April 2013 Doc ID 10350 Rev 13 1/80
1
STR71xFxx STR710RZ
ARM7TDMI™ 32-bit MCU with Flash, USB, CAN,
5 timers, ADC, 10 communication interfaces
Features
Core
ARM7TDMI 32-bit RISC CPU
59 MIPS @ 66 MHz from SRAM
45 MIPS @ 50 MHz from Flash
Memories
Up to 256 Kbytes Flash program memory
(10 kcycles endurance, 20 years retention
@ 85 ° C)
16 Kbytes Flash data memory
(100 kcycles endurance, 20 years
retention@ 85 ° C)
Up to 64 Kbytes RAM
External Memory Interface (EMI) for up to 4
banks of SRAM, Flash, ROM
Multi-boot capability
Clock, reset and supply management
3.0 to 3.6 V application supply and I/Os
Internal 1.8 V regulator for core supply
Clock input from 0 to 16.5 MHz
Embedded RTC osc. running from external
32 kHz crystal
Embedded PLL for CPU clock
Realtime Clock for clock-calendar function
5 power saving modes: SLOW, WAIT,
LPWAIT, STOP and STANDBY modes
Nested interrupt controller
Fast interrupt handling with multiple vectors
32 vectors with 16 IRQ priority levels
2 maskable FIQ sources
Up to 48 I/O ports
30/32/48 multifunctional bidirectional I/Os
Up to 14 ports with interrupt capability
5 timers
16-bit watchdog timer
3 16-bit timers with 2 input captures, 2
output compares, PWM and pulse counter
16-bit timer for timebase functions
10 communication interfaces
–2 I
2C interfaces (1 multiplexed with SPI)
4 UART asynchronous serial interfaces
Smartcard ISO7816-3 interface on UART1
2 BSPI synchronous serial interfaces
CAN interface (2.0B Active)
USB Full Speed (12 Mbit/s) Device
Function with Suspend and Resume
HDLC synchronous communications
4-channel 12-bit A/D converter
Sampling frequency up to 1 kHz
Conversion range: 0 to 2.5 V
Development tools support
Atomic bit SET and RES operations
Table 1. Device summary
Reference Root part number
STR71xFxx
STR710FZ1, STR710FZ2
STR711FR0, STR711FR1, STR711FR2,
STR712FR0, STR712FR1, STR712FR2,
STR715FR0
STR710RZ STR710RZ
LQFP64
10 x 10 LQFP144
20 x 20
LFBGA64 8 x 8 x 1.7 LFBGA144
10 x 10 x 1.7
LFBGA64
8 x 8 x 1.7
www.st.com
Contents STR71xFxx STR710RZ
2/80 Doc ID 10350 Rev 13
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Pin description for 144-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Pin description for 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 External connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 I/O port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.5 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.6 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.7 EMI - external memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.8 I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.9 BSPI - buffered serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.10 USB characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.11 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
STR71xFxx STR710RZ Contents
Doc ID 10350 Rev 13 3/80
5 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6 Product history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
List of tables STR71xFxx STR710RZ
4/80 Doc ID 10350 Rev 13
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. STR710 BGA ball connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. STR710 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. STR711/STR712/STR715 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. Port bit configuration table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. RAM memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 8. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 9. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 10. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 11. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 12. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 13. Total current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 14. Typical power consumption data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 15. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 16. CK external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 17. RTCXT1 external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 18. 32K oscillator characteristics (fOSC32K= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 19. PLL1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 20. PLL2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 21. Low-power mode wakeup timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 22. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 23. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 24. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 25. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 26. Static and dynamic latch-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 27. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 28. Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 29. RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 30. TIM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 31. EMI general characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 32. EMI read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 33. EMI write operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 34. I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 35. SCL Frequency Table (fPCLK1=8 MHz.,V33 = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 36. BSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 37. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 38. USB DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 39. USB: Full speed driver electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 40. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 41. ADC accuracy with fPCLK2 = 20 MHz, fADC=10 MHz, AVDD=3.3 V . . . . . . . . . . . . . . . . 67
Table 42. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 43. A, Z and X version differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 44. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
STR71xFxx STR710RZ List of figures
Doc ID 10350 Rev 13 5/80
List of figures
Figure 1. STR71x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. STR710 LQFP pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STR712/STR715 LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. STR711 LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5. Recommended external connection of V18 and V18BKP pins . . . . . . . . . . . . . . . . . . . . . 29
Figure 6. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 7. Mapping of Flash memory versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 8. External memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 9. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 14. CK external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 15. Typical application with a 32 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 16. RTC crystal oscillator and resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 17. RPU vs. V33 with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 18. IPU vs. V33 with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 19. RPD vs. V33 with VIN=V33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 20. IPD vs. V33 with VIN=V33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 21. Typical VOL and VOH at V33=3.3V (high current ports) . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 22. Typical VOL vs. V33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 23. Typical VOH vs. V33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 24. Recommended RSTIN pin protection.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 25. Read cycle timing: 16-bit read on 16-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 26. Read cycle timing: 32-bit read on 16-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 27. Read cycle timing: 16-bit read on 8-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 28. Read cycle timing: 32-bit read on 8-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 29. Write cycle timing: 16-bit write on 16-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 30. Write cycle timing: 32-bit write on 16-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 31. Write cycle timing: 16-bit write on 8-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 32. Write cycle timing: 32-bit write on 8-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 33. Typical application with I2C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 34. SPI slave timing diagram with CPHA=01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 35. SPI slave timing diagram with CPHA=11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 36. SPI master timing diagram1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 37. USB: data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 38. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 39. Power supply filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 40. 64-Pin low profile quad flat package (10x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 41. 144-Pin low profile quad flat package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 42. 64-Low profile fine pitch ball grid array package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 43. 144-low profile fine pitch ball grid array package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 44. Recommended PCB design rules (0.80/0.75mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 45. LQFP144 STR710 version “A” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 46. LQFP64 STR712 version “Z” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 47. BGA144 STR710 version “Z” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 48. BGA64 STR711 version “X” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 49. STR71xF ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Introduction STR71xFxx STR710RZ
6/80 Doc ID 10350 Rev 13
1 Introduction
This datasheet provides the STR71x pinout, ordering information, mechanical and electrical
device characteristics.
For complete information on the STR71x microcontroller memory, registers and peripherals.
please refer to the STR71x reference manual.
For information on programming, erasing and protection of the internal Flash memory
please refer to the STR7 Flash programming reference manual.
For information on the ARM7TDMI core please refer to the ARM7TDMI technical reference
manual.
.
Table 2. Device overview
Features STR710
FZ1
STR710
FZ2
STR710
RZ
STR711
FR0
STR711
FR1
STR711
FR2
STR712
FR0
STR712
FR1
STR712
FR2
STR715
FRx
Flash - Kbytes 128+16 256+16 0 64+16 128+16 256+16 64+16 128+16 256+16 64+16
RAM - Kbytes 32 64 64 16 32 64 16 32 64 16
Peripheral
Functions CAN, EMI, USB, 48 I/Os USB, 30 I/Os CAN, 32 I/Os 32 I/Os
Operating
Voltage 3.0 to 3.6 V
Operating
Temperature -40 to +85°C or 0 to 70° C
Packages T=LQFP144 20 x 20
H=LFBGA144 10 x10 T=LQFP64 10 x10
STR71xFxx STR710RZ Description
Doc ID 10350 Rev 13 7/80
2 Description
ARM® core with embedded Flash and RAM
The STR71x series is a family of ARM-powered 32-bit microcontrollers with embedded
Flash and RAM. It combines the high performance ARM7TDMI CPU with an extensive
range of peripheral functions and enhanced I/O capabilities. STR71xF devices have on-chip
high-speed single voltage FLASH memory and high-speed RAM. STR710R devices have
high-speed RAM but no internal Flash. The STR71x family has an embedded ARM core and
is therefore compatible with all ARM tools and software.
Extensive tools support
STMicroelectronics’ 32-bit, ARM core-based microcontrollers are supported by a complete
range of high-end and low-cost development tools to meet the needs of application
developers. This extensive line of hardware/software tools includes starter kits and complete
development packages all tailored for ST’s ARM core-based MCUs. The range of
development packages includes third-party solutions that come complete with a graphical
development environment and an in-circuit emulator/programmer featuring a JTAG
application interface. These support a range of embedded operating systems (OS), while
several royalty-free OSs are also available.
For more information, please refer to ST MCU site http://www.st.com/mcu
System architecture STR71xFxx STR710RZ
8/80 Doc ID 10350 Rev 13
3 System architecture
Package choice: low pin-count 64-pin or feature-rich 144-pin LQFP or BGA
The STR71x family is available in 5 main versions.
The 144-pin versions have the full set of all features including CAN, USB and External
Memory Interface (EMI).
STR710F: 144-pin BGA or LQFP with CAN, USB and EMI
STR710R: Flashless 144-pin BGA or LQFP with CAN, USB and EMI (no internal Flash
memory)
The three 64-pin versions (LQFP) do not include External Memory Interface.
STR715F: 64-pin LQFP without CAN or USB
STR711F: 64-pin LQFP with USB
STR712F: 64-pin LQFP with CAN
High speed Flash memory (STR71xF)
The Flash program memory is organized in two banks of 32-bit wide Burst Flash memories
enabling true read-while-write (RWW) operation. Device Bank 0 is up to 256 Kbytes in size,
typically for the application program code. Bank 1 is 16 Kbytes, typically used for storing
data constants. Both banks are accessed by the CPU with zero wait states @ 33 MHz
Bank 0 memory endurance is 10K write/erase cycles and Bank 1 endurance is 100K
write/erase cycles. Data retention is 20 years at 85°C on both banks. The two banks can be
accessed independently in read or write. Flash memory can be accessed in two modes:
Burst mode: 64-bit wide memory access at up to 50 MHz.
Direct 32-bit wide memory access for deterministic operation at up to 33 MHz.
The STR7 embedded Flash memory can be programmed using In-Circuit Programming or
In-Application programming.
IAP (in-application programming): The IAP is the ability to re-program the Flash memory
of a microcontroller while the user program is running.
ICP (in-circuit programming): The ICP is the ability to program the Flash memory of a
microcontroller using JTAG protocol while the device is mounted on the user application
board.
The Flash memory can be protected against different types of unwanted access
(read/write/erase). There are two types of protection:
Sector Write Protection
Flash Debug Protection (locks JTAG access)
Refer to the STR7 Flash Programming Reference manual for details.
Optional external memory (STR710)
The non-multiplexed 16-bit data/24-bit address bus available on the STR710 (144-pin)
supports four 16-Mbyte banks of external memory. Wait states are programmable
individually for each bank allowing different memory types (Flash, EPROM, ROM, SRAM
etc.) to be used to store programs or data.
Figure 1 shows the general block diagram of the device family.
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 9/80
Flexible power management
To minimize power consumption, you can program the STR71x to switch to SLOW, WAIT,
LPWAIT (low power wait), STOP or STANDBY mode depending on the current system
activity in the application.
Flexible clock control
Two external clock sources can be used, a main clock and a 32 kHz backup clock. The
embedded PLL allows the internal system clock (up to 66 MHz) to be generated from a main
clock frequency of 16 MHz or less. The PLL output frequency can be programmed using a
wide selection of multipliers and dividers. The microcontroller core, APB1 and APB2
peripherals are in separate clock domains and can be programmed to run at different
frequencies during application runtime. The clock to each peripheral is gated with an
individual control bit to optimize power usage by turning off peripherals any time they are not
required.
Voltage regulators
The STR71x requires an external 3.0-3.6V power supply. There are two internal Voltage
Regulators for generating the 1.8V power supply for the core and peripherals. The main VR
is switched off during low power operation.
Low voltage detectors
Both the Main Voltage Regulator and the Low Power Voltage Regulator contain each a low
voltage detection circuitry which keep the device under reset when the corresponding
controlled voltage value (V18 or V18BKP) falls below 1.35V (+/- 10%). This enhances the
security of the system by preventing the MCU from going into an unpredictable state.
An external reset circuit must be used to provide the RESET at V33 power-up. It is not
sufficient to rely on the RESET generated by the LVD in this case. This is because LVD
operation is guaranteed only when V33 is within the specification.
3.1 On-chip peripherals
CAN interface (STR710 and STR712)
The CAN module is compliant with the CAN specification V2.0 part B (active). The bit rate
can be programmed up to 1 MBaud.
USB interface (STR710 and STR711)
The full-speed USB interface is USB V2.0 compliant and provides up to 16 bidirectional/32
unidirectional endpoints, up to 12 Mb/s (full-speed), support for bulk transfer, isochronous
transfers and USB Suspend/Resume functions.
Standard timers
Each of the four timers have a 16-bit free-running counter with 7-bit prescaler
Three timers each provide up to two input capture/output compare functions, a pulse
counter function, and a PWM channel with selectable frequency.
The fourth timer is not connected to the I/O ports. It can be used by the application software
for general timing functions.
System architecture STR71xFxx STR710RZ
10/80 Doc ID 10350 Rev 13
Realtime clock (RTC)
The RTC provides a set of continuously running counters driven by the 32 kHz external
crystal. The RTC can be used as a general timebase or clock/calendar/alarm function.
When the STR71x is in Standby mode the RTC can be kept running, powered by the low
power voltage regulator and driven by the 32 kHz external crystal.
UARTs
The 4 UARTs allow full duplex, asynchronous, communications with external devices with
independently programmable TX and RX baud rates up to 1.25 Mb/s.
Smartcard interface
UART1 is configurable to function either as a general purpose UART or as an asynchronous
Smartcard interface as defined by ISO 7816-3. It includes Smartcard clock generation and
provides support features for synchronous cards.
Buffered serial peripheral interfaces (BSPI)
Each of the two SPIs allow full duplex, synchronous communications with external devices,
master or slave communication at up to 5.5 Mb/s in Master mode and 4 Mb/s in Slave mode.
I2C interfaces
The two I2C Interfaces provide multi-master and slave functions, support normal and fast
I2C mode (400 kHz) and 7 or 10-bit addressing modes.
One I2C Interface is multiplexed with one SPI, so either 2xSPI+1x I2C or 1xSPI+2x I2C may
be used at a time.
HDLC interface
The High Level Data Link Controller (HDLC) unit supports full duplex operation and NRZ,
NRZI, FM0 or MANCHESTER protocols. It has an internal 8-bit baud rate generator.
A/D converter
The Analog to Digital Converter, converts in single channel or up to 4 channels in single-
shot or round robin mode. Resolution is 12-bit with a sampling frequency of up to 1 kHz. The
input voltage range is 0-2.5V.
