserved Address: 0x50018
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Register: Reserved Address: 0x5001c
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Register: Reserved Address: 0x50020
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Register: Reserved Address: 0x50024
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Register: Reserved Address: 0x50028
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
DSH-201010p2 Conexant 103
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.18 PCI Subsystem and Subsystem Vendor ID
Register: RDR_CFGB Address: 0x5002c
Bits Type Default Name Description
[31:16] RO 16‘b0 CFG_SUBSYS_ID Subsystem ID; Initialized by the EEPROM.
[15:0] RO 16‘b0 CFG_SUBSYS_VEN
_ID
Subsystem Vendor ID; Initialized by the
EEPROM.
Register: Reserved Address: 0x50030
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Register: Reserved Address: 0x50034
Bits Type Default Name Description
[31:0] RO 32‘h0040 Reserved
Register: Reserved Address: 0x50038
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
104 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.19 PCI Interrupts
3.12.20 PCI Express Registers: Capabilities
The Type column in this section represents the type of register from the perspective of
the transaction layer. Register fields in this section cannot be written by the application
layer unless indicated by an asterisk (*) in the Type column, in which case they can be
written by the Application Layer when CFG_LOCK_INIT_REGS is not set.
Register: RDR_CFGF Address: 0x5003c
Bits Type Default Name Description
[31:11] RO 21’b0 Reserved
[10:8] RO 3’b1 CFG_INTX_PIN Interrupt Pin. Indicates which legacy-style INTx
message is used for interrupt. Initialized by the
Application Layer. 3’b001 = INTA, 3’b010 =
INTB, … 3’b100 = INTD.
[7:0] RW 8‘b0 CFG_INTX_LINE Interrupt Line. Contains routing information for
legacy INTx# style interrupts.
Register: Reserved Address: 0x50040
Bits Type Default Name Description
[31:0] RO 32’b0 Reserved
DSH-201010p2 Conexant 105
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.21 PCI Express Device Capabilities
Register: RDR_PEDEVCAP Address: 0x50044
Bits Type Default Name Description
[31:28] RO 4‘b0 Reserved
[27:26] RO 2‘b0 TL_SLOT_PWR_LIM_S
CALE
Captured Slot Power Limit Scale.
[25:18] RO 8‘b0 TL_SLOT_PWR_LIM_V
AL
Captured Slot Power Limit Value.
[17:15] RO 3‘b0 Reserved
[14:14] RO 1‘b0 CFG_PWR_IND_PR
ES
Power indicator present on card. Initialized by
the Application Layer.
[13:13] RO 1‘b0 CFG_ATTN_IND_PR
ES
Attention indicator present on card. Initialized by
the Application Layer.
[12:12] RO 1‘b0 CFG_ATTN_BUTTO
N_PRES
Attention button present on card. Initialized by
the Application Layer.
[11:9] RO 3‘b0 CFG_L1ASPM_ACC
EPT_LAT
L1 Acceptable Latency; Initialized by the
Application Layer
[8:6] RO 3‘b0 CFG_L0S_ACCEPT_
LAT
L0s Acceptable Latency. Initialized by the
Application Layer.
[5:3] RO 3‘b0 Reserved
[2:0] RO 3‘b0 CFG_MAX_PAYLD_S
UP
Max Payload Size Supported; Set during
configuration of Rider IP.
106 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.22 PCI Express Device Status and Control
Register: RDR_PEDEVSC Address: 0x50048
Bits Type Default Name Description
[31:22] RO 10‘b0 Reserved
[21:21] RO 1‘b0 TL_TRANS_PENDIN
G
1 = there are pending non-posted requests.
[20:20] RO 1‘b0 CFG_AUX_PWR_DE
T
1 = auxiliary power has been detected;
Initialized by the Application Layer.
[19:19] RO 1‘b0 CFG_UR_RCVD 1 = Unsupported Request (UR) received.
[18:18] RO 1‘b0 CFG_FATAL_ERR_D
ET
1 = one or more fatal errors detected.
[17:17] RO 1‘b0 CFG_NONFATAL_ERR
_DET
1 = one or more non-fatal errors detected.
[16:16] RO 1‘b0 CFG_CORR_ERR_D
ET
1 = one or more correctable errors detected.
[15:15] RO 1‘b0 Reserved
[14:12] RW 3’h2 CFG_MAX_RD_REQ
_SZ
Maximum Read Request Size (default is 512
bytes).
[11:11] RW 1’b1 CFG_NO_SNOOP_E
N
Enable No Snoop.
[10:10] RW 1‘b0 CFG_AUX_PWR_EN Auxiliary Power Enable. (Sticky)
[9:8] RO 2‘b0 Reserved
[7:5] RW 3‘b0 CFG_MAX_PAYLD_S
Z
Maximum Payload Size (default is 128 bytes).
[4:4] RW 1’b1 CFG_RELAX_ORDE
R_EN
Relaxed Ordering Enable.
[3:3] RW 1‘b0 CFG_UR_RPT_EN Unsupported Request Reporting Enable.
[2:2] RW 1‘b0 CFG_FAT_ERR_RPT
_EN
Fatal Error Reporting Enable.
[1:1] RW 1‘b0 CFG_NONFAT_ERR_RP
T_EN
Non-fatal Error Reporting Enable.
[0:0] RW 1‘b0 CFG_CORR_ERR_RP
T_EN
Correctable Error Reporting Enable.
DSH-201010p2 Conexant 107
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.23 PCI Express Link Capabilities
3.12.24 PCI Express Link Status and Control
Register: RDR_PELINKCAP Address: 0x5004c
Bits Type Default Name Description
[31:24] RO 8‘b0 CFG_PORT_NUM Port Number of the Link; Initialized by the
Application Layer.
[23:18] RO 6‘b0 Reserved
[17:15] RO 3‘h2 CFG_L1ASPM_EXIT_L
AT
Corresponds to L1 Exit Latency; Varies with
CFG_COMMON_CLOCK.
If CFG_COMMON_CLOCK is 1’b1, this value is
l1aspm_exit_lat_crc (from RDR_L1_EXIT_LAT
register).
If CFG_COMMON_CLOCK is 1’b0, this value is
l1aspm_exit_lat_arc (from RDR_L1_EXIT_LAT
register).
[14:12] RO 3’h5 CFG_L0S_EXIT_LAT L0s Exit Latency; Varies with
CFG_COMMON_CLOCK.
If CFG_COMMON_CLOCK is 1’b1, this value is
l0s_exit_lat_crc (from RDR_L0S_EXIT_LAT
register).
If CFG_COMMON_CLOCK is 1’b0, this value is
l0s_exit_lat_arc (from RDR_L0S_EXIT_LAT
register).
[11:0] RO 12’hC11 Reserved
Register: RDR_PELINKSC Address: 0x50050
Bits Type Default Name Description
[31:29] RO 3‘b0 Reserved
[28:28] RO 1‘b0 CFG_SLOT_CLOCK
_CFG
1 = using clock from connector; 0 = using
independent clock; Initialized by the Application
Layer.
[27:8] RO 20’h01100 Reserved
[7:7] RW 1‘b0 CFG_EXTENDED_S
YNC
1 = forces extended synchronization when
exiting L1 and L0s.
[6:6] RW 1‘b0 CFG_COMMON_CL
OCK
1 = both ends of link are using a common
reference clock.
[5:4] RW 2‘b0 Reserved
[3:3] RW 1‘b0 CFG_RCB Read Completion Boundary; 1 = 128b; 0 = 64b.
[2:2] RO 1‘b0 Reserved
[1:0] RW 2‘b0 CFG_ASPM_CTRL ASPM Control:
00 = disabled;
01 = L0s enabled;
10= L1 ASPM enabled;
11 = L0s & L1 ASPM enabled;
Initialized by the Application Layer.
108 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.25 Power Management Interface Capabilities
3.12.26 Power Management Control/Status
Register: RDR_PMICAP Address: 0x50080
Bits Type Default Name Description
[31:27] RO 5’hF CFG_PME_SUPPOR
TED
D-states in which PME Message is Supported.
[26:26] RO 1’b1 CFG_D2_SUPPORT
ED
Indicates if D2 state is supported.
[25:25] RO 1’b1 CFG_D1_SUPPORT
ED
Indicates if D1 state is supported.
[24:22] RO 3’h7 CFG_AUX_CURREN
T
3.3 V AUX current required in D3cold state;
Initialized by the Application Layer.
[21:0] RO 22’h229001 Reserved
Register: RDR_PMCSR Address: 0x50084
Bits Type Default Name Description
[31:16] RO 16‘b0 Reserved
[15:15] RO 1‘b0 CFG_PME_STAT Indicates when device experienced a PME.
(Sticky)
[14:9] RO 6‘b0 Reserved
[8:8] RW 1‘b0 CFG_PME_EN Enables device to send PME messages.
[7:2] RO 6‘b0 Reserved
[1:0] RW 2‘b0 RDR_PWR_STATE Controls power state of the device.
2’b00 = D0
2’b01 = D1
2’b10 = D2
2’b11 = D3hot
DSH-201010p2 Conexant 109
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.27 Vital Product Data Capabilities
3.12.28 VPD Data
3.12.29 Message Signaled Interrupt Capabilities
This register is present only if the MSI capability is enabled via the
INCLUDE_MSI_REGS REGISTER at address RDR_RDRCTL1.
Register: RDR_VPDCAP Address: 0x50090
Bits Type Default Name Description
[31:31] RW 1‘b0 VPD_FLAG VPD Flag Bit. Writable by both Application and
Transaction Layers. Indicates direction of
transfer and when transfer is complete.
Write: 1’b1 is written to CFG_VPD_FLAG when
CFG_VPD_ADDR is written. AL clears
CFG_VPD_FLAG when write is complete.
Read: 1’b0 is written to CFG_VPD_FLAG when
CFG_VPD_ADDR is written. AL sets
CFG_VPD_FLAG when read is complete (i.e.,
data is available in CFG_VPD_DATA).
[30:16] RW 15‘b0 VPD_ADDR VPD Address. Writable only by Transaction
Layer.
[15:0] RO 16’h A003 Reserved
Register: RDR_VPDDATA Address: 0x50094
Bits Type Default Name Description
[31:31] RW 32‘b0 VPD_DATA Vital Product Data. Writable by both Application
and Transaction Layers.
Register: RDR_MSICAP Address: 0x500a0
Bits Type Default Name Description
[31:23] RO 9‘b1 Reserved
[22:20] RW 3‘b0 CFG_NUM_MSGS_A
LLOC
Number of messages allocated to the device.
[19:17] RO 3‘b0 CFG_NUM_MSGS_R
EQ
Number of messages requested by the device.
Set during RTL configuration of Rider IP.
[16:16] RW 1‘b0 CFG_MSI_EN Enables Message Signaled Interrupts.
[15:0] RO 16’h 05 Reserved
110 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.30 MSI Address Lower 32 Bits
This register is present only if the MSI capability is enabled via the
INCLUDE_MSI_REGS register at address RDR_RDRCTL1.
3.12.31 MSI Address Upper 32 Bits
This register is present only if the MSI capability is enabled via the
INCLUDE_MSI_REGS register at address RDR_RDRCTL1.
3.12.32 MSI Data Pattern
This register is present only if the MSI capability is enabled via the
INCLUDE_MSI_REGS REGISTER at address RDR_RDRCTL1.
Register: RDR_MSIARL Address: 0x500a4
Bits Type Default Name Description
[31:2] RW 30‘b0 CFG_MSI_ARL Lower 32 bits of 64-bit MSI Address.
[1:0] RO 2‘b0 CFG_MSI_ARL MSI Address is Dword aligned; always 2’b00.
Register: RDR_MSIARU Address: 0x500a8
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_MSI_ARU Upper 32 bits of 64-bit MSI Address.
Register: RDR_MSIDATA Address: 0x500ac
Bits Type Default Name Description
[31:16] RO 16’b0 Reserved
[15:0] RW 16‘b0 CFG_MSI_BASE_DA
TA
Base MSI Data Pattern.
DSH-201010p2 Conexant 111
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.33 PCI Express Registers: Extended Capabilities
The Type column in this section represents the type of register from the perspective of
the Transaction Layer. Register fields in this section cannot be written by the
Application Layer unless indicated by an asterisk (*) in the Type column, in which case
they can be written by the Application Layer when CFG_LOCK_INIT_REGS is not set.
3.12.34 AER Uncorrectable Error Status
Register: Reserved Address: 0x50100
Bits Type Default Name Description
[31:0] RO 32’h20010001 Reserved
Register: RDR_AERUESTA Address: 0x50104
Bits Type Default Name Description
[31:21] RO 11’b0 Reserved
[20:20] RO 1‘b0 CFG_UR_ERR_STAT Unsupported Request Error Status; set by
Transaction Layer. (Sticky)
[19:19] RO 1’b0 Reserved
[18:18] RO 1‘b0 CFG_MALF_TLP_ST
AT
Malformed TLP Status; set by Transaction
Layer. (Sticky)
[17:17] RO 1‘b0 CFG_RCVR_OVFLW_
STAT
Receiver Overflow Status; set by Transaction
Layer. (Sticky)
[16:16] RO 1‘b0 CFG_UNEXP_COMP_S
TAT
Unexpected Completion Status; set by
Transaction Layer. (Sticky)
[15:15] RO 1‘b0 CFG_COMP_ABORT_S
TAT
Completer Abort Status; set by Transaction
Layer. (Sticky)
[14:14] RO 1‘b0 CFG_COMP_TO_ST
AT
Completion Timeout Status; set by Transaction
Layer. (Sticky)
[13:13] RO 1‘b0 CFG_FC_PROT_ERR_
STAT
Flow Control Protocol Error Status; set by
Transaction Layer. (Sticky)
[12:12] RO 1‘b0 CFG_POISONED_TLP_
STAT
Poisoned TLP Status; set by Transaction Layer.
(Sticky)
[11:5] RO 7’b0 Reserved
[4:4] RO 1‘b0 CFG_PROT_ERR_S
TAT
Data Link Protocol Error Status; set by Data Link
Layer. (Sticky)
[3:0] RO 4’b0 Reserved
112 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.35 AER Uncorrectable Error Mask
Register: RDR_AERUEMSK Address: 0x50108
Bits Type Default Name Description
[31:21] RO 11’b0 Reserved
[20:20] RW 1‘b0 CFG_UR_ERR_MAS
K
Unsupported Request Error
[19:19] RO 1’b0 Reserved
[18:18] RW 1‘b0 CFG_MALF_TLP_MA
SK
Malformed TLP Mask.(Sticky)
[17:17] RW 1‘b0 CFG_RCVR_OVFLW_M
ASK
Receiver Overflow Mask. (Sticky)
[16:16] RW 1‘b0 CFG_UNEXP_COMP_M
ASK
Unexpected Completion Mask (Sticky)
[15:15] RW 1‘b0 CFG_COMP_ABORT_M
ASK
Completer Abort Mask. (Sticky)
[14:14] RW 1‘b0 CFG_COMP_TO_MA
SK
Completion Timeout Mask.
[13:13] RW 1‘b0 CFG_FC_PROT_ERR_
MASK
Flow Control Protocol Error Mask. (Sticky)
[12:12] RW 1‘b0 CFG_POISONED_TLP_
MASK
Poisoned TLP Mask. (Sticky)
[11:5] RO 7’b0 Reserved
[4:4] RW 1‘b0 CFG_PROT_ERR_M
ASK
Data Link Protocol Error Mask. (Sticky)
[3:0] RO 1‘b0 Reserved
DSH-201010p2 Conexant 113
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.36 AER Uncorrectable Error Severity
Register: RDR_AERUESEV Address: 0x5010c
Bits Type Default Name Description
[31:21] RO 11‘b0 Reserved
[20:20] RW 1‘b0 CFG_UR_ERR_SEV Unsupported Request Error Severity. (Sticky)
[19:19] RO 1‘b0 Reserved
[18:18] RW 1’b1 CFG_MALF_TLP_SE
V
Malformed TLP Severity. (Sticky)
[17:17] RW 1’b1 CFG_RCVR_OVFLW_S
EV
Receiver Overflow Severity. (Sticky)
[16:16] RW 1‘b0 CFG_COMP_ABORT_S
EV
Unexpected Completion Severity. (Sticky)
[15:15] RW 1‘b0 CFG_COMP_TO_SEV Completer Abort Severity. (Sticky)
[14:14] RW 1‘b0 CFG_FC_PROT_ERR_
SEV
Completion Timeout Severity. (Sticky)
[13:13] RW 1’b1 CFG_POISONED_TLP_
SEV
Flow Control Protocol Error Severity. (Sticky)
[12:12] RW 1‘b0 CFG_PROT_ERR_S
EV
Poisoned TLP Severity. (Sticky)
[11:5] RO 1‘b0 Reserved
[4:4] RW 1’b1 CFG_COMP_ABORT_
SEV
Data Link Protocol Error Severity. (Sticky)
[3:0] RO 4‘b0 Reserved
114 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.37 AER Correctable Error Status
3.12.38 AER Correctable Error Mask
Register: RDR_AERCESTA Address: 0x50110
Bits Type Default Name Description
[31:13] RO 19‘b0 Reserved
[12:12] RO 1‘b0 CFG_REPLAY_TMR_TO_
STAT
Replay Timer Timeout Status; set by Data Link
Layer. (Sticky)
[11:9] RO 3‘b0 Reserved
[8:8] RO 1‘b0 CFG_REPLAY_NUM_RO_
STAT
Replay Counter (aka, REPLAY_NUM)
Rollover Status; set by Data Link Layer.
(Sticky)
[7:7] RO 1‘b0 CFG_BAD_DLLP_STA
T
Bad DLLP Status; set by Data Link Layer.
(Sticky)
[6:6] RO 1‘b0 CFG_BAD_TLP_STAT Bad TLP Status; set by Transaction Layer.
(Sticky)
[5:1] RO 5‘b0 Reserved
[0:0] RO 1‘b0 CFG_RCVR_ERR_ST
AT
Receiver Error Status; set by MAC Layer.
(Sticky)
Register: RDR_AERCEMSK Address: 0x50114
Bits Type Default Name Description
[31:13] RO 19‘b0 Reserved
[12:12] RW 1‘b0 CFG_REPLAY_TMR_TO_M
ASK
Replay Timer Timeout Mask. (Sticky)
[11:9] RO 3‘b0 Reserved
[8:8] RW 1‘b0 CFG_REPLAY_NUM_RO_M
ASK
Replay Counter (aka, REPLAY_NUM)
Rollover Mask. (Sticky)
[7:7] RW 1‘b0 CFG_BAD_DLLP_MASK Bad DLLP Mask. (Sticky)
[6:6] RW 1‘b0 CFG_BAD_TLP_MASK Bad TLP Mask. (Sticky)
[5:1] RO 5‘b0 Reserved
[0:0] RW 1‘b0 CFG_RCVR_ERR_MAS
K
Receiver Error Mask. (Sticky)
DSH-201010p2 Conexant 115
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.39 AER Capability and Control
3.12.40 AER Header Log 0
3.12.41 AER Header Log 1
3.12.42 AER Header Log 2
Register: RDR_AERCC Address: 0x50118
Bits Type Default Name Description
[31:5] RO 27‘b0 Reserved
[4:0] RO 5‘b0 TL_FIRST_ERR_PT
R
Bit number of the first error reported in the
Uncorrectable Error Status Register
(RDR_AERUESTA). (Sticky)
Register: RDR_AERHL Address: 0x5011c
Bits Type Default Name Description
[31:0] RO 32‘b0 TL_HDR_LOG_0 First DW of the header of the packet causing the
reported uncorrectable error. (Sticky)
Register: RDR_AERHL1 Address: 0x50120
Bits Type Default Name Description
[31:0] RO 32‘b0 TL_HDR_LOG_1 Second DW of the header of the packet causing
the reported uncorrectable error. (Sticky)
Register: RDR_AERHL2 Address: 0x50124
Bits Type Default Name Description
[31:0] RO 32‘b0 TL_HDR_LOG_2 Third DW of the header of the packet causing
the reported uncorrectable error. (Sticky)
116 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.43 AER Header Log 3
3.12.44 Port VC Capability Register 1
Register: RDR_AERHL3 Address: 0x50128
Bits Type Default Name Description
[31:0] RO 32‘b0 TL_HDR_LOG_3 Fourth DW of the header of the packet causing
the reported uncorrectable error. (Sticky)
Register: Reserved Address: 0x50200
Bits Type Default Name Description
[31:0] RO 32‘h10002 Reserved
Register: RDR_VCCAP1 Address: 0x50204
Bits Type Default Name Description
[31:7] RO 25‘b0 Reserved
[6:4] RO 3’b1 CFG_NUM_VCS_LP
G
Number of VCs that comprise the Low-Priority
VC Group.
[3:3] RO 1‘b0 Reserved
[2:0] RO 3’b1 CFG_NUM_ADD_VC
S
Number of Additional VCs (beyond VC0) that
are supported.
Register: Reserved Address: 0x50208
Bits Type Default Name Description
[31:0] RO 32’h 4000006 Reserved
DSH-201010p2 Conexant 117
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.45 Port VC Status and Control
3.12.46 VC Resource 0 Capability
Register: RDR_VCSC Address: 0x5020c
Bits Type Default Name Description
[31:17] RO 15‘b0 Reserved
[16:16] RO 1‘b0 CFG_VC_ARB_TABLE_
STAT
1 = New values have been written by
Software into RDR_VCARB[0-7] but have not
been applied.
0 = VC Arbitration Table has been read from
RDR_VCARB[0-7] and applied.
[15:4] RO 12‘b0 Reserved
[3:1] RW 3’h 2 CFG_LPVCG_ARB_SCH
_SEL
Selected arbitration scheme for Low-Priority
VC Group.
[0:0] RW 1‘b0 CFG_LD_VC_ARB_TABL
E
Writing 1 causes VC arbitration table to be
read and applied; Always reads 0.
Register: Reserved Address: 0x50210
Bits Type Default Name Description
[31:17] RO 32‘b0 Reserved
Register: RDR_VCR0_CTRL Address: 0x50214
Bits Type Default Name Description
[31:8] RO 24’h800000 Reserved
[7:1] RW 7’h7F CFG_VC0_TCVC_M
AP
Traffic Classes mapped to VC0
[0:0] RO 1’b1 CFG_VC0_TCVC_M
AP
Traffic Class 0 always mapped to VC0.
118 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.47 VC Resource 0 Control
3.12.48 VC Resource 1 Control
Register: RDR_VCR0_STAT Address: 0x50218
Bits Type Default Name Description
[31:18] RO 14‘b0 Reserved
[17:17] RO 1’b1 DLL_VC0_NEGOT_PEN
DING
For VC0: Indicates status of Flow Control
Initialization.
[16:0] RO 16‘b0 Reserved
Register: Reserved Address: 0x5021c
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Register: RDR_VCR1_CTRL Address: 0x50220
Bits Type Default Name Description
[31:31] RW 1‘b0 CFG_VC1_EN VC1 Enable
[30:27] RO 4‘b0 Reserved
[26:24] RW 3’b1 CFG_VC1_ID VC1 ID.
[23:8] RO 16‘b0 Reserved
[7:1] RW 7‘b0 CFG_VC1_TCVC_M
AP
Traffic Classes mapped to VC1.
[31:31] RW 1‘b0 CFG_VC1_EN VC1 Enable
[0:0] RO 1‘b0 CFG_VC1_TCVC_M
AP
Bit zero of TC/VC map is hardwired to zero for
VCs other than VC0. TC0 is never mapped to
anything other than VC0.
DSH-201010p2 Conexant 119
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.49 VC Resource 1 Status
3.12.50 VC Resource 2 Control
Register: RDR_VCR1_STAT Address: 0x50224
Bits Type Default Name Description
[31:18] RO 14‘b0 Reserved
[17:17] RO 1‘b0 DLL_VC1_NEGOT_P
ENDING
Indicates status of VC negotiation.
[16:0] RO 17‘b0 Reserved
Register: Reserved Address: 0x50228
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Register: RDR_VCR2_CTRL Address: 0x5022c
Bits Type Default Name Description
[31:31] RW 1‘b0 CFG_VC2_EN VC2 Enable.
[30:27] RO 4‘b0 Reserved
[26:24] RW 3’h 2 CFG_VC2_ID VC2 ID.
[23:8] RO 16‘b0 Reserved
[7:1] RW 7‘b0 CFG_VC2_TCVC_M
AP
Traffic Classes mapped to VC2.
[0:0] RO 1‘b0 CFG_VC2_TCVC_M
AP
Bit zero of TC/VC map is hardwired to zero for
VCs other than VC0. TC0 is never mapped to
anything other than VC0.
120 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.51 VC Resource 2 Status
3.12.52 VC Resource 3 Control
Register: RDR_VCR2_STAT Address: 0x50230
Bits Type Default Name Description
[31:18] RO 14‘b0 Reserved
[17:17] RO 1‘b0 DLL_VC2_NEGOT_PEN
DING
Indicates status of VC negotiation.
[16:0] RO 17‘b0 Reserved
Register: Reserved Address: 0x50234
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Register: RDR_VCR3_CTRL Address: 0x50238
Bits Type Default Name Description
[31:31] RW 1‘b0 CFG_VC3_EN VC3 Enable.
[30:27] RO 4‘b0 Reserved
[26:24] RW 3’h3 CFG_VC3_ID VC3 ID.
[23:8] RO 16‘b0 Reserved
[7:1] RW 7‘b0 CFG_VC3_TCVC_M
AP
Traffic Classes mapped to VC3.
[0:0] RO 1‘b0 CFG_VC3_TCVC_M
AP
Bit zero of TC/VC map is hardwired to zero for
VCs other than VC0. TC0 is never mapped to
anything other than VC0.
DSH-201010p2 Conexant 121
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.12.53 VC Resource 3 Status
3.12.54 VC Arbitration Table Entries 0–7
3.12.55 VC Arbitration Table Entries 8–15
3.12.56 VC Arbitration Table Entries 16–23
Register: RDR_VCR3_STAT Address: 0x5023c
Bits Type Default Name Description
[31:18] RO 14‘b0 Reserved
[17:17] RO 1‘b0 DLL_VC3_NEGOT_P
ENDING
Indicates status of VC negotiation.
[16:0] RO 17‘b0 Reserved
Register: RDR_VCARB0 Address: 0x50240
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_VCARB_TBL0 Entries 0-7 in the VC Arbitration Table.
Register: RDR_VCARB1 Address: 0x50244
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_VCARB_TBL1 Entries 8-15 in the VC Arbitration Table.
Register: RDR_VCARB2 Address: 0x50248
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_VCARB_TBL2 Entries 16-23 in the VC Arbitration Table.
122 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.12.57 VC Arbitration Table Entries 24–31
3.12.58 VC Arbitration Table Entries 32–39
3.12.59 VC Arbitration Table Entries 40–47
3.12.60 VC Arbitration Table Entries 48–55
3.12.61 VC Arbitration Table Entries 56–63
Register: RDR_VCARB3 Address: 0x5024c
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_VCARB_TBL3 Entries 24-31 in the VC Arbitration Table.
Register: RDR_VCARB4 Address: 0x50250
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_VCARB_TBL4 Entries 32-39 in the VC Arbitration Table.
Register: RDR_VCARB5 Address: 0x50254
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_VCARB_TBL5 Entries 40-47 in the VC Arbitration Table.
Register: RDR_VCARB6 Address: 0x50258
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_VCARB_TBL6 Entries 48-55 in the VC Arbitration Table.
Register: RDR_VCARB7 Address: 0x5025c
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_VCARB_TBL7 Entries 56-63 in the VC Arbitration Table.
