1
®
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1- 888- INTERSIL or 321-724-7143 |Intersil (and desig n) is a r egistered tradem ark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2002. All Rights Reserved
HFA-0001
Ult ra High Slew RateOper ati ona l Amplifier
The HFA-0001 is an all bipolar op amp featuring high sle w
rate (1000V/µs), and high unity gain bandwidth (350MHz).
These fe atu res combine d with fas t settli ng time (25 ns) make
this product very useful in high speed data acquisition
systems as well as RF, video, and pulse amplifier designs.
Other outstanding characteristics include low bias currents
(15µA), low offset current (18µA), and low offset volt age
(6mV).
The HFA-0001 offers high perf ormance at l ow cost. It can
replace hybrids and RF transistor amplifiers, simplifying
designs while providing increased reliability due t o
monol ithic construction. To enhance the ease of design, the
HFA-0001 has a 50 ±20% resistor connected from the
output of the op amp to a s eparate pin. Thi s can be used
when driving 50 strip line, microstrip, or coax cable.
Features
Unity Gai n Bandwi dth. . . . . . . . . . . . . . . . . . . . . . 350MHz
Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . 53MHz
High Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . 1000V/µs
High Output Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50mA
Monolit hic Constru cti on
Applications
RF/IF Processors
Video Amplifiers
High Speed Cable Drivers
•Pulse Amplifiers
High Speed Communi cations
Fast Data Acquisition Systems
Pinouts
Part Number Information
PART
NUMBER TEMPERATURE
RANGE PACKAGE
HFA1-0001-5 0oC to +75oC 14 Lead Ceramic Sidebraze DIP
HFA1-0001-9 -40oC to +85oC 14 Lead Ceramic Sidebraze DIP
HFA3-0001-5 0oC to +75oC 8 Lead Plastic DIP
HFA3-0001-9 -40oC to +85oC 8 Lead Plastic DIP
HFA9P0001-5 0oC to +75oC 16 Lead Widebody SOIC
HFA-0001
(PDIP)
TOP VIEW
HFA-0001
(CDIP)
TOP VIEW
HFA-0001
(300 MIL SOIC)
TOP VIEW
NC
+IN
V-
2
3
4
1R
SENSE
V+
OUT
NC
7
6
5
8
+
-IN
NC
NC
NC
+IN
NC
NC
NC
V+
NC
NC
1
2
3
4
5
6
7
14
13
12
11
10
9
8
RSENSE
OUT
+
-IN
V-
14
15
16
9
13
12
11
10
1
2
3
4
5
7
6
8
NC
NC
NC
-IN
+IN
V-
NC
NC
NC
RSENSE
V+
OUT
NC
NC
NC
NC
+
Septemb er 1998 File Number 2916. 3
OBSOLETE PRODUCT
Recommended Replacements: HFA1100, HFA1105
or contact our Technical Support Center at
1-888-INTERSIL or www.intersil.com/tsc
2
Absolute Maximum Ratings (No te 1) Oper a t ing C ond ition s
Supply Voltage (Between V+ and V- Terminals) . . . . . . . . . . . . .12V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5V
Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±4V
Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60mA
Junction Temperature (Note 9) . . . . . . . . . . . . . . . . . . . . . . .+175oC
Junction Temperature (Plastic Package). . . . . . . . . . . . . . . .+150oC
Lead Temperature (Soldering 10 Sec.) . . . . . . . . . . . . . . . . .+300oC
Operating Temper ature Range
HFA-0001-9 . . . . . . . . . . . . . . . . . . . . . . . . . .-40oC TA +85oC
HFA-0001-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC TA +75oC
Storage Temperature Range . . . . . . . . . . . . . .-65oC TA +150oC
CAUTIO N: S tresses abov e those l isted i n “ A bsolute Max imum Ra ting s” ma y cause per manen t dam age to th e de vice. This is a s tress on l y rating and ope ration of th e
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Electrical Speci fications V+ = +5V, V- = -5V, Unless Otherwise Specified
PARAMETER TEMP
HFA-0001-9 HFA-0001-5
UNITSMIN TYP MAX MIN TYP MAX
INPUT CHARACTERISTICS
Of fset Voltage +25oC- 615- 630 mV
High -4.520-4.530 mV
Low - 12.5 45 - 12.5 35 mV
Av e rage O ffs et V ol ta ge Drift Hig h - 50 - - 50 - µV/oC
Low - 100 - - 100 - µV/oC
Bias Current +25oC - 15 50 - 15 100 µA