Watchdog
The 16-bit Watchdog Timer protects the application against hardware or software failures
and ensures recovery by generating a reset.
I/O ports
The 48 I/O ports are programmable as Inputs or Outputs.
External interrupts
Up to 14 external interrupts are available for application use or to wake up the application
from STOP mode.
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 11/80
Figure 1. STR71x block diagram
APB BUS
USBDP
USBDN
P0[15:0] I/O PORT 0
FLASH*
Program Memory
64/128/256K
I2C0
I2C1
BSPI0
BSPI1
UART0
UART1 /
UART2
UART3
USB
CAN
HDLC
APB
BRIDGE 1
APB
BRIDGE 2
APB BUS
TIMER1
TIMER2
TIMER3
RTC
EXT INT (XTI)
WATCHDOG
INTERRUPT CTL(EIC)
A/D
POWER SUPPLY
PRCCU/PLL
RAM
16/32/64K
JTAG
ARM7TDMI
CPU
EXT. MEM.
STDBY
2 AF
4 AF
4 AF
2 AF
3 AF
2 AF
2 AF
2 AF
3 AF
4 AF
4 AF
2 AF
4 AF
A[19:0]
D[15:0]
RDN
WEN[1:0]
RTCXTO
RTCXTI
WAKEUP
JTDI
JTCK
JTMS
JTRST
JTDO
CK
CKOUT
RSTIN
V18[1:0]
V33[6:0]
VSS[9:0]
V18BKP
14 AF
OSC
DBGRQS
BOOTEN
VREG
AVDD
AVSS
P1[15:0] I/O PORT 1
P2[15:0] I/O PORT 2
TIMER0
ARM7 NATIVE BUS
CS[3:0)
2 AF
1 AF
AF: alternate function on I/O port pin
INTERFACE (EMI)
A[23:20] (AF)
SMARTCARD
16K Data FLASH*
*Flash present in STR710F, not in STR710R
System architecture STR71xFxx STR710RZ
12/80 Doc ID 10350 Rev 13
3.2 Related documentation
Available from www.arm.com:
ARM7TDMI Technical reference manual
Available from http://www.st.com:
STR71x Reference manual
STR7 Flash programming manual
AN1774 - STR71x Software development getting started
AN1775 - STR71x Hardware development getting started
AN1776 - STR71x Enhanced interrupt controller
AN1777 - STR71x memory mapping
AN1780 - Real time clock with STR71x
AN1781 - Four 7 segment display drive using the STR71x
The above is a selected list only, a full list STR71x application notes can be viewed at
http://www.st.com.
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 13/80
3.3 Pin description for 144-pin packages
Figure 2. STR710 LQFP pinout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
P0.10/U1.RX/U1.TX/SCDATA
RDn
P0.11/U1.TX/BOOT.1
P0.12/SCCLK
VSS
V33
P2.0/CSn.0
P2.1/CSn.1
P0.13/U2.RX/T2.OCMPA
P0.14/U2.TX/T2.ICAPA
P2.2/CSn.2
P2.3/CSn.3
P2.4/A.20
P2.5/A.21
P2.6/A.22
BOOTEN
P2.7/A.23
P2.8
N.C.
N.C.
VSS
V33
P2.9
P2.10
P2.11
P2.12
P2.13
P2.14
P2.15
JTDI
JTMS
JTCK
JTDO
JTRSTn
NU
TEST
P1.14/HRXD/I0.SDA
P1.13/HCLK/I0.SCL
P1.10/USBCLK
P1.9
V33
VSS
A.4
A.3
A.2
A.1
A.0
D.1 5
D.1 4
D.1 3
D.1 2
D.1 1
D.1 0
USBDN
USBDP
P1.12/CANTX
P1.11/CANRX
N.C.
P1.8
P1.7/T1.OCMPA
VSSIO-PLL
V33IO-PLL
D.9
D.8
D.7
D.6
D.5
P1.6/T1.OCMPB
P1.5/T1.ICAPB
P1.4/T1.ICAPA
P1.3/T3.ICAPB/AIN.3
P1.2/T3.OCMPA/AIN.2
N.C.
TEST
N.C.
V33IO-PLL
N.C.
VSSIO-PLL
N.C.
DBGRQS
CKOUT
CK
P0.15/WAKEUP
N.C.
RTCXTI
RTCXTO
STDBY
RSTIN
N.C.
VSSBKP
V18BKP
N.C.
N.C.
V18
VSS18
N.C.
D.0
D.1
D.2
D.3
D.4
AVDD
AVS S
N.C.
N.C.
N.C.
P1.0/T3.OCMPB/AIN.0
P1.1/T3.ICAPA/AIN.1
P0.9/U0.TX/BOOT.0
P0.8/U0.RX/U0.TX
P0.7/S1.SSN
P0.6/S1.SCLK
P0.5/S1.MOSI
VSS
V33
WEn.0
WEn.1
A.19
A.18
A.17
A.16
A.15
A.14
V18
VSS18
P0.4/S1.MISO
P0.3/S0.SSN/I1.SDA
P0.2/S0.SCLK/I1.SCL
P0.1/S0.MOSI/U3.RX
P0.0/S0.MISO/U3.TX
A.13
A.12
A.11
A.10
A.9
A.8
A.7
A.6
A.5
V33
VSS
P1.15/HTXD
N.C.
N.C.
LQFP144
System architecture STR71xFxx STR710RZ
14/80 Doc ID 10350 Rev 13
Legend / abbreviations for Ta bl e 4 :
Type: I = input, O = output, S = supply, HiZ= high impedance,
In/Output level: C = CMOS 0.3VDD/0.7VDD
CT= CMOS 0.3VDD/0.7VDD with input trigger
TT= TTL 0.8 V/2 V with input trigger
C/T = Programmable levels: CMOS 0.3VDD/0.7VDD or TTL 0.8 V / 2 V
Port and control configuration:
Input: pu/pd= software enabled internal pull-up or pull down
pu= in reset state, the internal 100kΩ weak pull-up is enabled.
pd = in reset state, the internal 100kΩ weak pull-down is enabled.
Output: OD = open drain (logic level)
PP = push-pull
T = true OD, (P-Buffer and protection diode to VDD not implemented),
5 V tolerant.
Table 3. STR710 BGA ball connections
ABCDE FGHJKLM
1P0.10 P2.0 P2.1 VSS P2.2 P2.6 BOOT
EN P2.12 P2.13 P2.15 JTDI N.C.
2VSS RDn P0.11 V33 P2.3 P2.8 P2.9 JTMS JTRSTn TEST TEST N.C.
3V33 P0.9 P0.12 P0.13 P2.4 N.C. P2.10 JTCK NU V33 N.C. DBG
RQS
4P0.6 P0.7 P0.8 P0.14 P2.5 N.C. P2.11 JTDO CK CKOUT VSSIO-
PLL N.C.
5A.19 WEn.1 WEn.0 P0.5 P2.7 VSS P2.14 N.C. RTCX-
TO RTCXTI N.C. P0.15
6P0.3 A.15 A.16 A.17 A.18 V33 V18 N.C. N.C. V18BK
P
VSS
BKP STDBY
7P0.2 P0.1 P0.4 VSS18 V18 A.14 D.12 D.1 D.0 nc VSS18 RSTIN
8A.9 A.10A.11A.13P0.0 A.0 D.11
P1.12/
CANTX N.C. AVSS D.3 D.2
9VSS V33 A.5 A.6 V33 D.15 D.10 P1.8 D.9 P1.0 N.C. N.C.
10 A.8 N.C. P1.15 P1.13 VSS D.14 USBDN P1.7 D.8 P1.5 P1.1 D.4
11 A.7 N.C. P1.14 P1.10 A.2 D.13 USBDP VSS D.5 P1.4 P1.3 AVDD
12 A.12 A.4 A.3 P1.9 A.1 P1.11/
CANRX N.C. V33IO-
PLL P1.6 D.7 D.6 P1.2
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 15/80
Table 4. STR710 pin description
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input level
interrupt
Capability
OD
PP
1A1
P0.10/U1.RX/
U1.TX/
SC.DATA
I/O pd CTX 4mA T Port 0.10
UART1:
Receive Data
input
UART1: Transmit
data output.
Note: This pin may be used for
Smartcard DataIn/DataOut or single
wire UART (half duplex) if
programmed as Alternate Function
Output. The pin will be tri-stated
except when UART transmission is in
progress
2B2RD O5) X
External Memory Interface: Active low read signal
for external memory. It maps to the OE_N input of
the external components.
3C2
P0.11/BOOT.1
/U1.TX I/O pd CT4mA X X Port 0.11
Select Boot
Configuration
input
UART1: Transmit
data output.
4 C3 P0.12/SC.CLK I/O pd CT4mA X X Port 0.12 Smartcard reference clock output
5D1V
SS S Ground voltage for digital I/Os4)
6D2V
33 S Supply voltage for digital I/Os4)
7 B1 P2.0/CS.0 I/O 8) CT8mA X X Port 2.0
External Memory Interface: Select
Memory Bank 0 output
Note: This pin is forced to output
push-pull 1 mode at reset to allow
boot from external memory
8 C1 P2.1/CS.1 I/O pu
2) CT8mA X X Port 2.1 External Memory Interface: Select
Memory Bank 1 output
9D3
P0.13/U2.RX/
T2.OCMPA I/O pu CTX 4mA X X Port 0.13
UART2:
Receive Data
input
Timer2: Output
Compare A output
10 D4 P0.14/U2.TX/
T2.ICAPA I/O pu CT4mA X X Port 0.14
UART2:
Transmit data
output
Timer2: Input
Capture A input
11 E1 P2.2/CS.2 I/O pu
2) CT8mA X X Port 2.2 External Memory Interface: Select
Memory Bank 2 output
12 E2 P2.3/CS.3 I/O pu
2) CT8mA X X Port 2.3 External Memory Interface: Select
Memory Bank 3 output
System architecture STR71xFxx STR710RZ
16/80 Doc ID 10350 Rev 13
13 E3 P2.4/A.20 I/O pd
3) CT8mA X X Port 2.4
External Memory Interface: address
bus
14 E4 P2.5/A.21 I/O pd
3) CT8mA X X Port 2.5
15 F1 P2.6/A.22 I/O pd
3) CT8mA X X Port 2.6
16 G1 BOOTEN I CT
Boot control input. Enables sampling of
BOOT[1:0] pins
17 E5 P2.7/A.23 I/O pd
3) CT8mA X X Port 2.7 External Memory Interface: address
bus
18 F2 P2.8 I/O pu CTX 4mA X X Port 2.8 External interrupt INT2
19 F3 N.C. Not connected (not bonded)
20 F4 N.C. Not connected (not bonded)
21 F5 VSS S Ground voltage for digital I/Os4)
22 F6 V33 S Supply voltage for digital I/Os4)
23 G2 P2.9 I/O pu CTX 4mA X X Port 2.9 External interrupt INT3
24 G3 P2.10 I/O pu CTX 4mA X X Port 2.10 External interrupt INT4
25 G4 P2.11 I/O pu CTX 4mA X X Port 2.11 External interrupt INT5
26 H1 P2.12 I/O pu CT4mA X X Port 2.12
27 J1 P2.13 I/O pu CT4mA X X Port 2.13
28 G5 P2.14 I/O pu CT4mA X X Port 2.14
29 K1 P2.15 I/O pu CT4mA X X Port 2.15
30 L1 JTDI I TTJTAG Data input. External pull-up required.
31 H2 JTMS I TT
JTAG Mode Selection Input. External pull-up
required.
32 H3 JTCK I C JTAG Clock Input. External pull-up or pull-down
required.
33 H4 JTDO O 8mA X JTAG Data output. Note: Reset state = HiZ.
34 J2 JTRST I TTJTAG Reset Input. External pull-up required.
35 J3 NU Reserved, must be forced to ground.
36 K2 TEST Reserved, must be forced to ground.
37 M1 N.C. Not connected (not bonded)
38 L2 TEST Reserved, must be forced to ground.
39 L3 N.C. Not connected (not bonded)
Table 4. STR710 pin description
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input level
interrupt
Capability
OD
PP
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 17/80
40 K3 V33IO-PLL SSupply voltage for digital I/O circuitry and for PLL
reference
41 M4 N.C. Not connected (not bonded)
42 L4 VSSIO-PLL SGround voltage for digital I/O circuitry and for PLL
reference4)
43 M2 N.C. Not connected (not bonded)
44 M3 DBGRQS I CTDebug Mode request input (active high)
45 K4 CKOUT O 8mA X Clock output (fPCLK2) Note: Enabled by CKDIS
register in APB Bridge 2
46 J4 CK I C Reference clock input
47 M5 P0.15/
WAKEUP IT
TXX
Port 0.15 Wakeup from Standby mode input.
Note: This port is input only.
48 L5 N.C. Not connected (not bonded)
49 K5 RTCXTI Realtime Clock input and input of 32 kHz
oscillator amplifier circuit
50 J5 RTCXTO Output of 32 kHz oscillator amplifier circuit
51 M6 STDBY I/O CT4mA X X
Input: Hardware Standby mode entry input active
low. Caution: External pull-up to V33 required to
select normal mode.
Output: Standby mode active low output following
Software Standby mode entry.
Note: In Standby mode all pins are in high
impedance except those marked Active in Stdby
52 M7 RSTIN IC
TX Reset input
53 H5 N.C. Not connected (not bonded)
54 L6 VSSBKP S X Stabilization for low power voltage regulator.
55 K6 V18BKP SX
Stabilization for low power voltage regulator.
Requires external capacitors of at least 1µF
between V18BKP and VSS18BKP
. See Figure 5.
Note: If the low power voltage regulator is
bypassed, this pin can be connected to an
external 1.8V supply.
56 J6 N.C. Not connected (not bonded)
57 H6 N.C. Not connected (not bonded)
58 G6 V18 S
Stabilization for main voltage regulator. Requires
external capacitors of at least 10µF + 33nF
between V18 and VSS18. See Figure 5.