DSH-201010p2 Conexant 123
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.13 Rider Registers – Global
The Type column in this section represents the type of register from the perspective of
the Application Layer. None of the registers in this section can be written by the
Transaction Layer (i.e., via a Configuration Request). RO Register fields in this section
cannot be written by the Application Layer unless indicated by an asterisk (*) in the
Type column, in which case they can be written by the Application Layer when
CFG_LOCK_INIT_REGS is not set.
3.13.1 Rider Status 0
Register: RDR_RDRSTAT0 Address: 0x50300
Bits Type Default Name Description
[31:24] RO 8‘b0 Reserved
[23:22] RO 2‘b0 TL_PWR_IND_STATU
S
Power Indicator Status:
00 = Off
01 = On
10 = Reserved
11 = Blink
[21:20] RO 2‘b0 TL_ATTN_IND_STATU
S
Attention Indicator Status:
00 = Off
01 = On
10 = Reserved
11 = Blink
[19:14] RO 6‘b0 Reserved
[13:13] RO 1‘b0 CFG_VPD_REQ_INT Vital Product Data Request Interrupt Status.
[12:12] RO 1‘b0 CFG_REQ_INVALID_INT Current Request Invalid Interrupt Status.
[11:11] RO 1‘b0 CFG_PWR_STATE_INT Power State Interrupt Status (indicates when
CFG_PWR_STATE bit was written).
[10:10] RO 1‘b0 CFG_SLOT_PWR_INT Slot Power Limit Updated Interrupt Status.
[9:9] RO 1‘b0 CFG_VEN_DEF_MSG_I
NT
Vendor Defined Message Received Status.
[8:8] RO 1‘b0 CFG_HOT_PLUG_MSG_
INT
Hot-Plug Message Received Status.
[7:1] RO 7‘b0 Reserved
[0:0] RO 1‘b0 CFG_REQ_COMPLETE_
INT
Request Complete Interrupt Status.
Register: Reserved Address: 0x50304
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
124 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.13.2 Rider Control 0
Register: RDR_RDRCTL0 Address: 0x50308
Bits Type Default Name Description
[31:14] RO 18‘b0 Reserved
[13:13] RW 1‘b0 VPD_REQ_MSK Vital Product Data Request Interrupt Mask;
Active High (1’b1 masks interrupt)
[12:12] RW 1‘b0 REQ_INVALID_MSK Current Request Invalid Interrupt Mask; Active
High
[11:11] RW 1‘b0 PWR_STATE_MSK Power State Interrupt Mask; Active High
[10:10] RW 1‘b0 SLOT_PWR_MSK Slot Power Limit Updated Interrupt Mask; Active
High.
[9:9] RW 1‘b0 VEN_DEF_MSG_MS
K
Vendor Defined Message Received Interrupt
Mask; Active High.
[8:8] RW 1‘b0 HOT_PLUG_MSG_M
SK
Hot-Plug Message Received Interrupt Mask;
Active High.
[7:1] RO 7‘b0 Reserved
[0:0] RW 1‘b0 REQ_COMPLETE_M
SK
Request Complete Mask; Active High.
DSH-201010p2 Conexant 125
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.13.3 Rider Control 1
Register: RDR_RDRCTL1 Address: 0x5030c
Bits Type Default Name Description
[31:10] RO 22‘b0 Reserved
[9:9] RW 1‘b0 EN_AUX_PWR_REG Enables the CFG_AUX_PWR_EN field in
RDR_PEDEVSC:
1’b0: CFG_AUX_PWR_EN is RO
1’b1: CFG_AUX_PWR_EN is RWS.
Note this register is Sticky.
[8:8] RW 1‘b0 INCLUDE_MSI_REG
S
Includes the MSI Capabilities registers
(RDR_MSICAP, RDR_MSIARL, RDR_MSIARU,
RDR_MSIDATA):
1’b0: MSI Registers are not included.
1’b1: MSI Registers are included (legacy INTx
messages should not be used).
(Sticky)
[7:4] RO 4‘b0 Reserved
[3:3] RW 1‘b0 CFG_TL_INIT_DONE Indicates when register initialization for PCI
Express Configuration/Enumeration is
complete. When clear, this bit causes the TL to
respond to configuration requests with
Configuration Request Retry. This bit must be
1’b1 no later than 1 second after any reset.
[2:2] RW 1‘b0 CFG_DLL_INIT_DON
E
Indicates when register initialization for Flow
Control Initialization is complete. When clear,
this bit causes the DLL CMSM to wait in the
DL_INACTIVE state until it is set. This bit must
be 1’b1 no later than 1 second after any reset.
[1:1] RW 1‘b0 CFG_MAC_INIT_DO
NE
Indicates when register initialization for the
LTSSM is complete. When clear, this bit will
cause the LTSSM to wait in the
Configuration.LinkWidth.Start sub-state until it is
set, or the 24 ms timeout occurs to send the
LTSSM back to Detect. This bit must be 1’b1 no
later than 1 second after any reset.This register
is not reset when the link goes down (i.e., when
RDR_LINK_DN_RST_N is asserted).
[0:0] RW 1‘b0 CFG_LOCK_INIT_RE
GS
Indicates whether registers available for
initialization are locked (1’b1) or unlocked
(1’b0).
126 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.14 Rider Registers: Transaction Layer
3.14.1 Transaction Layer Status 0
Register: RDR_TLSTAT0 Address: 0x50310
Bits Type Default Name Description
[31:29] RO 3‘b0 Reserved
[28:24] RO 5‘b0 TL_DEV_NUM Device Number captured when CfgWr0 packet
is received.
[23:16] RO 8‘b0 TL_BUS_NUM Bus Number captured when CfgWr0 packet is
received.
[15:8] RO 8’h FF CFG_TC_ENABLED Indicates which Traffic Classes are enabled. [7]
= TC7, [6] = TC6, … [0] = TC0.
[7:1] RO 7‘b0 Reserved
[0:0] RO 1‘b0 TL_BUSY Transaction Layer is busy servicing a request
from the Application Layer or Tx Queue is full
and cannot accept any more requests until it
becomes free. When this bit is set, the
Application Layer must not write to registers
RDR_RCADDRL, RDR_RCADDRU,
RDR_EPADDR, and RDR_ALREQC until this
bit is cleared.
Register: Reserved Address: 0x50314
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
DSH-201010p2 Conexant 127
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.14.2 TL Control
Register: RDR_TLCTL0 Address: 0x50318
Bits Type Default Name Description
[31:26] RO 6‘b0 Reserved
[25:25] RW 1’b1 CFG_VDM1_EN CFG_VDM1_EN: Enable the ability to forward
VDM Type 1 Messages to the Application Layer.
Default value is enabled (1'b1).
[24:24] RW 1‘b0 CFG_REQSTAT_PO
P_MODE
Select popping mode for RDR_REQSTAT
register:
1’b0 = next request status available after writing
any value to RDR_REQSTAT
1’b1 = next request status available after
reading RDR_REQSTAT
[23:16] RW 8’h9 CFG_VC0_TIMER Expiration value used for timer to transfer
packets from VC0 when Hardware Fixed
arbitration scheme is used. Units are μs.
[15:10] RW 6’h30 CFG_CPL_TIMEOUT Duration to wait for completion before
generating Completion Timeout error. Units are
chosen by CFG_CPL_TIMER_RES as either 1
ms (default) or 100 μs. Accuracy of reporting the
Completion Timeout error is +0 / -1 resolution
time unit.
[9:9] RW 1‘b0 CFG_CPL_TIMER_R
ES
Completion Timeout Timer Resolution:
1’b0 = 1 ms
1’b1 = 100 μs.
[8:8] RO 1‘b0 Reserved
[7:7] RW 1‘b0 CFG_UR_CPL_MOD
E
Select mode for data in completions with status
of Unsupported Request in response to
Configuration Read Requests.
1’b0 = completions with UR status do not
contain payload data
1’b1 = completions with UR status have payload
data of all ones.
[6:6] RW 1‘b0 CFG_UNCORR_ERR_
QUIET
When set, an error message is sent only when
the Uncorrectable Error Status bit in
RDR_AERUESTA is not set and future
detection of uncorrectable errors will not result
in an error message until the status bit is
cleared. When this bit is cleared, an error
message is sent whenever an uncorrectable
error is detected by TL.
128 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.14.3 Transmit Queue Control
[5:5] RW 1‘b0 CFG_CORR_ERR_Q
UIET
When set, an error message is sent only when
the Correctable Error Status bit in
RDR_AERUESTA is not set and future
detection of correctable errors will not result in
an error message until the status bit is cleared.
When this bit is cleared, an error message is
sent whenever a correctable error is detected by
TL.
[4:4] RW 1‘b1 CFG_RCB_CK_EN Enable checking for Read Completion Boundary
violations and generate a Malformed Packet
error if necessary.
[3:3] RW 1’b1 CFG_BNDRY_CK_E
N
Enable checking for 4kB boundary violations
and generate a Malformed Packet Error if
necessary.
[2:2] RW 1’b1 CFG_BYTE_EN_CK_
EN
Enable checking for incorrect Byte Enables and
generate Malformed Packet Error if necessary.
[1:1] RW 1‘b0 CFG_RELAX_ORDER_
MSK
Mask the Relaxed Ordering bit when it’s set by
the AL.
[0:0] RW 1’b1 CFG_TAG_ORDER_
EN
Enable the Row D, Col 5 of the Ordering table.
1’b0=disabled, 1’b1=enabled.
Register: RDR_TLCTL1 Address: 0x5031c
Bits Type Default Name Description
[31:25] RO 7‘b0 Reserved
[24:24] RW 1‘b0 CFG_VC_LIMIT_EN Enable limits on number of requests by Virtual
Channel using CFG_TX_VC3_SIZE,
CFG_TX_VC2_SIZE, CFG_TX_VC1_SIZE,
CFG_TX_VC0_SIZE. By default, the entire
queue is shared by all VCs in “first come first
serve” manner.
[23:18] RW 6’h20 CFG_TX_VC3_SIZE Number of requests that can be stored in VC3
Tx Queue.
[17:12] RW 6’h20 CFG_TX_VC2_SIZE Number of requests that can be stored in VC2
Tx Queue.
[11:6] RW 6’h20 CFG_TX_VC1_SIZE Number of requests that can be stored in VC1
Tx Queue.
[5:0] RW 6’h20 CFG_TX_VC0_SIZE Number of requests that can be stored in VC0
Tx Queue.
DSH-201010p2 Conexant 129
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.14.4 AL Request Root Complex Lower Address
3.14.5 AL Request Root Complex Upper Address
3.14.6 AL Request Endpoint Address
Register: RDR_REQRCAL Address: 0x50320
Bits Type Default Name Description
[31:2] RW 30‘b0 CFG_RC_ADDR Upper 30 bits of lower 32 bits of Root Complex
Address for the request submitted from the
Application Layer.
[1:0] RO 2‘b0 CFG_RC_ADDR Lower 2 bits of lower 32 bits of Root Complex
Address. Hardwired to zeros.
Register: RDR_REQRCAU Address: 0x50324
Bits Type Default Name Description
[31:0] RW 32‘b0 CFG_RC_ADDR Upper 32 bits of Root Complex Address for the
request submitted from the Application Layer.
Register: RDR_REQEPA Address: 0x50328
Bits Type Default Name Description
[31:24] RO 8‘b0 Reserved
[23:0] RW 24‘b0 CFG_EP_ADDR The Endpoint address (i.e., destination or
source address) of Application Layer request.
130 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.14.7 AL Request Parameters
When this register is written, the signal CFG_NEW_REQ_WRITTEN is asserted for
one PECLK cycle. The TL block uses this signal to begin capturing the new
transaction request.
Register: RDR_REQCTRL Address: 0x5032c
Bits Type Default Name Description
[31:20] RW 12‘b0 CFG_AL_LENGTH Length of transfer request in bytes.
[19:17] RW 3‘b0 CFG_AL_OP_TYPE Type of requested transfer:
3'b000:Write
3'b001:Read
3'b010:Vender_Defined Type0 Message
3'b011:Vender_Defined Type1 Message
3'b100:PM_PME Message
3'b101:Hot-Plug
ATTENTION_BUTTON_PRESSED Message
3'b11x:Reserved
[16:16] RO 1‘b0 Reserved
[15:13] RW 3‘b0 CFG_AL_TC Traffic Class of the transfer request.
[12:10] RO 3‘b0 Reserved
[9:8] RW 2‘b0 CFG_AL_ATTR The attribute field of the TLP Header ([9] =
Relaxed Ordering; [8] = No Snoop).
[7:4] RW 4‘b0 CFG_AL_FIRST_BE First DW Byte Enable.
[3:0] RW 4‘b0 CFG_AL_LAST_BE Last DW Byte Enable.
DSH-201010p2 Conexant 131
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.14.8 AL Request Status
The behavior of this register is determined by the CFG_REQSTAT_POP_MODE bit in
the RDR_TLCTL0 register. When CFG_REQSTAT_POP_MODE = 1’b0, any write to
this register will pop the next value into the status. When
CFG_REQSTAT_POP_MODE = 1’b1, any read from this register will pop the next
value into the status.
3.14.9 Transaction Layer Test Control (Flow Control)
When this register is written, the CFG_TST_SET_FC signal is asserted for one
PECLK cycle. This pulse directs the TL to load the appropriate flow control counters
with the values specified in this register.
Register: RDR_REQSTAT Address: 0x50330
Bits Type Default Name Description
[31:31] RO 1‘b0 TL_REQ_SUCCESSF
UL
Request has completed successfully.
[30:30] RO 1‘b0 TL_NXT_STAT_RDY 1’b1 = another request has completed and is
ready to be reported.
[29:27] RO 3‘b0 Reserved
[26:24] RO 3‘b0 TL_CPL_OP_TYPE Operation Type of the completed request from
the Application Layer.
[23:0] RO 24‘b0 TL_CPL_EP_ADDR End-point address provided by Rider to associate
a completed request from the Application Layer.
Register: RDR_TL_TEST Address: 0x50334
Bits Type Default Name Description
[31:27] RO 5‘b0 Reserved
[26:24] RW 3‘b0 CFG_TST_SET_FC_V
CR
Selects which VC Resource is to be set by this
register.
[23:22] RW 2‘b0 CFG_TST_SET_FC_S
EL
Selects which counters are to be set by this
register:
2’b00: Credits Consumed
2’b01: Credit Limit
2’b10: Credits Allocated
2’b11: Credits Received
[21:20] RW 2‘b0 CFG_TST_SET_FC_T
YPE
Selects the type of counter to be set by
CFG_TST_FC_HDR and CFG_TST_FC_DATA:
2’b00: Posted
2’b01: Non-Posted
2’b10: Completion
2’b11: RESERVED
[19:12] RW 8‘b0 CFG_TST_SET_FC_H
DR
Value to be loaded into the header credit counter.
[11:0] RW 12‘b0 CFG_TST_SET_FC_D
ATA
Value to be loaded into the data credit counter.
132 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.14.10 Receive Buffer Control
3.14.11 Virtual Channel Resources 0 and 1 Control
Register: RDR_RXBUFCTL Address: 0x50338
Bits Type Default Name Description
[31:18] RO 14‘b0 Reserved
[17:0] RO 18‘b0 CFG_CPL_RXBUFFER
_SZ
Number of DWords reserved for completions in
Receive Buffer. Used to hold off a MRd
transmitted from Rider if insufficient buffer space
is available for the completion(s).
Register: RDR_VCR01_CT Address: 0x50348
Bits Type Default Name Description
[31:29] RO 3‘b0 Reserved
[28:16] RW 13’h 3B CFG_VCR0_FC_TIM
ER
Max Payload Size Timer Default
128 bytes 59 (~237 symbol times)
256 bytes 104 (415 symbol times)
512 bytes 140 (~559 symbol times)
1024 bytes 268 (~1071 symbol times)
2048 bytes 524 (~2095 symbol times)
4096 bytes 1036 (~4143 symbol times)
[15:13] RO 3‘b0 Reserved
[12:0] RW 13’h 3B CFG_VCR1_FC_TIM
ER
Expiration value for Flow Control Update timer
for VC Resource 1. Same units and default table
as CFG_VCR0_FC_TIMER.
DSH-201010p2 Conexant 133
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.14.12 Virtual Channel Resources 2 and 3 Control
3.14.13 Virtual Channel Resource 0 Initial Flow Control
Credits
Register: RDR_VCR23_CTL Address: 0x5034c
Bits Type Default Name Description
[31:29] RO 3‘b0 Reserved
[28:16] RW 13’h 3B CFG_VCR2_FC_TIM
ER
Expiration value for Flow Control Update timer
for VC Resource 2. Same units and default table
as CFG_VCR0_FC_TIMER.
[15:13] RO 3‘b0 Reserved
[12:0] RW 13’h 3B CFG_VCR3_FC_TIM
ER
Expiration value for Flow Control Update timer
for VC Resource 3. Same units and default table
as CFG_VCR0_FC_TIMER.
Register: RDR_RX_VCR1_FC Address: 0x50354
Bits Type Default Name Description
[31:25] RO 7‘b0 Reserved
[24:18] RO 7’h 4 CFG_RX_VCR1_NP
H_FC
Number of Flow Control Credits initially
advertised for VCR1 Non-Posted Header. VCR1
must be disabled to write this field.
[17:7] RO 11’h 100 CFG_RX_VCR1_PD_
FC
Number of Flow Control Credits initially
advertised for VCR1 Posted Data. VCR1 must
be disabled to write this field.
[6:0] RO 7’h 4 CFG_RX_VCR1_PH_
FC
Number of Flow Control Credits initially
advertised for VCR1 Posted Headers. VCR1
must be disabled to write this field.
134 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.14.14 Virtual Channel Resource 2 Initial Flow Control
Credits
3.14.15 Virtual Channel Resource 3 Initial Flow Control
Credits
Register: RDR_RX_VCR2_FC Address: 0x50358
Bits Type Default Name Description
[31:25] RO 7‘b0 CFG_RX_VCR2_NP
H_FC
Reserved
[24:18] RO 7’h 4 CFG_RX_VCR2_PD_
FC
Number of Flow Control Credits initially
advertised for VCR2 Non-Posted Header. VCR2
must be disabled to write this field.
[17:7] RO 11’h 100 CFG_RX_VCR2_PH_
FC
Number of Flow Control Credits initially
advertised for VCR2 Posted Data. VCR2 must
be disabled to write this field.
[6:0] RO 7’h 4 CFG_RX_VCR2_NP
H_FC
Number of Flow Control Credits initially
advertised for VCR2 Posted Headers. VCR2
must be disabled to write this field.
Register: RDR_RX_VCR3_FC Address: 0x5035c
Bits Type Default Name Description
[31:25] RO 7‘b0 Reserved
[24:18] RO 7’h 4 CFG_RX_VCR3_NP
H_FC
Number of Flow Control Credits initially
advertised for VCR3 Non-Posted Header. VCR3
must be disabled to write this field.
[17:7] RO 11’h 100 CFG_RX_VCR3_PD_
FC
Number of Flow Control Credits initially
advertised for VCR3 Posted Data. VCR3 must
be disabled to write this field.
[6:0] RO 7’h 4 CFG_RX_VCR3_PH_
FC
Number of Flow Control Credits initially
advertised for VCR3 Posted Headers. VCR3
must be disabled to write this field.
DSH-201010p2 Conexant 135
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.15 Rider Registers: Data Link Layer
These registers are not reset when the link goes down (i.e., when
RDR_LINK_DN_RST_N is asserted).
3.15.1 Data Link Layer Control
3.15.2 Replay Timeout Limits
Register: Reserved Address: 0x50360
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Register: RDR_DLLCTRL Address: 0x50364
Bits Type Default Name Description
[31:10] RO 22‘b0 Reserved
[9:8] RW 2’h 3 CFG_TST_REPLAY_
NUM_CNT
Sets the number of times the Replay Buffer is
replayed before the link is retrained.
[7:1] RO 7‘b0 Reserved
[0:0] RW 1‘b0 CFG_TST_BYP_FLO
W_CTRL
Bypass Flow Control Initialization.
Register: RDR_REPLAYTO Address: 0x50368
Bits Type Default Name Description
[31:20] RO 12’h B2 CFG_REPLAY_TO_U
NADJ
Unadjusted Replay Timer limit. Corresponds to
Table 3-4 of PCI Express Base Specification.
Units are 4 symbol times.
[19:10] RO 10’h 3 CFG_RXL0SADJ_CR
C
Rx_L0s_Adjustment term added to
CFG_REPLAY_TO_UNADJ if L0s is enabled
and common reference clock configuration.
Units are 4 symbol times.
[9:0] RO 10’h 3 CFG_RXL0SADJ_AR
C
Rx_L0s_Adjustment term added to
CFG_REPLAY_TO_UNADJ if L0s is enabled
and non-common reference clock configuration.
Units are 4 symbol times. (Sticky)
136 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.15.3 ACK Latency Timeout Limits
Register: RDR_ACKLATTO Address: 0x5036c
Bits Type Default Name Description
[31:21] RO 11’h 3C CFG_ACKLAT_TO_U
NADJ
Unadjusted Acknowledge Latency Timer limit.
Corresponds to Table 3-5 of PCI Express Base
Specification. Units are 4 symbol times.
[20:17] RO 4‘b0 Reserved
[16:8] RO 9’b1 CFG_P0S2P0_LAT Time for Transmitter to transition from P0s to
P0. Units are 4 symbol times. (Sticky)
[7:0] RO 8‘b0 MAC_TX_N_FTS Number of FTS required to be transmitted when
exiting L0s. Units are 4 symbol times. This value
(x4) is received from the entity on the other side
of the link during link training.
DSH-201010p2 Conexant 137
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.16 Rider Registers: MAC Layer
These registers are not reset when the link goes down (i.e., when
RDR_LINK_DN_RST_N is asserted).
3.16.1 MAC Layer Status 0
Register: RDR_MACSTAT0 Address: 0x50380
Bits Type Default Name Description
[31:16] RO 16‘b0 Reserved
[15:15] RO 1‘b0 MAC_PATTERN_LO
CKED
Indicates when loopback pattern checker
matches the Rx Pattern with the Tx Pattern.
[14:13] RO 2‘b0 Reserved
[12:12] RO 1‘b0 MAC_LINKUP Indicates when link is up.
[11:10] RO 2‘b0 MAC_TXL0S_STATE TxL0s State
[9:8] RO 2‘b0 MAC_RXL0S_STATE RxL0s State
[7:0] RO 8‘b0 MAC_LTSSM_STATE Indicates current state of LTSSM:
00h: Detect.Quiet
01h: Detect.Active
02h: Polling.Active
03h: Polling.Compliance
04h: Polling.Config
05h: Polling.Speed
06h: Config.Linkwidth.Start
07h: Config.Linkwidth.Accept
08h: Config.Lanenum.Wait
09h: Config.Lanenum.Accept
0Ah: Config.Complete
0Bh: Config.Idle
0Ch: Recovery.RcvrLock
0Dh: Recovery.RcvrCfg
0Eh: Recovery.Idle
0Fh: RxL0_TxL0
1Fh: L1.Entry
20h: L1.Idle
21h: L2.Idle
22h: L2.Transmit.Wake
23h: Disabled
30h: Disalbed.Idle
24h: Loopback.Entry
25h: Loopback.Active.Mstr
26h: Loopback.Active.Slv
27h: Loopback.Exit.Mstr
28h: Loopback.Exit.Slv
29h: Hot Reset
138 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.16.2 MAC Layer Control 0
Register: Reserved Address: 0x50384
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Register: RDR_MACCTRL0 Address: 0x50388
Bits Type Default Name Description
[31:24] RW 8’h20 CFG_LB_MSTR_TIM
EOUT
Loopback master timeout. Must receive TS1
ordered set with Loopback bit asserted within
this time. Units are 1ms. Maximum is 100 ms.
[23:20] RW 4’hA CFG_LB_MSTR_DK
SEL
Data (0) or Special (1) Symbol select for
Loopback Master Data Register
[23]: Byte 0
[22]: Byte 1
[21]: Byte 2
[20]: Byte 3
[19:18] RO 2‘b0 Reserved
[17:17] RW 1’b1 CFG_LB_COMPLIAN
CE_EN
1’b1 causes TXCOMPLIANCE to be asserted
for the first symbol of the loopback data pattern.
[16:16] RW 1‘b0 CFG_LB_MSTR_EN Enable Loopback Master mode.
[15:9] RO 7‘b0 Reserved
[8:0] RW 9’h127 CFG_SKP_INS_RAT
E
Skip Insertion Rate. The value of
CFG_SKP_INS_RATE is the number of symbol
times divided by 4 between SKP Ordered Set
Insertion. Recommended values from 295 to
385 (or 1180 to 1538 symbol times). SKP
insertion is disabled if 9’h000 is written to this
register.(Sticky)
DSH-201010p2 Conexant 139
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.16.3 MAC Layer Control 1
3.16.4 MAC Control 2
Register: RDR_MACCTRL1 Address: 0x5038c
Bits Type Default Name Description
[31:25] RO 7‘b0 Reserved
[24:16] RW 9’h190 CFG_TXL0S_TIMEO
UT
Controls the time the MAC waits when no TLPs
or DLLPs need to be transmitted before
transitioning to the TxL0s state. Units are 4
symbol times.
[15:0] RW 16‘b0 CFG_TST_LTSSM_G
OTO_STATE
A set bit forces the LTSSM to the specified
state: [0] = Detect [1] = Polling [2] =
Configuration [3] = L0 (4 SKP Ordered Sets
Transmitted) [15:4] = Reserved
Register: RDR_MACCTRL2 Address: 0x5039
Bits Type Default Name Description
[31:17] RO 15‘b0 Reserved
[16:7] RW 10’h380 CFG_TXL1_TIMEOU
T
Controls the time the MAC waits when no TLPs
or DLLPs need to be transmitted before
transitioning to theL1ASPM state. Units are 4
symbol times.
[6:1] RW 6’h3F CFG_BIST_NUM_TS
1_PA
Number of 16 TS1 Ordered Sets transmitted in
Polling.Active when entering Loopback Master
Mode (CFG_LB_MSTR_EN is 1’b1).
[0:0] RO 1‘b0 CFG_SCRAMBLE_E
N_N
Used in TS1/TS2 Ordered Sets to disable
scrambling at the other end of the link and used
by Rider logic to disable the scrambler. Only
disables scrambling in Configuration State.
Active Low.(Sticky)
140 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.16.5 MAC Loopback Master Data
3.16.6 MAC L0s Exit Latencies
Register: RDR_MAC_LB_DATA Address: 0x50394
Bits Type Default Name Description
[31:24] RW 8’h BC CFG_LB_MSTR_DAT
A
Byte 0 of Loopback Master Data.
[23:16] RW 8’h B5 CFG_LB_MSTR_DAT
A
Byte 1 of Loopback Master Data.
[15:8] RW 8’h BC CFG_LB_MSTR_DAT
A
Byte 2 of Loopback Master Data.
[7:0] RW 8’h 4A CFG_LB_MSTR_DAT
A
Byte 3 of Loopback Master Data.
