MC14001UB, MC14011UB UB-Suffix Series CMOS Gates The UB Series logic gates are constructed with P and N channel enhancement mode devices in a single monolithic structure (Complementary MOS). Their primary use is where low power dissipation and/or high noise immunity is desired. The UB set of CMOS gates are inverting non-buffered functions. http://onsemi.com MARKING DIAGRAMS Features * Supply Voltage Range = 3.0 Vdc to 18 Vdc * Linear and Oscillator Applications * Capable of Driving Two Low-Power TTL Loads or One 14 PDIP-14 P SUFFIX CASE 646 Low-Power Schottky TTL Load Over the Rated Temperature Range 1 * Double Diode Protection on All Inputs * Pin-for-Pin Replacements for Corresponding CD4000 Series UB Suffix Devices 14 * These are Pb-Free Devices SOIC-14 D SUFFIX CASE 751A MAXIMUM RATINGS (Voltages Referenced to VSS) 140xxUG AWLYWW 1 Value Unit -0.5 to +18.0 V -0.5 to VDD + 0.5 V Input or Output Current (DC or Transient) per Pin 10 mA PD Power Dissipation, per Package (Note 1) 500 mW TA Ambient Temperature Range -55 to +125 C ORDERING INFORMATION Tstg Storage Temperature Range -65 to +150 C TL Lead Temperature (8-Second Soldering) 260 C See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. Symbol VDD Vin, Vout Iin, Iout Parameter MC140xxUBCP AWLYYWWG DC Supply Voltage Range Input or Output Voltage Range (DC or Transient) xx A WL, L YY, Y WW, W G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Temperature Derating: Plastic "P and D/DW" Packages: - 7.0 mW/_C From 65_C To 125_C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS v (Vin or Vout) v VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. (c) Semiconductor Components Industries, LLC, 2009 September, 2009 - Rev. 7 1 Publication Order Number: MC14001UB/D MC14001UB, MC14011UB LOGIC DIAGRAMS MC14001UB Quad 2-Input NOR Gate 1 2 5 6 8 9 12 13 MC14011UB Quad 2-Input NAND Gate 1 3 3 2 5 4 4 6 8 10 10 9 12 11 11 13 VDD = PIN 14 VSS = PIN 7 FOR ALL DEVICES PIN ASSIGNMENTS MC14001UB Quad 2-Input NOR Gate IN 1A 1 14 VDD MC14011UB Quad 2-Input NAND Gate IN 1A 1 14 VDD IN 2A 2 13 IN 2D IN 2A 2 13 IN 2D OUTA 3 12 IN 1D OUTA 3 12 IN 1D OUTB 4 11 OUTD OUTB 4 11 OUTD IN 1B 5 10 OUTC IN 1B 5 10 OUTC IN 2B 6 9 IN 2C IN 2B 6 9 IN 2C VSS 7 8 IN 1C VSS 7 8 IN 1C http://onsemi.com 2 MC14001UB, MC14011UB IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIIII IIIIIIIII IIIII IIIIIII IIIIIIIIII IIIIII IIIIIIIIIIIIII IIIIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII IIII III III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII IIII III III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII IIII III III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII IIII III III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII IIII III III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII IIII III III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII III IIII IIII III III III III IIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III IIIIIIIIIIIIIIIII IIIIIIIIII IIII III IIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS) Characteristic Symbol - 55_C 25_C 125_C VDD Vdc Min Max Min Typ (Note 2) Max Min Max Unit Output Voltage Vin = VDD or 0 "0" Level VOL 5.0 10 15 - - - 0.05 0.05 0.05 - - - 0 0 0 0.05 0.05 0.05 - - - 0.05 0.05 0.05 Vdc Vin = 0 or VDD "1" Level VOH 5.0 10 15 4.95 9.95 14.95 - - - 4.95 9.95 14.95 5.0 10 15 - - - 4.95 9.95 14.95 - - - Vdc "0" Level VIL 5.0 10 15 - - - 1.0 2.0 2.5 - - - 2.25 4.50 6.75 1.0 2.0 2.5 - - - 1.0 2.0 2.5 5.0 10 15 4.0 8.0 12.5 - - - 4.0 8.0 12.5 2.75 5.50 8.25 - - - 4.0 8.0 12.5 - - - 5.0 5.0 10 15 - 1.0 - 0.25 - 0.62 - 1.8 - - - - - 0.75 - 0.2 - 0.4 - 1.5 - 1.7 - 0.36 - 0.9 - 3.5 - - - - - 0.55 - 0.14 - 0.15 - 1.0 - - - - IOL 5.0 10 15 0.64 1.6 4.2 - - - 0.51 1.1 3.4 0.88 2.25 8.8 - - - 0.36 0.7 2.4 - - - mAdc Input Current Iin 15 - 0.1 - 0.00001 0.1 - 1.0 mAdc Input Capacitance (Vin = 0) Cin - - - - 5.0 7.5 - - pF Quiescent Current (Per Package) IDD 5.0 10 15 - - - 0.25 0.5 1.0 - - - 0.0005 0.0010 0.0015 0.25 0.5 1.0 - - - 7.5 15 30 mAdc IT 5.0 10 15 Input Voltage (VO = 4.5 Vdc) (VO = 9.0 Vdc) (VO = 13.5 Vdc) (VO = 0.5 Vdc) (VO = 1.0 Vdc) (VO = 1.5 Vdc) "1" Level Output Drive Current (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) Source Sink Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Gate CL = 50 pF) VIH IOH Vdc Vdc mAdc IT = (0.3 mA/kHz) f + IDD/N IT = (0.6 mA/kHz) f + IDD/N IT = (0.8 mA/kHz) f + IDD/N mAdc 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. 