Table 4. STR710 pin description
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input level
interrupt
Capability
OD
PP
System architecture STR71xFxx STR710RZ
18/80 Doc ID 10350 Rev 13
59 L7 VSS18 S Stabilization for main voltage regulator.
60 K7 N.C. Not connected (not bonded)
61 J7 D.0 I/O 6) 8mA
External Memory Interface: data bus
62 H7 D.1 I/O 6) 8mA
63 M8 D.2 I/O 6) 8mA
64 L8 D.3 I/O 6) 8mA
65 M10 D.4 I/O 6) 8mA
66 M11 VDDA S Supply voltage for A/D Converter
67 K8 VSSA S Ground voltage for A/D Converter
68 J8 N.C. Not connected (not bonded)
69 M9 N.C. Not connected (not bonded)
70 L9 N.C. Not connected (not bonded)
71 K9 P1.0/T3.OCM
PB/AIN.0 I/O pu CT4mA X X Port 1.0
Timer 3:
Output
Compare B
ADC: Analog input 0
72 L10
P1.1/T3.ICAP
A/T3.EXTCLK/
AIN.1
I/O pu CT4mA X X Port 1.1
Timer 3: Input
Capture A or
External Clock
input
ADC: Analog input 1
73 M12 P1.2/T3.OCM
PA/AIN.2 I/O pu CT4mA X X Port 1.2
Timer 3:
Output
Compare A
ADC: Analog input 2
74 L11 P1.3/T3.ICAP
B/AIN.3 I/O pu CT4mA X X Port 1.3 Timer 3: Input
Capture B ADC: Analog input 3
75 K11 P1.4/T1.ICAP
A/T1.EXTCLK I/O pu CT4mA X X Port 1.4 Timer 1: Input
Capture A
Timer 1: External
Clock input
76 K10 P1.5/T1.ICAP
BI/O pu CT4mA X X Port 1.5 Timer 1: Input
Capture B
77 J12 P1.6/T1.OCM
PB I/O pu CT4mA X X Port 1.6
Timer 1:
Output
Compare B
78 J11 D.5 I/O 6) 8mA
External Memory Interface: data bus
79 L12 D.6 I/O 6) 8mA
80 K12 D.7 I/O 6) 8mA
81 J10 D.8 I/O 6) 8mA
82 J9 D.9 I/O 6) 8mA
Table 4. STR710 pin description
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input level
interrupt
Capability
OD
PP
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 19/80
83 H12 V33IO-PLL SSupply voltage for digital I/O circuitry and for PLL
reference4)
84 H11 VSSIO-PLL SGround voltage for digital I/O circuitry and for PLL
reference4)
85 H10 P1.7/T1.OCM
PA I/O pu CT4mA X X Port 1.7
Timer 1:
Output
Compare A
86 H9 P1.8 I/O pd CT4mA X X Port 1.8
87 G12 N.C. Not connected (not bonded)
88 F12 P1.11/CANRX I/O pu CTX 4mA X X Port 1.11 CAN: receive data input
Note: On STR710 and STR712 only
89 H8 P1.12/CANTX I/O pu CT4mA X X Port 1.12 CAN: Transmit data output
Note: On STR710 and STR712 only
90 G11 USBDP I/O CT
USB bidirectional data (data +). Reset state = HiZ
Note: On STR710 and STR711 only
This pin requires an external pull-up to V33 to
maintain a high level.
91 G10 USBDN I/O CT
USB bidirectional data (data -). Reset state = HiZ
Note: On STR710 and STR711 only.
92 G9 D.10 I/O 6) 8mA
External Memory Interface: data bus
93 G8 D.11 I/O 6) 8mA
94 G7 D.12 I/O 6) 8mA
95 F11 D.13 I/O 6) 8mA
96 F10 D.14 I/O 6) 8mA
97 F9 D.15 I/O 6) 8mA
98 F8 A.0 O 7) 8mA X
External Memory Interface: address bus
99 E12 A.1 O 7) 8mA X
100 E11 A.2 O 7) 8mA X
101 C12 A.3 O 7) 8mA X
102 B12 A.4 O 7) 8mA X
103 E10 VSS S Ground voltage for digital I/O circuitry4)
104 E9 V33 S Supply voltage for digital I/O circuitry4)
105 D12 P1.9 I/O pd CT4mA X X Port 1.9
106 D11 P1.10/
USBCLK I/O pd C/
T4mA X X Port 1.10 USB: 48 MHZ
clock input
Table 4. STR710 pin description
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input level
interrupt
Capability
OD
PP
System architecture STR71xFxx STR710RZ
20/80 Doc ID 10350 Rev 13
107 D10 P1.13/HCLK/
I0.SCL I/O pd CTX 4mA X X Port 1.13
HDLC:
reference
clock input
I2C clock
108 C11 P1.14/HRXD/
I0.SDA I/O pu CTX 4mA X X Port 1.14
HDLC:
Receive data
input
I2C serial data
109 B11 N.C. Not connected (not bonded)
110 B10 N.C. Not connected (not bonded)
111 C10 P1.15/HTXD I/O pu CT4mA X X Port 1.15 HDLC: Transmit data output
112 A9 VSS S Ground voltage for digital I/O circuitry4)
113 B9 V33 S Supply voltage for digital I/O circuitry4)
114 C9 A.5 O 7) 8mA X
External Memory Interface: address bus
115 D9 A.6 O 7) 8mA X
116 A11 A.7 O 7) 8mA X
117 A10 A.8 O 7) 8mA X
118 A8 A.9 O 7) 8mA X
119 B8 A.10 O 7) 8mA X
120 C8 A.11 O 7) 8mA X
121 A12 A.12 O 7) 8mA X
122 D8 A.13 O 7) 8mA X
123 E8 P0.0/S0.MISO
/U3.TX I/O pu CT4mA X X Port 0.0
SPI0 Master
in/Slave out
data
UART3 Transmit data
output
Note: Programming AF function
selects UART by default. BSPI must
be enabled by SPI_EN bit in the
BOOTCR register.
124 B7 P0.1/S0.MOSI
/U3.RX I/O pu CTX4mAX X Port 0.1
BSPI0: Master
out/Slave in
data
UART3: Receive
Data input
Note: Programming AF function
selects UART by default. BSPI must
be enabled by SPI_EN bit in the
BOOTCR register.
Table 4. STR710 pin description
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input level
interrupt
Capability
OD
PP
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 21/80
125 A7 P0.2/S0.SCLK
/I1.SCL I/O pu CTX4mAX X Port 0.2
BSPI0: Serial
Clock I2C1: Serial clock
Note: Programming AF function
selects I2C by default. BSPI must be
enabled by SPI_EN bit in the
BOOTCR register.
126 A6 P0.3/S0.SS/
I1.SDA I/O pu CT4mA X X Port 0.3
SPI0: Slave
Select input
active low.
I2C1: Serial Data
Note: Programming AF function
selects I2C by default. BSPI must be
enabled by SPI_EN bit in the
BOOTCR register.
127 C7 P0.4/S1.MISO I/O pu CT4mA X X Port 0.4 SPI1: Master in/Slave out data
128 D7 VSS18 S Stabilization for main voltage regulator.
129 E7 V18 S
Stabilization for main voltage regulator. Requires
external capacitors of at least 10µF + 33nF
between V18 and VSS18. See Figure 5.
130 F7 A.14 O 7) 8mA X
External Memory Interface: address bus
131 B6 A.15 O 7) 8mA X
132 C6 A.16 O 7) 8mA X
133 D6 A.17 O 7) 8mA X
134 E6 A.18 O 7) 8mA X
135 A5 A.19 O 7) 8mA X
136 B5 WE.1 O 5) 8mA X External Memory Interface: active low MSB write
enable output
137 C5 WE.0 O 5) 8mA X External Memory Interface: active low LSB write
enable output
138 A3 V33 S Supply voltage for digital I/Os4)
139 A2 VSS S Ground voltage for digital I/Os4)
140 D5 P0.5/S1.MOSI I/O pu CT4mA X X Port 0.5 SPI1: Master out/Slave In data
141 A4 P0.6/S1.SCLK I/O pu CTX 4mA X X Port 0.6 SPI1: Serial Clock
142 B4 P0.7/S1.SS I/O pu CT4mA X X Port 0.7 SPI1: Slave Select input active low
Table 4. STR710 pin description
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input level
interrupt
Capability
OD
PP
System architecture STR71xFxx STR710RZ
22/80 Doc ID 10350 Rev 13
1. The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 6 on page 30.
The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends
on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset
2. In reset state, these pins configured as Input PU/PD with weak pull-up enabled. They must be configured
by software as Alternate Function (see Table 6: Port bit configuration table on page 30) to be used by the
External Memory Interface.
3. In reset state, these pins configured as Input PU/PD with weak pull-down enabled to output Address
0x0000 0000 using the External Memory Interface. To access memory banks greater than 1Mbyte, they
need to be configured by software as Alternate Function (see Table 6: Port bit configuration table on
page 30).
4. V33IO-PLL and V33 are internally connected. VSSIO-PLL and VSS are internally connected.
5. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as
Output Push-Pull.
6. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as
Hi-Z.
7. During the reset phase, these pins are in input pull-down state. When reset is released, they are configured
as Output Push-Pull.
8. During the reset phase, this pin is in input floating state. When reset is released, it is configured as Output
Push-Pull.
143 C4 P0.8/U0.RX/
U0.TX I/O pd CTX4mA T
Port 0.8
UART0:
Receive Data
input
UART0: Transmit
data output.
Note: This pin may be used for single wire UART
(half duplex) if programmed as Alternate Function
Output. The pin will be tri-stated except when
UART transmission is in progress
144 B3 P0.9/U0.TX/
BOOT.0 I/O pd CT4mA X X Port 0.9
Select Boot
Configuration
input
UART0: Transmit
data output
Table 4. STR710 pin description
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP144
BGA144
Input level
interrupt
Capability
OD
PP
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 23/80
3.4 Pin description for 64-pin packages
Figure 3. STR712/STR715 LQFP64 pinout
1. CANTX and CANRX in STR712F only, in STR715F they are general purpose I/Os.
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
P1.14/HRXD/I0.SDA
P1.13/HCLK/I0.SCL
P1.10
P1.9
VSS
P1.12/CANTX1)
P1.11/CANRX1)
P1.8
P1.7/T1.OCMPA
VSSIO-PLL
V33IO-PLL
P1.6/T1.OCMPB
P1.5/T1.ICAPB
P1.4/T1.ICAPA
P1.3/T3.ICAPB/AIN.3
P1.2/T3.OCMPA/AIN.2
V33IO-PLL
VSSIO-PLL
CK
P0.15/WAKEUP
RTCXTI
RTCXTO
STDBY
RSTIN
VSSBKP
V18BKP
V18
VSS18
AVDD
AVSS
P1.0/T3.OCMPB/AIN.0
P1.1/T3.ICAPA/AIN.1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
P0.10/U1.RX/U1.TX/SCDATA
P0.11/U1.TX/BOOT.1
P0.12/SCCLK
VSS
P0.13/U2.RX/T2.OCMPA
P0.14/U2.TX/T2.ICAPA
BOOTEN
VSS
V33
JTDI
JTMS
JTCK
JTDO
nJTRST
NU
TEST
P0.9/U0.TX/BOOT.0
P0.8/U0.RX/U0.TX
P0.7/S1.SSN
P0.6/S1.SCLK
P0.5/S1.MOSI
VSS
V18
VSS18
P0.4/S1.MISO
P0.3/S0.SSN/I1.SDA
P0.2/S0.SCLK/I1.SCL
P0.1/S0.MOSI/U3.RX
P0.0/S0.MISO/U3.TX
V33
VSS
P1.15/HTXD
LQFP64
System architecture STR71xFxx STR710RZ
24/80 Doc ID 10350 Rev 13
Figure 4. STR711 LQFP64 pinout
Legend / abbreviations for Table 5:
Type: I = input, O = output, S = supply, HiZ= high impedance,
In/Output level: C = CMOS 0.3VDD/0.7VDD
CT= CMOS 0.3VDD/0.7VDD with input trigger
TT= TTL 0.8V / 2V with input trigger
C/T = Programmable levels: CMOS 0.3VDD/0.7VDD or TTL 0.8V / 2V
Port and control configuration:
Input: pu/pd= software enabled internal pull-up or pull down
pu= in reset state, the internal 100kΩ weak pull-up is enabled.
pd = in reset state, the internal 100kΩ weak pull-down is enabled.
Output: OD = open drain (logic level)
PP = push-pull
T = true OD, (P-Buffer and protection diode to VDD not implemented),
5V tolerant.
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
P1.14/HRXD/I0.SDA
P1.13/HCLK/I0.SCL
P1.10/USBCLK
P1.9
VSS
USBDN
USBDP
P1.8
P1.7/T1.OCMPA
VSSIO-PLL
V33IO-PLL
P1.6/T1.OCMPB
P1.5/T1.ICAPB
P1.4/T1.ICAPA
P1.3/T3.ICAPB/AIN.3
P1.2/T3.OCMPA/AIN.2
V33IO-PLL
VSSIO-PLL
CK
P0.15/WAKEUP
RTCXTI
RTCXTO
STDBY
RSTIN
VSSBKP
V18BKP
V18
VSS18
AVDD
AVSS
P1.0/T3.OCMPB/AIN.0
P1.1/T3.ICAPA/AIN.1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
P0.10/U1.RX/U1.TX/SCDATA
P0.11/U1.TX/BOOT.1
P0.12/SCCLK
VSS
P0.13/U2.RX/T2.OCMPA
P0.14/U2.TX/T2.ICAPA
BOOTEN
VSS
V33
JTDI
JTMS
JTCK
JTDO
nJTRST
NU
TEST
P0.9/U0.TX/BOOT.0
P0.8/U0.RX/U0.TX
P0.7/S1.SSN
P0.6/S1.SCLK
P0.5/S1.MOSI
VSS
V18
VSS18
P0.4/S1.MISO
P0.3/S0.SSN/I1.SDA
P0.2/S0.SCLK/I1.SCL
P0.1/S0.MOSI/U3.RX
P0.0/S0.MISO/U3.TX
V33
VSS
P1.15/HTXD
LQFP64
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 25/80
Table 5. STR711/STR712/STR715 pin description
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP64
Input level
interrupt
Capability
OD
PP
1
P0.10/U1.RX/
U1.TX/
SC.DATA
I/O pd CTX 4mA T Port 0.10
UART1:
Receive Data
input
UART1: Transmit data
output.
Note: This pin may be used for
Smartcard DataIn/DataOut or single
wire UART (half duplex) if programmed
as Alternate Function Output. The pin
will be tri-stated except when UART
transmission is in progress
2P0.11/BOOT.1
/U1.TX I/O pd CT4mA X X Port 0.11
Select Boot
Configuration
input
UART1: Transmit data
output.
3 P0.12/SC.CLK I/O pd CT4mA X X Port 0.12 Smartcard reference clock output
4V
SS S Ground voltage for digital I/Os2)
5P0.13/U2.RX/
T2.OCMPA I/O pu CTX 4mA X X Port 0.13
UART2:
Receive Data
input
Timer2: Output
Compare A output
6P0.14/U2.TX/
T2.ICAPA I/O pu CT4mA X X Port 0.14
UART2:
Transmit data
output
Timer2: Input Capture
A input
7BOOTEN I C
T
Boot control input. Enables sampling of BOOT[1:0]
pins
8V
SS S Ground voltage for digital I/Os2)
9V
33 S Supply voltage for digital I/Os2)
10 JTDI I TTJTAG Data input. External pull-up required.
11 JTMS I TT
JTAG Mode Selection Input. External pull-up
required.