Register: RDR_L0S_EXIT_LAT Address: 0x50398
Bits Type Default Name Description
[31:30] RO 2‘b0 Reserved
[29:27] RO 3’h 2 L1_EXIT_LAT_CRC L1 ASPMEXIT latency when operating with a
common reference clock
(CFG_COMMON_CLOCK is set).(Sticky)
[26:24] RO 3’h 5 L0S_EXIT_LAT_CRC L0s exit latency when operating with a common
reference clock (CFG_COMMON_CLOCK is
set).(Sticky)
[23:16] RO 8’h 56 CFG_N_FTS_CRC N_FTS when operating with a common
reference clock. This value must be compatible
with l0s_exit_lat_crc.(Sticky)
[15:14] RO 2‘b0 Reserved
[13:11] RO 3’h 2 L1_EXIT_LAT_ARC L1 ASPMEXIT latency when operating with an
asynchronous reference clock
(CFG_COMMON_CLOCK is 1’b0).(Sticky)
[10:8] RO 3’h 5 L0S_EXIT_LAT_ARC L0s exit latency when operating with an
asynchronous reference clock
(CFG_COMMON_CLOCK is 1’b0).(Sticky)
[7:0] RO 8’h 5F CFG_N_FTS_ARC N_FTS when operating with an asynchronous
reference clock. This value must be compatible
with l0s_exit_lat_arc.(Sticky)
DSH-201010p2 Conexant 141
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.17 Audio and Video Core
3.17.1 Serial Slave Registers
3.17.1.1 Host Register 1
Register: HOST_REG1 Address: 0x0
Bits Type Default Name Description
[7:7] RW 1‘b 0 FORCE_CHIP_SEL Override the CHIP_SEL pin for I2C address
decode
0 = Use the CHIP_SEL pin for I2C decode
1 = The I2C chip select signal is forced to a one
regardless of the CHIP_SEL pin
[6:6] RW 1‘b 0 SLV_SI_DIS Control the glitch filters and slew rate control in
the I2C pads to enable a faster speed of
operation
0 = glitch filters and slew rate control enabled
1 = glitch filters and slew rate control disabled
[5:5] RW 1‘b 0 AUTO_INC_DIS Control auto-address increment after each byte
transfer
0 = do the auto-address increment
1 = don’t increment the address
[4:4] RW 1‘b 0 PREFETCH_EN Enable prefetch on reads. Prefetch is
unnecessary unless the interface is operated
many times faster than the typical max speed of
400 kHz. However, enabling prefetch can create
problems when reading FIFOs. The prefetch
operation can pop an entry from a FIFO,
whether or not the transaction actually requests
the byte.
[3:2] RO 2‘b 0 Reserved
[1:1] RW 1‘b 0 DIGITAL_PWR_DN Gate digital clocks (SCLK, VCLK, CLKX5,
IFCLK, BBCLK) (This bit can be configured to
gate down CLK5X or VCLK only. See
POWER_CTRL register.)
0 = don’t gate
1 = hold clocks in high state
[0:0] RW 1‘b 0 SLEEP Put the chip in sleep mode. Gate the digital
clocks and power down the analog circuitry.
(Power down of some analog blocks can be
masked when the SLEEP bit is asserted. See
POWER_CTRL register.)
0 = don’t power down
1 = power down
142 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.17.1.2 Host Register 2
3.17.1.3 Host Register 3
Register: HOST_REG2 Address: 0x1
Bits Type Default Name Description
[7:6] RW 2‘b 1 VREF_PLL_REG Control for PLL supply voltage
[5:5] RW 1‘b 0 PWR_DN_SYS_PLL Power down the SYS PLL
0 = don’t power down
1 = power down
[4:4] RW 1‘b 0 PWR_DN_AUX_PLL Power down the Auxiliary PLL
0 = don’t power down
1 = power down
[3:3] RW 1‘b 0 PWR_DN_VID_PLL Power down the Video Clock PLL
0 = don’t power down
1 = power down
[2:2] RW 1‘b 0 PWR_DN_PLL_REG
2
Powers down the regulator for the auxiliary
clock PLL.
[1:1] RW 1‘b 0 PWR_DN_PLL_REG
1_3
Powers down the regulator for the video clock
PLL and SYS PLL
[0:0] RW 1‘b 0 PWR_DN_DLL Powers down the ADC DLL
0 = don’t power down
1 = power down
Register: HOST_REG3 Address: 0x2
Bits Type Default Name Description
[7:7] RW 1‘b 0 CLK_IN_EN Enables clock from pad to AFE
[6:4] RW 3‘h 7 XTAL_CTRL XTAL amplifier gain
[3:2] RW 2‘b 0 BB_CLK_MODE Controls baseband ADC and PLL reference
clocks.
00=xtal/2
01=xtal
10=clk_28M
11=xtal/2
[1:1] RW 1‘b 0 REF_DIV_PLL Reference clock divider
0=divide by 2
1=no division
[0:0] RW 1‘b 0 REF_SEL_PLL1 Selects PLL1 reference clock.
0= PLL3 divided by 5
1=reference clock
DSH-201010p2 Conexant 143
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.18 Chip Configuration Registers
3.18.1 Baseband Analog Front End and General Chip
Configuration Registers
3.18.1.1 Chip Control
Register: CHIP_CTRL Address: 0x100
Bits Type Default Name Description
[31:30] RW 2‘b 0 CH3_SRC Selects input pin to the analog front end
Channel 3:
00 = Vin7
01 = Vin8
10 = none
11 = none
[29:28] RW 2‘b 0 CH2_SRC Selects input pin to the analog front end
Channel 2:
00 = Vin4
01 = Vin5
10 = Vin6
11 = none
[27:27] RO 1‘b 0 Reserved
[26:24] RW 3‘b 0 CH1_SRC Selects input pin to the analog front end
Channel 1:
000 = Vin1
001 = Vin2
010 = Vin3
011 = Vin4
100 = Vin5
101 = Vin6
110 = Vin7
111 = Vin8
[23:23] RW 1‘b 0 Reserved
[22:21] RO 2‘b 0 Reserved
144 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[20:20] RW 1‘b 1 CHIP_ACFG_DIS Auto-config Disable of chip-level registers.
0 = Allow VID_PLL_INT, VID_PLL_FRAC, and
AFE_CTRL fields to be automatically configured
based on square pixel, video format, and input
mode
1 = Disable auto-config
The following fields in the MODE_CTRL (0x400)
register can trigger an auto-config:
VID_FMT_SEL (or auto-detected format)
SQ_PIXEL INPUT_MODE With or without this
bit set, the registers can always be written by
software. The auto-config hardware only writes
the registers when a change in format is
detected. See AFE Control Auto-config, for
details.
[19:19] RO 1‘b 0 Reserved
[18:18] RW 1‘b 0 DUAL_MODE_ADC2 Select the ADC2 input source
0 = Selection is based on the CH_SEL_ADC2
bit field
1 = Toggle the ADC2 input between Channel 2
and Channel 3 on every ADC sample clock
[17:17] RW 1‘b 0 CH_SEL_ADC2 ADC2 input select.
0 = Channel 2
1 = Channel 3
This bit setting has no effect if the
DUAL_MODE_ADC2 bit is set to 1
[16:16] RW 1‘b 0 SOFT_RST Internal reset
0 = De-assert reset
1 = assert reset
[15:0] RO 16‘b 0 DEVICE_ID Device ID
The AV_CORE device ID will return 0.
DSH-201010p2 Conexant 145
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.18.1.2 Baseband AFE Control
Register: AFE_CTRL Address: 0x104
Bits Type Default Name Description
[31:29] RW 3‘b 0 DROOP_COMP_INP
UT_DIS
Droop Compensation Input Disable.This 3-bit
bus is used to disable the input to the droop
compensation logic for the 3 input channels.
[2] = droop_comp_input_dis_ch3
[1] = droop_comp_input_dis_ch2
[0] = droop_comp_input_dis_ch1
[28:28] RW 1‘b 0 DROOP_POL Polarity control for DROOP_UP output from
droop compensation correction block.
[27:27] RW 1‘b 0 IREF_SEL Reference current resistor
0 = external resistor
1 = on-chip resistor
[26:26] RW 1‘b 1 EXT_GND_CH3 Channel 3 signal ground
0 = internal ground
1 = external ground
[25:25] RW 1‘b 1 EXT_GND_CH2 Channel 2 signal ground
0 = internal ground
1 = external ground
[24:24] RW 1‘b 1 EXT_GND_CH1 Channel 1 signal ground
0 = internal ground
1 = external ground
[23:23] RW 1‘b 0 BYPASS_CH3 Channel 3 anti-alias filter
0 = use
1 = bypass
[22:22] RW 1‘b 0 BYPASS_CH2 Channel 2 anti-alias filter
0 = use
1 = bypass
[21:21] RW 1‘b 0 BYPASS_CH1 Channel 1 anti-alias filter
0 = use
1 = bypass
[20:20] RW 1‘b 0 DROOP_COMP_CH3 Channel 3 input resistance boosting
0 = disable
1 = enable
[19:19] RW 1‘b 0 DROOP_COMP_CH2 Channel 2 input resistance boosting
0 = disable
1 = enable
146 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[18:18] RW 1‘b 1 DROOP_COMP_CH1 Channel 1 input resistance boosting
0 = disable
1 = enable
[17:17] RW 1‘b 0 CLAMP_EN_CH3 Channel 3 clamping
0 = disable
1 = enable (power up)
[16:16] RW 1‘b 0 CLAMP_EN_CH2 Channel 2 clamping
0 = disable
1= enable (power up)
[15:15] RW 1‘b 1 CLAMP_EN_CH1 Channel 1 clamping
0 = disable
1 = enable (power up)
[14:14] RW 1‘b 1 AUD_IN_SEL ADC input Select for Audio input paths:
0 = ADC1 input
1 = ADC2 input
[13:13] RW 1‘b 0 LUMA_IN_SEL ADC input Select for Luma input paths:
0 = ADC1 input
1 = ADC2 input
[12:12] RW 1‘b 1 CHROMA_IN_SEL ADC input Select for Chroma input paths:
0 = ADC1 input
1 = ADC2 input
[11:11] RW 1‘b 1 CLAMP_SEL_CH3 Channel 3 Clamp level:
0 = video decoder drives clamp level
1 = fixed at 3'b111 (midcode clamp)
[10:10] RW 1‘b 1 CLAMP_SEL_CH2 Channel 2 Clamp level:
0 = video decoder drives clamp level
1= fixed at 3'b111 (midcode clamp)
[9:9] RW 1‘b 0 CLAMP_SEL_CH1 Channel 1 Clamp level:
0 = video decoder drives clamp level
1 = fixed at 3'b111 (midcode clamp)
[8:8] RW 1‘b 1 VGA_SEL_CH3 Channel 3 VGA gain:
0 = video decoder drives VGA gain setting
1 = audio decoder drives VGA gain setting
[7:7] RW 1‘b 1 VGA_SEL_CH2 Channel 2 VGA gain:
0 = video decoder drives VGA gain setting
1 = audio decoder drives VGA gain setting
[6:6] RW 1‘b 0 VGA_SEL_CH1 Channel 1 VGA gain:
0 = video decoder drives VGA gain setting
1 = audio decoder drives VGA gain setting
DSH-201010p2 Conexant 147
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[5:5] RW 1‘b 0 HALF_BW_CH3 Channel 3 anti-alias filter bandwidth reduction
0 = no reduction
1 = reduce by half
[4:4] RW 1‘b 0 HALF_BW_CH2 Channel 2 anti-alias filter bandwidth reduction
0 = no reduction
1 = reduce by half
[3:3] RW 1‘b 0 HALF_BW_CH1 Channel 1 anti-alias filter bandwidth reduction
0 = no reduction
1 = reduce by half
[2:2] RW 1‘b 0 EN_12DB_CH3 Channel 3 extra 12 dB gain
0 = disable
1 = enable
[1:1] RW 1‘b 0 EN_12DB_CH2 Channel 2 extra 12 dB gain
0 = disable
1 = enable
[0:0] RW 1‘b 0 EN_12DB_CH1 Channel 1 extra 12dB gain
0 = disable
1 = enable
148 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.18.1.3 Video PLL Integer/Post Divider
3.18.1.4 Video PLL Fractional
Register: VID_PLL_INT_POST Address: 0x108
Bits Type Default Name Description
[31:14] RO 18‘b 0 Reserved
[13:8] RW 6‘h 4 VID_PLL_POST Video PLL Post Divide
Valid values are 2 to 63 (decimal)
PLL clock frequency = FREF * (M + (N / 225)) /
Post Divide
Default Video PLL frequency = 108.000011
MHz. Assuming reference frequency =
28.636363 MHz
[7:6] RO 2‘b 0 Reserved
[5:0] RW 6‘h F VID_PLL_INT Video PLL integer coefficient (M)
Valid values are 8 to 59 (decimal)
PLL clock frequency = FREF * (M + (N / 225)) /
Post Divide
Default value places VCO in safe operating
range.
Register: VID_PLL_FRAC Address: 0x10C
Bits Type Default Name Description
[31:25] RO 7‘b 0 Reserved
[24:0] RW 25‘h 2BE2FE VID_PLL_FRAC Video PLL fractional coefficient (N)
Valid values are 0 to 2^25-1
PLL clock frequency = FREF * (M + (N / 225)) /
Post Divide
Default Video PLL frequency = 108.000011
MHz. Assuming reference frequency =
28.636363 MHz
DSH-201010p2 Conexant 149
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.18.1.5 Auxiliary PLL Integer/Post Divider
3.18.1.6 Auxiliary PLL Fractional
Register: AUX_PLL_INT_POST Address: 0x110
Bits Type Default Name Description
[31:22] RO 10‘b 0 Reserved
[21:16] RW 6‘h A AUX_PLL_POST_B Auxiliary PLL Post Divide B
Valid values are 2 to 63 (decimal)
[15:14] RO 2‘b 0 Reserved
[13:8] RW 6‘h 3 AUX_PLL_POST_A Auxiliary PLL Post Divide A
Valid values are 2 to 63 (decimal)
[7:6] RO 2‘b 0 Reserved
[5:0] RW 6‘h 18 AUX_PLL_INT Auxiliary PLL integer coefficient (M)
Valid values are 8 to 59 (decimal)
Default places VCO in safe operating mode at
powerup
Register: AUX_PLL_FRAC Address: 0x114
Bits Type Default Name Description
[31:25] RO 7‘b 0 Reserved
[24:0] RW 25‘h 1BF0C9D AUX_PLL_FRAC AUX PLL fractional coefficient (N)
(0 to 225 –1)
PLL clock frequency = Crystal frequency * (M +
(N / 225)) / Post Divide
Default is 7680*48e3/28.636363e6
150 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.18.1.7 System PLL Integer/Post Divider
3.18.1.8 System PLL Fractional
Register: SYS_PLL_INT_POST Address: 0x118
Bits Type Default Name Description
[31:14] RO 18‘b 0 Reserved
[13:8] RW 6‘h 5 SYS_PLL_POST SYS PLL Post Divide
Valid values are 2 to 63 (decimal)
PLL clock frequency = Crystal frequency * (M +
(N / 225)) / Post Divide
Typical value is 2
[7:6] RO 2‘b 0 Reserved
[5:0] RW 6‘h 13 SYS_PLL_INT SYS PLL integer coefficient (M)
Valid values are 8 to 59 (decimal)
PLL clock frequency = Crystal frequency * (M +
(N / 225)) / Post Divide
Typical value is 0xA
Register: SYS_PLL_FRAC Address: 0xB11C
Bits Type Default Name Description
[31:25] RW 7‘b 0 Reserved
[24:0] RW 25‘h 14758E5 SYS_PLL_FRAC SYS PLL fractional coefficient (N)
(0 to 225–1)
PLL clock frequency = Crystal frequency * (M +
(N / 225)) / Post Divide
DSH-201010p2 Conexant 151
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.18.1.9 Pin Control
Register: PIN_CTRL Address: 0x120
Bits Type Default Name Description
[31:31] RW 1‘b 0 Reserved
[30:30] RO 1‘b 0 IR_IRQ_STAT Bit is used in OR statement to determine if IRQ
out of AV_CORE is set.
[29:29] RO 1‘b 0 AUD_IRQ_STAT Bit is used in OR statement to determine if IRQ
out of AV_CORE is set.
[28:28] RO 1‘b 0 VID_IRQ_STAT Bit is used in OR statement to determine if IRQ
out of AV_CORE is
[27:26] RO 2‘b 0 Reserved
[25:25] RW 1‘b 0 IRQ_N_OUT_EN Interrupt output enable
[24:24] RW 1‘b 0 IRQ_N_POLAR Interrupt output polarity
[23:22] RW 2‘b 0 I2S_SPD I2S Pad Speed
[21:20] RW 2‘b 0 AGC_SPD AGC_IF/AGC_RF pad speed
[19:18] RW 2‘b 0 IR_SPD IR_TX/IR_RX pad speed
[17:16] RW 2‘b 0 VID_DATA_SPD Video clock and data pad speed
[13:12] RW 2‘b 0 GPIO_SPD GPIO pad speed
[15:14] RW 2‘b 0 VID_CTRL_SPD Video control signals pad speed
[11:11] RW 1‘b 1 AGC_OUT_EN Enable AGC RF and IF outputs
[10:10] RW 1‘b 0 IR_TX_OUT_EN Enable IR transmitter output
[9:9] RW 1‘b 0 VID_DATA_OUT_EN Enable Video Data outputs
[8:8] RW 1‘b 0 VID_CTRL_OUT_EN Enable Video Control signal outputs.
[7:7] RW 1‘b 0 GPIO3_OUT_EN GPIO[3] output enable
[6:6] RW 1‘b 0 GPIO2_OUT_EN GPIO[2] output enable
[5:5] RW 1‘b 0 GPIO1_OUT_EN GPIO[1] output enable
[4:4] RW 1‘b 0 GPIO0_OUT_EN GPIO[0] output enable
[3:0] RW 4‘b 0 GPIO Write GPIO data to pads
Read data at GPIO pads
152 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.18.1.10Audio I/O Control
Register: AUD_IO_CTRL Address: 0x124
Bits Type Default Name Description
[31:8] RO 24‘b 0 Reserved
[7:7] RW 1‘b 0 I2S_PORT_DIR I2S port direction
0 – output
1 – input
[6:6] RW 1‘b 0 I2S_OUT_SRC I2S port source
0 – Audio Decoder
1 – Analog/Digital Converter
When 1 is selected, the I2S pins will be directly
connected to the A/D Converter I2S ports,
providing full 24b I2S data at the A/D Converter
sample rate.
[5:4] RW 2‘b 0 AUD_CHAN3_SRC Audio channel 3 source
00 - Reserved
01 - I2S input
10 – A/D Converter
11 - Reserved
[3:2] RW 2‘b 0 AUD_CHAN2_SRC Audio Channel 2 Source
00 - Parallel 2 (Audio Decoder Parallel2_SRC
out)
01 - I2S input
10 – A/D Converter
11 - Parallel 2 (Audio Decoder Parallel2_SRC
out)
Parallel 2 SRC source controlled by
PARALLEL2_SRC_OUT_SEL in
BAND_OUT_SEL register
[1:0] RW 2‘b 0 AUD_CHAN1_SRC Audio Channel 1 Source
00 - Parallel 1 (Audio Decoder Parallel1_SRC
out)
01 - I2S input
10 – A/D Converter
11 - Parallel 1 (Audio Decoder Parallel1_SRC
out)
Parallel 1 SRC source controlled by
PARALLEL1_SRC_OUT_SEL in
BAND_OUT_SEL register
DSH-201010p2 Conexant 153
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.18.1.11Audio Lock Control 1
3.18.1.12Audio Lock Control 2
Register: AUD_LOCK1 Address: 0x128
Bits Type Default Name Description
[31:30] RW 2‘h 2 AUD_LOCK_KI_SHIF
T
The gain applied to the indirect error path of the
loop filter through a left shift from 0 to 3 bit
positions. This is in addition to a default right
shift. This is used to lock the AUX PLL to the
video pixel rate.
[29:28] RW 2‘h 2 AUD_LOCK_KD_SHI
FT
The gain applied to the direct error path of the
loop filter through a left shift from 0 to 3 bit
positions. This is in addition to a default left shift.
This is used to lock the AUX PLL to the video
pixel rate
[27:25] RO 3‘b 0 Reserved
[24:24] RW 1‘b 0 EN_AV_LOCK Enable locking of AUX_PLL to video pixel rate
[23:0] RW 24‘h 1193F8 VID_COUNT Expected count, minus 1 and times 8, for 8x
video PLL clock when the number of audio
clocks is counted as reflected in AUD_COUNT.
Since this number is in terms of eights of an 8x
pixel clock, more resolution is allowed in
defining the audio/video clock ratio.
Register: AUD_LOCK2 Address: 0x12C
Bits Type Default Name Description
[31:28] RW 4‘b 1 AUD_LOCK_KI_MUL
T
The gain applied to the indirect error path of the
loop filter through an unsigned multiply. This is
used to lock the AUX PLL to the video pixel rate
[27:24] RW 4‘b 1 AUD_LOCK_KD_MU
LT
The gain applied to the direct error path of the
loop filter through an unsigned multiply. This is
used to lock the AUX PLL to the video pixel rate
[23:22] RO 2‘b 0 Reserved
[21:20] RW 2‘h 2 AUD_LOCK_FREQ_SH
IFT
The gain applied to the frequency error
(difference in actual vs. expected counts) before
passing to the loop filter. This is in addition to a
default scaling that occurs. There is a default left
or right shift depending on the length of time
over which the sample is collected, as indicated
by the VID_COUNT field.
[19:0] RW 20‘h 5FFF AUD_COUNT Number of audio sample-rate clocks, minus 1, to
count before examining VID_COUNT.
154 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.18.1.13Power-Down Control
Register: POWER_CTRL Address: 0x130
Bits Type Default Name Description
[31:16] RO 16‘b 0 Reserved
[15:15] RW 1‘b 0 IFCLK_GATE_MSK IFCLK gate mask
0 - DIG_PWR_DN disables IF ADC clock
(IFCLK)
1 – gating of IFCLK inhibited
[14:14] RW 1‘b 0 BBCLK_GATE_MSK BBCLK gate mask
0 - DIG_PWR_DN disables baseband ADC
clock (BBCLK)
1 – gating of BBCLK inhibited
[13:13] RW 1‘b 0 SCLK_GATE_MSK SCLK and I2S_MCLK gate mask
0 - DIG_PWR_DN disables sample clock
(SCLK) and I2S master clock (I2S_MCLK)
1 – gating of SCLK and I2S_MCLK inhibited
[12:12] RW 1‘b 0 CLK5X_GATE_MSK CLK5X gate mask
0 - DIG_PWR_DN disables high-speed audio
clock (CLK5X)
1 – gating of CLK5X inhibited
[11:11] RW 1‘b 0 VCLK_GATE_MSK VCLK gate mask
0 - DIG_PWR_DN disables high-speed video
clock (VCLK)
1 – gating of VCLK inhibited
[10:10] RW 1‘b 0 SLEEP_PLL_MSK PLL sleep mask.
0 - SLEEP powers down PLLs
1 - power down of PLL inhibited
[9:9] RW 1‘b 0 SLEEP_DLL_MSK DLL sleep mask.
0 - SLEEP powers down DLL circuitry
1 - power down inhibited
[8:8] RW 1‘b 0 SLEEP_ANALOG_M
SK
Analog subsystem sleep mask.
0 - SLEEP powers down analog subsystem
1- power down of analog subsystem inhibited
including DLL and PLLs
[7:7] RW 1‘b 0 PWR_DN_CH3 Powers down Channel 3 VGA/filter circuitry.
0 – don’t power down Channel 3
1 - power down Channel 3
DSH-201010p2 Conexant 155
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.18.1.14AFE Diagnostic Control 1
[6:6] RW 1‘b 0 PWR_DN_CH2 Powers down Channel 2 VGA/filter circuitry.
0 – don’t power down Channel 2
1 - power down Channel 2
[5:5] RW 1‘b 0 PWR_DN_CH1 Powers down Channel 1 VGA/filter circuitry.
0 – don’t power down Channel 1
1 - power down Channel 1
[4:4] RW 1‘b 0 PWR_DN_ADC2 Powers down ADC2 circuitry.
0 – don’t power down ADC 2
1 - power down ADC 2
[3:3] RW 1‘b 0 PWR_DN_ADC1 Powers down ADC1 circuitry.
0 – don’t power down ADC 1
1 - power down ADC 1
[2:1] RO 2‘b 0 Reserved
[0:0] RW 1‘b 0 PWR_DN_TUNING Powers down filter tuning circuitry.
0 – don’t power down filter tuning
1 - power down filter tuning
Register: AFE_DIAG_CTRL1 Address: 0x134
Bits Type Default Name Description
[31:31] RW 1‘b 0 DROOP_CAL_CH3 Droop calibrate enable for channel 3.
While high, the droop comp circuit for channel1
will calibrate.
[30:30] RW 1‘b 0 DROOP_CAL_CH2 Droop calibrate enable for channel 2.
While high, the droop comp circuit for channel1
will calibrate.
[29:29] RW 1‘b 0 DROOP_CAL_CH1 Droop calibrate enable for channel 1.
While high, the droop comp circuit for channel1
will calibrate.
[28:28] RW 1‘b 0 DROOP_CAL_CALC_C
H3
Enable for the droop compensation calibration
where the DAC current is calculated. This
particular enable bit applies to channel 3.
[27:27] RW 1‘b 0 DROOP_CAL_CALC_C
H2
Enable for the droop compensation calibration
where the DAC current is calculated. This
particular enable bit applies to channel 2.
[26:26] RW 1‘b 0 DROOP_CAL_CALC_C
H1
Enable for the droop compensation calibration
where the DAC current is calculated. This
particular enable bit applies to channel 1.
[25:20]
RO 6'h 24 Reserved
156 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[19:18]
RW 2'b 1 FILTER_BIAS Digital control for the bias current multiplier
00 = 0.5
01 = 1
10 = 1.5
11 = 2
[17:16] RW 2‘b 1 S2DIFF_BIAS Digital control for the single-ended to differential
converter bias multiplier
00 = 0.75
01 = 1
10 = 1.25
11 = 1.5
[15:15] RW 1‘b 0 Reserved
[14:8] RW 7‘h 18 BIAS_CTRL_ADC Digital control for the reference buffer bias
[14:13]
00 = 50 μA default
01 = 62.5 μA
10 = 37.5 μA
11 = 75.0 μA
MSB comparator current [12:11]
00 = 12.5 μA
01 = 6.25 μA
10 = 25.0 uA
11 = 50.0 μA default
Digital control for REFP and REFM [10]
0 = 1.6 V; 0.8 V default
1 = 1.5 V; 0.9 V
Digital control for ADC bias current. [9:8]
00 = 50.0 μA default
01 = 37.5 μA
10 = 62.5 μA
11 = 75.0 μA
[7:4] RO 4‘b 0 Reserved
[3:3] RW 1‘b 0 VREF_CTRL_ADC Digital control for ADC reference voltage
0 = 1.60 V
1 = 1.20 V
[2:1] RO 2‘b 0 Reserved
[0:0] RW 1‘b 0 FOUR_X_CLK_ADC Choose 4x or 5x DLL output
0 = 5x output
1 = 4x output
DSH-201010p2 Conexant 157
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.18.1.15AFE Diagnostics Control 3
Register: AFE_DIAG_CTRL3 Address: 0x13C
Bits Type Default Name Description
[31:26] RO 6‘b 0 Reserved
[25:25] RW 1‘b 0 AUD_DUAL_FLAG_P
OL
Audio Decoder Dual Flag Polarity
Polarity of DUAL_FLAG signal sent to audio
decoder
0 = non-inverted polarity
1 = inverted polarity
[24:24] RW 1‘b 0 VID_DUAL_FLAG_P
OL
Video Decoder Dual Flag Polarity
Polarity of DUAL_FLAG signal sent to video
decoder
0 = non-inverted polarity
1 = inverted polarity
[23:22] RO 2‘b 0 Reserved
[21:21] RO 1‘b 0 TUNING_READY Filter auto-tuning status
0 = not complete
1 = filter tuning complete
[20:16] RO 5‘b 0 TUNE_OUT The tuning code selected by the auto-tune
algorithm.