3. The formulas given are for the typical characteristics only at 25_C. 4. To calculate total supply current at loads other than 50 pF: IT(CL) = IT(50 pF) + (CL - 50) Vfk where: IT is in mH (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.001 x the number of exercised gates per package. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIII IIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25_C) Characteristic Symbol Output Rise Time tTLH = (3.0 ns/pF) CL + 30 ns tTLH = (1.5 ns/pF) CL + 15 ns tTLH = (1.1 ns/pF) CL + 10 ns tTLH Output Fall Time tTHL = (1.5 ns/pF) CL + 25 ns tTHL = (0.75 ns/pF) CL + 12.5 ns tTHL = (0.55 ns/pF) CL + 9.5 ns tTHL Propagation Delay Time tPLH, tPHL = (1.7 ns/pF) CL + 30 ns tPLH, tPHL = (0.66 ns/pF) CL + 22 ns tPLH, tPHL = (0.50 ns/pF) CL + 15 ns VDD Vdc Min Typ (Note 6) Max 5.0 10 15 - - - 180 90 65 360 180 130 5.0 10 15 - - - 100 50 40 200 100 80 5.0 10 15 - - - 90 50 40 180 100 80 Unit ns ns tPLH, tPHL ns 5. The formulas given are for the typical characteristics only at 25_C. 6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. http://onsemi.com 3 MC14001UB, MC14011UB ORDERING INFORMATION Package Shipping MC14001UBCPG PDIP-14 (Pb-Free) 25 Units / Rail MC14001UBDG SOIC-14 (Pb-Free) 55 Units / Rail MC14001UBDR2G SOIC-14 (Pb-Free) 2500 / Tape & Reel MC14011UBCPG PDIP-14 (Pb-Free) 25 Units / Rail MC14011UBDG SOIC-14 (Pb-Free) 55 Units / Rail MC14011UBDR2G SOIC-14 (Pb-Free) 2500 / Tape & Reel Device For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 20 ns VDD INPUT 14 PULSE GENERATOR INPUT OUTPUT 20 ns VDD 90% 50% 10% 0V tPLH tPHL * CL 7 VSS *All unused inputs of AND, NAND gates must be connected to VDD. All unused inputs of OR, NOR gates must be connected to VSS. tTHL Figure 1. Switching Time Test Circuit and Waveforms http://onsemi.com 4 VOH 90% 50% 10% OUTPUT INVERTING VOL tTLH MC14001UB, MC14011UB MC14001UB CIRCUIT SCHEMATIC VDD 14 3 MC14011UB CIRCUIT SCHEMATIC (1/4 of Device Shown) 10 14 VDD 1 8 2 9 3, 4, 10, 11 1, 6, 8, 13 2, 5, 9, 12 6 13 5 12 12 10 8.0 8.0 6.0 5.0 Vdc 15 Vdc b a a 4.0 b 4.0 10 Vdc 2.0 2.0 -4.0 VGS = -5.0 Vdc a b 0 2.0 4.0 6.0 8.0 10 12 14 16 Vin, INPUT VOLTAGE (Vdc) a c -10 Vdc 5.0 Vdc 4.0 10 c b a TA = -55C b TA = +25C c TA = +125C -8.0 b a 6.0 Figure 3. Typical Voltage Transfer Characteristics versus Temperature a -6.0 a TA = +125C b TA = -55C 8.0 0 I D, DRAIN CURRENT (mAdc) I D, DRAIN CURRENT (mAdc) 0 10 Vdc 10 2.0 Figure 2. Typical Voltage and Current Transfer Characteristics -2.0 12 0 2.0 4.0 6.0 8.0 10 12 14 16 Vin, INPUT VOLTAGE (Vdc) 0 VDD = 15 Vdc Unused input connected to b VSS. a 14 a b 6.0 0 16 VDD = 15 Vdc TA = +25C Unused input connected to VSS. a One input only 10 Vdc b Both inputs 14 Vout , OUTPUT VOLTAGE (Vdc) 11 Vout , OUTPUT VOLTAGE (Vdc) 16 7 VSS I D, DRAIN CURRENT (mAdc) 4 7 VSS b c -15 Vdc b 8.0 15 Vdc b c a VGS = 10 Vdc b c 6.0 a TA = -55C b TA = +25C c TA = +125C 4.0 a 2.0 b 5.0 Vdc c -10 -10 a -8.0 -6.0 -4.0 VDS, DRAIN VOLTAGE (Vdc) a 0 -2.0 0 0 Figure 4. Typical Output Source Characteristics 2.0 4.0 6.0 VDS, DRAIN VOLTAGE (Vdc) 8.0 Figure 5. Typical Output Sink Characteristics http://onsemi.com 5 10 MC14001UB, MC14011UB PACKAGE DIMENSIONS PDIP-14 CASE 646-06 ISSUE P 14 8 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B A F L N C -T- SEATING PLANE H G D 14 PL J K 0.13 (0.005) M M http://onsemi.com 6 DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 --- 10 _ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 --- 10 _ 0.38 1.01 MC14001UB, MC14011UB PACKAGE DIMENSIONS SOIC-14 CASE 751A-03 ISSUE J NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. -A- 14 8 -B- P 7 PL 0.25 (0.010) M 7 1 G -T- 0.25 (0.010) M T B S A DIM A B C D F G J K M P R J M K D 14 PL F R X 45 _ C SEATING PLANE B M S SOLDERING FOOTPRINT* MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 7X 7.04 14X 1.52 1 14X 0.58 1.27 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 http://onsemi.com 7 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC14001UB/D