12 JTCK I C JTAG Clock Input. External pull-up or pull-down
required.
13 JTDO O 8mA X JTAG Data output. Note: Reset state = HiZ.
14 JTRST I TTJTAG Reset Input. External pull-up required.
15 NU Reserved, must be forced to ground.
16 TEST Reserved, must be forced to ground.
17 V33IO-PLL SSupply voltage for digital I/O circuitry and for PLL
reference2)
18 VSSIO-PLL SGround voltage for digital I/O circuitry and for PLL
reference2)
19 CK I C Reference clock input
System architecture STR71xFxx STR710RZ
26/80 Doc ID 10350 Rev 13
20 P0.15/
WAKEUP IT
TXX
Port 0.15 Wakeup from Standby mode input.
Note: This port is input only.
21 RTCXTI Realtime Clock input and input of 32 kHz oscillator
amplifier circuit
22 RTCXTO Output of 32 kHz oscillator amplifier circuit
23 STDBY I/O CT4mA X X
Input: Hardware Standby mode entry input active
low.
Caution: External pull-up to V33 required to select
normal mode.
Output: Standby mode active low output following
Software Standby mode entry.
Note: In Standby mode all pins are in high
impedance except those marked Active in Stdby.
24 RSTIN IC
TX Reset input
25 VSSBKP S X Stabilization for low power voltage regulator.
26 V18BKP SX
Stabilization for low power voltage regulator.
Requires external capacitors of at least 1µF
between V18BKP and VSS18BKP
. See Figure 5.
Note: If the low power voltage regulator is
bypassed, this pin can be connected to an external
1.8V supply.
27 V18 S
Stabilization for main voltage regulator. Requires
external capacitors of at least 10µF + 33nF
between V18 and VSS18. See Figure 5.
28 VSS18 S Stabilization for main voltage regulator.
29 VDDA S Supply voltage for A/D Converter
30 VSSA S Ground voltage for A/D Converter
31 P1.0/T3.OCM
PB/AIN.0 I/O pu CT4mA X X Port 1.0 Timer 3: Output
Compare B ADC: Analog input 0
32
P1.1/T3.ICAP
A/T3.EXTCLK
/AIN.1
I/O pu CT4mA X X Port 1.1
Timer 3: Input
Capture A or
External Clock
input
ADC: Analog input 1
33 P1.2/T3.OCM
PA/AIN.2 I/O pu CT4mA X X Port 1.2 Timer 3: Output
Compare A ADC: Analog input 2
34 P1.3/T3.ICAP
B/AIN.3 I/O pu CT4mA X X Port 1.3 Timer 3: Input
Capture B ADC: Analog input 3
35 P1.4/T1.ICAP
A/T1.EXTCLK I/O pu CT4mA X X Port 1.4 Timer 1: Input
Capture A
Timer 1: External
Clock input
Table 5. STR711/STR712/STR715 pin description (continued)
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP64
Input level
interrupt
Capability
OD
PP
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 27/80
36 P1.5/T1.ICAP
BI/O pu CT4mA X X Port 1.5 Timer 1: Input
Capture B
37 P1.6/T1.OCM
PB I/O pu CT4mA X X Port 1.6 Timer 1: Output
Compare B
38 V33IO-PLL SSupply voltage for digital I/O circuitry and for PLL
reference2)
39 VSSIO-PLL SGround voltage for digital I/O circuitry and for PLL
reference2)
40 P1.7/T1.OCM
PA I/O pu CT4mA X X Port 1.7 Timer 1: Output
Compare A
41 P1.8 I/O pd CT4mA X X Port 1.8
42 P1.11/CANRX I/O pu CTX 4mA X X Port 1.11 CAN: receive data input
Note: On STR710 and STR712 only
43 P1.12/CANTX I/O pu CT4mA X X Port 1.12 CAN: Transmit data output
Note: On STR710 and STR712 only
42 USBDP I/O CT
USB bidirectional data (data +). Reset state = HiZ
Note: On STR710 and STR711 only
This pin requires an external pull-up to V33 to
maintain a high level.
43 USBDN I/O CT
USB bidirectional data (data -). Reset state = HiZ
Note: On STR710 and STR711 only.
44 VSS S Ground voltage for digital I/O circuitry2)
45 P1.9 I/O pd CT4mA X X Port 1.9
46 P1.10/USBCL
KI/O pd C/
T4mA X X Port 1.10 USB: 48 MHZ
clock input
47 P1.13/HCLK/I
0.SCL I/O pd CTX 4mA X X Port 1.13
HDLC:
reference clock
input
I2C clock
48 P1.14/HRXD/I
0.SDA I/O pu CTX 4mA X X Port 1.14 HDLC: Receive
data input I2C serial data
49 P1.15/HTXD I/O pu CT4mA X X Port 1.15 HDLC: Transmit data output
50 VSS S Ground voltage for digital I/O circuitry2)
51 V33 S Supply voltage for digital I/O circuitry2)
Table 5. STR711/STR712/STR715 pin description (continued)
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP64
Input level
interrupt
Capability
OD
PP
System architecture STR71xFxx STR710RZ
28/80 Doc ID 10350 Rev 13
52 P0.0/S0.MISO
/U3.TX I/O pu CT4mA X X Port 0.0
SPI0 Master
in/Slave out
data
UART3 Transmit data
output
Note: Programming AF function selects
UART by default. BSPI must be
enabled by SPI_EN bit in the BOOTCR
register.
53 P0.1/S0.MOSI
/U3.RX I/O pu CTX4mAX X Port 0.1
BSPI0: Master
out/Slave in
data
UART3: Receive Data
input
Note: Programming AF function selects
UART by default. BSPI must be
enabled by SPI_EN bit in the BOOTCR
register.
54 P0.2/S0.SCLK
/I1.SCL I/O pu CTX4mA X X Port 0.2
BSPI0: Serial
Clock I2C1: Serial clock
Note: Programming AF function selects
I2C by default. BSPI must be enabled
by SPI_EN bit in the BOOTCR register.
55 P0.3/S0.SS/I1
.SDA I/O pu CT4mA X X Port 0.3
SPI0: Slave
Select input
active low.
I2C1: Serial Data
Note: Programming AF function selects
I2C by default. BSPI must be enabled
by SPI_EN bit in the BOOTCR register.
56 P0.4/S1.MISO I/O pu CT4mA X X Port 0.4 SPI1: Master in/Slave out data
57 VSS18 S Stabilization for main voltage regulator.
58 V18 S
Stabilization for main voltage regulator. Requires
external capacitors of at least 10µF + 33nF
between V18 and VSS18. See Figure 5.
59 VSS S Ground voltage for digital I/Os
60 P0.5/S1.MOSI I/O pu CT4mA X X Port 0.5 SPI1: Master out/Slave In data
61 P0.6/S1.SCLK I/O pu CTX 4mA X X Port 0.6 SPI1: Serial Clock
62 P0.7/S1.SS I/O pu CT4mA X X Port 0.7 SPI1: Slave Select input active low
Table 5. STR711/STR712/STR715 pin description (continued)
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP64
Input level
interrupt
Capability
OD
PP
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 29/80
1. The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 6 on page 30.
The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends
on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset
2. V33IO-PLL and V33 are internally connected. VSSIO-PLL and VSS are internally connected.
3.5 External connections
Figure 5. Recommended external connection of V18 and V18BKP pins
63 P0.8/U0.RX/U
0.TX I/O pd CTX4mA T
Port 0.8
UART0:
Receive Data
input
UART0: Transmit data
output.
Note: This pin may be used for single wire UART
(half duplex) if programmed as Alternate Function
Output. The pin will be tri-stated except when
UART transmission is in progress
64 P0.9/U0.TX/B
OOT.0 I/O pd CT4mA X X Port 0.9
Select Boot
Configuration
input
UART0: Transmit data
output
Table 5. STR711/STR712/STR715 pin description (continued)
Pin n°
Pin name
Type
Reset state1)
Input Output
Active in Stdby
Main
function
(after
reset)
Alternate function
LQFP64
Input level
interrupt
Capability
OD
PP
LQFP144 LQFP64
58
57
27
129 128
33 nF
59
10 µF 10 µF
33 nF
54 55
1µF
25 26
1µF
28
58
V18BKP V18
V18
V18
V18
V18BKP
System architecture STR71xFxx STR710RZ
30/80 Doc ID 10350 Rev 13
3.6 I/O port configuration
Legend:
AIN: Analog Input
CMOS: CMOS Input levels
IPUPD: Input Pull Up /Pull Down
TTL: TTL Input levels
N.A.: not applicable. In Output mode, a read access to the port gets the output latch value.
Table 6. Port bit configuration table
Configuration mode Input
buffer
PxD
register PxC2
register
PxC1
register
PxC0
register
Read
access
Write
access
INPUT
TTL Input Floating TTL floating I/O pin don’t care 0 0 1
CMOS Input Floating CMOS floating I/O pin don’t care 0 1 0
CMOS Input Pull-Down
(IPUPD)
CMOS Pull-
Down I/O pin 0 0 1 1
CMOS Input Pull-Up (IPUPD) CMOS
Pull-Up I/O pin 1 0 1 1
Analog input AIN 0 don’t care 0 0 0
OUTPUT
Output Open-Drain N.A. I/O pin 0 or 1 1 0 0
Output Push-Pull N.A. last value
written 0 or 1 1 0 1
Alternate Function Open-Drain CMOS floating I/O pin don’t care 1 1 0
Alternate Function Push-Pull CMOS floating I/O pin don’t care 1 1 1
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 31/80
3.7 Memory mapping
Figure 6. Memory map
APB BRIDGE 2 REGS
Addressable Memory Space
0
1
2
3
4
4K
5
6
7
0x2000 0000
0x4000 0000
0x6000 0000
0x8000 0000
0xA000 0000
0xC000 0000
0xE000 0000
0xFFFF FFFF
0xC000 0000
0xC000 1000
0xC000 2000
0xC000 3000
0xC000 4000
0xC000 5000
0xC000 6000
0xC000 7000
0xC000 8000
0xC000 9000
0xC000 A000
0xC000 B000
0xC000 C000
0xE000 1000
0xE000 2000
0xE000 3000
0xE000 4000
0xFFFF FFFF
0x0000 0000
APB Memory Space
4 Gbytes
FLASH/RAM/EMI
EXTMEM
64MB
0xFFFF F800
4K
EIC
0xFFFF F800
APB BRIDGE 1 REGS
Reserved
FLASH
256K+16K+36b
B0F0
B0F4
B0F5
B0F6
B1F0
0x4000 0000 8K
8K
32K
64K
64K
64K
FLASH Memory Space
272 Kbytes + regs
0x4000 4000
0x4000 6000
0x4001 0000
0x4002 0000
0x4003 0000
Reserved
4K
(*) FLASH aliased at 0x0000 0000h
by system decoder for booting with
valid instruction upon RESET
from Block B0 (8 Kbytes)
0xE000 0000
0xE000 5000
0xE000 6000
0xE000 7000
0xE000 8000
0xE000 9000
0xE000 A000
0xE000 B000
I
2
C 0
I2C 1
reserved
UART 0
UART 1
UART 2
UART 3
USB + RAM
BSPI 0
BSPI 1
XTI
reserved
IOPORT 1
IOPORT 2
ADC
CLKOUT
TIMER 3
RTC
WDG
0xE000 E000
0xE000 D000
0xE000 C000
0xC000 D000
0xC000 E000
PRCCU
1K
CAN
B0F7
0x400C 0000
0x400C 4000
0x4010 0000
reserved
8K
TIMER 0
TIMER 1
TIMER 2
reserved
reserved
HDLC + RAM
reserved
0xC001 0000
0xC000 F000
B1F1
0x400C 2000
reserved
0x4004 0000
8K
0x4010 DFBF
36b
FLASH Registers
0x4000 2000
RAM
64K
APB1
APB2
EIC
B0F2
B0F1
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
reserved
reserved
IOPORT 0
64K
64K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
4K
B0F3
8K
8K
0x4000 8000
See Figure 8
System architecture STR71xFxx STR710RZ
32/80 Doc ID 10350 Rev 13
Figure 7. Mapping of Flash memory versions
Table 7. RAM memory mapping
Part number RAM size Start address End address
STR715FR0xx
STR711FR0xx
STR712FR0xx
16 Kbytes 0x2000 0000 0x2000 3FFF
STR710FZ1xx
STR711FR1xx
STR712FR1xx
32 Kbytes 0x2000 0000 0x2000 7FFF
STR710FR2xx
STR710Rxx
STR711FR2xx
STR712FR2xx
64 Kbytes 0x2000 0000 0x2000 FFFF
B0F0
B0F4
reserved
reserved
B1F0
0x4000 0000
8K
8K
32K
64K
64K
64K
FLASH Memory Space
64 Kbytes + 16K RWW + regs
0x4000 4000
0x4000 6000
0x4001 0000
0x4002 0000
0x4003 0000
reserved
0x400C 0000
0x400C 4000
0x4010 0000
reserved
8K
B1F1
0x400C 2000
reserved
0x4004 0000
8K
0x4010 DFBF
36b
FLASH Registers
0x4000 2000
B0F2
B0F1
B0F3
8K
8K
0x4000 8000
B0F0
B0F4
B0F5
reserved
B1F0
0x4000 0000
8K
8K
32K
64K
64K
64K
FLASH Memory Space
128 Kbytes + 16K RWW + regs
0x4000 4000
0x4000 6000
0x4001 0000
0x4002 0000
0x4003 0000
reserved
0x400C 0000
0x400C 4000
0x4010 0000
reserved
8K
B1F1
0x400C 2000
reserved
0x4004 0000
8K
0x4010 DFBF
36b
FLASH Registers
0x4000 2000
B0F2
B0F1
B0F3
8K
8K
0x4000 8000
B0F0
B0F4
B0F5
B0F6
B1F0
0x4000 0000
8K
8K
32K
64K
64K
64K
FLASH Memory Space
256 Kbytes + 16K RWW + regs
0x4000 4000
0x4000 6000
0x4001 0000
0x4002 0000
0x4003 0000
B0F7
0x400C 0000
0x400C 4000
0x4010 0000
reserved
8K
B1F1
0x400C 2000
reserved
0x4004 0000
8K
0x4010 DFBF
36b
FLASH Registers
0x4000 2000
B0F2
B0F1
B0F3
8K
8K
0x4000 8000
STR715FR0xx
STR711FR0xx
STR712FR0xx
STR711FR1xx
STR712FR1xx
STR710F72xx
STR711FR2xx
STR712FR2xx
STR710FZ1xx
STR71xFxx STR710RZ System architecture
Doc ID 10350 Rev 13 33/80
Figure 8. External memory map
Drawing not in scale
Addressable Memory Space
0
1
2
3
4
5
6
7
0x2000 0000
0x4000 0000
0x6000 0000
0x8000 0000
0xA000 0000
0xC000 0000
0xE000 0000
0xFFFF FFFF
0x0000 0000
4 Gbytes
FLASH/RAM/EMI
EXTMEM
0xFFFF F800
Reserved
FLASH
BCON3
Bank3
Bank2
0x6000 0000
16M
16M
16M
16M
0x6200 0000
0x6400 0000
0x6600 0000
Reserved
PRCCU
Bank1
RAM
APB1
APB2
EIC
BCON1
BCON2
BCON0
0x6C00 0000
0x6C00 0004
0x6C00 0008
0x6C00 000C
register
register
register
register
Bank0
External Memory Space
64 MBytes
CSn.0
CSn.1
CSn.2
CSn.3
0x60FF FFFF
0x62FF FFFF
0x64FF FFFF
0x66FF FFFF
Electrical parameters STR71xFxx STR710RZ
34/80 Doc ID 10350 Rev 13
4 Electrical parameters
4.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
4.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA=25°C and TA=TAmax (given by the
selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
4.1.2 Typical values
Unless otherwise specified, typical data are based on TA=25°C, V33=3.3V (for the
3.0VV333.6V voltage range) and V18=1.8V. They are given only as design guidelines and
are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
4.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
4.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
4.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 9. Pin loading conditions Figure 10. Pin input voltage
L=50pF
STR7 PIN
VIN
STR7 PIN
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 35/80
4.2 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 8. Voltage characteristics
Symbol Ratings Min Max Unit
V33- VSS
External 3.3V Supply voltage
(including AVDD and V33IO-
PLL)2)
-0.3 4.0
V
V18BKP - VSSBKP
Digital 1.8V Supply voltage
on V18BKP backup supply 2) -0.3 2.0
VIN
Input voltage on true open
drain pin (P0.10) 1) VSS-0.3 +5.5
Input voltage on any other pin
1) VSS-0.3 V33+0.3
|ΔV33x|Variations between different
3.3V power pins 50 50
mV
|ΔV18x|Variations between different
1.8V power pins 5) 25 25
|VSSX - VSS|Variations between all the
different ground pins 50 50
VESD(HBM) Electro-static discharge
voltage (Human Body Model) see : Absolute maximum ratings
(electrical sensitivity) on page 49
VESD(MM) Electro-static discharge
voltage (Machine Model)
Electrical parameters STR71xFxx STR710RZ
36/80 Doc ID 10350 Rev 13
The IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected.