[15:15] RW 1‘b 0 FORCE_TUNING Auto-tuning code override
0 = don’t override
1 = forces tuning code to value contained in
TUNE_IN field.
[14:13] RO 2‘b 0 Reserved
[12:8] RW 5‘b 0 TUNE_IN Tuning code to be used when FORCE_TUNING
is set. Overrides the value chosen by auto-
tuning.
[7:4] RO 4‘b 0 Reserved
[3:3] RW 1‘b 0 TEST_MODE_CH1 Disables the filter in CH1 test mode
0 = enable filter
1 = disable filter
[2:2] RO 1‘b 0 DISCONNECT_CH1 Connects the differential analog signal at ADC1
input to pins VIN2 and VIN3
0 = don’t connect
1= connect
[1:1] RW 1‘b 0 CH_SEL_ADC1 ADC1 test mode
0 = connect ADC1 to output of filter
1 = connects ADC1 to the output of first VGA
stage
[0:0] RW 1‘b 0 TUNE_FIL_RST Reset Filter tuning logic.
When 1, filter tuning is reset. When set back to
0, filter will auto-tune itself and after a few clocks
return to normal operation.
158 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.18.1.16PLL Diagnostic Control
Register: PLL_DIAG_CTRL Address: 0x140
Bits Type Default Name Description
[31:31] RW 1‘b 0 PLL_VDD_TEST Routes internally generated PLL supply voltage
to CLK_AUX pad
[30:29] RW 2‘b 0 PLL_TEST_SEL Selects voltage to test
00=regulator 1
01=regulator 2
10= regulator reference
11= reserved
[28:23]
RO 6'h 2A Reserved
[22:22] RW 1‘b 0 SPD_TST_EN Enables Ring oscillator process speed test
circuit
[21:21] RW 1‘b 0 SPD_TST_SEL Selects between 1.2 V oscillator and 3.3 V
oscillator
0 - 1.2 V
1 - 3.3 V
[20:20] RO 1‘b 0 Reserved
[19:19] RO 1‘b 0 SYS_PLL_UNLOCK System PLL unlock detection
0 = no unlock detected
1 = unlock detected
[18:18] RO 1‘b 0 AUX_PLL_UNLOCK Auxiliary PLL unlock detection
0 = no unlock detected
1 = unlock detected
[17:17] RO 1‘b 0 VID_PLL_UNLOCK Video PLL unlock detection
0 = no unlock detected
1 = unlock detected
[16:16] RO 1‘b 0 SYS_PLL_LOCK Sys PLL lock status
0 = unlocked
1 = locked
[15:15] RO 1‘b 0 AUX_PLL_LOCK Auxiliary PLL lock status
0 = unlocked
1 = locked
[14:14] RO 1‘b 0 VID_PLL_LOCK Video PLL lock status
0 = unlocked
1 = locked
DSH-201010p2 Conexant 159
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.18.1.17AFE Clock Out Control
[13:13] RW 1‘b 0 SYS_PLL_RST SYS PLL reset
0 = don’t reset
1 = reset the video PLL
[12:12] RW 1‘b 0 AUX_PLL_RST Audio PLL reset
0 = don’t reset
1 = reset the video PLL
[11:11] RW 1‘b 0 VID_PLL_RST Video PLL reset
0 = don’t reset
1 = reset the auxiliary PLL
[10:10] RW 1‘b 0 SYS_PLL_DDS SYS PLL delta sigma fractional divide
0 = enable
1 = disable
[9:9] RW 1‘b 0 AUX_PLL_DDS Auxiliary PLL delta sigma fractional divide
0 = enable
1 = disable
[8:8] RW 1‘b 0 VID_PLL_DDS Video PLL delta sigma fractional divide
0 = enable
1 = disable
[7:6] RO 2‘b 0 Reserved
[5:0] RW 6‘h 4 PLL_SPMP PLL charge pump current
Register: AFE_CLK_OUT_CTRL Address: 0x144
Bits Type Default Name Description
[31:5] RO 27‘b 0 Reserved
[4:4] RW 1‘b 1 CLK_OUT_MODE AFE clock pad mode 0 = output 1 = input
[3:0] RW 4‘h 5 CLK_OUT_SEL Selects AFE clock pad output source
Register: Reserved Address: 0x148
Bits Type Default Name Description
[31:0] RO 32‘b 0 Reserved
160 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
Register: Reserved Address: 0x14C
Bits Type Default Name Description
[31:0] RO 32‘b 0 Reserved
Register: Reserved Address: 0x150
Bits Type Default Name Description
[31:0] RO 32‘b 0 Reserved
Register: Reserved Address: 0x154
Bits Type Default Name Description
[31:0] RO 32‘b 0 Reserved
Register: Reserved Address: 0x158
Bits Type Default Name Description
[31:0] RO 32‘b 0 Reserved
DSH-201010p2 Conexant 161
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.18.1.18DLL1 Diagnostic Control
3.18.1.19GPIO[23:19] Output Enable
Register: DLL1_DIAG_CTRL Address: 0x15C
Bits Type Default Name Description
[31:31] RW 19‘b 0 DLL1_BYPASS Clock reference for DLL1 (ADC DLL) input from
clock pad rather than crystal input. Overrides
CLK_OUT_MODE.
[30:29] RO 2‘b 0 Reserved
[28:25] RW 4‘b 0 CURRSET Changes current used in DLL
[24:23] RW 2‘b 0 DLYS MSB adds delay in path of reference. LSB
multiplexes the DLL clock out when high.
[22:20] RW 3‘b 0 DEPTH Used in False Lock Detect: increases stability of
decisions in FLD
111:x7 routes DLL output to test pad
110:x6 puts DLL in “fast” lock mode
[19:17] RW 3‘b 3 COMP_LT Used in False Lock Detect: counts this many
pulses in half period to determine up override
[16:14] RW 3‘b 4 COMP_GT Used in False Lock Detect: counts this many
pulses in half period to determine pulse-swallow
[13:11] RW 3‘b 2 CHPREF Chooses between old false-lock detect scheme
and new.
[10:10] RW 1‘b 0 DOWN_OVRD Overrides the down command to PFD
[9:9] RW 1‘b 0 UP_OVRD Overrides the up command to PFD
[8:8] RW 1‘b 1 FLD False Lock Detect mode
[7:0] RO 8‘b 0 Reserved
Register: GPIO2_OUT_EN_REG Address: 0x160
Bits Type Default Name Description
[31:5] RO 27‘b 0 Reserved
[4:0] RW 5‘h 1F GPIO2_OUT_ENABL
E_N
output enable for GPIO[23:19]
1 - normal function
0 – GPIO
GPIO[19] map to IR_RX pin GPIO[20] map to
IR_TX pin GPIO[21] map to I2S_SDAT
GPIO[22] map to I2S_WCLK GPIO[23] map to
I2S_BCLK
162 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.18.1.20GPIO [23:19] Data Registers
3.18.1.21IFADC Control
Register: GPIO2 Address: 0x164
Bits Type Default Name Description
[31:21] RO 11‘b 0 Reserved
[20:16] RO 5‘b 0 GPIO2_IN GPIO [23:19] input register
[15:5] RO 11‘b 0 Reserved
[4:0] RW 5‘b 0 GPIO2_OUT GPIO [23:19] data output registers
Register: IFADC_CTRL Address: 0x180
Bits Type Default Name Description
[31:31] RW 1‘b 0 IF_PWRDN Power down IF ADC
[30:0] RO 31‘b 0 Reserved
DSH-201010p2 Conexant 163
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.19 IR Registers
3.19.1 Infrared Remote registers
3.19.1.1 Control Register
Register: IR_CNTRL_REG Address: 0x200
Bits Type Default Name Description
[31:15] RO 17‘b 0 Reserved
[14:14] RW 1‘b 0 R Receive FIFO load on Timer Overflow Disable
0 = Load Rx FIFO with 1s and RX_DATA_LH
level on timer overflow
1 = Do not load Rx FIFO on timer overflow.
(Shut off when noise occurs but must be turned
back on when a real transmission starts)
[13:13] RW 1‘b 0 LBM Loop Back Mode
0 = Transmit and receive operation functions
normally via the IR port’s pins
1 = The output of the transmit modulation logic
is fed into the input of the receive demodulation
logic internal to the IR port. Transmit pin
continues to reflect transmit data, receive pin is
ignored by the IR receive logic
[31:15] RO 17‘b 0 Reserved
[12:12] RW 1‘b 0 CPL Carrier Polarity (Transmitter Only)
0 = If mod/demodulation enabled, ones
transmitted and received as series of carrier
transitions (mark), zeros transmitted and
received as the absence of a carrier or no
transitions (space). If mod/demodulation
disabled, ones transmitted/received as logic
high, zeros as logic low, and the IR_TX_DATA
PIN is driven low when idle.
1 = If mod/demodulation enabled, ones
transmitted and received as the absence of a
carrier or no transitions (space), zeros
transmitted and received as a series of carrier
transitions (mark). If mod/demodulation
disabled, ones transmitted/received as logic low,
zeros as logic high, and the IR_TX_DATA pin is
driven high when idle.
Note: Receive carrier polarity can be changed
by software. No hardware support for this.
164 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[11:11] RW 1‘b 0 TIC Transmitter Interrupt Control
0 = Transmit FIFO service interrupt/DMA
request asserted when TX FIFO is half full or
less, negated when TX FIFO is more than half
full
1 = Transmit FIFO service interrupt/DMA
request asserted after transmitter becomes idle,
negated when transmitter becomes busy (see
status register below for a description of this
IRQ)
[10:10] RW 1‘b 0 RIC Receiver Interrupt Control
0 = Receive FIFO service interrupt/DMA request
asserted when RX FIFO is half full or greater,
negated when RX FIFO is less than half full.
1 = Receive FIFO service interrupt/DMA request
asserted when RX FIFO is not empty, negated
when RX FIFO is empty.(see status register
below for a description of this interrupt request)
[9:9] RW 1‘b 0 TXE Transmitter Enable
0 = Disable transmitter
1 = Enable transmitter
[8:8] RW 1‘b 0 RXE Receiver Enable
0 = Disable receiver
1 = Enable receiver
[7:7] RW 1‘b 0 TFE Transmit FIFO Enable
0 = Disable and reset transmit FIFO to all zeros
1 = Enable transmit FIFO
[6:6] RW 1‘b 0 RFE Receive FIFO Enable
0 = Disable and reset receive FIFO to all zeros
1 = Enable receive FIFO
[5:5] RW 1‘b 0 MOD Transmit Modulation Enable
0 = Disable transmit carrier modulation, transmit
data as simple logic levels
1 = Enable transmit carrier modulation, transmit
a mark as a burst of IR_TX_DATA pin
transitions, and a space as the absence of
transitions programming the carrier polarity bit
determines whether ones or zeros are encoded
into marks/high or spaces/low
DSH-201010p2 Conexant 165
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[4:4] RW 1‘b 0 DMD Receive Demodulation Enable
0 = Disable receive carrier demodulation,
receive data as simple logic levels
1 = Enable receive carrier demodulation, detect
a mark as a series of RX pin transitions, and a
space as the absence of transitions
programming the carrier polarity bit determines
whether marks/high or spaces/low are decoded
as ones or zeros
[3:2] RW 2‘b 0 EDG Receive Edge Detect Control
00 = Disabled
01 = Falling edges trigger RX filter/pulse timer
start/stop
10 = Rising edges trigger RX filter/pulse timer
start/stop
11 = Either edge trigger RX filter/pulse timer
start/stop The RX low pass filter and pulse width
timer starts/ends a pulse duration measurement
each time the programmed edge on the
demodulated input is detected.
[1:0] RW 2‘b 0 WIN Next Predicted Receive Carrier Edge Window
Limits
00 = Next carrier edge predicted to be 16 RX
clocks -3/+3
01 = Next carrier edge predicted to be 16 RX
clocks -4/+3
10 = Next carrier edge predicted to be 16 RX
clocks -3/+4
11 = Next carrier edge predicted to be 16 RX
clocks -4/+4
Once the first rising edge within a carrier burst is
detected, each subsequent rising-edge should
occur 16 RX clock cycles later, plus or minus the
programmed limits above, transitions out of this
range are not detected.
166 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.19.1.2 Transmit Clock Divider Register
3.19.1.3 Receive Clock Divider Register
3.19.1.4 Transmit Carrier Duty Cycle Register
Register: IR_TXCLK_REG Address: 0x204
Bits Type Default Name Description
[31:16] RO 16‘b 0 Reserved
[15:0] RW 16‘h FFFF TCD Transmit Clock Divider
16-bit value used by the transmit clock down
counter as a modulus value to generate the
transmit clock for the modulator and TX pulse
width timer. Transmit clock counter reloaded any
time this register is written. A value of ‘b00 is not
permitted for the TCD.
Register: IR_RXCLK_REG Address: 0x208
Bits Type Default Name Description
[31:16] RO 16‘b 0 Reserved
[15:0] RW 16‘h FFFF RCD Receive Clock Divider
16-bit value used by the receive clock down
counter as a modulus value to generate the
receive clock for the demodulator and RX pulse
width timer. Receive clock counter reloaded any
time this register is written. A value of ‘b00 is not
permitted for the RCD.
Register: IR_CDUTY_REG Address: 0x20C
Bits Type Default Name Description
[31:4] RO 28‘b 0 Reserved
[3:0] RW 4‘b 0 CDC Transmit Carrier Duty Cycle
0000 = 1 TX clock high and 15 TX clocks low
0001 = 2 TX clocks high and 14 TX clocks low
0010 = 3 TX clocks high and 13 TX clocks low...
1101 = 14 TX clocks high and 2 TX clocks low
1110 = 15 TX clocks high and 1 TX clock low
1111 = 16 TX clocks high and 0 TX clocks low
DSH-201010p2 Conexant 167
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.19.1.5 Status Register
Register: IR_STAT_REG Address: 0x210
Bits Type Default Name Description
[31:6] RO 26‘b 0 Reserved
[5:5] RO 1‘b 0 TSR Transmit FIFO Service Request
0 = If TIC = 0 in IR_CNTL_REG, transmit FIFO
is more than half full. If TIC=1, transmitter is
busy.
1 = IF TIC= 0, transmit FIFO is half full or less. If
TIC= 1, transmitter is idle. Generate an IRQ
request if the TSE mask bit is set in the
IR_IRQEN_REG
[4:4] RO 1‘b 0 RSR Receive FIFO Service Request
0 = If RIC=0 in IR_CNTL_REG, receive FIFO is
less than half full. If RIC=1, receive FIFO is
empty.
1 = IF RIC = 0, receive FIFO is half full or more.
If RIC= 1, receive FIFO is not empty. Generate
an IRQ request if the RSE mask bit is set in the
IR_IRQEN_REG.
[3:3] RO 1‘b 0 TBY Transmitter Busy (non-interruptible)
0 = Transmitter is idle
1 = Transmitter is busy
[2:2] RO 1‘b 0 RBY Receiver Busy (non-interruptible)
0 = Receiver is idle
1 = Receiver is busy
[1:1] RO 1‘b 0 ROR Receive FIFO Overrun
0 = Receive FIFO contains one or more empty
entries or is full but has not experienced an
overrun
1 = Receive FIFO has experienced an overrun,
generate an IRQ request if the ROE mask bit is
set in the IR_IRQEN_REG
Note: When an overrun occurs, data within the
FIFO remains intact, and any new data from the
RX pulse width counter is lost until the FIFO
once again contains one or more empty entries.
[0:0] RO 1‘b 0 RTO Receive Pulse Width Timer Timeout
0 = Receive pulse width counter has not
reached its limit
1 = Receive pulse width counter has reached its
limit (contains all ones), generate an IRQ
request if the RTE mask bit is set in the IR_IRQ.
Note: Cleared by disabling RXE (Rx enable) bit
of the IR_CNTRL_REG.
168 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.19.1.6 Interrupt Enable Register
3.19.1.7 Low Pass Filter Register
Register: IR_IRQEN_REG Address: 0x214
Bits Type Default Name Description
[31:6] RO 16‘b 0 Reserved
[5:5] RW 1‘b 1 TSE Transmit FIFO Service Request Interrupt
Enable
0 = Transmit FIFO/Idle interrupt disabled
1 = Transmit FIFO/Idle interrupt enabled
[4:4] RW 1‘b 1 RSE Receive FIFO Service Request Interrupt Enable
0 = Receive FIFO interrupt disabled
1 = Receive FIFO interrupt enabled
[3:2] RO 2‘b 0 Reserved
[1:1] RW 1‘b 1 ROE Receive FIFO Overrun Interrupt Enable
0 = Receive FIFO overrun interrupt disabled
1 = Receive FIFO overrun interrupt enabled
[0:0] RW 1‘b 1 RTE Receive Pulse Width Timer Time-out Interrupt
Enable
0 = Receive pulse width timer time-out interrupt
disabled
1 = Receive pulse width timer time-out interrupt
enabled
Register: IR_FILTR_REG Address: 0x218
Bits Type Default Name Description
[31:16] RO 16‘b 0 Reserved
[15:0] RW 16‘b 0 LPF Low Pass Filter
Modulus 16-bit value used as a modulus value
to filter out pulses below a minimum width. Filter
counter is reloaded with modulus each time
programmed edge is encountered. Counter
decrements using the host bus clock, if next
edge seen before counter reaches zero, pulse
measurement is discarded. If counter reaches
zero it retains this value until the next edge is
seen. Whenever the counter contains a zero,
pulse measurements are saved to the RX FIFO.
A value of 0x0000 disables the filter function,
and values 0x0001 through 0x0004 are not
permitted.
DSH-201010p2 Conexant 169
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.19.1.8 FIFO Register
Register: IR_FIFO_REG Address: 0x23C
Bits Type Default Name Description
[31:18] RO 14‘b 0 Reserved
[17:17] RO 1‘b 0 RXNDV Receive Next Data Valid
0 = No more data in the RX FIFO
1 = One or more entries of valid data remain in
RX FIFO
[16:16] RW 1‘b 0 IR_RXTXLVL Transmit/Receive Pin Level
Read: Value of demodulated input at end of RX
pulse width measurement
Write: Value to send to modulator for TX pulse
width count output
[15:0] RW 16‘b 0 IR_RXTXFIFO Transmit/Receive Pulse Width Count/
Measurement Value
Read: Bottom entry of the receive FIFO
Write: Top entry of the transmit FIFO
170 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20 Video Decoder Registers
3.20.1 Basic Video Decoder Mode Control
Register: MODE_CTRL Address: 0x400
Bits Type Default Name Description
[31:30] RO 2‘b 0 Reserved
[29:29] RW 1‘b 0 AFD_PAL60_DIS Disable auto-detection of PAL-60 formats.
0 = PAL-60 can be detected and discriminated
from NTSC-443 based on phase alternation
1 = Any 525-line 4.43 format is assumed to be
NTSC-443.
[28:28] RW 1‘b 0 AFD_FORCE_SECA
M
Force SECAM format when 625 lines are
detected.
0 = The Auto-detect algorithm proceeds
normally.
1 = SECAM format is chosen when a 625-line
format is detected.
[27:27] RW 1‘b 0 AFD_FORCE_PALN
C
Force PAL-Nc format when 625 lines are
detected.
0 = The Auto-detect algorithm proceeds
normally.
1 = PAL-Nc is chosen when a 625-line format is
detected.
[26:26] RW 1‘b 0 AFD_FORCE_PAL Force PAL-BG format when 625 lines are
detected.
0 = The Auto-detect algorithm proceeds
normally.
1 = PAL-BG/PAL-N is chosen when a 625-line
format is detected according to the
AFD_PAL_SEL bit.
[25:24] RW 2‘b 0 AFD_PALM_SEL Select PAL-M format when 525-lines and 3.58
carrier is detected.
0 = NTSC will be detected according to the
AFD_NTSC_SEL bit.
1 = PAL-M format is chosen when 525 lines and
a 3.58 carrier are detected.
2 = Enable algorithm to dynamically discriminate
between NTSC-M and PAL-M
[23:22] RO 2‘b 0 Reserved
DSH-201010p2 Conexant 171
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[21:20] RW 2‘b 0 CKILL_MODE Color Kill Mode. Defines how luma output is
generated when color kill is asserted:
0 = Chroma output is forced to zero, and luma
output is generated from normal comb filter
operation (default)
1 = Chroma output is forced to zero, entire
chroma band is notched from luma output. The
comb filter is forced into notch mode 1. (See
COMB_NOTCH_MODE field.)
2 = Black and White mode.Chroma output is
forced to zero, and entire composite signal is
treated as luma. The comb filtered is forced into
notch mode 3. (See COMB_NOTCH_MODE
field.)
[19:18] RO 2‘b 0 Reserved
[17:17] RO 1‘b 0 CLR_LOCK_STAT Clear HLOCK, VLOCK, and CLOCK status bits
[16:16] RW 1‘b 0 FAST_LOCK_MD Active-high fast lock algorithm select. This
register selects between a standard and a fast
vertical locking algorithm. This has two effects:
1. The fast locking algorithm (1’b1) will lock onto
the first VSYNC that it encounters, regardless of
its position. The normal vertical locking
algorithm (1’b0) will look for a sync within an
expected window. If no sync appears during the
next expected window then it will lock onto the
first subsequent incoming VSYNC.
2. The FAST_LOCKING ALGORITHM (1’b1) will
bypass the 8 field hysteresis that is built into the
field detection logic. In this mode as soon as the
even/odd field is detected, the field signal will
reflect the status. When this is disabled (1’b0)
the field detection needs to be stable for 8
consecutive fields before the field signal will
reflect the change.
[15:15] RW 1‘b 1 WCEN White Crush enable
[14:14] RW 1‘b 1 CAGCEN Chroma AGC enable
[13:13] RW 1‘b 1 CKILLEN Chroma killer enable
[12:12] RW 1‘b 1 AUTO_SC_LOCK Auto chroma subcarrier lock speed select.
0 = Manual mode. Lock speed is determined by
MAN_SC_FAST_LOCK.
1 = Auto Mode. When unlocked, chose fast lock
speed. When locked, choose slow speed.
[11:11] RW 1‘b 0 MAN_SC_FAST_LOCK Manual chroma subcarrier lock speed select.
When set, chooses fast lock speed. This bit is a
don’t-care if the AUTO_SC_LOCK bit is set.
172 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[10:9] RW 2‘b 0 INPUT_MODE Signal Input Format:
0 – CVBS
1 – Y/C
2 – Y/ half-rate C
3 – Y/U/V
[8:8] RW 1‘b 0 AFD_ACQUIRE By setting to 1 and then 0, forces the auto
format detect state machine to re-evaluate the
incoming video format and update
AFD_FMT_STAT accordingly.
0 = The auto-detect state machine operates
normally.
1 = Auto-detect state machine soft reset. The
auto-detect state machine is forced back to the
INIT state, and held there until the bit is cleared.
[7:7] RW 1‘b 0 AFD_NTSC_SEL This bit is used by the Auto Format Detect block
to differentiate between NTSC-M and NTSC-J.
0 = NTSC-M
1 = NTSC-J
[6:6] RW 1‘b 0 AFD_PAL_SEL This bit is used by the Auto Format Detect block
to differentiate between PAL-N and PAL-
B,D,G,H,I.
0 = PAL-BDGHI
1 = PAL-N
[5:5] RW 1‘b 0 ACFG_DIS Disable auto-config of registers addressed 0x70
to 0x7F based on format.
[4:4] RW 1‘b 0 SQ_PIXEL Square-pixel mode
[3:0] RW 4‘b 0 VID_FMT_SEL Manual video format select value. This value is
used to force the video decoder into a certain
video format when it is non-zero.
4’b0000 AUTO-DETECT
4’b0001 NTSC-M
4’b0010 NTSC-J
4’b0011 NTSC-4.43
4’b0100 PAL-BDGHI
4’b0101 PAL-M
4’b0110 PAL-N
4’b0111 PAL-NC
4’b1000 PAL-60
4’b1100 SECAM
4’b1101 SECAM-60 [currently not supported]
DSH-201010p2 Conexant 173
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.1 Output Control 1
Register: OUT_CTRL1 Address: 0x404
Bits Type Default Name Description
[31:31] RO 1‘b 0 Reserved
[30:24] RW 7‘b 0 POLAR When bit is set, invert polarity of output.
[0]: VRESET_N
[1]: HRESET_N
[2]: ACTIVE
[3]: FIELD
[4]: CBFLAG
[5]: VACTIVE
[6]: VALID
[23:23] RO 1‘b 0 Reserved
[22:21] RW 2‘b 0 RND_MODE Rounding style for 8b output
00 - standard rounding
01 - rounding controlled by pseudo random
number generator
10 - error diffusion
11 - error diffusion gated with PRNG
[20:20] RW 1‘b 1 VIPCLAMP_EN Clamp luma and chroma data in VIP modes
(i.e., OUT_MODE[1]==1’b1) to 1-254.75.
Affects all output bytes except control codes,
raw data, and ancillary data fields.
[19:19] RW 1‘b 0 VIPBLANK_EN Enable substitution of blanking data during
horizontal and vertical blanking intervals during
VIP modes (i.e., OUT_MODE[1] == 1’b1)
[18:18] RW 1‘b 0 VIP_OPT_AL VIP optional active line enable. In VIP modes,
the transition of the V-bit from 1 to 0 is
determined by either the VBLANK register or
V656BLANK register.
0 = VBLANK
1 = V656BLANK
[17:17] RW 1‘b 0 IDID0_SOURCE Source of IDID0 byte in VIP ancillary data;
0 = IDID0 register
1 = Line Count from VBI Slicer
[16:16] RW 1‘b 0 DCMODE Determines the format of the data count field in
ancillary data in 8-bit mode (MODE10B = 1’b0);
0 = Data Count is number of blocks of 4 UDWs
(with padding)
1 = Data Count is number UDWs
174 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[15:14] RW 2‘b 0 CLK_GATING Select pixel clock gating scheme.
0X = no gating;
10 = gate with valid output;
11 = gate with logical AND of valid and active
outputs
[13:13] RW 1‘b 1 CLK_INVERT When set, the pixel clock output is inverted.
[12:12] RW 1‘b 0 HSFMT Selects width of HRESET_N.
0 = nominal width;
1 = one pixel clock (VOF_PIXCLK) pulse wide
[11:11] RW 1‘b 0 VALIDFMT Valid signal format.
0 = valid indicates nonscaled pixels;
1 = valid is logical AND of nominal valid and
active, where active is controlled by ACTFMT
register.
[10:10] RW 1‘b 1 ACTFMT Active signal format.
0 = active is composite active;
1 = active is horizontal active
[9:9] RW 1‘b 0 SWAPRAW Switch the positioning of the raw samples
between the luma and chroma data paths.
0 = Even samples on chroma; odd samples on
luma;
1 = Odd samples on chroma; even samples on
luma
[8:8] RW 1‘b 1 CLAMPRAW_EN Enable clamping of raw ADC samples to 1-
254.75 when video output format mode uses
control codes
[7:7] RW 1‘b 0 BLUE_FIELD_EN Enable generation of blue field on output when
decoder loses lock.
[6:6] RW 1‘b 0 BLUE_FIELD_ACT Activate blue field on output regardless of
BLUE_FIELD_EN register.
[5:5] RW 1‘b 1 TASKBIT_VAL Task bit value in VIP 2.0 mode.
[4:4] RW 1‘b 1 ANC_DATA_EN Enable Ancillary Data Insertion for BT.656 or
VIP modes.
[3:3] RW 1‘b 0 VBIHACTRAW_EN Enables raw data output during the horizontal
active region of the vertical blanking interval
[2:2] RW 1‘b 0 MODE10B Selects either 8-bit or 10-bit output for 4:2:2
Luma and Chroma output.