If VIN maximum cannot be respected, the injection current must be limited externally to the
IINJ(PIN) value. A positive injection is induced by VIN>V33 while a negative injection is
induced by VIN<VSS. For true open-drain pads, there is no positive injection current, and the
corresponding VIN maximum must always be respected. Data based on TA = 25 °C.
All 3.3V power (V33, AVDD, V33IO-PLL) and ground (VSS, AVSS, VSSIO-PLL) pins must always
be connected to the external 3.3V supply.
Negative injection disturbs the analog performance of the device. See note in
Section 4.3.11: ADC characteristics on page 66.
When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the
absolute sum of the positive and negative injected currents (instantaneous values). These
results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O
port pins of the device.
Only when using external 1.8V power supply. All the power (V18, V18BKP) and ground
(VSS18, VSSBKP) pins must always be connected to the external 1.8V supply.
Table 9. Current characteristics
Symbol Ratings Max. Unit
IV33 Total current into V33/V33IO-PLL power lines (source) 2) 150
mA
IVSS Total current out of VSS/VSSIO-PLL ground lines (sink) 2) 150
IIO
Output current sunk by any I/O and control pin 25
Output current source by any I/Os and control pin - 25
IINJ(PIN) 1) 3)
Injected current on RSTIN pin ± 5
Injected current on CK pin ± 5
Injected current on any other pin 4) ± 5
ΣIINJ(PIN) 1) Total injected current (sum of all I/O and control pins) 4) ± 25
Table 10. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range -65 to +150 °C
TJMaximum junction temperature (see Section 5.2: Thermal characteristics on
page 73)
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 37/80
4.3 Operating conditions
Subject to general operating conditions for V33, and TA.
1. Data guaranteed by characterization, not tested in production
Table 11. General operating conditions
Symbol Parameter Conditions Min Max Unit
fMCLK Internal CPU Clock
frequency
Accessing SRAM or external
memory with 0 wait states 0 66
MHz
Accessing FLASH in burst
mode 050
Executing from FLASH with
RWW 0451)
Accessing FLASH with 0 wait
states 033
fPCLK Internal APB Clock
frequency 0 33 MHz
V33
Standard Operating Voltage
(includes V33I0_PLL) 3.0 3.6 V
V18BKP Backup Operating Voltage 1.4 1.8 V
TAAmbient temperature range 6 Partnumber Suffix -40 85 °C
Table 12. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Typ Max Unit
tV33 V33 rise time rate
Subject to general
operating conditions for
TA.
20 μs/V
20 ms/V
Electrical parameters STR71xFxx STR710RZ
38/80 Doc ID 10350 Rev 13
4.3.1 Supply current characteristics
The current consumption is measured as described in Figure 9 on page 34 and Figure 10
on page 34.
Total current consumption
The MCU is placed under the following conditions:
All I/O pins in input mode with a static value at V33 or VSS (no load)
All peripherals are disabled except if explicitly mentioned.
Embedded Regulators are used to provide 1.8V (except if explicitly
mentioned)
Subject to general operating conditions for V33, and TA.
Notes:
1. Typical data are based on TA=25°C, V33=3.3V.
2. Data based on characterization results, tested in production at V33, fMCLK max. and TA max.
3. Based on device characterisation, device power consumption in STOP mode at TA 25°C is predicted to be
30µA or less in 99.730020% of parts.
4. The conditions for these consumption measurements are described in application note AN2100.
Table 13. Total current consumption
Symbol Parameter Conditions Typ 1) Max 2) Unit
IDD4)
Supply current in RUN
mode
fMCLK=66 MHz, RAM execution 73.6 100
mA
fMCLK=32 MHz, Flash non-burst
execution 49.3
Supply current in STOP
mode TA=25°C 10 503) μA
Supply current in
STANDBY mode OSC32K bypassed 12 30 μA
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 39/80
Table 14. Typical power consumption data
Symbol Parameter Conditions
Typical
current
on V33
Unit
IDDRUN
RUN mode
current from
RAM
All periphs ON
MCLK = 16 MHz, PCLK1 = PCLK2 = 16
MHz 23
mA
MCLK = 32 MHz, PCLK1 = PCLK2 = 32
MHz 40
MCLK = 48 MHz, PCLK1 = PCLK2 = 24
MHz 50
MCLK = 64 MHz, PCLK1 = PCLK2 = 32
MHz 63
All periphs OFF
MCLK = 16 MHz 16
MCLK = 32 MHz 26
MCLK = 48 MHz 39
MCLK = 64 MHz 48
RUN mode
current from
FLASH
All periphs ON
MCLK = 16 MHz, PCLK1 = PCLK2 = 16
MHz 27
MCLK = 32 MHz, PCLK1 = PCLK2 = 32
MHz 47
MCLK = 48 MHz, PCLK1 = PCLK2 = 24
MHz 62
All periphs OFF
MCLK = 16 MHz 21
MCLK = 32 MHz 36
MCLK = 48 MHz 53
IDDSLOW SLOW mode current MCLK = CK_AF (32 kHz), MVR off 1.7
IDDWAIT WAIT mode current
(all periphs ON) PCLK1 = PCLK2 = 1 MHz 13
IDDLPWAIT LPWAIT mode current
CK_AF (32 kHz), Main VReg off, FLASH in
power-down 37
µA
IDDSTOP STOP mode current
Main VReg off, FLASH in power down, RTC
on 18
Main VReg off, FLASH in power down, RTC
off 10
IDDSB STANDBY mode current
LP VReg on, LVD on, RTC on 10
LP VReg off (ext 1.8V on V18BKP), LVD on,
RTC on 9
LP VReg off (ext1.8V on V18BKP), LVD off,
RTC on 5
LP VReg off (ext 1.8V on V18BKP), LVD off,
RTC off 1
Electrical parameters STR71xFxx STR710RZ
40/80 Doc ID 10350 Rev 13
Figure 11. STOP IDD vs. V33 Figure 12. STANDBY IDD vs. V33
Figure 13. WFI IDD vs. V33
0
10
20
30
40
50
60
70
80
90
100
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
IDDSTOP (µA)
TA=-45 to +25°C
TA=+90°C
0
5
10
15
20
25
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
IDDSTDBY (µA)
TA=-45°C
TA=0°C
TA=+25°C
TA=+90°C
50
60
70
80
90
100
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
IDDWFI (µA)
TA=-40 to +90°C
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 41/80
On-chip peripherals
Notes:
1. Data based on a differential IDD measurement between reset configuration and timer counter running at
16MHz. No IC/OC programmed (no I/O pads toggling).
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and
not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling.
3. Data based on a differential IDD measurement between reset configuration and continuous A/D
conversions.
Table 15. Peripheral current consumption
Symbol Parameter Conditions Typ Unit
IDD(PLL1) PLL1 supply current TA= 25°C 3.42
mA
IDD(PLL2) PLL2 supply current 5.81
IDD(TIM) TIM Timer supply current 1)
TA= 25°C,
fPCLK1= fPCLK2=33 MHz
0.88
IDD(BSPI) BSPI supply current 2) 1.1
IDD(UART) UART supply current 2) 1.05
IDD(I2C) I2C supply current 2) 0.45
IDD(ADC) ADC supply current when converting 5) 1.89
IDD(HDLC) HDLC supply current 2) 1.82
IDD(USB) USB supply current 2) 2.08
IDD(CAN) CAN supply current 2) 1.11
Electrical parameters STR71xFxx STR710RZ
42/80 Doc ID 10350 Rev 13
4.3.2 Clock and timing characteristics
External clock sources
Subject to general operating conditions for V33, and TA.
Notes:
1. Data based on design simulation and/or technology characteristics, not tested in production.
Figure 14. CK external clock source
Table 16. CK external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fCK External clock source
frequency 0 16.5 MHz
VCKH CK input pin high level
voltage 0.7xV33 V33
V
VCKL CK input pin low level
voltage VSS 0.3xV33
tw(CK)
tw(CK) CK high or low time 1) 25
ns
tr(CK)
tf(CK) CK rise or fall time 1) 20
CIN(CK) CK input capacitance1) 5pF
DuCy(XT1) Duty cycle 40 60 %
ILCK Input leakage current VSSVINV33 ±1 μA
CK
fCLK
EXTERNAL
STR710
CLOCK SOURCE
VCKL
VCKH
tr(CK) tf(CK) tw(CKH) tw(CKL)
IL
90%
10%
TCK
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 43/80
Notes:
1. Data based on design simulation and/or technology characteristics, not tested in production.
Table 17. RTCXT1 external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fRTCXT1 External clock source
frequency 0 500 kHz
VRTCXT1H RTCXT1 input pin high level
voltage 0.7xV33 V33
V
VRTCXT1L RTCXT1 input pin low level
voltage VSS 0.3xV33
tw(RTCXT1)
tw(RTCXT1) RTCXT1 high or low time 1) 100
ns
tr(RTCXT1)
tf(RTCXT1) RTCXT1 rise or fall time 1) 5
CIN(RTCXT1)
RTCXT1 input
capacitance1) 5pF
DuCy(RTCXT1) Duty cycle 30 70 %
ILRTCXT1 Input leakage
current VSSVINV33 ±1 μA
Electrical parameters STR71xFxx STR710RZ
44/80 Doc ID 10350 Rev 13
OSC32K crystal / ceramic resonator oscillator
The STR7 RTC clock can be supplied with a 32 kHz Crystal/Ceramic resonator oscillators.
All the information given in this paragraph are based on characterization results with
specified typical external components. In the application, the resonator and the load
capacitors have to be placed as close as possible to the oscillator pins in order to minimize
output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer
for more details (frequency, package, accuracy...).
Notes:
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
2. tSU(OSC32KHZ) is the start-up time measured from the moment it is enabled (by software) to a stabilized
32 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer
Figure 15. Typical application with a 32 kHz crystal
Table 18. 32K oscillator characteristics (fOSC32K= 32.768 kHz)
Symbol Parameter Conditions Typ Unit
RFFeedback resistor 2.7 MΩ
CL1
CL2
Recommended load capacitance
versus equivalent serial resistance of
the crystal (RS)1)
RS=40K Ω12.5 pF
i2RTCXT2 driving current V33=3.3 V
VIN=VSS
3.2 μA
gmOscillator Transconductance 8 μA/V
tSU(OSC32KHZ)2) Startup time V33 is stabilized 5s
RTCXT2
RTCXT1 fOSC32K
CL1
CL2
i2
RF
STR710
32 kHz
WHEN RESONATOR WITH
INTEGRATED CAPACITORS
RESONATOR
FEEDBACK
LOOP
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 45/80
Figure 16. RTC crystal oscillator and resonator
PLL electrical characteristics
V33 = 3.0 to 3.6V, V33IOPLL = 3.0 to 3.6V, TA = -40 / 85 °C unless otherwise specified.