0 = Luma and Chroma Output are rounded to 8
bits;
1 = Luma and Chroma Output have 10 bits of
resolution
[1:0] RW 2‘b 1 OUT_MODE Sets video output format:
00 = ITU-R BT.601 coded video Synchronous
Pixel Interface (SPI);
01 = ITU-R BT.656 control codes
10 = VIP 1.1 control codes
11 = VIP 2.0 control codes
DSH-201010p2 Conexant 175
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.2 Output Control 2
Register: OUT_CTRL2 Address: 0x408
Bits Type Default Name Description
[31:30] RW 2‘b 0 AUD_GRP This field indicates the Audio group that
particular data flow belongs to.
2’b00: Audio Group1
2’b01: Audio Group2
2’b10: Audio Group3
2’b11: Audio Group4
[29:28] RW 2‘b 0 SAMPLE_RATE This indicates the sampling rate of the audio
data available for insertion in the FIFOs.
2’b00: 48 kHz
2’b01: 44.1 kHz
2’b10: 32 kHz
2’b11: Reserved
[27:27] RW 1‘b 0 AUD_ANC_EN This bit enables audio ancillary data
insertion.This bit along with the respective
enables for the FIFO will enables data
insertion.For example, to enable FIFO_A data
insertion, AUD_ANC_EN has to be 1’b1 and
EN_A has to be 1’b1.
[26:26] RW 1‘b 0 EN_C This bit enables data insertion from the FIFO_C
in the VOF into the output stream.
[25:25] RW 1‘b 0 EN_B This bit enables data insertion from the FIFO_B
in the VOF into the output stream
[24:24] RW 1‘b 0 EN_A This bit enables data insertion from the FIFO_A
in the VOF into the output stream
[23:20] RO 4‘b 0 Reserved
[19:18] RW 2‘b 0 IDID1_LSB Value for IDID1byte in VIP ancillary data.([1:0]
are used for enabling 10-bit mode.)
[17:16] RW 2‘b 0 IDID0_LSB Value for IDID0 byte in VIP ancillary data.([1:0]
are used for enabling 10-bit mode.)
[15:8] RW 8‘h 80 IDID1_MSB Value for IDID1 byte in VIP ancillary data.([9:2]
are used in 8-bit mode.)
[7:0] RW 8‘b 0 IDID0_MSB Value for IDID0 byte in VIP ancillary data.([9:2]
are used in 8-bit mode.)
176 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.3 General Status
Register: GEN_STAT Address: 0x40C
Bits Type Default Name Description
[31:24] RO 8‘b 0 Reserved
[23:23] RO 1‘b 0 VCR_DETECT VCR detection status
[22:22] RO 1‘b 0 SPECIAL_PLAY_N Special Play mode. Active-low special play
mode (fast forward, rewind, pause or slow
motion). This is used to disable certain
algorithms when not in a normal play mode.
Special play mode is assumed when the
detected VSYNC falls outside of a narrow 2 line
expected window.
[21:21] RO 1‘b 0 VPRES Active-high video present. Indication of the
presence of a reasonable video signal, one that
we can lock onto horizontally or both
horizontally & vertically. If VPRES_VERT_EN =
0 then VPRES is dependant upon the location of
the last 32 HSYNC pulses relative to their
expected location. If VPRES_VERT_EN = 1
then VPRES is dependant upon both the
location of the last 16 VSYNC pulses and the
last 32 HSYNC pulses relative to their expected
locations.
[20:20] RO 1‘b 0 AGC_LOCK VGA lock status
[19:19] RO 1‘b 0 CSC_LOCK Color Subcarrier lock status
[18:18] RO 1‘b 0 VLOCK Vertical lock status
[17:17] RO 1‘b 0 SRC_LOCK Sample Rate Converter lock Status
[16:16] RO 1‘b 0 HLOCK Horizontal lock status
[15:15] RO 1‘b 0 VSYNC_N Vertical sync, active low
[14:14] RO 1‘b 0 SRC_FIFO_UFLOW Sample Rate Converter FIFO Underflow
[13:13] RO 1‘b 0 SRC_FIFO_OFLOW Sample Rate Converter FIFO Overflow
[12:12] RO 1‘b 0 FIELD Field status (even/odd)
[11:8] RO 4‘b 1 AFD_FMT_STAT Current detected Format
[7:7] RO 1‘b 0 MV_TYPE2_PAIR Macrovision Type 2 pair detected
[6:6] RO 1‘b 0 MV_T3CS A 1 indicates the presence of type 3 of the color
stripe process. A one here always triggers 1 in
the MV_CS bit.
DSH-201010p2 Conexant 177
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.4 Interrupt Status and Mask
[5:5] RO 1‘b 0 MV_CS Macrovision Color Striping Detected
[4:4] RO 1‘b 0 MV_PSP Macrovision Pseudo Sync Pulses detected
[3:2] RO 2‘b 0 Reserved
[1:0] RO 2‘b 0 MV_CDAT Macrovision Copy Control Bits as described in
the Macrovision spec. This an encoding of the
same information that is contained in MV_CS,
MV_T3CS, and MV_PSP.
Register: INT_STAT_MASK Address: 0x410
Bits Type Default Name Description
[31:31] RO 1‘b 1 Reserved
[30:30] RW 1‘b 1 WSS_DAT_AVAIL_M
SK
When set, WSS_DAT_AVAIL_STAT is masked
from generating an interrupt.
[29:29] RW 1‘b 1 GS2_DAT_AVAIL_MS
K
When set, GS2_DAT_AVAIL_STAT is masked
from generating an interrupt.
[28:28] RW 1‘b 1 GS1_DAT_AVAIL_MS
K
When set, GS1_DAT_AVAIL_STAT is masked
from generating an interrupt.
[27:27] RW 1‘b 1 CC_DAT_AVAIL_MS
K
When set, CC_DAT_AVAIL_STAT is masked
from generating an interrupt.
[26:26] RW 1‘b 1 VPRES_CHANGE_M
SK
When set, VPRES_CHANGE_STAT is masked
from generating an interrupt.
[25:25] RW 1‘b 1 MV_CHANGE_MSK When set, MV_CHANGE_STAT is masked from
generating an interrupt.
[24:24] RW 1‘b 1 END_VBI_EVEN_MS
K
When set, END_VBI_EVEN_STAT is masked
from generating an interrupt.
[23:23] RW 1‘b 1 END_VBI_ODD_MSK When set, END_VBI_ODD_STAT is masked
from generating an interrupt.
[22:22] RW 1‘b 1 FMT_CHANGE_MSK When set, FMT_CHANGE_STAT is masked
from generating an interrupt.
[21:21] RW 1‘b 1 VSYNC_TRAIL_MSK When set, VSYNC_TRAIL_STAT is masked
from generating an interrupt.
[20:20] RW 1‘b 1 HLOCK_CHANGE_M
SK
When set, HLOCK_CHANGE_STAT is masked
from generating an interrupt.
178 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[19:19] RW 1‘b 1 VLOCK_CHANGE_M
SK
When set, VLOCK_CHANGE_STAT is masked
from generating an interrupt.
[18:18] RW 1‘b 1 CSC_LOCK_CHANGE
_MSK
When set, CSC_LOCK_CHANGE_STAT is
masked from generating an interrupt.
[17:17] RW 1‘b 1 SRC_FIFO_UFLOW_M
SK
When set, SRC_FIFO_UFLOW_STAT is
masked from generating an interrupt.
[16:16] RW 1‘b 1 SRC_FIFO_OFLOW_M
SK
When set, SRC_FIFO_OFLOW_STAT is
masked from generating an interrupt.
[15:15] RO 1‘b 0 Reserved
[14:14] RO 1‘b 0 WSS_DAT_AVAIL_S
TAT
VBI FIFO for Wide-Screen-Signaling has data
(not empty)
[13:13] RO 1‘b 0 GS2_DAT_AVAIL_ST
AT
VBI FIFO for Gemstar 2X has data (not empty)
[12:12] RO 1‘b 0 GS1_DAT_AVAIL_ST
AT
VBI FIFO for Gemstar 1X has data (not empty)
[11:11] RO 1‘b 0 CC_DAT_AVAIL_STA
T
VBI FIFO for Closed Caption has data (not
empty)
[10:10] RO 1‘b 0 VPRES_CHANGE_S
TAT
A change in the VPRES (video present) status
bit sets this bit.
[9:9] RO 1‘b 0 MV_CHANGE_STAT A change in the MV_CDAT field sets this bit.
[8:8] RO 1‘b 0 END_VBI_EVEN_ST
AT
The end of the VBI region of an even field sets
this bit.
[7:7] RO 1‘b 0 END_VBI_ODD_STA
T
The end of the VBI region of an odd field sets
this bit.
[6:6] RO 1‘b 0 FMT_CHANGE_STA
T
A change in the detected video format sets this
bit.
[5:5] RO 1‘b 0 VSYNC_TRAIL_STAT The falling edge of the detected VSYNC sets
this bit.
[4:4] RO 1‘b 0 HLOCK_CHANGE_S
TAT
A change in the horizontal lock status sets this
bit.
[3:3] RO 1‘b 0 VLOCK_CHANGE_S
TAT
A change in the vertical lock status sets this bit.
[2:2] RO 1‘b 0 CSC_LOCK_CHANGE_
STAT
A change in the Color Subcarrier Lock status
sets this bit.
[1:1] RO 1‘b 0 SRC_FIFO_UFLOW_S
TAT
The detection of a SRC FIFO Underflow sets
this bit.
[0:0] RO 1‘b 0 SRC_FIFO_OFLOW_S
TAT
The detection of a SRC FIFO Overflow sets this
bit.
DSH-201010p2 Conexant 179
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.5 Luma Data Path Control
Register: LUMA_CTRL Address: 0x414
Bits Type Default Name Description
[31:24] RO 8‘b 0 Reserved
[23:22] RW 2‘b 0 LUMA_CORE_SEL Luma coring threshold select. This value
determines the cutoff threshold for the luma
coring logic.
2’b00 = no coring
2’b01 = coring threshold set to +/- 16
2’b10 = coring threshold set to +/- 32
2’b11 = coring threshold set to +/- 64As a result,
any pixel value between the selected threshold
limits will result in 0.
[21:20] RW 2‘b 0 RANGE Selects the allowed luma output range. This
allows the user to select between three possible
output ranges.
2’b00 = range: 64 – 1016 Nominal 656 range
with excursions allowed up to 1016.
2’b01 = range: 4 – 1016 Nominal 656 range with
excursions allowed up to 1016 and down to 4.
2’b1x = range: 0 – 1023 Full-range.
[19:19] RO 1‘b 0 Reserved
[18:18] RW 1‘b 0 PEAK_EN Peaking enable
[17:16] RW 2‘b 0 PEAK_SEL Select for peaking filter response (reg). This
value selects from the four available peaking
filter responses.
2’b00 = +2.0 dB response @ center freq
2’b01 = +3.5 dB response @ center freq
2’b10 = +5.0 dB response @ center freq
2’b11 = +6.0 dB response @ center freq
[15:8] RW 8‘h 80 CNTRST Contrast multiply value. This value is a 1.7
number that is multiplied by the luma level to
produce an adjusted luma signal. The resulting
range of the contrast multiplication factor is 0 to
1.996.
[7:0] RW 8‘b 0 BRITE Brightness offset. This value is effectively an
offset that is added to the luma signal to
produce a brighter output.
180 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.6 Horizontal Scaling Control
3.20.1.7 Vertical Scaling Control
Register: HSCALE_CTRL Address: 0x418
Bits Type Default Name Description
[31:26] RO 6‘b 0 Reserved
[25:24] RW 2‘b 0 HFILT Low pass filter select. This is used in the
LUMA_LPF block to determine which of the
three filters or the auto mode should be used.
2’b00 Auto Mode
2’b01 CIF
2’b10 QCIF
2’b11 ICON
[23:0] RW 24‘b 0 HSCALE Horizontal Scaling Ratio (HSCALE = (scaling
ratio–1)*220).
Register: VSCALE_CTRL Address: 0x41C
Bits Type Default Name Description
[31:25] RO 6‘b 0 Reserved
[24:24] RW 1‘b 0 LINE_AVG_DIS PAL line average disable.
0 = PAL line averaging is enabled. Adjacent
lines are averaged together to produce output
lines. (default)
1 = PAL line averaging is disabled.
[23:20] RO 4‘b 0 Reserved
[19:19] RW 1‘b 1 VS_INTRLACE VS Interlace Format. The initial output phase
must alternate if the scaled images are to be
interlaced.
0 = Non-interlace VS
1 = Interlace VS
DSH-201010p2 Conexant 181
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.8 Chroma Data Path Control
[18:16] RW 3‘b 0 VFILT These bits control the number of taps in the
Vertical Scaling Filter. The number of taps must
be chosen in conjunction with the horizontal
scale factor to ensure the needed data does not
overflow the internal FIFO.
vfilt[1:0]
Interpolation
00 = 2-tap interpolation.(*)
01 = 3-tap interpolation.(**)
10 = 4-tap interpolation.(***)
11 = 5-tap interpolation.(***)
vfilt[2] - Reserved
(*) Available at all resolutions
(**) Available if scaling to less than 385
horizontal active pixels
(***) Available if scaling to less than 193
horizontal active pixels
[15:13] RO 3‘b 0 Reserved
[12:0] RW 13‘b 0 VSCALE Vertical Scaling Ratio (VSF = 216 – (scaling ratio
- 1)*29)
Register: CHROMA_CTRL Address: 0x420
Bits Type Default Name Description
[31:30] RO 2‘b 0 Reserved
[29:29] RW 1‘b 1 C_LPF_EN Enables chroma low pass filter in chroma
processing block
[28:26] RW 3‘b 0 CHR_DELAY Chroma Delay. A signed number representing
the number of pixels the chroma is delayed
relative to the luma. A value of 0 matches the
luma to chroma. Valid values are:
110 = –2
111 = –1
000 = 0
001 = +1
010 = +2
others = 0
[25:24] RW 2‘b 0 C_CORE_SEL Chroma coring select.
00 = no coring
01 = +/– 7
10 = +/– 15
11 = +/– 31
[23:16] RW 8‘b 0 HUE Hue adjust.
[15:8] RW 8‘h 80 VSAT Saturation adjust for V chroma.
[7:0] RW 8‘h 80 USAT Saturation adjust for U chroma.
182 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.9 VBI Line Data Type Control 1
Register: VBI_LINE_CTRL1 Address: 0x424
Bits Type Default Name Description
[31:24] RW 8‘b 0 VBI_MD_LINE4 4th VBI line data type
[23:16] RW 8‘b 0 VBI_MD_LINE3 3rd VBI line data type
[15:8] RW 8‘b 0 VBI_MD_LINE2 2nd VBI line data type
[7:0] RW 8‘b 0 VBI_MD_LINE1 1st VBI line data type
Lines are numbered relative to first line after
VSYNC, which is line 10 for 525-line standards
and line 6 for 625-line standards. The
VBI_VOFFSET field is added to these lines to
determine the 1st VBI line. (VBI_VOFFSET is by
default 0 for 525-line standards, and 1 for 625-
line standards.)The mode consists of 4 bits as
listed below. The most significant nibble is used
for the odd field and the least significant nibble
is used for the even field.
525 line modes:
0000 = no VBI data slicing
0001 = WST525-B
0010 = WST525-C (NABTS)
0011 = WST525-D (Moji)
0100 = WSS525
0101 = VITC525
0110 = CC525
0111 = Gemstar 1x
1000 = Gemstar 2x
1010 = Custom VBI1
1011 = Custom VBI2
1100 = Custom VBI3
625 line modes:
0000 = no VBI data slicing
0001 = WST625-B
0010 = WST625-A
0011 = RESERVED
0100 = WSS625
0101 = VITC625
0110 = CC625
1000 = RESERVED
1001 = VPS
1010 = Custom VBI1
1011 = Custom VBI2
1100 = Custom VBI3
DSH-201010p2 Conexant 183
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.10VBI Line Data Type Control 2
3.20.1.11VBI Line Data Type Control 3
3.20.1.12VBI Line Data Type Control 4
Register: VBI_LINE_CTRL2 Address: 0x428
Bits Type Default Name Description
[31:24] RW 8‘b 0 VBI_MD_LINE8 8th VBI line data type
[23:16] RW 8‘b 0 VBI_MD_LINE7 7th VBI line data type
[15:8] RW 8‘b 0 VBI_MD_LINE6 6th VBI line data type
[7:0] RW 8‘b 0 VBI_MD_LINE5 5th VBI line data type
Register: VBI_LINE_CTRL3 Address: 0x42C
Bits Type Default Name Description
[31:24] RW 8‘b 0 VBI_MD_LINE12 12th VBI line data type
[23:16] RW 8‘b 0 VBI_MD_LINE11 11th VBI line data type
[15:8] RW 8‘b 0 VBI_MD_LINE10 10th VBI line data type
[7:0] RW 8‘b 0 VBI_MD_LINE9 9th VBI line data type
Register: VBI_LINE_CTRL4 Address: 0x430
Bits Type Default Name Description
[31:24] RW 8‘b 0 VBI_MD_LINE16 16th VBI line data type
[23:16] RW 8‘b 0 VBI_MD_LINE15 15th VBI line data type
[15:8] RW 8‘b 0 VBI_MD_LINE14 14th VBI line data type
[7:0] RW 8‘b 0 VBI_MD_LINE13 13th VBI line data type
184 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.13VBI Line Data Type Control 5
3.20.1.14VBI Frame Code Config
Register: VBI_LINE_CTRL5 Address: 0x434
Bits Type Default Name Description
[31:8] RO 24‘b 0 Reserved
[7:0] RW 8‘b 0 VBI_MD_LINE17 17th VBI line data type
Register: VBI_FC_CFG Address: 0x438
Bits Type Default Name Description
[31:24] RW 8‘b 0 FC_ALT2 Alternate frame code used when VBIMODE
matches FC_ALT2_TYPE.
[23:16] RW 8‘b 0 FC_ALT1 Alternate frame code used when VBIMODE
matches FC_ALT1_TYPE.
[15:12] RW 4‘b 0 FC_ALT2_TYPE When this field matches the VBIMODE setting
for a particular line, the FC_ALT2 frame code is
used instead of the default frame code
associated with a given auto-config mode. This
allows using an alternate frame code for any
given auto-config mode.
[11:8] RW 4‘b 0 FC_ALT1_TYPE When this field matches the VBIMODE setting
for a particular line, the FC_ALT1 frame code is
used instead of the default frame code
associated with a given auto-config mode. This
allows using an alternate frame code for any
given auto-config mode.
[7:1] RO 7‘b 0 Reserved
[0:0] RW 1‘b 0 FC_SEARCH_MODE Frame Code Search Mode. Allows dynamic
search for frame code:
0 = Frame code match is declared only if frame
code (start code, data run-in) is found at
expected bit position.
1 = Frame code match is declared upon
discovering the first bit sequence that matches
the expected pattern.The second option
(FC_SEARCH_MODE = 1) only works for
common frame code lengths of 3, 8, 12, 16, and
24.
DSH-201010p2 Conexant 185
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.15VBI Miscellaneous Config1
Register: VBI_MISC_CFG1 Address: 0x43C
Bits Type Default Name Description
[31:20] RW 12‘h FFF TTX_PKTADRU Teletext packet address upper limit for packet
filtering purposes, enabled when
VBIx_TTX_MODE = 1.
[19:8] RW 12‘b 0 TTX_PKTADRL Teletext packet address lower limit for packet
filtering purposes, enabled when
VBIx_TTX_MODE = 1.
[7:6] RO 2‘b 0 Reserved
[5:5] RW 1‘b 0 MOJI_PACK_DIS Moji Packing Disable.
0 = WST525, System D formats cause the
decoder to extract the first 6 bits for the first byte
packet. The subsequent bit stream is packed
into standard byte packets.
1 = The WST525, System D bit stream is
packed into byte packets in a normal fashion.
[4:4] RW 1‘b 0 VPS_DEC_DIS VPS bi-phase decode disable.
0 = VPS formats are decoded based on a two-
bit bi-phase pattern
1 = Raw slice bits are transmitted.
[3:2] RW 2‘b 1 CRI_MARG_SCALE Clock run-in margin scale. Used to loosen or
tighten lock criteria for clock run-in.
0 = Divide default timing margin by 2.
1 = Use default timing margin.
2 = Multiply default timing margin by 2.
3 = Multiply default timing margin by 4.
[31:20] RW 12‘h FFF TTX_PKTADRU Teletext packet address upper limit for packet
filtering purposes, enabled when
VBIx_TTX_MODE = 1.
[1:1] RW 1‘b 1 EDGE_RESYNC_EN Enable dynamic timing resynchronization based
on edge detection.
0 = Sample point timing is determined by initial
edge synchronization during clock run-in
1 = Sample point timing is re-synchronized upon
detecting any edge during data pattern.
[0:0] RW 1‘b 0 ADAPT_SLICE_DIS Disable adaptive slice level.
0 = Slice level comes from averaging points in
clock run-in
1 = Slice level is set to pre-determined level
based on mode.
186 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.16VBI Miscellaneous Config2
Register: VBI_MISC_CFG2 Address: 0x440
Bits Type Default Name Description
[31:28] RO 4‘b 0 Reserved
[27:24] RW ‘b0 HAMMING_TYPE When this field matches the VBIMODE setting
for a particular line, hamming comparison is
enabled for that type. Leave this field at 4’h0 to
disable the feature. When enabled, the least-
significant four bits of the framing code are used
for hamming comparison.
[23:20] RO 4‘b 0 Reserved
[19:19] RW 1b 0 WSS_FIFO_RST When = 1, reset WSS payload FIFO.
[18:18] RW 1‘b 0 GS2_FIFO_RST When = 1, reset Gemstar2x payload FIFO.
[17:17] RW 1‘b 0 GS1_FIFO_RST When = 1, reset Gemstar1x payload FIFO.
[16:16] RW 1‘b 0 CC_FIFO_RST When = 1, reset Closed Caption/XDS payload
FIFO.
[15:12] RO 4‘b 0 Reserved
[11:8] RW 4‘h C VBI3_SDID SDID to use when VBI_CUST3 data type is
selected.
[7:4] RW 4‘h B VBI2_SDID SDID to use when VBI_CUST3 data type is
selected.
[3:0] RW 4‘h A VBI1_SDID SDID to use when VBI_CUST1 data type is
selected.
DSH-201010p2 Conexant 187
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.17VBI Payload 1
3.20.1.18VBI Payload 2
Register: VBI_PAY1 Address: 0x444
Bits Type Default Name Description
[31:24] RO 8‘b0 GS1_FIFO_DAT Gemstar1x payload data.Data pointer advanced
after reading this byte.
[23:16] RO 8‘b0 GS1_STAT See description of CC_STAT byte,
[15:8] RO 8‘b0 CC_FIFO_DAT CC/XDS payload data.Data pointer advanced
after reading this byte.
[7:0] RO 8‘b0 CC_STAT Generic payload status format:
Bit 7 – PARERR
0 – No parity error detected
1 – Parity error detected
Bit 6 - FF
0 – FIFO not full
1 – FIFO full
Bit 5 – DA
0 – FIFO is empty
1 – One or more bytes available for read
Bit 4 - CC/XDS
0 – CC byte (odd field)
1 – XDS byte (even field)
Bits 3-2 – RESERVED
Bits 1-0 - BYTE_NUM
BYTE_NUM describes byte number within a
field. For payloads larger than four, the number
will wrap.
00 – byte 1
01 – byte 2
02 – byte 3
03 – byte 4
Register: VBI_PAY2 Address: 0x448
Bits Type Default Name Description
[31:24] RO 8‘b0 WSS_FIFO_DAT Wide Screen Signalling payload data.Data
pointer advanced after reading this byte.
[23:16] RO 8‘b0 WSS_STAT See description of CC_STAT byte. (PARERR
will be held at 0.)
[15:8] RO 8‘b0 GS2_FIFO_DAT Gemstar2x payload data.Data pointer advanced
after reading this byte.
[7:0] RO 8‘b0 GS2_STAT See description of CC_STAT byte.
188 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.19VBI Custom Mode 1, Config1
3.20.1.20VBI Custom Mode 1, Config2
Register: VBI_CUST1_CFG1 Address: 0x44C
Bits Type Default Name Description
[31:31] RO 1‘b0 Reserved
[30:24] RW 7‘h2c VBI1_CRIWIN Specifies the time window during which edge
detection (positive and negative) is inhibited.
This window is based on the clock run-in
frequency. Avoids spurious edges from being
detected.VBI1_CRIWIN = 4 * PIXEL_RATE *
CLOCK_RUNIN_HALF_PERIOD * war; war =
window ratio, portion of cycle to inhibit detection;
[23:20] RW 4‘b1 VBI1_SLICE_DIST Slice level sample distance. Controls how often
samples are taken for the adaptive slice level
routine. Distance is defined in terms of 1/8 of a
bit period time, where the bit period is defined by
bit INC. The parameter describes the number of
points where samples are NOT taken.
Therefore, to take one sample every four points,
put three in this field.
[19:8] RW 12‘h99 VBI1_BITINC Value used to increment 14-bit counter
measures the bit sample rate. A bit is sampled
when the 14-bit counter rolls over. The bit
sample rate defines the rate at which the
waveform is sampled during the payload. For bi-
phase encoding modes, this sampling rate
should be set to six times the effective bit rate.
VBI1_BITINC = 214 / ((4 * PIXEL_RATE) / bit
SAMPLE_RATE)
[7:0] RW 8‘h70 VBI1_HDELAY Delay from internal HRESET signal to start of
Clock Run-in in number of pixel clock
cycles.VBI1_HDELAY = (HDELAY (us)*
PIXEL_RATE (MHz)) – 13.
Register: VBI_CUST1_CFG2 Address: 0x450
Bits Type Default Name Description
[31:29] RO 3‘b0 Reserved
[28:24] RW 5‘h3 VBI1_FC_LENGTH Number of start bits (or frame code bits)
[23:0] RW 24‘b1 VBI1_FRAME_CODE Start code bit pattern in transmission order
DSH-201010p2 Conexant 189
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.21VBI Custom Mode 1, Config3
Register: VBI_CUST1_CFG3 Address: 0x454
Bits Type Default Name Description
[31:31] RW 1‘b0 VBI1_HAM_EN Enable hamming comparison for framing
comparison when this bit is set. When set,
VBI1_FRAME_CODE[3:0] are used for
hamming comparison.
[30:28] RW 3‘h2 VBI1_FIFO_MODE Determines which payload FIFO is loaded.
000 = Don’t load to payload FIFO
001 = Load to Gemstar 1x FIFO
010 = Load to CC FIFO011 = Load to WSS
FIFO
100 = Load to Gemstar 2x FIFO
190 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[27:24] RW 4‘h6 VBI1_FORMAT_TYP
E
Specifies basic VBI decoding model. Find the
standard format which most closely matches the
intended format, and program this field to match
the type field encoding specified in the
VBI_MD_LINEX registers. Special operating
modes are enabled based on the format type as
described below:
Format type
# of lines
Feature
0000
n.a.
No special features currently defined
0101, 1010, 0011
n.a.
Teletext – enable packet address filter
0011
525
Enable Moji style byte alignment – first six bits
go into separate byte packet
0100
525
Wide-screen-signaling – assume signal includes
single sync pulse, and no frame code.
0100
625
Wide-screen-signaling – implement WSS625-
style bi-phase decoding
0101
n.a
VITC – assume sync pulses every 8 bits
0110, 0111, 1000
n.a.
Closed caption – assume 50 IRE signal
amplitude
1001
n.a.
VPS - implement VPS-style bi-phase decoding
[23:16] RW 8‘h8 VBI1_PAYLD_LENGT
H
Number of data bits to be captured, divided by
two. If N is the number of bits in the payload,
program this register with N/2.
DSH-201010p2 Conexant 191
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.22VBI Custom Mode 2, Config1
[15:12] RW 4‘hC VBI1_CRI_LENGTH Number of clock run-in edges expected in the
CRI period. This does not include the edge that
transitions into the frame or start code, and this
is an N-1 parameter. For example, in a teletext
waveform with 16 bit periods and 16 edges,
program 4'hF in this register. For closed caption
with 6.5 bit periods, but 13 edges, program
4'hC.This number is both used to specify the
point at which to begin looking for the frame
code, and to measure the elapsed time to
determine frequency lock. (See
VBI1_CRI_TIME and VBI1_CRI_MARGIN.)
[11:8] RW 4‘h4 VBI1_CRI_MARGIN This field specifies the margin around
vbi1_cri_time in which the measured time of the
Clock Run-in period can fall. See vbi1_cri_time.
This is in units of eights of the bit period defined
by vbi1_bitinc.
[7:0] RW 8‘hD VBI1_CRI_TIME Expected time period of Clock Run-in period in
terms of halves of the bit period specified in
vbi1_bitinc. The algorithm detects the number of
edges specified in vbi1_cri_length and
compares the elapsed time with this parameter.
If the result is within vbi1_cri_margin of this
parameter, then the waveform is decoded.
Register: VBI_CUST2_CFG1 Address: 0x458
Bits Type Default Name Description
[31:31] RO 1‘b0 Reserved
[30:24] RW 7‘h54 VBI2_CRIWIN See descriptions for VBI_CUST1_CFG
equivalent.
[23:20] RW 4‘b0 VBI2_SLICE_DIST See descriptions for VBI_CUST1_CFG
equivalent.
[19:8] RW 12‘h88 VBI2_BITINC See descriptions for VBI_CUST1_CFG
equivalent.
[7:0] RW 8‘h77 VBI2_HDELAY See descriptions for VBI_CUST1_CFG
equivalent.
192 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.23VBI Custom Mode 2, Config2
3.20.1.24VBI Custom Mode 2, Config3
Register: VBI_CUST2_CFG2 Address: 0x45C
Bits Type Default Name Description
[31:29] RO 3‘b0 Reserved
[28:24] RW 5‘b0 VBI2_FC_LENGTH See descriptions for VBI_CUST1_CFG
equivalent.
[23:0] RW 24‘b0 VBI2_FRAME_CODE See descriptions for VBI_CUST1_CFG
equivalent.
Register: VBI_CUST2_CFG3 Address: 0x460
Bits Type Default Name Description
[31:31] RW 1‘b0 VBI2_HAM_EN See descriptions for VBI_CUST1_CFG
equivalent.
[30:28] RW 3‘h3 VBI2_FIFO_MODE See descriptions for VBI_CUST1_CFG
equivalent.
[27:24] RW 4‘h4 VBI2_FORMAT_TYP
E
See descriptions for VBI_CUST1_CFG
equivalent.
[23:16] RW 8‘hA VBI2_PAYLD_LENGT
H
See descriptions for VBI_CUST1_CFG
equivalent.
[15:12] RW 4‘h1 VBI2_CRI_LENGTH See descriptions for VBI_CUST1_CFG
equivalent.
[11:8] RW 4‘h4 VBI2_CRI_MARGIN See descriptions for VBI_CUST1_CFG
equivalent.
[7:0] RW 8‘h2 VBI2_CRI_TIME See descriptions for VBI_CUST1_CFG
equivalent.
DSH-201010p2 Conexant 193
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.25VBI Custom Mode 3, Config1
3.20.1.26VBI Custom Mode 3, Config2
Register: VBI_CUST3_CFG1 Address: 0x464
Bits Type Default Name Description
[31:31] RO 1‘b0 Reserved
[30:24] RW 7hb6 VBI3_CRIWIN See descriptions for VBI_CUST1_CFG
equivalent.
[23:20] RW 4‘h3 VBI3_SLICE_DIST See descriptions for VBI_CUST1_CFG
equivalent.
[19:8] RW 12‘h6CA VBI3_BITINC See descriptions for VBI_CUST1_CFG
equivalent.
[7:0] RW 8‘h6E VBI3_HDELAY See descriptions for VBI_CUST1_CFG
equivalent.
Register: VBI_CUST3_CFG2 Address: 0x468
Bits Type Default Name Description
[31:29] RO 3‘b0 Reserved
[28:24] RW 5‘h8 VBI3_FC_LENGTH See descriptions for VBI_CUST1_CFG
equivalent.
[23:0] RW 24‘hE7 VBI3_FRAME_CODE See descriptions for VBI_CUST1_CFG
equivalent.
194 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.27VBI Custom Mode 3, Config3
3.20.1.28Horizontal Timing Control
Register: VBI_CUST3_CFG3 Address: 0x46C
Bits Type Default Name Description
[31:31] RW 1‘b0 VBI3_HAM_EN See descriptions for VBI_CUST1_CFG
equivalent.
[30:28] RW 3‘b0 VBI3_FIFO_MODE See descriptions for VBI_CUST1_CFG
equivalent.
[27:24] RW 4‘h2 VBI3_FORMAT_TYP
E
See descriptions for VBI_CUST1_CFG
equivalent.
[23:16] RW 8‘h84 VBI3_PAYLD_LENGT
H
See descriptions for VBI_CUST1_CFG
equivalent.
[15:12] RW 4hbF VBI3_CRI_LENGTH See descriptions for VBI_CUST1_CFG
equivalent.
[11:8] RW 4‘h6 VBI3_CRI_MARGIN See descriptions for VBI_CUST1_CFG
equivalent.
[7:0] RW 8‘h20 VBI3_CRI_TIME See descriptions for VBI_CUST1_CFG
equivalent.
Register: HORIZ_TIM_CTRL Address: 0x470
Bits Type Default Name Description
[31:24] RW 8‘h5B BGDEL_CNT Burst gate delay. The last four clocks of this
period are used to generate the window during
which the color burst is sampled. It is the delay,
in pixel clocks, between the leading edge of
HSYNC and the center of the color burst, plus
two. The additional two clocks will center the
four-clock burst accumulate window in the
center of the burst.
[23:22] RO 2‘b0 Reserved
[21:12] RW 10‘h2D0 HACTIVE_CNT Horizontal active region duration. It is the
number of pixels in the active region of the line.
[11:10] RO 2‘b0 Reserved
[9:0] RW 10‘h7A HBLANK_CNT Horizontal blanking delay. It is number of pixels
between the leading edge of HSYNC and the
start of active video
DSH-201010p2 Conexant 195
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.29Vertical Timing Control
3.20.1.30Sample Rate Convert and Comb Filter
Register: VERT_TIM_CTRL Address: 0x474
Bits Type Default Name Description
[31:24] RW 8‘h18 V656BLANK_CNT Vertical blanking for 656 output. Determines the
timing of the internal v656blank signal. It allows
us to control the v-bit transition in the 656 output
independently of the VBLANK signal seen by
the rest of the chip. The counter starts 12 half-
lines before the expected trailing edge of
VRESET. Thus it must = VBLANK_CNT + ‘b04
to have VBANK and v656blank line up.
[23:22] RO 2‘b0 Reserved
[21:12] RW 10‘h1E7 VACTIVE_CNT Vertical active region duration. It is the number
of half lines in the vertical active region. This
register is only valid when the reg override bit is
set.
[11:10] RO 2‘b0 Reserved
[9:0] RW 10h‘14 VBLANK_CNT Vertical blanking interval. Determines the start
of the internal VBLANK signal. It is the number
of half lines between the trailing edge of
VRESET and the start of active video.
Register: SRC_COMB_CFG Address: 0x478
Bits Type Default Name Description
[31:31] RO 1‘b1 Reserved
[30:30] RW 1‘b1 CCOMB_3LN_EN Enables the adaptation algorithm to choose the
3 line chroma comb.
[29:29] RW 1‘b1 CCOMB_2LN_EN Enables the adaptation algorithm to choose the
2-line chroma comb.
[28:27] RW 2‘b0 Reserved
[26:26] RW 1‘b1 LCOMB_3LN_EN Enables the adaptation algorithm to choose the
3 line luma comb.
[25:25] RW 1‘b1 LCOMB_2LN_EN Enables the adaptation algorithm to choose the
2-line luma comb.
[24:24] RW 1‘b0 Reserved
196 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[23:22] RW 2‘b1 LUMA_LPF_SEL Selects Luma low-pass filter bandwidth:0 low
(~600 kHz),1 medium (~1 MHz)2 high
(~1.5MHz)3 reserved
[21:20] RW 2‘b1 UV_LPF_SEL Selects U/V low-pass filter bandwidth:0 low
(~600 kHz),1 medium (~1 MHz)2 high
(~1.5MHz)3 reserved
[19:10] RW 10‘h8 Reserved
[9:0] RW 10‘h21F SRC_DECIM_RATIO Default phase increment (N = 256 * Fin/Fpix).Fin
= ADC sampling frequency. Fpix = pixel rate
(should be consistent with SQUARE_PIXEL
setting.)
DSH-201010p2 Conexant 197
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.31Chroma Config and VBI Offset
3.20.1.32Field Counter
Register:
CHROMA_VBIOFF_CFG
Address: 0x47C
Bits Type Default Name Description
[31:29] RO 3‘b0 Reserved
[28:24] RW 5‘b0 VBI_VOFFSET The offset in lines from VRESET to enable the
VBI Slicer to capture data.
[23:20] RO 4‘b0 Reserved
[19:0] RW 20‘h87C1F SC_STEP Chroma subcarrier DTO step size,
Fsc/Fpix* 221
where Fsc = subcarrier frequency, and Fpix =
pixel rate. However, the pixel rate used in this
calculation should be based on the exact pixel
rate that is defined in the SRC_DECIM_RATIO
field of the SRC_COMB_CFG register above:
(Fpix = 256/SRC_DECIM_RATIO * Fin).
[Note: this does not imply that the effective pixel
rate is only as accurate as this equation. This
equation just determines the initial pixel rate,
which will then be fine-tuned to achieve the
exact ratio. However, the initial subcarrier
frequency must be based on the initial pixel
rate.]
Register: FIELD_COUNT Address: 0x480
Bits Type Default Name Description
[31:10] RO 22‘b0 Reserved
[9:0] RO 10‘b0 FIELD_COUNT Counts fields continuously, and wraps around
when it reaches the max count of ‘b3FF. It is
reset to zero by writing to either byte.
198 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.33Miscellaneous Timing Control
Register: MISC_TIM_CTRL Address: 0x484
Bits Type Default Name Description
[31:30] RW 2‘b1 DEBOUNCE_COUNT Number of consecutive fields of detected video
format stability required before switching video
formats. This period is provided to help prevent
us from erroneously switching detected formats
due to noise or other very short term errors.
2’b00: 2 consecutive fields of stability
2’b01: 4 consecutive fields of stability
2’b10: 8 consecutive fields of stability
2’b11: 16 consecutive fields of stability
[29:28] RW 2‘b0 VT_LINE_CNT_HYS
T
Number of consecutive fields with approximately
525/2 or 625/2 lines before changing the
detected line count, VT_LINE_CNT, input to the
auto format detect state machine.
2’b00: 2 consecutive fields with approximately
525/2 or 625/2 lines
2’b01: 4 consecutive fields with approximately
525/2 or 625/2 lines
2’b10: 8 consecutive fields with approximately
525/2 or 625/2 lines
2’b11: 16 consecutive fields with approximately
525/2 or 625/2 lines
[27:16] RO 12‘b0 Reserved
[15:15] RW 1‘b0 VPRES_VERT_EN Enable for the vertical portion of the video
present logic. When enabled, the VPRES logic
reflects when the video is both locked vertically
and horizontally. Otherwise the VPRES reflects
the horizontal locking only.
[14:12] RO ‘b0 Reserved
[11:11] RW 1‘b0 HR32 This bit controls the width of the HRESET
output.A logic 1 indicates a 32 clock wide
HRESET while a logic 0 indicates that HRESET
is 64 clocks wide.
[10:10] RW 1‘b0 TDALGN Aligns start of decimation with even or odd field.
0 – start on odd field
1 – start on even field
[9:9] RW 1‘b0 TDFIELD This signal is an indication of whether the
temporal decimation is done on a frame (0) or
field (1) basis.
[8:6] RO 3‘b0 Reserved
[5:0] RW 6‘b0 TEMPDEC This signal is the control for the temporal
decimation logic. This value is the number of
fields or frames to discard out of 50 (625/50) or
60 (525/60). This value should not exceed 60 for
a 60 Hz system or 50 for a
50 Hz system.
DSH-201010p2 Conexant 199
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.34DFE Control 1
3.20.1.35DFE Control 2
Register: DFE_CTRL1 Address: 0x488
Bits Type Default Name Description
[31:31] RW 1‘b1 CLAMP_AUTO_EN Analog clamp setting is tied to VGA gain
[30:30] RW 1‘b1 AGC_AUTO_EN AGC enable
0 = freeze/manual
1 = auto mode
[29:29] RW 1‘b1 VGA_CRUSH_EN ADC overflow protection enable (decreases
VGA_SYNC if ADC overflows)
[28:28] RW 1‘b1 VGA_AUTO_EN VGA enable (0 = freeze/manual, 1 = auto mode)
[27:27] RW 1‘b1 VBI_GATE_EN Enable gating of back porch updates during
vertical blanking interval
[26:24] RW 3‘b0 CLAMP_LEVEL Analog clamp setting (if CLAMP_AUTO_EN = 0)
[23:20] RO 4'h 2 Reserved
[19:8] RW 12‘h100 AGC_GAIN R/W register for AGC digital gain (can be written
when AGC_AUTO_EN = 0)
[7:6] RO 2‘b0 Reserved
[5:0] RW 6‘h20 VGA_GAIN R/W register for VGA gain (can be written when
VGA_AUTO_EN = 0)
Register: DFE_CTRL2 Address: 0x48C
Bits Type Default Name Description
[31:24] RO 8‘b0 Reserved
[23:16] RW 8‘h10 VGA_ACQUIRE_RA
NGE
Maximum error of sync height before declaring
VGA lock
[15:8] RW 8‘h40 VGA_TRACK_RANG
E
Minimum error of sync height before losing VGA
lock
[7:0] RW 8‘hDC VGA_SYNC Sync pulse height out of ADC (VGA_SYNC =
2N)
200 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.36DFE Control 3
3.20.1.37PLL Loop Filter Control
Register: DFE_CTRL3 Address: 0x490
Bits Type Default Name Description
[31:24] RW 8‘hCD BP_PERCENT Percent of line expected to be above or equal to
backporch threshold. Used in sync slicing
algorithm for initial sync location.
[23:16] RW 8‘h3F DFT_THRESHOLD Correlator threshold for SC detect (threshold =
256 * setting)
[15:12] RO 4‘b0 Reserved
[11:10] RW 2‘b0 SYNC_WIDTH_SEL Selects minimum sync width used to qualify
sync detection
2'b00 - 40 sample clocks
2'b01 - 32 sample clocks
2'b1X - Minimum sync width controlled by VCR
detect status. When a VCR is detected,
minimum sync width is 32, otherwise 40
[9:8] RW 2‘b2 BP_LOOP_GAIN Backporch level detect control loop gain = 2^n /
4
[7:6] RW 2‘b2 SYNC_LOOP_GAIN Sync level detect control loop gain = 2^n / 4
[5:4] RO 2‘b0 Reserved
[3:2] RW 2‘b2 AGC_LOOP_GAIN AGC control loop gain = 2^n / 1024
[1:0] RW 2‘b2 DCC_LOOP_GAIN Backporch clamp control loop gain = 2^n / 4
Register: PLL_CTRL Address: 0x494
Bits Type Default Name Description
[31:24] RW 8‘h 16 PLL_KD PLL control loop direct gain = 1/2n
[23:16] RW 8‘h 1F PLL_KI PLL control loop indirect gain = 1/2(n+11)
[15:0] RW 16‘h 300 PLL_MAX_OFFSET Video PLL maximum adjustment offset =29 *
PLL_MAX_OFFSET
DSH-201010p2 Conexant 201
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.38Horizontal Timing Loop Control
Register: HTL_CTRL Address: 0x498
Bits Type Default Name Description
[31:20] RO 12‘b 0 Reserved
[19:19] RW 1‘b 0 AUTO_LOCK_SPD Enables automatic loop filter speed control.
[18:18] RW 1‘b 0 MAN_FAST_LOCK Enables fast loop speed if AUTO_LOCK_SPD is
not set.
[17:17] RW 1‘b 0 HTL_15K_EN Enables the 15 kHz digital PLL line locking
algorithm.
[16:16] RW 1‘b 0 HTL_500K_EN Enables the 500 kHz LPF data to be used for
locking (CVBS only).
[15:8] RW 8‘h 20 HTL_KD Horizontal Tracking Loop direct gain = 1/2n
[7:0] RW 8‘h 40 HTL_KI Horizontal Tracking Loop indirect gain = 1/2n
Register: COMB_CTRL Address: 0x49C
Bits Type Default Name Description
[31:24] RW 8‘h20 COMB_PHASE_
LIMIT
Comb filter is enabled when the burst phase
difference between adjacent lines is measured
to be less than this limit. The phase difference is
measured by taking the burst phase of the
current line and subtracting it from the phase of
a vertically aligned burst sample points in the
previous lines, allowing for the expected phase
shift. Lack of alignment shows that there is too
much horizontal jitter to enable comb filter.
[23:16] RW 8‘h50 CCOMB_ERR_LIMIT Maximum comb error before falling back to
notch filter mode.
[15:8] RW 8‘b0 LUMA_THRESHOLD Minimum chroma amplitude before using luma
comb filter.
[7:0] RW 8‘h14 LCOMB_ERR_LIMIT Maximum comb error before falling back to
complimentary filter mode.
202 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.39White Crush Control
Register: CRUSH_CTRL Address: 0x4A0
Bits Type Default Name Description
[31:23] RO 9‘b0 Reserved
[22:22] RW 1‘b0 WTW_EN Active-high enable for the white crush whiter-
than-white peak threshold.1’b0 = 100 IRE peak
threshold1’b1 = 110 IRE peak threshold
[21:21] RW 1‘b0 CRUSH_FREQ White Crush Adjust frequency. This bit is used
to determine whether to perform the white crush
adjustments on a field or frame basis(0=field
rate, 1=frame rate)
[20:20] RW 1‘b0 MAJ_SEL_EN Enables adaptive majority select logic
[19:18] RW 2‘h3 MAJ_SEL White crush majority comparison point select
bits. This value is the intensity threshold that the
white crush logic compares each pixel to in
order to determine if the majority of the image is
too dark.2’h0 ¾ maximum luma2’h1 ½
maximum luma2’h2 ¼ maximum luma2’h3
Automatic
[17:15] RO 3‘b0 Reserved
[14:9] RW 6‘b1 SYNC_TIP_REDUCE White crush decrement value. This value is the
step amount that the sync height can be
decreased by the white crush logic on any
single adjustment.
[8:6] RO 3‘b0 Reserved
[5:0] RW 6‘hF SYNC_TIP_INC Sync tip increment value. This value is the step
amount that the sync height can be increased
by the white crush logic on any single
adjustment.
DSH-201010p2 Conexant 203
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.40Soft Reset Control
Register: SOFT_RST_CTRL Address: 0x4A4
Bits Type Default Name Description
[31:16] RO 16‘b0 Reserved
[15:15] RW 1‘b0 VD_SOFT_RST Video Decoder Soft Reset.Resets video
decoder core, pending mask bits for each
module.
[14:12] RO 3‘b0 REG_SOFT_RST Masks soft reset for Register module.
[11:11] RW 1‘b0 REG_RST_MSK Masks soft reset for Video Output Formatter
module.
[10:10] RW 1‘b0 VOF_RST_MSK Masks soft reset for Macrovision Detect module.
[9:9] RW 1‘b0 MVDET_RST_MSK Masks soft reset for VBI Slicer module.
[8:8] RW 1‘b0 VBI_RST_MSK Masks soft reset for Scaling module.
[7:7] RW 1‘b0 SCALE_RST_MSK Masks soft reset for Chroma Data Path module.
[6:6] RW 1‘b0 CHROMA_RST_MSK Masks soft reset for Register module.
[5:5] RW 1‘b0 LUMA_RST_MSK Masks soft reset for Luma Data Path module.
[4:4] RW 1‘b0 VTG_RST_MSK Masks soft reset for Video Timing Generator
module.
[3:3] RW 1‘b0 YCSEP_RST_MSK Masks soft reset for YC Separation module.
[2:2] RW 1‘b0 SRC_RST_MSK Masks soft reset for Sample Rate Converter
module.
[1:1] RW 1‘b0 DFE_RST_MSK Masks soft reset for Digital Front End module.
[0:0] RO 1‘b0 Reserved
Register: Reserved Address: 0x4A4–0x4B0
Bits Type Default Name Description
[31:0] RO 326‘b0 Reserved
204 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.20.1.41Version ID
Register: VERSION Address: 0x4B4
Bits Type Default Name Description
[31:8] RO 24‘b0 Reserved
[7:0] RO 8‘h4 REV_ID Revision ID. The initial value is set to 8’h01. This
refers to the revision of the video decoder core
only, and should not be confused with the chip-
level revision ID.
Register: Reserved Address: 0x4B8
Bits Type Default Name Description
[31:0] RO ‘b0 Reserved
DSH-201010p2 Conexant 205
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.20.1.42VBI Passthrough Control
Register: VBI_PASS_CTRL Address: 0x4BC
Bits Type Default Name Description
[31:22] RO 10‘b0 Reserved
[21:21] RW 1‘b0 VBI_PASS_MD Enable special passthrough mode processing of
VBI line according to the PASS_LINE_CTRL
field. These special pass through modes allow
an encoder to reproduce VBI data waveforms
and test signals by processing the output of the
video decoder:
0 = Y/C separation operates in normal adaptive
comb filter mode on all lines equally.
1 = First 20 lines following VSYNC (VRESET)
are processed according to special pass-
through modes described in
PASS_LINE_CTRL.
[20:20] RW 1‘b0 VBI_SETUP_DIS Disable the luma-decoding path from
subtracting the setup or pedestal during VBI
lines. This bit is a don’t-care for video formats
that do not contain a pedestal. This bit allows
the proper decoding of VBI data waveforms and
video test signals that contain levels below the
pedestal.
206 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[19:0] RW 20‘b0 PASS_LINE_CTRL On a line-by-line basis, selects the method for
encoding the waveform in the VBI. Each line is
controlled by it’s own bit in the vector. This
control will extend into the beginning of the
active region to control out Closed Caption lines
are processed. The lines that are within the VBI
are processed as follows:
0 = Y/C Separation operates in chroma
notch mode – output of chroma bandpass filter
is sent to chroma path, and subtracted from the
luma path.
1 = Y/C Separation operates in Black & White
mode – all input bandwidth is sent to luma path,
none to chroma path.
Lines inside the active region are processed as
follows:
0 = Y/C Separation operates in normal
adaptive comb filter mode
1 = Y/C Separation operates in Black &
White mode.
The line control starts at the first line after vsync
(vreset), which is line 10 for 525 line modes, and
line 6 for 625-line modes. The correspondence
between the individual bits of pass_line_ctrl and
the field line numbers is shown below.
Register: Reserved Address: 0x4C0
Bits Type Default Name Description
[31:0] RO 32‘b0 Reserved
Bit Line, 525-line mode Line, 625-line
mode
010 6
111 7
212 8
19 29 25
DSH-201010p2 Conexant 207
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21 Audio Decoder Registers
3.21.1 8051 Configuration
Register: DL_CTL Address: 0x800
Bits Type Default Name Description
[31:29] RO 3‘b 0 Reserved
[28:28] RW 1‘b 0 START_8051 0 – 8051 is stopped
1 – 8051 is running
[27:27] RW 1‘b 0 DL_ENABLE Download Enable
[26:26] RW 1‘b 0 DL_AUTO_INC Increment Mode
0 = Increment on Write
1 = Increment on Read
[25:24] RW 2‘b 0 DL_MAP Memory Map Mode
[23:16] RW 8‘b 0 DL_DATA_CTL Refer to Audio Decoder spec. for operation
Control data port for 8051 code download
[15:0] RW 16‘b 0 DL_ADDR Address byte for 8051 code download
Only Byte access guarantees correct operation.
Refer to Audio Decoder Spec. for operation
208 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.21.2 Format Detection and Subcarrier Monitoring
Register: STD_DET_STATUS Address: 0x804
Bits Type Default Name Description
[31:24] RO 8‘b0 SPARE_STATUS1 Spare Status Register for future use
[23:16] RO 8‘b0 SPARE_STATUS0 Spare Status Register for future use
[15:8] RO 8‘b0 MOD_DET_STATUS1 Detected audio standard
0x00: Mono
0x01: Stereo
0x02: Dual
0x04: Tri
0x10: SAP
[7:0] RO 8‘b0 MOD_DET_STATUS0 Detected audio standard
0x00: BTSC
0x01: EIAJ
0x02: A2 M
0x03: A2 BG
0x04: A2 DK1
0x05: A2 DK2
0x06: A2 DK3
0x07: A1 I
0x08: AM L
0x09: NICAM BG
0x0A: NICAM DK
0x0B: NICAM I
0x0C: NICAM L
0x0D: BTSC/EIAJ/A2 M mono
0xFF: undefined
DSH-201010p2 Conexant 209
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.3 User Preference
Register: STD_DET_CTL Address: 0x808
Bits Type Default Name Description
[31:28] RW 4‘b0 SPARE_CTL0 Spare Control Register for future use
[27:27] RW 1‘b0 TUNER_OUTPUT_F
ORMAT
0 – 2nd IF
1 – AF
[26:26] RW 1‘b0 FORMAT_65MHZ 0 – system DK
1 – system L
[25:24] RW 2‘b0 FORMAT_45MHZ 00 – BTSC
01 – EIAJ
10 – A2 M
[23:23] RO 1‘b0 DIS_DBX DBX processing is disabled by bond option
[22:22] RO 1‘b0 DIS_BTSC BTSC processing is disabled by bond option
[21:21] RO 1‘b0 DIS_NICAM_A2 NICAM/A2 processing is disabled by bond
option
[20:20] RO 1‘b0 VIDEO_PRESENT Video present signal from video decoder
[19:16] RO 4‘b0 DW8051_VIDEO_FOR
MAT
Detected video format by video decoder
[15:14] RW 2‘b0 FM_DEVIATION 00 – Normal FM
01 – High deviation FM – up to 360 kHz
10 – Very high deviation FM – up to 540 kHz
[13:13] RW 1‘b0 DE_EMPHASIS_TIM
E
0 – 75 de-emphasis
1 – 50 de-emphasis
[12:12] RW 1‘b0 MUTE_NO_PREF_MO
DE
1 – Mute output if the preferred mode is not
available
[11:8] RW 4‘b0 PREF_MODE 0: Mono1 – Whatever is the currently broadcast
audio format, force to mono channel, L+R for
BTSC and EIA-J, FM1 for A2 or FM/AM for
NICAM.