Table 19. PLL1 characteristics
Symbol Parameter Test conditions
Value
Unit
Min Typ Max
fPLLCLK1 PLL multiplier output clock 165 MHz
fPLL1
PLL input clock
FREF_RANGE = 0 1.5 3.0 MHz
FREF_RANGE = 1
MX[1:0]=’00’ or ‘01’ 3.0 8.25 MHz
FREF_RANGE = 1
MX[1:0]=’10’ or ‘11’ 3.0 6 MHz
PLL input clock duty cycle 25 75 %
fFREE1 PLL free running frequency
FREF_RANGE = 0
MX[1:0]=’01’ or ‘11’ 125 kHz
FREF_RANGE = 0
MX[1:0]=’00’ or ‘10’ 250 kHz
FREF_RANGE = 1
MX[1:0]=’01’ or ‘11’ 250 kHz
FREF_RANGE = 1
MX[1:0]=’00’ or ‘10’ 500 kHz
tLOCK1 PLL lock time
FREF_RANGE = 0
Stable Input Clock
Stable V33IOPLL, V18
300 μs
FREF_RANGE = 1
Stable Input Clock
Stable V33IOPLL, V18
600 μs
Electrical parameters STR71xFxx STR710RZ
46/80 Doc ID 10350 Rev 13
ΔtJITTER1 PLL jitter (peak to peak)
tPLL = 4 MHz,
MX[1:0]=’11’
Global Output division
= 32
(Output Clock = 2
MHz)
0.7 2 ns
Table 20. PLL2 characteristics
Symbol Parameter Test conditions
Value
Unit
Min Typ Max
fPLLCLK2 PLL multiplier output
clock 140 MHz
fPLL2 PLL input clock FREF_RANGE = 0 1.5 3.0 MHz
FREF_RANGE = 1 3.0 5 MHz
tLOCK2 PLL lock time
FREF_RANGE = 0
Stable Input Clock
Stable V33IOPLL, V18
300 μs
FREF_RANGE = 1
Stable Input Clock
Stable V33IOPLL, V18
600 μs
ΔtJITTER2 PLL jitter (peak to peak)
tPLL = 4 MHz, MX[1:0]=’11’
Global Output division = 32
(Output Clock = 2 MHz)
0.7 2 ns
Table 21. Low-power mode wakeup timing
Symbol Parameter Typ Unit
tWULPWFI Wakeup from LPWFI mode 26(1)
1. Clock selected is CK2_16, Main VReg OFF and Flash in power-down
µs
tWUSTOP Wakeup from STOP mode 2048
CLK
Cycles
(2)
2. The CLK clock is derived from the external oscillator.
tWUSTBY Wakeup from STANDBY mode 2048 CLK Cycles
+ 8 CLK2 Cycles(3)
3. Refer to Figure 7. Reset General Timing in the STR71xF Reference Manual (UM0084)
Cycles
Table 19. PLL1 characteristics (continued)
Symbol Parameter Test conditions
Value
Unit
Min Typ Max
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 47/80
4.3.3 Memory characteristics
Flash memory
V33 = 3.0 to 3.6V, TA = -40 to 85 °C unless otherwise specified.
Notes:
1. TA=45°C after 0 cycles. Guaranteed by characterization, not tested in production.
2. Guaranteed by design, not tested in production
Table 22. Flash memory characteristics
Symbol Parameter Test conditions
Value
Unit
Min. Typ Max1)
tPW Word Program 40 μs
tPDW Double Word Program 60 μs
tPB0 Bank 0 Program (256K) Double Word Program 1.6 2.1 s
tPB1 Bank 1 Program (16K) Double Word Program 130 170 ms
tES Sector Erase (64K) Not preprogrammed
Preprogrammed
2.3
1.9
4.0
3.3 s
tES Sector Erase (8K) Not preprogrammed
Preprogrammed
0.7
0.6
1.1
1.0 s
tES Bank 0 Erase (256K) Not preprogrammed
Preprogrammed
8.0
6.6
13.7
11.2 s
tES Bank 1 Erase (16K) Not preprogrammed
Preprogrammed
0.9
0.8
1.5
1.3 s
tRPD2) Recovery when disabled 20 μs
tPSL2) Program Suspend Latency 10 μs
tESL2) Erase Suspend Latency 300 μs
NEND_B0 Endurance (Bank 0
sectors) 10 kcycles
NEND_B1 Endurance (Bank 1
sectors) 100 kcycles
tRET Data Retention (Bank 0
and Bank 1) TA=85° 20 Years
tESR Erase Suspend Rate
Min time from Erase
Resume to next Erase
Suspend
20 ms
Electrical parameters STR71xFxx STR710RZ
48/80 Doc ID 10350 Rev 13
4.3.4 EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electro magnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two electro magnetic events until a failure occurs (indicated by the
LEDs).
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the
device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2
standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100pF capacitor, until a functional disturbance occurs. This test
conforms with the IEC 1000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations:
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials:
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
In the case of an ARM7 CPU, in order to write robust code that can withstand all kinds of
stress, such as very strong electromagnetic disturbance, it is mandatory that the Data Abort,
Prefetch Abort and Undefined Instruction exceptions are managed by the application
software. This will prevent the code going into an undefined state or performing any
unexpected operation.
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 49/80
Electro magnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm SAE J 1752/3 which specifies the board and the loading of each pin.
Notes:
1. Not tested in production.
2. BGA and LQFP devices have similar EMI characteristics.
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electro-static discharge (ESD)
Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models
can be simulated: Human Body Model and Machine Model. This test conforms to the
JESD22-A114A/A115A standard.
Table 23. EMS data
Symbol Parameter Conditions Level/
Class
VFESD Voltage limits to be applied on any I/O pin
to induce a functional disturbance
V33=3.3 V, TA=+25°C, fMCLK=32 MHz
conforms to IEC 1000-4-2 2B
VEFTB
Fast transient voltage burst limits to be
applied through 100pF on VDD and VSS
pins to induce a functional disturbance
V33=3.3 V, TA=+25°C, fMCLK=32 MHz
conforms to IEC 1000-4-4 4A
Table 24. EMI data
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fOSC4M/fHCLK]
Unit
16/ 48
MHz
16/8
MHz
SEMI Peak level
V33=3.3 V, TA=+25°C,
LQFP64 package
conforming to SAE J
1752/3
0.1 MHz to 30 MHz 17 19
dBμV30 MHz to 130 MHz 17 16
130 MHz to 1 GHz 11 11
SAE EMI Level 4 3 -
Electrical parameters STR71xFxx STR710RZ
50/80 Doc ID 10350 Rev 13
Notes:
1. Data based on characterization results, not tested in production.
Static and dynamic latch-up
LU: 3 complementary static tests are required on 10 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output and configurable I/O pin) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,
refer to the application note AN1181.
DLU: Electro-Static Discharges (one positive then one negative test) are applied to
each pin of 3 samples when the micro is running to assess the latch-up performance in
dynamic mode. Power supplies are set to the typical values, the oscillator is connected
as near as possible to the pins of the micro and the component is put in reset mode.
This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details,
refer to the application note AN1181.
Electrical sensitivities
Table 25. ESD absolute maximum ratings
Symbol Ratings Conditions Maximum
value 1) Unit
VESD(HBM) Electro-static discharge voltage
(Human Body Model)
TA=+25°C
2000
V
VESD(MM) Electro-static discharge voltage
(Machine Model) 200
VESD(CDM) Electro-static discharge voltage
(Charge Device Model)
750 on corner
pins, 500 on
others
Table 26. Static and dynamic latch-up
Symbol Parameter Conditions Class(1)
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B
Class strictly covers all the JEDEC criteria (international standard).
LU Static latch-up class
TA=+25°C
TA=+85°C
TA=+105°C
A
A
A
DLU Dynamic latch-up class VDD=3.3 V, fOSC4M=4 MHz, fMCLK=32 MHz,
TA=+25°C A
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 51/80
4.3.5 I/O port pin characteristics
General characteristics
Subject to general operating conditions for V33 and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Notes:
1. Data based on characterization results, not tested in production.
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
3. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise
refer to IINJ(PIN) specification. A positive injection is induced by VIN>V33 while a negative injection is
induced by VIN<VSS. Refer to Section 4.2 on page 35 for more details.
4. Leakage could be higher than max. if negative current is injected on adjacent pins.
5. The RPU pull-up and RPD pull-down equivalent resistor are based on a resistive transistor (corresponding
IPU and IPD current characteristics described in Figure 18 to Figure 19).
Table 27. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL Input low level voltage 1)
CMOS ports
0.3V33
V
VIH Input high level voltage 1) 0.7V33
Vhys Schmitt trigger voltage hysteresis
2) 0.8 V
VIL Input low level voltage 1)
P0.15 WAKEUP
0.9 0.8
V
VIH Input high level voltage 1) 21.35
Vhys Schmitt trigger voltage hysteresis
2) 0.4 V
VIL Input low level voltage 1)
TTL ports
0.8
V
VIH Input high level voltage 1) 2.0
IINJ(PIN) Injected Current on any I/O pin ± 4
mA
ΣIINJ(PIN)
3)
Total injected current (sum of all
I/O and control pins) ± 25
Ilkg Input leakage current 4) VSSVINV33 ±1 μA
RPU
Weak pull-up equivalent
resistor5) VIN=VSS 110 150 700 kΩ
RPD
Weak pull-down equivalent
resistor5) VIN=V33 110 150 700 kΩ
CIO I/O pin capacitance 5 pF
Electrical parameters STR71xFxx STR710RZ
52/80 Doc ID 10350 Rev 13
Figure 17. RPU vs. V33 with VIN=VSS Figure 18. IPU vs. V33 with VIN=VSS
-250.0
-200.0
-150.0
-100.0
-50.0
0.0
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
RPU (kohm)
TA=-45°C
TA=C
TA=+25°C
TA=+90°C
-30
-25
-20
-15
-10
-5
0
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
IPUA)
TA=-45°C
TA=C
TA=+25°C
TA=+90°C
Figure 19. RPD vs. V33 with VIN=V33 Figure 20. IPD vs. V33 with VIN=V33
0.0
50.0
100.0
150.0
200.0
250.0
300.0
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
RPD (kohm)
TA=-45°C
TA=C
TA=+25°C
TA=+90°C
0
5
10
15
20
25
30
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
IPDA)
TA=-45°C
TA=C
TA=+25°C
TA=+90°C
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 53/80
Output driving current
Subject to general operating conditions for V33 and TA unless otherwise specified.
Notes:
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 9 and the sum of
IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 9 and the
sum of IIO (I/O ports and control pins) must not exceed IV33.
Figure 21. Typical VOL and VOH at V33=3.3V (high current ports)
Table 28. Output driving current
I/O
type Symbol Parameter Conditions Min Max Unit
Standard
VOL 1) Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO=+4mA 0.4
V
VOH 2) Output high level voltage for an I/O pin
when 4 pins are sourced at same time IIO=-4mA V33-0.8
High Current
VOL 1) Output low level voltage for an I/O pin
when 8 pins are sunk at same time IIO=+8mA 0.4
VOH 2) Output high level voltage for an I/O pin
when 4 pins are sourced at same time IIO=-8mA V33-0.8
3.01
3.02
3.03
3.04
3.05
3.06
3.07
3.08
3.09
-4 -8
Ioh (mA)
VOH(V)
TA=-4C
TA=C
TA=+25°C
TA=+90°C
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
-4 -8
Iol (mA)
VOL(V)
TA=-45°C
TA=C
TA=+25°C
TA=+90°C
Electrical parameters STR71xFxx STR710RZ
54/80 Doc ID 10350 Rev 13
Figure 22. Typical VOL vs. V33
Figure 23. Typical VOH vs. V33
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
VOL (V) Iio=4mA
TA=-45°C
TA=C
TA=+25°C
TA=+90°C
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
VOL(V) Iio=8mA
TA=-45°C
TA=C
TA=+25°C
TA=+90°C
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
VOH (V) Iio=4mA
TA=-4C
TA=C
TA=+25°C
TA=+90°C
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3 3.1 3.2 3.3 3.4 3.5 3.6
V33 (V)
VOH(V) Iio=8mA
TA=-45°C
TA=C
TA=+25°C
TA=+90°C
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 55/80
RSTIN pin
The RSTIN pin input driver is CMOS. A permanent pull-up is present which is the same as
as RPU (seeTable 27 on page 51)
Subject to general operating conditions for V33 and TA unless otherwise specified.
Notes:
1. Data based on characterization results, not tested in production.
2) Data guaranteed by design, not tested in production.
Figure 24. Recommended RSTIN pin protection.1)
Notes:
1. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current
characteristics described in Figure 18).
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the RSTIN pin can go below the VIL(RSTINn) max. level specified in
Table 29. Otherwise the reset will not be taken into account internally.
Table 29. RESET pin characteristics
Symbol Parameter Conditions Min Typ 1) Max Unit
VIL(RSTINn) RSTIN Input low level voltage 1) 0.8
V
VIH(RSTINn) RSTIN Input high level voltage 1) 2
VF(RSTINn) RSTIN Input filtered pulse2) 500 ns
VNF(RSTINn) RSTIN Input not filtered pulse2) 1.2 µs
0.01μF
V33
0.01μF
EXTERNAL
RESET
CIRCUIT
4.7kΩ
Required
Recommended
STR7X
Filter
RPU
V33
INTERNAL RESET
V33
RSTIN
Electrical parameters STR71xFxx STR710RZ
56/80 Doc ID 10350 Rev 13
4.3.6 TIM timer characteristics
Subject to general operating conditions for V33, fMCLK, and TA unless otherwise
specified.
Refer to Section 4.3.5: I/O port pin characteristics on page 51 for more details on
the input/output alternate function characteristics (output compare, input capture,
external clock, PWM output...).
4.3.7 EMI - external memory interface
Subject to general operating conditions for VDD, fHCLK, and TA unless otherwise specified.
The tables below use a variable which is derived from the EMI_BCONn registers (described
in the STR71x Reference Manual) and represents the special characteristics of the
programmed memory cycle.
Table 30. TIM characteristics
Symbol Parameter Conditions Min Typ Max Unit
tw(ICAP)in Input capture pulse time 2 tCK_TIM
tres(TIM) Timer resolution time
1tPCLK2
fPCLK2 = 30 MHz 33.3 ns
fEXT Timer external clock
frequency
fCK_TIM(MAX) =
fMCLK
0fCK_TIM/4 MHz
fCK_TIM = fMCLK =
60 MHz 015MHz
ResTIM Timer resolution 16 bit
tCOUNTER
16-bit Counter clock period
when internal clock is
selected
1 65536 tPCLK2
fPCLK2 = 30 MHz 0.033 2184 µs
TMAX_COUNT Maximum Possible Count
65536x
65536 tPCLK
fPCLK2 = 30 MHz 143.1 s
Table 31. EMI general characteristics
Symbol Parameter Value
tMCLK CPU clock period 1 / fMCLK
tCMemory cycle time wait states tMCLK x (1 + [C_LENGTH])
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 57/80
See Figure 25, Figure 26, Figure 27 and Figure 28 for related timing diagrams.
1. Data based on characterisation results, not tested in production.
See Figure 29, Figure 30, Figure 31 and Figure 32 for related timing diagrams.