1: Mono2 – language B
2: Mono3 – NICAM stereo forced mono
3: Mono4 – language C
4: Stereo
5: Dual1 – language A/C
6: Dual2 – language B/C
7: Dual3 – language A/B
210 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[7:4] RW 4‘b0 AUD_STANDARD 0: BTSC
1: EIAJ
2: A2 M
3: A2 BG
4: A2 DK1
5: A2 DK2
6: A2 DK3
7: A1 I
8: AM L
9: NICAM BG
A: NICAM DK
B: NICAM I
C: NICAM L
D: FM radio
F: Automatic standard detection
DSH-201010p2 Conexant 211
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[3:0] RW 4‘b0 AUD_MODE Force audio mode: NOTE: (Applicable for
AUD_STANDARD = 0to E)
0: MONO1 (LANGUAGE A/Mono L+R channel
for BTSC,EIAJ,A2))
1: MONO2 (LANGUAGE B)
2: MONO3 (STEREO forced MONO)
3: MONO4 (NICAM ANALOG)
4: STEREO
5: DUAL1 (AB)
6: DUAL2 (AC)(FM)
7: DUAL3 (BC)(FM)
8: DUAL4 (AC)(AM)
9: DUAL5 (BC)(AM)
A: SAP
Audio system: NOTE: (Applicable for
AUD_STANDARD = F)
0: BG (Auto-detect NICAM BG/A2-BG,
Autodetect Mode)
1: DK1 (Auto-detect NICAM DK/A2-DK1, check
FM_DEVIATION, Auto-detect Mode)
2: DK2 (Auto-detect NICAM DK/A2-DK2, Auto-
detect Mode)
3: DK3 (Auto-detect NICAM DK/A2-DK3, Auto-
detect Mode)
4: I (Auto-detect NICAM I/A1, Auto-detect
Mode)
5: L (Auto-detect NICAM L/AM-L, Auto-detect
Mode)
6:BTSC (check TUNER_OUTPUT_FORMAT,
Auto-detect Mode)
7: EIAJ (Auto-detect Mode)
8: A2-M (Auto-detect Mode)
9:FM Radio (check
TUNER_OUTPUT_FORMAT, check
DE_EMPHASIS_TIME, Auto-detect Mode)
F: Automatic standard and mode detection,
except for FM Radio and AF standards
212 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.21.4 8051 Interrupt
Register: DW8051_INT Address: 0x80C
Bits Type Default Name Description
[31:31] RO 1‘b0 VIDEO_PRESENT_C
HANGE
1 – video present status changed
[30:30] RO 1‘b0 VIDEO_CHANGE 1 – Video format changed
0 – No
[29:29] RO 1‘b0 RDS_READY 1 – RDS data ready interrupt asserted
0 – RDS data ready interrupt negated
[28:28] RO 1‘b0 Reserved
[27:27] RO 1‘b0 NICAM_BIT_ERROR
_TOO_HIGH
1 – Nicam bit error rate too high interrupt
asserted
0 – Nicam bit error rate too high interrupt
negated
[26:26] RO 1‘b0 NICAM_LOCK NICAM change to locked
1 – change happened
0 – No change
[25:25] RO 1‘b0 NICAM_UNLOCK NICAM change to unlocked
1 – change happened
0 – No change
[24:24] RO 1‘b0 DFT4_TH_CMP DFT 4 threshold compare status
1 – exceed threshold
0 – within threshold
[23:22] RO 1‘b0 Reserved
[21:21] RO 1‘b0 LOCK_IND_INT QPSK lock indicator status register
1 - QPSK locked
0 - not locked
[20:20] RO 1‘b0 DFT3_TH_CMP DFT 3 threshold compare status
1 – exceed threshold
0 – within threshold
[19:19] RO 1‘b0 DFT2_TH_CMP DFT 2 threshold compare status
1 – exceed threshold
0 – within threshold
[18:18] RO 1‘b0 DFT1_TH_CMP DFT 1 threshold compare status
1 – exceed threshold
0 – within threshold
[17:17] RO 1‘b0 FM2_DFT_TH_CMP FM 2 DFT threshold compare status
1 – exceed threshold
0 – within threshold
[16:16] RO 1‘b0 FM1_DFT_TH_CMP FM 1 DFT threshold compare status
1 – exceed threshold
0 – within threshold
DSH-201010p2 Conexant 213
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
[15:15] RW 1‘b0 VIDEO_PRESENT_E
N
1 – video present status changed interrupt
enabled
0 – video present status changed interrupt
disabled
[14:14] RW 1‘b0 VIDEO_CHANGE_E
N
1 – Video format changed interrupt enabled
0 – Video format changed interrupt disabled
[13:13] RW 1‘b0 RDS_READY_EN 1 – RDS data ready interrupt enabled
0 – RDS data ready interrupt disabled
[12:12] RW 1‘b0 Reserved
[11:11] RW 1‘b0 NICAM_BIT_ERROR
_TOO_HIGH_EN
1 – Nicam bit error rate too high interrupt
enabled
0 – Nicam bit error rate too high interrupt
disabled
[10:10] RW 1‘b0 NICAM_LOCK_EN 1 - NICAM change to locked interrupt enabled
0 – NICAM change to locked interrupt disabled
[9:9] RW 1‘b0 NICAM_UNLOCK_E
N
1 - NICAM change to unlocked interrupt enabled
0 - NICAM change to unlocked interrupt
disabled
[8:8] RO 1‘b0 DFT4_TH_CMP_EN 1 - DFT 4 threshold compare interrupt enabled
0 – DFT 4 threshold compare interrupt disabled
[7:7] RO 1‘b0 Reserved
[6:6] RW 1‘b0 LOCK_IND_INT_CTL QPSK lock indicator interrupt control
0 - disabled
1 - enabled
[5:5] RW 1‘b0 BB_SRC_INT_CTL baseband SRC interrupt control
0 – interrupt disabled
1 – interrupt enable
[4:4] RW 1‘b0 DFT3_INT_CTL DFT3 interrupt control
0 – interrupt disabled
1 – interrupt enable
[3:3] RW 1‘b0 DFT2_INT_CTL DFT2 interrupt control
0 – interrupt disabled
1 – interrupt enable
[2:2] RW 1‘b0 DFT1_INT_CTL DFT 1 interrupt control
0 – interrupt disabled
1 – interrupt enable
[1:1] RW 1‘b0 FM2_DFT_INT_CTL FM 2 DFT interrupt control
0 – interrupt disabled
1 – interrupt enable
[0:0] RW 1‘b0 FM1_DFT_INT_CTL FM 1 DFT interrupt control
0 – interrupt disabled
1 – interrupt enable
214 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.21.5 General Control/Interrupt Control/Rev Number/Soft
Reset
Register: GENERAL_CTL Address: 0x810
Bits Type Default Name Description
[31:31] RO 1‘b0 RDS_INT 1- RDS data ready interrupt asserted
[30:30] RO 1‘b0 NBER_INT 1 – NICAM bit error rate too high interrupt
asserted
[29:29] RO 1‘b0 NLL_INT 1 – NICAM lost lock interrupt asserted
[28:28] RO 1‘b0 IFL_INT 1 – IF signal lost interrupt asserted
[27:27] RO 1‘b0 FDL_INT 1 – Format detection loop complete interrupt
asserted
[26:26] RO 1‘b0 AFC_INT 1 – Audio format change interrupt asserted
[25:25] RO 1‘b0 AMC_INT 1 – Audio mode change interrupt asserted
[24:24] RO 1‘b0 Reserved
[23:23] RW 1‘b1 RDS_INT_DIS 0 – RDS data ready interrupt enabled
1 – Disabled
[22:22] RW 1‘b1 NBER_INT_DIS 0 – NICAM bit error rate too high interrupt
enabled
1 – Disabled
[21:21] RW 1‘b1 NLL_INT_DIS 0 – NICAM lost lock interrupt enabled
1 – Disabled
[20:20] RW ‘b1 IFL_INT_DIS 0 – IF signal lost interrupt enabled
1 – Disabled
[19:19] RW ‘b1 FDL_INT_DIS 0 – Format detection loop complete interrupt
enabled
1 – Disabled
[18:18] RW 1‘b1 FC_INT_DIS 0 – Audio format change interrupt enabled
1 – Disabled
[17:17] RW 1‘b1 AMC_INT_DIS 0 – Audio mode change interrupt enabled (i.e.,
mono to stereo, stereo to SAP)
1 – Disabled
[16:16] RW 1‘b1 Reserved
[15:8] RO 1‘b4 REV_NUM Merlin design revision number register
[7:5] RO 1‘b0 Reserved
[4:4] RW 1‘b0 DBX_SOFT_RESET DBX soft reset
[3:3] RW 1‘b0 AD_SOFT_RESET Analog demod soft reset
[2:2] RW 1‘b0 SRC_SOFT_RESET Baseband SRC soft reset
[1:1] RW 1‘b0 CDMOD_SOFT_RESE
T
CDMOD Soft reset
[0:0] RW 1‘b0 SOFT_RESET Soft reset to ensure smooth transition of
operation modes*Write with 1 to clear interrupt
flag
DSH-201010p2 Conexant 215
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.6 Audio Analog AGC
Register: AAGC_CTL Address: 0x814
Bits Type Default Name Description
[31:31] RW 1‘b0 AFE_12DB_EN Enables a +12 dB gain in the analog front end
(AFE). When using a filtered sound-IF output
from a tuner, the signals level is typically about
100 mVrms. In this case the gain should be
enabled. When the sound IF is not filtered, the
output will be closer to 1Vrms, so this gain
should not be used
[30:30] RW 1‘b0 AAGC_DEFAULT_EN Enables bypass of the AGC
[29:24] RW 6‘h20 AAGC_DEFAULT Bypass value for the AGC when
AAGC_DEFAULT_EN is asserted.
[23:23] RO 1‘b0 Reserved
[22:21] RW 2‘b0 AAGC_GAIN Controls the gain of the AGC feedback.
[20:16] RW 5‘hE AAGC_TH Control AGC error threshold
[15:14] RO 2‘b0 Reserved
[13:8] RW 6‘h9 AAGC_HYST2 Controls the wide range hysteresis of the AGC.
[7:6] RO 2‘b0 Reserved
[5:0] RW 6‘h5 AAGC_HYST1 Controls the tight range hysteresis of the AGC.
Register: Reserved Address: 0x818–0x8C8
Bits Type Default Name Description
[31:0] RW 32‘b0 Reserved
216 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.21.7 Phase Fix/Dematrix/Analog Demod Source Select/
Prescaler
Register: DEMATRIX_CTL Address: 0x8CC
Bits Type Default Name Description
[31:28] RW 4‘b0 Reserved
[27:24] RW 4‘b0 I2S_IN_SHIFT I2S input shift. Signed 2’s complement format.
Shift left or right by this amount.This bit value is
used to set the gain or attenuate mode, and
value. If Bit[3] = 0 then gain. If Bit [3] = 1 then
attenuate. Bits [2:0] set the value for gain or
attenuate.
[23:16] RW 8‘b0 DEMATRIX_SEL_CT
L
00001000 – BTSC force mono
00001001 – BTSC force SAP
00001010 – BTSC force stereo
00001011 – BTSC force dual
00010000 – A2 force mono
100010001 – A2 force mono 2
00010010 – A2 force stereo
00010011 – A2 force dual
00100000 – EIAJ force mono
100100001 – EIAJ force mono 2
00100010 – EIAJ force stereo
00100011 – EIAJ force dual
01000000 – NICAM FM force mono 1 – A
01000001 – NICAM FM force mono 2 – B
01000010 – NICAM FM force mono 3 – (A+B)/2
for stereo source
01000011 – NICAM FM force mono 4 – C
analog
01000100 – NICAM FM force stereo
01000101 – NICAM FM force dual 1 – A/
C01000110 – NICAM FM force dual 2 – B/C
01000111 – NICAM FM force dual 3 – A/B
01001000 – NICAM AM force mono 1 – A
01001001 – NICAM AM force mono 2 – B
01001010 – NICAM AM force mono 3 – (A+B)/2
for stereo source
01001011 – NICAM AM force mono 4 – C
analog
01001100 – NICAM AM force stereo
01001101 – NICAM AM force dual 1 – A/C
01001110 – NICAM AM force dual 2 – BC
01001111 NICAM AM force dual 3 A/B
10000000 – FM force mono
10000010 – FM force stereo
DSH-201010p2 Conexant 217
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.8 Path 1 Source Select
[15:11] RO 5‘b0 Reserved
[10:10] RW 1‘b0 DMTRX_BYPASS Dematrix bypass enable bit
1 – force Dematrix block use mode set above
0 – system decide dematrix mode
[9:8] RW 2‘b0 DEMATRIX_MODE 0 – Dematrix Sum/Diff
1 – Dematrix Sum/R2 – Dematrix LR3 –
Dematrix Mono
[7:6] RO 2‘b0 Reserved
[5:5] RW 1‘b0 PH_DBX_SEL Selects DBX input to be channel 2 when
asserted.
[4:4] RW 1‘b0 PH_CH_SEL Selects channel to be phase delayed
0 – channel 1
1 – channel 2
[3:0] RW 4‘h9 PHASE_FIX Phase fix delay measured in samples of delay at
the output sample rate
Register: PATH1_CTL1 Address: 0x8D0
Bits Type Default Name Description
[31:29] RO 3‘b0 Reserved
[28:24] RW 5‘b1 PATH1_MUTE_CTL 5’h01: SOFT_MUTE_EN (soft mute)
5’h02: SRC_MUTE_EN (source mute)
5’h04: I2S_MUTE_EN (I2S mute)
5’h08: PAR_MUTE_EN (parallel output mute)
5’h10: Reserved
[23:22] RO 2‘b0 Reserved
[21:20] RW 2‘b0 PATH1_AVC_CG Define AVC compression gain
00 – 1
01 – 1.5
10 – 2
11 4
218 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[19:16] RW 4‘h6 PATH1_AVC_RT Define AVC release time
0000 – 0
0001 – 10ms
0010 – 20ms
0011 – 100ms
0100 – 500ms
0101 - 1s
0110 – 2s
0111 – 4s
1000 – 8s
Suggested Values: 20ms, 2s, 4s, 8s
[15:12] RW 4‘h3 PATH1_AVC_AT Define AVC attack time
0000 – 0
0001 – 10ms
0010 – 20ms
0011 – 100ms
0100 – 500ms
0101 - 1s
0110 – 2s
0111 – 4s
1000 – 8s
Suggested values: 10ms, 100ms, 500ms, 1s
[11:11] RW 1‘b1 PATH1_AVC_STERE
O
0: Independence Mode
1: Stereo Mode
[10:8] RW 3‘b0 PATH1_AVC_CR Define AVC compression ratio
000 – 2:1
001 – 4:1
010 – 8:1
011 – 16:1
100 – 32:1
101 ~ 111 Reserved
Suggested values: 2:1, 4:1, 8:1, 16:1
[7:4] RW 4‘h7 PATH1_AVC_RMS_C
ON
Define AVC time gain for level detection
0000 – 0
0001 – 10ms
0010 – 20ms
0011 – 100ms
0100 – 500ms
0101 – 1s
0110 – 2s
0111 – 4s
1111 8s
Suggested values: 0, 20ms, 2s, 4s
[3:0] RW 4‘b0 PATH1_SEL_CTL 0 – Analog Demod Main Channel
1 – Analog Demod Sub Channel
2 – I2S3
3 – Reserved
DSH-201010p2 Conexant 219
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.9 Path 1 Volume/Balance Control
3.21.10 Path 1 Equalizer Control
Register: PATH1_VOL_CTL Address: 0x8D4
Bits Type Default Name Description
[31:16] RW 16‘h7FFF PATH1_AVC_THRESH
OLD
Define AVC Threshold
[15:15] RW 1‘b0 PATH1_BAL_LEFT Select left channel for balance control if 1, select
right channel if 0
[14:8] RW 7‘b0 PATH1_BAL_LEVEL Attenuation to be provided to the selected
channel in dB. Range is 0 to – 96 dB in 1 dB
steps
[7:0] RW 8‘h24 PATH1_VOLUME Volume control in dB steps. +18dB to –96dB in
½ dB steps
Register: PATH1_EQ_CTL Address: 0x8D8
Bits Type Default Name Description
[31:30] RO 2‘b0 Reserved
[29:24] RW 6‘b18 PATH1_EQ_TREBLE_
VOL
Equalizer Treble Volume control in dB steps.
+12dB to –12dB in ½ dB steps
[23:22] RO 2‘b0 Reserved
[21:16] RW 6‘h18 PATH1_EQ_MID_VO
L
Equalizer Mid-tone Volume control in dB steps.
+12dB to –12dB in ½ dB steps
[15:14] RO 2‘b0 Reserved
[13:8] RW 6‘h18 PATH_EQ_BASS_VO
L
Equalizer Bass Volume control in dB steps.
+12dB to –12dB in ½ dB steps
[7:1] RO 7‘b0 Reserved
[0:0] RW 1‘b0 PATH1_EQ_BAND_S
EL
Equalizer band selection
0 – 500 Hz, 1 kHz, 2 kHz1 – 450 Hz, 1.5 kHz, 5
kHz
220 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.21.11 Path 1 Soft Clip Control
Register: PATH1_SC_CTL Address: 0x8DC
Bits Type Default Name Description
[31:16] RW 16‘h7FFF PATH1_SC_THRESHO
LD
Define SC Threshold
[15:12] RW 4‘h3 PATH1_SC_RT Define SC release time
0000 – 0
0001 – 10ms
0010 – 20ms
0011 – 100ms
0100 – 500ms
0101 - 1s
0110 – 2s
0111 – 4s
1000 – 8s
Suggested values: 10ms, 100ms, 500ms, 1s
[11:8] RW 4‘h3 PATH1_SC_AT Define SC attack time
0000 – 0
0001 – 10ms
0010 – 20ms
0011 – 100ms
0100 – 500ms
0101 - 1s
0110 – 2s
0111 – 4s
1000 – 8s
Suggested values: 10ms, 100ms, 500ms, 1s
[7:7] RW 1‘b1 PATH1_SC_STEREO 0: Independence Mode
1: Stereo Mode
[6:4] RW 3‘h2 PATH1_SC_CR Define SC compression ratio
000 – 2:1
001 – 4:1
010 – 8:1
011 – 16:1
100 – 32:1
101 ~ 111 Reserved
Suggested values: 4:1, 8:1, 16:1, 32:1
[3:0] RW 4‘h3 PATH1_SC_RMS_CON Define SC time gain for level detection
0000 – 0
0001 – 10ms
0010 – 20ms
0011 – 100ms
0100 – 500ms
0101 - 1s
0110 – 2s
0111 – 4s
1111 – 8s
Suggested values: 0, 10ms, 100ms, 1s
DSH-201010p2 Conexant 221
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.12 Path 2 Source Select
Register: PATH2_CTL1 Address: 0x8E0
Bits Type Default Name Description
[31:26] RO 6‘b0 Reserved
[25:24] RW 2‘b1 PATH2_MUTE_CTL Bit 0: SOFT_MUTE_EN (soft mute enable)
Bit 1: SRC_MUTE_EN (source mute)
[23:22] RO 2‘b0 Reserved
[21:20] RW 2‘b0 PATH2_AVC_CG Define AVC compression gain
00 – 1
01 – 1.5
10 – 2
11 4
[19:16] RW 4‘h6 PATH2_AVC_RT Define AVC release time
0000 – 0
0001 – 10 ms
0010 – 20 ms
0011 – 100 ms
0100 – 500 ms
0101 - 1s
0110 – 2s
0111 – 4s
1000 – 8s
Suggested Values: 20 ms, 2 s, 4 s, 8 s
[15:12] RW ‘b3 PATH2_AVC_AT Define AVC attack time
0000 – 0
0001 – 10 ms
0010 – 20 ms
0011 – 100 ms
0100 – 500 ms
0101 - 1s
0110 – 2s
0111 – 4s
1000 – 8s
Suggested values: 10 ms, 100 ms, 500 ms, 1 s
[11:11] RW ‘b1 PATH2_AVC_STERE
O
0: Independence Mode
1: Stereo Mode
222 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[10:8] RW ‘b0 PATH2_AVC_CR Define AVC compression ratio
000 – 2:1
001 – 4:1
010 – 8:1
011 – 16:1
100 – 32:1
101 ~ 111 Reserved
Suggested values: 2:1, 4:1, 8:1, 16:1
[7:4] RW ‘b7 PATH2_AVC_RMS_C
ON
Define AVC time gain for level detection
0000 - 0
0001 - 10 ms
0010 - 20 ms
0011 - 100 ms
0100 - 500 ms
0101 - 1s
0110 - 2s
0111 - 4s
1111 - 8s
Suggested values: 0, 20 ms, 2 s, 4 s
[3:0] RW ‘b0 PATH2_SEL_CTL 0 - Analog Demod Main Channel
1 - Analog Demod Sub Channel
2 - I2S
3 - Reserved
DSH-201010p2 Conexant 223
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.13 Path 2 Volume/Balance Control
3.21.14 Path 2 Equalizer Control
Register: PATH2_VOL_CTL Address: 0x8E4
Bits Type Default Name Description
[31:16] RW 16‘h 7FFF PATH2_AVC_THRESH
OLD
Define AVC Threshold
[15:15] RW 1‘b 0 PATH2_BAL_LEFT Select left channel for balance control if 1, select
right channel if 0
[14:8] RW 7‘b 0 PATH2_BAL_LEVEL Attenuation to be provided to the selected
channel in dB. Range is 0 to – 96 dB in 1 dB
steps
[7:0] RW 8‘h 24 PATH2_VOLUME Volume control in dB steps. +18dB to –96dB in
½ dB steps
Register: PATH2_EQ_CTL Address: 0x8E8
Bits Type Default Name Description
[31:30] RO 2‘b 0 Reserved
[29:24] RW 6‘h 18 PATH2_EQ_TREBLE_
VOL
Equalizer Treble Volume control in dB steps.
+12dB to –12dB in ½ dB steps
[23:22] RO 2‘b 0 Reserved
[21:16] RW 6‘h 18 PATH2_EQ_MID_VO
L
Equalizer Mid-tone Volume control in dB steps.
+12dB to –12dB in ½ dB steps
[15:14] RO 2‘b 0 Reserved
[13:8] RW 6‘h 18 PATH2_EQ_BASS_V
OL
Equalizer Bass Volume control in dB steps.
+12dB to –12dB in ½ dB steps
[7:1] RO 7‘b 0 Reserved
[0:0] RW 1‘b 0 PATH2_EQ_BAND_S
EL
Equalizer band selection
0 – 500 Hz, 1 kHz, 2 kHz
1 – 450 Hz, 1.5 kHz, 5 kHz
224 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.21.15 Path 2 Soft Clip Control
Register: PATH2_SC_CTL Address: 0x8EC
Bits Type Default Name Description
[31:16] RW 16’h 7FFF PATH2_SC_THRESHO
LD
Define SC Threshold
[15:12] RW 4‘h 3 PATH2_SC_RT Define SC release time
0000 – 0
0001 – 10 ms
0010 – 20 ms
0011 – 100 ms
0100 – 500 ms
0101 - 1 s
0110 – 2 s
0111 – 4 s
1000 – 8 s
Suggested values: 10 ms, 100 ms, 500 ms, 1 s
[11:8] RW 4‘h 3 PATH2_SC_AT Define SC attack time
0000 – 0
0001 – 10 ms
0010 – 20 ms
0011 – 100 ms
0100 – 500 ms
0101 - 1 s
0110 – 2 s
0111 – 4 s
1000 – 8 s
Suggested values: 10 ms, 100 ms, 500 ms, 1 s
[7:7] RW 1‘b 1 PATH2_SC_STEREO 0: Independence Mode1: Stereo Mode
[6:4] RW 3‘h 2 PATH2_SC_CR Define SC compression ratio
000 – 2:1
001 – 4:1
010 – 8:1
011 – 16:1
100 – 32:1
101 ~ 111 Reserved
Suggested values: 4:1, 8:1, 16:1, 32:1
[3:0] RW 4‘h 3 PATH2_SC_RMS_C
ON
Define SC time gain for level detection.
0000 – 0
0001 – 10 ms
0010 – 20 ms
0011 – 100 ms
0100 – 500 ms
0101 - 1 s
0110 – 2 s
0111 – 4 s
1111 – 8 s
Suggested values: 0, 10 ms, 100 ms, 1 s
DSH-201010p2 Conexant 225
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.16 Sample Rate Converter Control
Register: SRC_CTL Address: 0x8F0
Bits Type Default Name Description
[31:8] RO 24‘b 0 SRC_STATUS FIFO status, OF = OverFlow UF = UnderFlow
[11:8] SRC6 Right OF/UF – Left OF/UF
[15:12] SRC5 Right OF/UF – Left OF/UF
[19:16] SRC4 Right OF/UF – Left OF/UF
[23:20] SRC3 Right OF/UF – Left OF/UF
[27:24] SRC6: SRC5: SRC4: SRC3 FIFO
Pointer bigger than or equal to 12, used for
checking the pointer level during loop filter
adaptation so as to improve FIFO sizing.
[31:28] SRC6: SRC5: SRC4: SRC3 FIFO
Pointer less than or equal to 3, used for
checking the pointer level during loop filter
adaptation so as to improve FIFO sizing.
[7:2] RW 6‘h 3F FIFO_LF_EN Enable SRC FIFO loop filter
[7]: SRC6 FIFO loop filter enable
….
[2]: SRC1 FIFO loop filter enable
[1:1] RW 1‘b 0 BYPASS_LI Bypass linear interpolation
[0:0] RW 1‘b 0 BYPASS_PF Latest input sample feeds through SRCs but
decimation/interpolation timing remains.
** WC Same as RW, but software writing a 1
resets corresponding bit location, writing 0 has
no effect.
226 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.21.17 Sample Rate Converter Loop Filter Coefficients
3.21.18 SRC1 Control
Register: SRC_LF_COEF Address: 0x8F4
Bits Type Default Name Description
[31:16] RW 16'h 3333 LOOP_FILTER_COE
F2
KD, direct gain of proportional path
[19:16] SRC3_KD, valid data 3,4,5,6,7
[23:20] SRC4_KD, valid data 3,4,5,6,7
[27:24] SRC5_KD, valid data 3,4,5,6,7
[31:28] SRC6_KD,validdata 3,4,5,6,7
Default to 5 for all SRCs; invalid setting results
in the default.
[15:0] RW 16'h 8888 LOOP_FILTER_COE
F1
KI, indirect gain of integrated path
[3:0] SRC3_KI, valid data 6,7,8,9,10
[7:4] SRC4_KI, valid data 6,7,8,9,10
[11:8] SRC5_KI, valid data 6,7,8,9,10
[15:12] SRC6_KI, valid data 6,7,8,9,10
Default to 8 for all SRCs; invalid setting results
in the default.
Register: SRC1_CTL Address: 0x8F8
Bits Type Default Name Description
[31:28] RO 4‘b 0 Reserved
[27:24] RW 4‘h 8 SRC1_FIFO_RD_TH SRC 1 FIFO threshold for Read Enable. Apply
to both left channel and right channel.
[23:18] RO 6‘b 0 Reserved
[17:0] RW 18‘h 1867C SRC1_PHASE_INC SRC 1 phase increment calculated by (Fin/Fout)
* 216, default Fin = Fout
Shared by left channel and right channel.
DSH-201010p2 Conexant 227
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.19 SRC2 Control
3.21.20 SRC3 Control
3.21.21 SRC4 Control
Register: SRC2_CTL Address: 0x8FC
Bits Type Default Name Description
[31:28] RO 4‘b 0 Reserved
[27:24] RW 4‘h 8 SRC2_FIFO_RD_TH SRC 2 FIFO threshold for Read Enable. Apply
to both left channel and right channel.
[23:18] RO 6‘b 0 Reserved
[17:0] RW 18‘h 1867C SRC2_PHASE_INC SRC 2 phase increment calculated by (Fin/Fout)
* 216, default Fin = Fout
Shared by left channel and right channel.
Register: SRC3_CTL Address: 0x900
Bits Type Default Name Description
[31:28] RO 4‘b 0 Reserved
[27:24] RW 4‘h 8 SRC3_FIFO_RD_TH SRC 3 FIFO threshold for Read Enable. Apply
to both left channel and right channel.
[23:18] RO 6‘b 0 Reserved
[17:0] RW 18‘h 14FAA SRC3_PHASE_INC SRC 3 phase increment calculated by (Fin/Fout)
* 216, default Fin = Fout
Shared by left channel and right channel.
Register: SRC4_CTL Address: 0x904
Bits Type Default Name Description
[31:28] RO 4‘b 0 Reserved
[27:24] RW 4‘h 8 SRC4_FIFO_RD_TH SRC 4 FIFO threshold for Read Enable. Apply
to both left channel and right channel.
[23:18] RO 6‘b 0 Reserved
[17:0] RW 18‘h 14FAA SRC4_PHASE_INC SRC 4 phase increment calculated by (Fin/Fout)
* 216, default Fin = Fout
Shared by left channel and right channel.
228 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.21.22 SRC5 Control
3.21.23 SRC6 Control
Register: SRC5_CTL Address: 0x908
Bits Type Default Name Description
[31:28] RO 4‘b 0 Reserved
[27:24] RW 4‘h 8 SRC5_FIFO_RD_TH SRC 5 FIFO threshold for Read Enable. Apply
to both left channel and right channel.
[23:18] RO 6‘b 0 Reserved.
[17:0] RW 18‘h 10453 SRC5_PHASE_INC SRC 5 phase increment calculated by (Fin/Fout)
* 216, default Fin = Fout
Shared by left channel and right channel.
Register: SRC6_CTL Address: 0x90C
Bits Type Default Name Description
[31:28] RO 4‘b 0 Reserved
[27:24] RW 4‘h 8 SRC6_FIFO_RD_TH SRC 6 FIFO threshold for Read Enable. Apply
to both left channel and right channel.
[23:18] RO 6‘b 0 Reserved
[17:0] RW 18‘h 14FAA SRC6_PHASE_INC SRC 6 phase increment calculated by (Fin/Fout)
* 216, default Fin = Fout
Shared by left channel and right channel.
DSH-201010p2 Conexant 229
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.24 Output Selects/Bypass Control
Register: BAND_OUT_SEL Address: 0x910
Bits Type Default Name Description
[31:30] RW 2‘b 0 SRC6_IN_SEL SRC input source select.
00 – select from path 1 output
01 – select from path 2 output
10 – select from de-matrix stereo
11 – select from mono/SAP output
[29:28] RW 2‘b 1 SRC6_CLK_SEL SRC output fifo read select
00 – select from I2S WS
01 – Reserved
10 – select from NICAM ENABLE (64 kHz)
11 – select from SRC6 FIFO write
[27:26] RW 2‘b 0 SRC5_IN_SEL SRC input source select.
00 – select from analog demod OUTA, OUTC
01 – select from analog demod RDS output
10 – select from de-matrix stereo
11 – select from mono/SAP output
[25:24] RW 2‘h 2 SRC5_CLK_SEL SRC output fifo read select
00 – select from I2S WS
01 – Reserved
10 – select from NICAM ENABLE (64 kHz)
11 – select from SRC5 FIFO write
[23:22] RW 2‘h 2 SRC4_IN_SEL SRC input source select.
00 – select from path 1 output
01 – select from path 2 output
10 – select from de-matrix stereo
11 – select from mono/SAP output
[21:20] RW 2‘h 3 SRC4_CLK_SEL SRC output fifo read select
00 – select from I2S WS
01 – Reserved
10 – select from NICAM ENABLE (64 kHz)
11 – select from SRC4 FIFO write
[19:18] RW 2‘b 0 SRC3_IN_SEL SRC input source select.
00 – select from path 1 output
01 – select from path 2 output
10 – select from de-matrix stereo
11 – select from mono output
230 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
[17:16] RW 2‘b 0 SRC3_CLK_SEL SRC output fifo read select
00 – select from I2S WS
01 – Reserved
10 – select from NICAM ENABLE (64 kHz)
11 – select from SRC3 FIFO write
[15:8] RW 8‘b 0 BASEBAND_BYPASS_
CTL
Baseband block bypass control
0 – Normal operation
1 – The block is bypassed
bit
7 – path2 soft-clip
6 – path2 volume/balance control
5 – path2 equalizer
4 – path2 automatic volume control
3 – path1 soft-clip
2 – path1 volume/balance control
1 – path1 equalizer
0 – path1 automatic volume control
[7:6] RO 2‘h 3 Reserved
[5:4] RW 2‘b 0 I2S_SRC_SEL Output source select.
00 – select from SRC 3
01 – select from SRC 4
10 – select from SRC 5
11 – select from SRC 6
[3:2] RW 2‘h 2 PARALLEL2_SRC_S
EL
Output source select.
00 – select from SRC 3
01 – select from SRC 4
10 – select from SRC 5
11 – select from SRC 6
[1:0] RW 2‘b 1 PARALLEL1_SRC_S
EL
Output source select.
00 – select from SRC 3
01 – select from SRC 4
10 – select from SRC 5
11 – select from SRC 6
DSH-201010p2 Conexant 231
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.25 I2S Input Control Register
Register: I2S_N_CTL Address: 0x914
Bits Type Default Name Description
[31:11] RO 21‘b 0 Reserved
[10:10] RW 1‘b 0 I2S_UP2X_BW20K 20 kHz upsample by 2 bandwidth
1 - 20 kHz bandwidth (44.1 - 64 kHz sample
rate)
0 - 15 kHz bandwidth (32 kHz sample rate)
[9:9] RW 1‘b 0 I2S_UP2X_BYPASS 0 = normal operation
1 = up sample by 2 block is bypassed for input
sample rate higher than 64 kHz
[8:8] RW 1‘b 0 I2S_IN_MASTER_MOD
E
0 = Slave operation
1 = Master: SCK_OUT, and WS_OUT are
generated
[7:7] RW 1‘b 0 I2S_IN_SONY_MOD
E
0 = Philips mode: 2nd SCK rising edge after WS
transition for first bit of audio word.
1 = Sony mode: 1st SCK rising edge after WS
transition for first bit of audio word.
[6:6] RW 1‘b 0 I2S_IN_RIGHT_JUST 0 = left justified serial data
1 = right justified meaning aligned with
[5:5] RW 1‘b 0 I2S_IN_WS_SEL Control for Word Select (WS_IN/WS_OUT)
polarity.
0 = Left sample on WS=0
1 = Left sample on WS=1
[4:0] RW 5‘b 0 I2S_IN_BCN_DEL Controls a number of SCK_IN cycles delay for
programmable Right justify mode.
232 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.21.26 I2S Output Control Register
Register: I2S_OUT_CTL Address: 0x918
Bits Type Default Name Description
[31:17] RO 15‘b 0 Reserved
[16:16] RW 1‘b 0 I2S_OUT_SOFT_RESE
T_EN
I2S output soft reset control
1: soft reset will reset I2S output
0: soft reset do not reset I2S output
[15:9] RO 7‘b 0 Reserved
[8:8] RW 1‘b 1 I2S_OUT_MASTER_M
ODE
0 = Slave operation
1 = Master: SCK_OUT, and WS_OUT are
generated
[7:7] RW 1‘b 0 I2S_OUT_SONY_MO
DE
0 = Philips mode: 2nd SCK rising edge after WS
transition for first bit of audio word.
1 = Sony mode: 1st SCK rising edge after WS
transition for first bit of audio word.
[6:6] RW 1‘b 0 I2S_OUT_RIGHT_JU
ST
0 = left justified serial data
1 = right justified meaning aligned with
[5:5] RW 1‘b 0 I2S_OUT_WS_SEL Control for Word Select (WS_IN/WS_OUT)
polarity.
0 = Left sample on WS=0
1 = Left sample on WS=1
[4:0] RW 5‘b 0 I2S_OUT_BCN_DEL Controls a number of SCK_IN cycles delay for
programmable Right justify mode.
Register: Reserved Address: 0x91C–0x9C0
Bits Type Default Name Description
[31:0] RO 32‘b 0 Reserved
DSH-201010p2 Conexant 233
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.21.27 Autoconfiguration Control
Register: AUTOCONFIG_REG Address: 0x9C4
Bits Type Default Name Description
[31:4] RO 28'b 0 Reserved
[3:0] RW 4'b 0 AUTOCONFIG_MOD
E
Audio Standard
0:BTSC
1:FM Radio
2:EIA-J
3:A2-BG
4:NICAM AM/FM
5:NICAM High Deviation FM
6:NICAM Very High Deviation FM
7:AF FM - baseband FM input, bypass first
rotator and FM decoder
8: A1
9:A2-M
A:A2-DK
Register: Reserved Address: 0x9C8–0x9D0
Bits Type Default Name Description
[31:0] RO 32'b 0 Reserved
234 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.22 Audio ADC Registers
Unless specified explicitly, the same register control is applicable to both left channel
and right channel.
3.22.1 Delta-Sigma ADC Miscellaneous Register 1
3.22.2 Delta-Sigma ADC Miscellaneous Register 2
Register: DSM_CTRL1 Address: 0x0
Bits Type Default Name Description
[7:7] RW 1’b1 DYN_DIT_EN Enables dynamic dithering.
[6:6] RW 1’b1 DIT_EN Enables dithering.
[5:5] RW 1’b0 RND_MODE Switches between two different length LFSRs.
[4:4] RW 1’b1 STAB_DET_EN Enables stability detector.
[3:3] RO 1’b0 Reserved
[2:0] RW 3’h2 STAB_TH Sets threshold for stability detection in delta-
sigma.
Register: DSM_CTRL2 Address: 0x1
Bits Type Default Name Description
[7:2] RO 6’b0 Reserved
[1:0] RW 2’h3 DIT_REF Changes the dither amplitude used in dynamic
dithering.
DSH-201010p2 Conexant 235
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.22.3 Chopper Clocks Enable Register
3.22.4 Chopper Clock Reference and Bandgap Divide
Settings
3.22.5 Chopper Clock S2D Divide Settings
Register: CHP_EN_CTRL Address: 0x2
Bits Type Default Name Description
[7:5] RO 3’b0 Reserved
[4:4] RW 1’b1 CHP_CLK_EN_REF Enables chopper clock for refbuf and bandgap.
[3:3] RW 1’b1 CHP_CLK_EN_S2D Enables chopping for S2D.
[2:2] RW 1’b0 CHP_CLK_MODE Changes the M variable described in
CHP_CLKDV_REF for the bandgap from 6 to 8.
[1:1] RW 1’b1 CHP_EN_BG Enables chopping for bandgap.
[0:0] RW 1’b1 CHP_EN_REFBUF Enables chopping for refbuf.
Register: CHP_CLK_CTRL1 Address: 0x4
Bits Type Default Name Description
[7:5] RO 3’b0 Reserved
[4:0] RW 5’h8 CHP_CLKDV_REF Changes the reference buffers and bandgap
chopper frequency:
Reference buffer CHOP CLK: (PLL_CLK)/
(10*6*2n) where 0<n<32.
Bandgap CHOP CLK: (PLL_CLK)/(10*M*2n)
where 0<n<32 and M is determined by the
CHP_CLK_MODE bit.
Register: CHP_CLK_CTRL2 Address: 0x5
Bits Type Default Name Description
[7:5] RO 3’b0 Reserved
[4:0] RW 5’h8 CHP_CLKDV_S2D Change S2D chopper frequency, (PLL_CLK)/
(8*10*2n) (where 0<n<32)
236 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.22.6 Bandgap Testing Register
3.22.7 SD2 MUX Control for Right Channel
3.22.8 SD2 MUX Control for Left Channel
Register: BG_REF_CTRL Address: 0x6
Bits Type Default Name Description
[7:5] RO 3’b0 Reserved
[6:6] RW 1’b0 OCURR_REFBUF Increases refbuf current by 66%.
0 = nom
1 = 66% more current.
[5:5] RW 1’b0 TEST_BG Bypass refbuf, route bandgap to reference pin.
[4:4] RW 1’b0 BIAS_SEL Bases all Audio ADC currents off either Audio
ADC bandgap or a current external from audio
ADC.
0 = internal
1 = external from audio ADC
[3:3] RO 1’b0 Reserved
[2:0] RW 3’h3 BG_TRIM Changes the output voltage (slightly) and temp
coefficient for tuning of bandgap over PVT.
Register: S2D_SW_CTRL1 Address: 0x8
Bits Type Default Name Description
[7:5] RO 3’b0 Reserved
[4:0] RW 5’h13 SW_CTRL_S2D_R Changes input switches for right channel.
Register: S2D_SW_CTRL2 Address: 0x9
Bits Type Default Name Description
[7:5] RO 3’b0 Reserved
[4:0] RW 5’h13 SW_CTRL_S2D_L Changes input switches for left channel.
DSH-201010p2 Conexant 237
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.22.9 S2D Bias and Startup Control
Register: S2D_BIAS_CTRL Address: 0xA
Bits Type Default Name Description
[7:5] RO 3’b0 Reserved
[4:4] RW 1’b0 S2D_STRTL_N Disables S2D startup circuitry:
0 = startup circuit on
1 = startup circuit off
[3:2] RW 2’h2 AMP_BIAS_S2D Changes bias for amp in S2D:
[1:0] RW 2’h2 CMFB_BIAS_S2D Changes bias for CMFB in S2D:
<1> <0> Amp Current
00
Base*4
01
Base*3
10
Base*2
11
Base
<1> <0> CMFB Current
00
Base*4
01
Base*3
10
Base*2
11
Base
238 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.22.10 Delta-Sigma ADC Amplifier Bias Registers
3.22.11 Miscellaneous Testing Register
Register: AMP_BIAS_CTRL Address: 0xC
Bits Type Default Name Description
[7:5] RO 3’b0 Reserved
[4:4] RW 1’b0 COMP_BIAS Changes comparator bias in delta-sigma:
1 = 50% more current
0 = base current
[3:2] RW 2’b1 AMP1_BIAS Changes first amplifier bias in delta-sigma:
<0>: 1 = 66% more current from base
<1>: 1 = 33% more current from base
[1:0] RW 2’b1 AMP2_BIAS Changes second amplifier bias in delta-sigma:
<0>: 1 = 66% more current from base
<1>: 1 = 33% more current from base
Register: CH_PWR_CTRL1 Address: 0xE
Bits Type Default Name Description
[7:6] RO 2’b0 Reserved
[5:5] RW 1’b1 CLK_EN Enables clock to delta-sigma and decimation
filter.
[4:4] RW 1’b0 CLK_SEL Selects clock from CLK_IN OR CLK_TEST:
0 = differential PLL CLK Input
1 = ALTERNATE CLK input
[3:3] RW 1’b0 CH_SEL Selects channel:
0 = channel 1
1 = channel 2
[2:2] RW 1’b0 TEST_S2D Puts S2D into test mode:
0 = normal mode
1 = test mode
[1:1] RW 1’b0 DS_MUTE_L Mutes left channel
[0:0] RW 1’b0 DS_MUTE_R Mutes right channel
DSH-201010p2 Conexant 239
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.22.12 Power Down Register
3.22.13 DS and S2D Stability Register
3.22.14 Dynamic Dither Amplitude Read Register
Register: CH_PWR_CTRL2 Address: 0xF
Bits Type Default Name Description
[7:6] RO 2’b0 Reserved
[5:5] RW 1’b0 PWR_DN_REFBUF Powers down rebuf.
[4:4] RW 1’b0 PWR_DN_BANDG Powers down bandgap.
[3:3] RW 1’b0 PWR_DN_DS_L Powers down S2D left channel.
[2:2] RW 1’b0 PWR_DN_DS_R Powers down S2D right channel.
[1:1] RW 1’b0 PWR_DN_S2D_L Powers down S2D left channel.
[0:0] RW 1’b0 PWR_DN_S2D_R Powers down S2D right channel.
Register: DSM_STATUS1 Address: 0x10
Bits Type Default Name Description
[7:4] RO 1’b0 Reserved
[3:3] RO 1’b0 S2D_STRT_R Reads stability of right channel S2D.
[2:2] RO 1’b0 S2D_STRT_L Reads stability of left channel S2D.
[1:1] RO 1’b0 STAB_FLAG_R Reads right channel delta-sigma stability.
[0:0] RO 1’b0 STAB_FLAG_L Reads left channel delta-sigma stability.
Register: DSM_STATUS2 Address: 0x11
Bits Type Default Name Description
[7:4] RO 4’b0 DIT_AMPL_L Reads dynamic dither amplitude for left channel.
[3:0] RO 4’b0 DIT_AMPL_R Reads dynamic dither amplitude for right
channel.
240 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.22.15 Digital Control Register 1
This register specifies decimation output rate and scale.
Register: DIG_CTL1 Address: 0x12
Bits Type Default Name Description
[7:4] RW 4’h7 SCALE Digital output full-range scale enable
4'b0000: 1.0
4’b0001: 1+16/64
4’b0010: 1+18/64
4’b0011: 1+20/64
4’b0100: 1+22/64
4’b0101: 1+24/64
4’b0110: 1+26/64
4’b0111: 1+27/64
4’b1000: 1+28/64
4’b1001: 1+29/64
4’b1010: 1+30/64
4’b1011: 1+32/64
4’b1100 ~ 4’b1111: Reserved
[3:0] RW 4’b1 RATE_SEL Select output rate (96/64/88.2 kHz)
4’b0000: Reserved
4’b0001: 96 kHz
4’b0010: 64 kHz
4’b0011: Reserved
4’b0100: 88.2 kHz
4’b0101: Reserved
4’b0110 ~ 4’b1111: Reserved
DSH-201010p2 Conexant 241
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Registers
3.22.16 Digital Register 2
This register specifies various mode control including Injection Mode, FCLK polarity,
and Bypass Modulator so Modulator output is directly placed on I2S I/F
(I2S_DATA_SEL).
Register: DIG_CTL2 Address: 0x13
Bits Type Default Name Description
[7:7] RW 1’b0 INJ_MODE Delta Sigma modulator is bypassed and DSM
samples are injected through INJ_DL for left
channel and INJ_DR for right channel, all at
DSM sampling speed. Refer to Corona pad
description for the pads associated.
[6:5] RO 2’b0 Reserved
[4:4] RW 1’b0 SOFT_RST High active soft reset, initializes digital registers.
[3:3] RW 1’b1 FCLK_POL Digital clock polarity control
0: aligned in phase with analog modulator clock
1: aligned out phase (180deg) with modulator
clk
[2:1] RO 2’b0 Reserved
[0:0] RW 1’b0 I2S_DATA_SEL Select internal signals placed on Audio ADC
output I2S I/F
0: Audio ADC Normal Operation, decimation
output
1: Delta Sigma Modulator Output (24 bits)
Note: SONY_PHILLIP Mode Control and LRCK
Polarity Control apply to all I2S_DATA_SEL
Register: Reserved Address: 0x14–0x18
Bits Type Default Name Description
[7:0] RO 8’b0 Reserved
242 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Registers CX23885 Data Sheet
3.22.17 I2S_TX_CFG
Register: I2S_TX_CFG Address: 0x1A
Bits Type Default Name Description
[7:2] RO 6’b0 Reserved
[1:1] RW 1’b1 SONY_PHILLIP_MO
DE
1: Sony Mode
0: Phillip Mode
Must be configured the same as I2S Rx in
Corona.
[0:0] RW 1’b0 LRCK_POL Specify the I2S Tx LRCK polarity.
0: low for left channel
1: low for right channel
Register: Reserved Address: 0x1C–0x23
Bits Type Default Name Description
[7:0] RO 8’b0 Reserved
DSH-201010p2 Conexant 243
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
4Thermal/Mechanical
Information
4.1 Introduction
The ETQFP package features an exposed die paddle to improve both thermal and
electrical performance. To make optimum use of these performance improvements,
the PCB must be designed with this technology in mind. This section focuses on the
specifics of integrating the ETQFP into the PCB design.
4.2 Center Pad Geometry
To take advantage of the ETQFP performance improvements, a solder-tinned-copper
pad with thermal vias is required on the PCB.
This thermal via pattern represents a copper cross section in the barrel of the thermal
via of approximately 1 percent of the total center pad area. For the exposed region of
the center pad, if the plating thickness is not sufficient enough to effectively plug the
barrel of the via when plated, the solder mask should be used to cap the vias with a
dimension equal to the via diameter + 0.1 mm minimum. This prevents the solder from
being wicked through the thermal via and potentially creating a solder void in the
region between the package bottom and the center pad on the surface of the PCB.
NOTE: Please contact your Conexant representative for additional thermal
information regarding the CX23885.
244 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Thermal/Mechanical Information CX23885 Data Sheet
4.3 Mechanical Drawing
Figure 7 provides a mechanical drawing of the 128-pin ETQFP. Figure 8 provides a
diagram of the exposed pad.
Figure 7. 128-Pin ETQFP
Figure 8. Exposed Pad
102740_005
Control Dimensions are in Milimeters
102740_006
NOTES:
1. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm
per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
2. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not
cause the lead width to exceed the maximum b dimension by more than 0.08 mm.
Dambar cannot be located on the lower radius or the foot. Miminum space between
protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm Pitch packages.
3. All dimensions of 128L were based on those of 120L, since they are not mentioned in
JEDEC Spec MS-026.
DSH-201010p2 Conexant 245
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
5Electrical Information
5.1 DC Electrical Parameters
Table 5. Absolute Maximum Ratings
Parameters Min Typ Max Units
VAA (measured to VSS) 5 V
VDDO (measured to VSSO) 5 V
VDD 1.8 V supply pins (measured to VSS) 3 V
VDD 1.2 V supply pins (measured to VSS) 2 V
Voltage on any signal pin (see note below) VSSO - 0.5 VDDO + 0.5 Vpp
Analog input voltage VAA + 0.5 V
Operating temperature 0 70 °C
Storage temperature –65 +150 °C
Junction temperature +125 °C
Peak reflow temperature 260 °C
GENERAL NOTE:
1. Stresses above those listed may cause permanent damage to the device. This is a stress rating only and
functional operation at these or any other conditions above those listed in the operational section of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods
may affect device reliability.
2. This device employs high-impedance CMOS devices on all signal pins. It must be handled as an ESD sensitive
device. Voltage on any signal pin that exceeds the power supply voltage by more than +0.5 V, or drops
below ground by more than 0.5 V can induce destructive latchup.
246 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Electrical Information CX23885 Data Sheet
Table 6. Recommended Operating Conditions
Parameters Symbols Min Typ Max Units
Analog power supply VAA_PLL 3.135 3.3 3.465 V
VAA_CHx
VAA_ADCx
VAA_XTAL
VAA_DSx
Core power 1.2 V supply VDD 1.14 1.2 1.26 V
VDDA
VDDTA
Core power 1.8 V Supply VDDT 1.71 1.8 1.89 V
VDDTO
VDDRO
Digital I/O power supply VDDIO 3 3.3 3.6 V
VDDO_PLL
Analog input CVBS or luma amplitude range (AC
coupling required)
Yin0.512Vp-p
Analog input chroma amplitude range
(AC coupling required)
Cin0.112Vp-p
Analog audio input Ain 2.262 2.828 Vp-p
Ambient operating temperature Ta 0 70 °C
DSH-201010p2 Conexant 247
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
CX23885 Data Sheet Electrical Information
5.2 AC Electrical Parameters
Table 7. Signal Characteristics
Parameters Symbol Min Typ Max Units
Digital Inputs
Input high voltage VIH 2 VDDO + 0.5 V
Input low voltage VIL –0.5 0.8 V
Input high current (Vin = 2.4 V) IIH 1 µA
Input low current (Vin = 0.4 V) IIL –1 µA
Input capacitance (1MHz, 2.4 V) Ci 7 pF
Crystal Inputs (XTI, XTO)
Input low voltage VIL –0.5 0.4 V
Input high voltage VIH 2.4 VDDO + 0.5 V
Digital Outputs
Output voltage high (IOH = -400 µA) VOH 2.4 VDDO V
Output voltage low (IOL = 4 mA) VOL 0 0.4 V
Three-state current IOZ 10 µA
Analog input capacitance Ca 5 pF
Table 8. Clock Timing Parameters
Parameters Symbol Min Typ Max Units
XTI / XTO
Crystal cycle time 1 34.919 34.921 34.922 ns
High time 2 17.46 ns
Low time 3 17.46 ns
ITU-R BT.656 Operation
PIXCLK frequency 4 27 MHz
PIXCLK duty cycle 5 45 55 %
PIXCLK to data delay (see note) 6 5 ns
GENERAL NOTE:
1. Data delay value is measured relative to the rising edge of PIXCLK but note that PIXCLK can be inverted for
systems requiring data to output relative to the falling edge of PIXCLK.
248 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Electrical Information CX23885 Data Sheet
Table 9. Control Signal Timing
Parameters Symbol Min Typ Max Units
VIP Input Port
Data to VIPCLK setup 8 5 ns
Data to VIPCLK hold 9 0 ns
VIP Output Port
PIXCLK to timing/indicator delay 10 11 ns
Table 10. Power Supply Currents
Parameters Symbol Min Typ Max Units
Analog current IAA 165 173 mA
Digital core current (1.2 V) IDD1.2 300 415 mA
Digital core current (1.8 V) IDD1.8 129 132 mA
Digital I/O current IDDIO 15 40 mA
DSH-201010p2 Conexant 249
2/4/09 Preliminary Information/Conexant Proprietary and Confidential
6Connecting the CX23885 to the
CX23417
6.1 CX23885 and CX23417 Pin Connections
Table 11 lists the CX23885 pins that are to be connected to the CX23417. Each row
indicates a connection.
NOTE: Pin 113 of CX23885 is connected to two pins on the CX23417.
Table 11. CX23885 and CX23417 Pin Connections (1 of 2)
CX23885 CX23417
Pin Number Pin Name Coordinate Pin Number
53 GPIO15 U12 MIRDY#
59 GPIO14 P16 MIADDR3
60 IRQ_N (GPIO[16]) R11 MICS#
61 URX (GPIO[17]) P15 MIRD#
62 UTX (GPIO[18]) U14 MIWR#
64 GPIO13 R17 MIADDR2
65 GPIO12 L14 MIADDR1
67 GPIO11 M15 MIADDR0
68 TS2_SOP H17 STRODREQ#
69 TS2_VAL H16 STRODVLD#
70 TS2_CLK G17 STROCLK
71 TS2_DAT J17 STRODATA7
74 TS1_CLK C8 LLC
76 GPIO10 U3 MIDATA7
86 GPIO9 U4 MIDATA6
87 GPIO8 R6 MIDATA5
92 GPIO3 U6 MIDATA0
250 Conexant DSH-201010p2
Preliminary Information/Conexant Proprietary and Confidential 2/4/09
Connecting the CX23885 to the CX23417 CX23885 Data Sheet
95 GPIO4 R7 MIDATA1
100 GPIO5 T6 MIDATA2
101 GPIO6 U5 MIDATA3
103 I2S_BCLK (GPIO[23]) B7 AICLKIN
104 I2S_WCLK (GPIO[22]) A6 AILRIN
105 I2S_SDAT (GPIO[21]) A7 AIDAT
111 GPIO[7] T5 MIDATA4
113 AUX_PLL_CLK C6 RCLK
G17 STROCLK
Table 11. CX23885 and CX23417 Pin Connections (2 of 2)
CX23885 CX23417
Pin Number Pin Name Coordinate Pin Number
www.conexant.com
General Information:
U.S. and Canada: (888) 855-4562
International: (949) 483-4600
Headquarters – Newport Beach
4000 MacArthur Blvd.
Newport Beach, CA 92660