1. Data based on characterisation results, not tested in production.
Table 32. EMI read operation
Symbol Parameter Test Conditions
Value
Unit
Min1) Typ Max1)
tRCR Read to CSn Removal Time
MCLK=50 MHz
4 wait states
50 pf load on all pins
19 tMCLK 21 ns
tRP Read Pulse Time 98 tC100 ns
tRDS Read Data Setup Time 22 ns
tRDH Read Data Hold Time 0 ns
tRAS Read Address Setup Time 27 1.5*tM
CLK 33 ns
tRAH Read Address Hold Time 0.65 2 ns
tRAT Read Address Turnaround
Time 1.9 3.25 ns
tRRT RDn Turnaround Time 20 tMCLK 21 ns
Table 33. EMI write operation
Symbol Parameter Test conditions
Value
Unit
Min1) Typ Max1)
tWCR WEn to CSn Removal Time
MCLK=50 MHz
3 wait states
50 pf load on all pins
20 tMCLK 22.5 ns
tWP Write Pulse Time 77.5 tC80 ns
tWDS1 Write Data Setup Time 1 97 tC +
tMCLK
100 ns
tWDS2 Write Data Setup Time 2 77 tC 80 ns
tWDH Write Data Hold Time 20 tMCLK 23 ns
tWAS Write Address Setup Time 27 1.5*tMCLK 33 ns
tWAH Write Address Hold Time 0.6 3 ns
tWAT Write Address Turnaround
Time 1.75 4.1 ns
tWWT WEn Turnaround Time 20 tMCLK 23 ns
Electrical parameters STR71xFxx STR710RZ
58/80 Doc ID 10350 Rev 13
Figure 25. Read cycle timing: 16-bit read on 16-bit memory
Figure 26. Read cycle timing: 32-bit read on 16-bit memory
See Ta bl e 3 2 for read timing data.
Figure 27. Read cycle timing: 16-bit read on 8-bit memory
CSn.x
WEn.x
A[23:0]
D[15:0]
RDn
(Input)
Address
Data Input
tRDS tRDH
tRCR
tRAS
tRAH
tRP
CSn.x
WEn.x
A[23:0]
D[7:0]
RDn
(Input)
Address
Data Input
tRDS tRDH
tRCR
tRAS
tRAH
Data Input
tRDS tRDH
tRRT
tRAH
Address
tRAT
tRP tRP
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 59/80
Figure 28. Read cycle timing: 32-bit read on 8-bit memory
See Ta bl e 3 2 for read timing data.
Figure 29. Write cycle timing: 16-bit write on 16-bit memory
Figure 30. Write cycle timing: 32-bit write on 16-bit memory
See Ta b l e 4 4 for write timing data.
CSn.x
WEn.x
A[23:0]
D[7:0]
RDn
(Input)
Address
Data Input
t
RDS
t
RDH
t
RCR
t
RAS
t
RAH
Data Input
t
RDS
t
RDH
t
RRT
t
RAH
Address
t
RAT
t
RP
t
RP
t
RRT
t
RAH
Address
t
RAT
t
RP
Data Input
t
RDS
t
RDH
t
RRT
t
RAH
Address
t
RAT
t
RP
Data Input
t
RDS
t
RDH
CSn.x
WEn.x
A[23:0]
D[15:0]
RDn
(Output)
address
Data Output
tWDS1 tWDH
tWCR
tWAS
tWAH
tWP
Data Output
tWDS2 tWDH
tWWT
tWAH
address
tWAT
tWP
Electrical parameters STR71xFxx STR710RZ
60/80 Doc ID 10350 Rev 13
Figure 31. Write cycle timing: 16-bit write on 8-bit memory
Figure 32. Write cycle timing: 32-bit write on 8-bit memory
See Ta bl e 3 3 for write timing data.
4.3.8 I2C - inter IC control interface
Subject to general operating conditions for V33, fPCLK1, and TA unless otherwise specified.
The STR7 I2C interface meets the requirements of the Standard I2C communications
protocol described in the following table with the restriction mentioned below:
Note: Restriction: The I/O pins which SDA and SCL are mapped to are not “True” Open-Drain:
when configured as open-drain, the PMOS connected between the I/O pin and V33 is
disabled, but it is still present. Also, there is a protection diode between the I/O pin and V33.
Consequently, when using this I2C in a multi-master network, it is not possible to power off
the STR7X while some another I2C master node remains powered on: otherwise, the
STR7X will be powered by the protection diode.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (SDA and SCL).
CSn.x
WEn.x
A[23:0]
D[7:0]
RDn
(Output)
address
Data Output
tWDS1 tWDH
tWCR
tWAS
tWAH
tWP
Data Output
tWDS2 tWDH
tWWT
tWAH
address
tWAT
tWP
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 61/80
Notes:
1. Data based on standard I2C protocol requirement, not tested in production.
2. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
3. The maximum hold time th(SDA) is not applicable.
4. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD.
5. fPCLK1, must be at least 8 MHz to achieve max fast I2C speed (400 kHz).
6. The following table gives the values to be written in the I2CCCR register to obtain the required I2C SCL line
frequency.
Table 34. I2C characteristics
Symbol Parameter
Standard mode
I2CFast mode I2C5)
Unit
Min 1) Max 1) Min 1) Max 1)
tw(SCLL) SCL clock low time 4.7 1.3
μs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100
ns
th(SDA) SDA data hold time 0 3) 0 2) 900 3)
tr(SDA)
tr(SCL)
SDA and SCL rise time 1000 20+0.1Cb300
tf(SDA)
tf(SCL)
SDA and SCL fall time 300 20+0.1Cb300
th(STA) START condition hold time 4.0 0.6
μs
tsu(STA) Repeated START condition setup
time 4.7 0.6
tsu(STO) STOP condition setup time 4.0 0.6 μs
tw(STO:STA) STOP to START condition time (bus
free) 4.7 1.3 μs
CbCapacitive load for each bus line 400 400 pF
Electrical parameters STR71xFxx STR710RZ
62/80 Doc ID 10350 Rev 13
Figure 33. Typical application with I2C bus and timing diagram
Legend:
RP = External pull-up resistance
fSCL = I2C speed
NA = Not achievable
Note: For speeds around 200 kHz, achieved speed can have ± 5% tolerance
For other speed ranges, achieved speed can have ± 2% tolerance
The above variations depend on the accuracy of the external components used.
Table 35. SCL Frequency Table (fPCLK1=8 MHz.,V33 = 3.3 V)
fSCL
(kHz)
I2CCCR Value
RP=4.7kΩ
400 83
300 85h
200 8Ah
100 24h
50 4Ch
20 C4h
REPEATED START
START
STOP
START
tf(SDA) tr(SDA) tsu(SDA) th(SDA)
tf(SCK)
tr(SCK)
tw(SCKL)
tw(SCKH)
th(STA) tsu(STO)
tsu(STA) tw(STO:STA)
SDA
SCL
4.7kΩSDA
STR7
SCL
VDD
100Ω
100Ω
VDD
4.7kΩ
I2CBUS
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 63/80
4.3.9 BSPI - buffered serial peripheral interface
Subject to general operating conditions for VDD, TA and fPCLK1 ,unless otherwise specified.
Refer to I/O port pin characteristics on page 51 for more details on the input/output alternate
function characteristics (SS, SCK, MOSI, MISO).
Table 36. BSPI characteristics
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master fPCLK1/254 fPCLK1/6
5.5 MHz
Slave 0 fPCLK1/8
3.3
tr(SCK)
tf(SCK)
SPI clock rise and fall time capacitive charge
C=50 pF 14
ns
tsu(SS) (1) SS setup time Slave 0
th(SS) (1) SS hold time Slave 0
tw(SCKH) (1)
tw(SCKL) (1) SCK high and low time Master fPCLK1=33 MHz,
presc = 6 73
tsu(MI) (1)
tsu(SI) (1) Data input setup time Master
Slave
7
0
th(MI) 1)(2)
th(SI) 1)(2) Data input hold time Master
Slave
1xtPCLK1
2xtPCLK1
th(MI) (1)
th(SI) (1) Data input hold time Master fPCLK1=33 MHz
Slave fPCLK1=33 MHz
30
60
ta(SO) 1)(3) Data output access time Slave 0 1.5xtPCLK1+42
Slave fPCLK1=33 MHz 0 87
tdis(SO) (1)(4) Data output disable time Slave 0 42
tv(SO) (1)(2) Data output valid time Slave (after enable edge) 3xtPCLK1+45
fPCLK1=33 MHz 135
th(SO) (1) Data output hold time Slave (after enable edge) 0
tv(MO) (1)(2) Data output valid time Master (after enable edge) 2xtPCLK1+12
fPCLK1=33 MHz 72
th(MO) (1) Data output hold time Master (after enable edge) 0
1. Data based on design simulation and/or characterisation results, not tested in production.
2. Depends on fPCLK1. For example, if fPCLK1=8 MHz, then tPCLK1 = 1/fPCLK1 =125 ns and tv(MO) = 255 ns.
3. Min. time is the minimum time to drive the output and the max. time is the maximum time to validate the data.
4. Min time is the minimun time to invalidate the output and the max time is the maximum time to put the data in Hi-Z.
Electrical parameters STR71xFxx STR710RZ
64/80 Doc ID 10350 Rev 13
Figure 34. SPI slave timing diagram with CPHA=01)
Figure 35. SPI slave timing diagram with CPHA=11)
Figure 36. SPI master timing diagram1)
1. Measurement points are done at CMOS levels: 0.3xV33 and 0.7xV33
SS INPUT
SCK INPUT
CPHA=0
MOSI INPUT
MISO OUTPUT
CPHA=0
tc(SCK)
tw(SCKH)
tw(SCKL) tr(SCK)
tf(SCK)
tv(SO)
ta(SO)
tsu(SI) th(SI)
MSB OUT
MSB IN
BIT6 OUT
LSB IN
LSB OUT
CPOL=0
CPOL=1
tsu(SS) th(SS)
tdis(SO)
th(SO)
BIT1 IN
SS INPUT
SCK INPUT
CPHA=1
MOSI INPUT
MISO OUTPUT
CPHA=1
tw(SCKH)
tw(SCKL) tr(SCK)
tf(SCK)
ta(SO)
tsu(SI) th(SI)
MSB OUT BIT6 OUT LSB OUT
CPOL=0
CPOL=1
tsu(SS) th(SS)
tdis(SO)
th(SO)
tc(SCK)
tv(SO)
MSB IN LSB IN
BIT1 IN
SCK OUTPUT
CPHA = 0
MOSI OUTPUT
MISO INPUT
CPHA = 0
CPHA = 1
CPHA = 1
tc(SCK)
tw(SCKH)
tw(SCKL)
th(MI)
tsu(MI)
MSB IN
MSB OUT
BIT6 IN
BIT6 OUT LSB OUT
LSB IN
CPOL = 0
CPOL = 1
CPOL = 0
CPOL = 1
tr(SCK)
tf(SCK)
th(MO)
tv(MO)
SS INPUT
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 65/80
4.3.10 USB characteristics
The USB interface is USB-IF certified (Full Speed).
Figure 37. USB: data signal rise and fall time
Table 37. USB startup time
Symbol Parameter Conditions Max Unit
tSTARTUP USB transceiver startup time 1 µs
Table 38. USB DC characteristics
Symbol Parameter Conditions Min.(1)(2)
1. All the voltages are measured from the local ground potential.
2. It is important to be aware that the DP/DM pins are not 5 V tolerant. As a consequence, in case of a a
shortcut with Vbus (typ: 5.0V), the protection diodes of the DP/DM pins will be direct biased . This will not
damage the device if not more than 50 mA is sunk for longer than 24 hours but the reliability may be
affected.
Max.(1)(2) Unit
Input Levels
VDI Differential Input Sensitivity I(DP, DM) 0.2
V
VCM
Differential Common Mode
Range Includes VDI range 0.8 2.5
VSE
Single Ended Receiver
Threshold 1.3 2.0
Output Levels
VOL Static Output Level Low RL of 1.5 kΩ to 3.6V(3)
3. RL is the load connected on the USB drivers
0.3 V
VOH Static Output Level High RL of 15 kΩ to VSS(3) 2.8 3.6
Table 39. USB: Full speed driver electrical characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(1)
1. Measured from 10% to 90% of the data signal. For more detailed information, please refer to USB
Specification - Chapter 7 (version 2.0).
CL=50 pF 420ns
tfFall Time1) CL=50 pF 4 20 ns
trfm Rise/ Fall Time matching tr/tf90 110 %
VCRS Output signal Crossover Voltage 1.3 2.0 V
Differential
Data Lines
VSS
tftr
Crossover
points
VCRS
Electrical parameters STR71xFxx STR710RZ
66/80 Doc ID 10350 Rev 13
4.3.11 ADC characteristics
Subject to general operating conditions for AVDD, fPCLK2, and TA unless otherwise specified.
Notes:
1. Unless otherwise specified, typical data are based on TA=25°C and AVDD-AVSS=3.3V. They are given only
as design guidelines and are not tested.
2. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than
10kΩ). Data based on characterization results, not tested in production.
3. Calibration is needed once after each power-up.
Table 40. ADC characteristics
Symbol Parameter Conditions Min Typ 1) Max Unit
fMOD Modulator Oversampling
frequency 2.1 MHz
VAIN Conversion voltage range 2)3) 02.5V
Ilkg Negative input leakage current on
analog pins
VIN<VSS, | IIN |<
400µA on adjacent
analog pin
56μA
PBR Passband Ripple 0.1 dB
SINAD S/N and Distortion 56 63 dB
THD Total Harmonic Distortion 60 74 dB
ZIN Input Impedance fMOD = 2 MHz 1 MΩ
CADC Internal sample and hold capacitor 3.2 pF
tCONV Total Conversion time (including
sampling time)
2048/
fMOD
(max)
IADC
Normal mode TA = 27 °C 2.5 3.0 mA
Standby mode TA = 27 °C 1μA
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 67/80
Data are based on characterisation and are not tested in production.
ADC Accuracy vs. Negative Injection Current
Injecting negative current on any of the standard (non-robust) analog input pins should be
avoided as this significantly reduces the accuracy of the conversion being performed on
another analog input. It is recommended to add a Schottky diode (pin to ground) to standard
analog pins which may potentially inject negative current. The effect of negative injection
current on robust pins is specified in Section 4.3.5.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 4.3.5 does not affect the ADC accuracy.
Table 41. ADC accuracy with fPCLK2 = 20 MHz, fADC=10 MHz, AVDD=3.3 V
Symbol Parameter Conditions Min Typ Max Unit
ADC_DATA(0V) Converted code when AIN=0V 1) 2370 2565 Dec-
imal
code
ADC_DATA(2.5V) Converted code when AIN=2.5V 1) 1480 1680
VCM Center voltage of Sigma-Delta
Modulator1) 1.23 1.25 1.30 V
TUE Total unadjusted error
In this type of ADC, calibration is necessary to correct
gain error and offset errors. Once calibrated, the TUE is
limited to the ILE.
|ED|Differential linearity error1) 1.96 2.19
LSB
|EL|Integral linearity error 1) 2.36 3.95
Electrical parameters STR71xFxx STR710RZ
68/80 Doc ID 10350 Rev 13
Figure 38. ADC accuracy characteristics
1. Example of an actual transfer curve
2. The ideal transfer curve
3. End point correlation line
Legend for Figure 38
ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation between any actual transition and the end
point correlation line.
Equation 1
1LSB
IDEAL
VAIN (LSBIDEAL)
Digital Result ADC_DATA Register
4095
4094
4093
5
4
3
2
1
0123 4093 4094 4095
(1)
(2)
ED
EL
(3)
AVDD
AVSS
ADC_DATA(0V)
ADC_DATA(2.5V)
VCM
3100 3101 3102 3103
Out of range
1633
1LSBIDEAL
AVDD AVSS
4095
----------------------------------------=
STR71xFxx STR710RZ Electrical parameters
Doc ID 10350 Rev 13 69/80
Analog power supply and reference pins
The AVDD and AVSS pins are the analog power supply of the A/D converter cell. They act as
the high and low reference voltages for the conversion.
Separation of the digital and analog power pins allow board designers to improve A/D
performance. Conversion accuracy can be impacted by voltage drops and noise in the event
of heavily loaded or badly decoupled power supply lines (see: General PCB design
guidelines).
General PCB design guidelines
To obtain best results, some general design and layout rules should be followed when
designing the application PCB to shield the noise-sensitive, analog physical interface from
noise-generating CMOS logic signals.
Use separate digital and analog planes. The analog ground plane should be connected
to the digital ground plane via a single point on the PCB.
Filter power to the analog power planes. It is recommended to connect capacitors, with
good high frequency characteristics, between the power and ground lines, placing
0.1 µF and optionally, if needed 10 pF capacitors as close as possible to the STR7
power supply pins and a 1 to 10 µF capacitor close to the power source (see
Figure 39).
The analog and digital power supplies should be connected in a star network. Do not
use a resistor, as AVDD is used as a reference voltage by the A/D converter and any
resistance would cause a voltage drop and a loss of accuracy.
Properly place components and route the signal traces on the PCB to shield the analog
inputs. Analog signals paths should run over the analog ground plane and be as short
as possible. Isolate analog signals from digital signals that may switch while the analog
inputs are being sampled by the A/D converter. Do not toggle digital outputs near the
A/D input being converted.
Software filtering of spurious conversion results
For EMC performance reasons, it is recommended to filter A/D conversion outliers using
software filtering techniques.
Figure 39. Power supply filtering
VSS
V33
0.1μF
V33
STR710
AVDD
AVSS
POWER
SUPPLY
SOURCE
STR7
DIGITAL NOISE
FILTERING
EXTERNAL
NOISE
FILTERING
1 to 10μF
0.1μF
(3.3V)
Package characteristics STR71xFxx STR710RZ
70/80 Doc ID 10350 Rev 13
5 Package characteristics
5.1 Package mechanical data
Figure 40. 64-Pin low profile quad flat package (10x10)
Dim. mm inches
Min Typ Max Min Typ Max
A 1.60 0.063
A1 0.05 0.15 0.002 0.006
A2 1.35 1.40 1.45 0.053 0.055 0.057
b0.17 0.22 0.27 0.007 0.009 0.011
c0.09 0.20 0.004 0.008
D 12.00 0.472
D1 10.00 0.394
E 12.00 0.472
E1 10.00 0.394
e0.50 0.020
θ 3.5° 3.5°
L0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
Number of Pins
N64
A
A2
A1
c
h
L1
L
E
E1
D
D1
e
b
Recommended footprint (dimensions in mm)
STR71xFxx STR710RZ Package characteristics
Doc ID 10350 Rev 13 71/80
Figure 41. 144-Pin low profile quad flat package
Dim. mm inches(1)
1.Values in inches are converted from mm and
rounded to 3 decimal digits.
Min Typ Max Min Typ Max
A1.60 0.063
A1 0.05 0.15 0.002 0.006
A2 1.35 1.40 1.45 0.053 0.057
b0.17 0.22 0.27 0.007 0.011
c0.09 0.20 0.004 0.008
D21.80 22.00 22.20 0.858 0.867 0.874
D1 19.80 20.00 20.20 0.780 0.787 0.795
D3 17.50 0.689
E21.80 22.00 22.20 0.858 0.867 0.874
E1 19.80 20.00 20.20 0.780 0.787 0.795
E3 17.50 0.689
e0.50 0.020
K 3.5° 3.5°
L0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
Number of Pins
N144
Jedec Ref. MS-026-BFB
A
A2
A1
b
c
36
37
72
73108
109
144
E1 E
D1
D
1
h
b
L
L1
Seating Plane
0.08 mm
.003 in.
e
E3
D3
Recommended footprint (dimensions in mm)
Package characteristics STR71xFxx STR710RZ
72/80 Doc ID 10350 Rev 13
Figure 42. 64-Low profile fine pitch ball grid array package
Figure 43. 144-low profile fine pitch ball grid array package
Figure 44. Recommended PCB design rules (0.80/0.75mm pitch BGA)
Dim. mm inches
Min Typ Max Min Typ Max
A1.210 1.700 0.048 0.067
A1 0.270 0.011
A2 1.120 0.044
b0.450 0.500 0.550 0.018 0.020 0.022
D7.750 8.000 8.150 0.305 0.315 0.321
D1 5.600 0.220
E7.750 8.000 8.150 0.305 0.315 0.321
E1 5.600 0.220
e0.720 0.800 0.880 0.028 0.031 0.035
f1.050 1.200 1.350 0.041 0.047 0.053
ddd 0.120 0.005
Number of Pins
N64
Dim. mm inches1)
Min Typ Max Min Typ Max
A1.21 1.70 0.0476 0.0669
A1 0.21 0.0083
A2 1.085 0.0427
b0.35 0.40 0.45 0.0138 0.0157 0.0177
D9.85 10.00 10.15 0.3878 0.3937 0.3996
D1 8.80 0.3465
E9.85 10.00 10.15 0.3878 0.3937 0.3996
E1 8.80 0.3465
e0.80 0.0315
F0.60 0.0236
ddd 0.10 0.0039
eee 0.15 0.0059
fff 0.08 0.0031
Number of Pins
N144
1Values in inches are converted from mm and
rounded to 4 decimal digits.
Dpad
Dsm
Dpad 0.37 mm
Dsm 0.52 mm typ. (depends on solder
mask registration tolerance
Solder paste 0.37 mm aperture diameter
Non solder mask defined pads are recommended
4 to 6 mils screen print
STR71xFxx STR710RZ Package characteristics
Doc ID 10350 Rev 13 73/80
5.2 Thermal characteristics
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the
following equation:
TJ = TA + (PD x Θ
JA) (1)
Where:
TA is the Ambient Temperature in °C,
Θ
JA is the Package Junction-to-Ambient Thermal Resistance, in °C/W,
PD is the sum of PINT and PI/O (PD = PINT + PI/O),
PINT is the product of IDD and VDD, expressed in Watts. This is the Chip Internal Power.
PI/O represents the Power Dissipation on Input and Output Pins;
Most of the time for the application PI/O < PINT and can be neglected. On the other hand, PI/O
may be significant if the device is configured to drive continuously external modules and/or
memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
PD = K / (TJ + 273°C) (2)
Therefore (solving equations 1 and 2):
K = PD x (TA + 273°C) + Θ
JA x PD2(3)
where:
K is a constant for the particular part, which may be determined from equation (3) by
measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ
may be obtained by solving equations (1) and (2) iteratively for any value of TA.
Table 42. Thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal Resistance Junction-Ambient
LQFP 144 - 20 x 20 mm / 0.5 mm pitch 42 °C/W
Θ
JA
Thermal Resistance Junction-Ambient
LQFP 64 - 10 x 10 mm / 0.5 mm pitch 45 °C/W
Θ
JA
Thermal Resistance Junction-Ambient
LFBGA 64 - 8 x 8 x 1.7mm 58 °C/W
Θ
JA
Thermal Resistance Junction-Ambient
LFBGA 144 - 10 x 10 x 1.7mm 50 °C/W
Product history STR71xFxx STR710RZ
74/80 Doc ID 10350 Rev 13
6 Product history
There are three versions of the STR710F series products. All versions are functionally
identical and differ only with the points listed below.
Version "A" was the first version produced and delivered. Version "Z" was the second in
production replacing version "A". Version "Z" has lower power consumption in STOP mode.
Version "X" is the latest introduced.
Marking
The difference between versions is visible on the marking of the product as shown in the
four examples in Figure 45 through Figure 48.
Figure 45. LQFP144 STR710 version “A” Figure 46. LQFP64 STR712 version “Z
STR710FZ2T6
2208JVG
MLT225571
A
STR710FZ2T6
2208JVG
MLT225571
A
STR712FR2
2208JVG
MLT225571
T6
Z
STR71xFxx STR710RZ Product history
Doc ID 10350 Rev 13 75/80
Figure 47. BGA144 STR710 version “Z” Figure 48. BGA64 STR711 version “X”
R710Z2H6
2208JVG Z
MLT 22 551
R711R1H6
2208JVG
MLT225571
X
Table 43. A, Z and X version differences
Feature A version Z version X version
ARM7TDMI core device
Identification (ID) code register
(see ARM7TDMI Technical
Reference Manual)
Version bits [31:28] =
0001 Version bits [31:28] = 0010 Version bits [31:28] =
0010
Low power mode consumption in
STOP mode at 25 °C
Not guaranteed
Typical 49 µA
50 µA maximum at 25°C.
Less than 30 µA at 25 °C
for 99.730020% of parts
Same as Z.
SC.DATA pin
Not TRUE open drain
When addressing 5V cards, the SCDATA
Line must be connected to an open drain buffer.
Pin
P0.10/U1.RX/U1.TX/SC.
DATA has been modified
to offer TRUE OPEN
DRAIN functionality
when in Smartcard
mode. When addressing
5V cards, the SCDATA
line can now be
connected directly to the
card I/O. This
modification is backward
compatible with previous
designs, and no board
modification is required.
Ordering information STR71xFxx STR710RZ
76/80 Doc ID 10350 Rev 13
7 Ordering information
Figure 49. STR71xF ordering information scheme
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for
further information on any aspect of this device, please go to www.st.com or contact the ST Sales Office
nearest to you.
STR710 FZ1T6
Product class
STR71x microcontroller
Pin count
R = 64 pins
Z = 144 pins
Package type
H = LFBGA
T = LQFP
Example:
Peripheral set
0 = full peripheral set
1 = No EMI, no CAN
2 = No EMI, no USB
5 = No EMI, no USB, no CAN
Temperature range
1 = 0 °C to 70 °C
3 = -40 °C to 125 °C
6 = -40 °C to 85 °C
Program memory size
0 = 64+16K
1 = 128+16K
2 = 256+16K
no character = 0K
Packing
no character = tray or tube
TR = tape and reel
Program memory type
F = Flash
STR71xFxx STR710RZ Known limitations
Doc ID 10350 Rev 13 77/80
8 Known limitations
Description
If an IRQ or FIQ interrupt is pending and the Interrupt vector register (EIC_IVR) is not yet
read, the HALT bit in the RCCU_SMR register can not be written. Therefore a software reset
can not be generated.
Workaround
To generate a software reset when an IRQ or FIQ line is pending, either:
reset the EIC peripheral by setting bit 14 in the APB2_SWRES register, or
read the EIC_IVR register prior to generating a software reset.
Revision history STR71xFxx STR710RZ
78/80 Doc ID 10350 Rev 13
9 Revision history
Table 44. Document revision history
Date Revision Changes
17-Mar-2004 1 First Release
05-Apr-2004 2 Updated “Electrical parameters” on page 34
08-Apr-2004 2.1 Corrected STR712F Pinout. Pins 43/42 swapped.
15-Apr-2004 2.2 PDF hyperlinks corrected.
7-Jul-2004 3
Corrected description of STDBY, V18, VSS18 V18BKP
VSSBKP pins
Added IDDrun typical data
Updated BSPI max. baudrate.
Updated “EMI - external memory interface” on page 56
29-Oct-2004 4
Corrected Flash sector B1F0/F1 address in Figure 6: Memory
map on page 31
Corrected Table 5 on page 25 LQFP64 TEST pin is 16 instead
of 17. Added to TQPFP64 column: pin 7 BOOTEN, pin 17
V33IO-PLL
Changed description of JTCK from ‘External pull-down
required’ to ‘External pull-up or pull down required’.
25-Jan-2005 5
Changed “Product Preview” to “Preliminary Data” on page 1
and 3
Renamed ‘PU/PD’ column to ‘Reset state’ in Table 5 on
page 25
Added reference to STR7 Flash Programming Reference
Manual
19-Apr-2005 6
Added STR715F devices and modified RAM size of STR71xF1
devices
Added BGA package in Section 5
Updated ordering information in Section 7.
Added PLL duty cycle min and max. in PLL electrical
characteristics on page 45
13-Oct-2005 7
Updated feature description on page 1
Update overview Section 1.1
Added OD/PP to P0.12 in Tabl e 5
Changed name of WFI mode to WAIT mode
Changed Memory Map Ta b l e 6 : Ext. Memory changed to 64 MB
and flash register changed to 36 bytes.
Added Power Consumption Ta b le 13
Modified BGA144 F3, F5, F12 and G12 in Ta b l e 3 and Tabl e 4
Update EMI Timing Ta b l e 2 4 and Figure 29
STR71xFxx STR710RZ Revision history
Doc ID 10350 Rev 13 79/80
22-May-2006 8
Added Flashless device.
Changed reset state of pins P1.10 and P1.13 from pu to pd,
P0.15 from pu to floating and removed x in interrupt column for
P1.15 and P1.12 in Ta bl e 4 and Ta b l e 5
Added notes under Ta b le 4 on EMI pin reset state.
Corrected inch value for d3 in Figure 40
Added footprint diagrams in Figure 40 and Figure 43
Updated Section 4: Electrical parameters
01-Aug-2006 9
Flash data retention changed to 20 years at 85° C.
Changed note 8 on page 19
Changed note 1 on page 45
06-Nov-2006 10 Added STR715FR0T1 in Table 42: Order codes
P0.12 corrected in Table 5 on page 25
20-Mar-2007 11
Added characteristics of BSPI - buffered serial peripheral
interface on page 63
Updated Table 21: Low-power mode wakeup timing on page 46
13-Feb-2008 12
Updated ordering information
Updated USB characteristics
Updated external clock characteristics
03-Apr-2013 13
Updated title (to be in line with the “device summary” table)
Updated ST Logo and Disclaimer
Added Section 8: Known limitations
Table 44. Document revision history (continued)
Date Revision Changes
STR71xFxx STR710RZ
80/80 Doc ID 10350 Rev 13
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com