Full - 20 50 - 20 100 µA
Offset Current +25oC - 18 25 - 18 50 µA
Full - 22 50 - 22 50 µA
Common Mode Ra nge +25oC±3- -±3- - V
Di ffe ren ti al In pu t Resi st an ce +25oC - 10 - - 10 - k
Input Capacitance +25oC- 2 - - 2 - pF
Input Noise Voltage 0.1Hz to 10Hz +25oC-3.5- -3.5-µVrms
10Hz to 1MHz +25oC-6.7- -6.7-µVrms
Input Noise Voltage fO = 10Hz +2 5oC-640- -640-nV/Hz
fO = 100Hz +25oC-170- -170-nV/Hz
fO = 100kHz +25oC- 6 - - 6 -nV/Hz
Input Noise Current fO = 10Hz +2 5oC - 2.35 - - 2.35 - nA/Hz
fO = 100Hz +25oC - 0.57 - - 0.57 - nA/Hz
fO = 1000Hz +25oC - 0.16 - - 0.16 - nA/Hz
TRANSFER CHARACTERISTICS
Large Signal Voltage Gain (Note 2) +25oC 150 200 - 150 200 - V/V
High 150 170 - 100 170 - V/V
Low 150 220 - 150 220 - V/V
Common Mode Rejection Ratio (Note 3) +25oC4547 - 4247 - dB
High 40 45 - 40 45 - dB
Low 45 48 - 42 48 - dB
Unity Gain Bandwidth +25oC-350- -350- MHz
Minimum Stable Gain Full 1 - - 1 - - V/V
OUTPUT CHARACTERISTICS
Output Voltage Swing RL = 100+25oC-±3.5 - - ±3.5 - V
HFA-0001
3
RL = 1 k +25oC±3.5 ±3.7 - ±3.5 ±3.7 - V
High ±3.0 ±3.6 - ±3.0 ±3.6 - V
Low ±3.5 ±3.7 - ±3.5 ±3.7 - V
Full Power Bandwidth (Note 5) +25oC - 53 - - 53 - MHz
Output Resistance, Open Loop +25oC- 3 - - 3 -
Output Current Full ±30 ±50 - ±30 ±50 - mA
TRANSIENT RESPONSE
Rise Time (N ote 4, 6) +25oC-480- -480- ps
Slew Rate (Note 4, 7) RL = 1k+25oC - 1000 - - 1000 - V/µs
RL = 1 00 +25oC-875- -875- V/µs
Settling Time (3V Step) 0.1% +25oC - 25 - - 25 - ns
Overshoot (Note 4, 6) +25oC - 36 - - 36 - %
POWER SUPPLY CHARACTERISTICS
Supply Current Full - 65 75 - 65 75 mA
Pow er Supply Rejec tion Rati o (Note 8) +25oC4042 - 3742 - dB
High 35 41 - 35 41 - dB
Low 40 42 - 37 42 - dB
NOTES:
1. Absolute Maximum Ratings are limiting values applied individually beyond which the serviceability of the circui t may be impaired. Fu nc ti on al
operation under any of these conditions is not necessarily implied.
2. VOUT = 0 to ±2V , RL = 1k.
3. VCM = ±2V.
4. RL = 1 00.
5. Full Power Ba ndwidth is calculated by equation: .
6. VOUT = ±200mV, A V = +1.
7. VOUT = ±3V, AV = +1.
8. VS = ±4V to ±6V.
9. Se e Therm al Cons tant s in ‘Ap plic ation s Infor mati on’ te xt. Maxi mum po we r dissi pation, in clud ing ou tput l oad, mus t be de sign ed to maintain the
junction temperature below +175oC for he rm et i c pa ck a ge s, and be lo w +150 oC for plastic packag es.
Electrical Speci fications V+ = +5V, V- = -5V, Unless Otherwise Specified (Continued)
PARAMETER TEMP
HFA-0001-9 HFA-0001-5
UNITSMIN TYP MAX MIN TYP MAX
FPBW SlewRate
2πVPEAK
-----------------------------,VPEAK 3.0V==
Schem atic Diagram Die Characteristics
Thermal Constants (oC/W) θJA θJC
HFA1-0001-5/-9 75 13
HFA3-0001-5 98 36
HFA9P-0001-5/-9 96 27
V+
+IN
RSENSE
VOUT
-IN
V-
HFA-0001
4
Test C ircu its
FIGURE 1. LARGE SIGNAL RESPONSE TEST CIRCUIT FIGURE 2. SMALL SIGNAL RESPONSE TEST CIRCUIT
LARGE SIG NAL RESPO NS E
VOUT = 0V t o 3V
Vertical Sc ale: 1V/Div .
Horizontal Scale: 2ns/Div.
SMALL SIG NAL RESP ON SE
VOUT = 0mV to 200mV
Vertical Scale: 100mV/Div.
Horizontal Scale: 2ns/Div.
NOTE: Initial Step In Output Is Due To Fixture Feedthrough
FIGURE 3. SETTLING TIME SCHEMATIC
PROPAGATION DELAY
Vertical Scale: 500mV/Div.
Horizontal Scale: 2ns/Div.
AV = +1, RL = 100, VOUT = 0V to 3V
NOTE: Test Fixture Delay of 450ps i s Included
VIN VOUT
+
1k
50
20pF
50
VIN VOUT
+
100
50
50
VIN
VOUT
VIN
VOUT
VIN
+
1k
VSETTLE
VOUT
1k
100
100
HFA-0001
5
Typical Performan ce Cu rves VS = ±5V, TA = +25oC, Unl ess O therwise Specif ied
FIGURE 4. OPEN LOOP GAIN AND PHASE vs FREQUENCY FIGURE 5. CLOSED LOOP GAIN vs FREQUENCY
FIGURE 6. CLOSED LOOP GAIN vs FREQUENCY FIGURE 7. CLOSED LOOP GAIN vs FREQUENCY
FIGURE 8. RISE TIME vs TEMPERATURE FIGURE 9. CMRR vs FREQUENCY
GAIN (dB)
50
40
30
20
10
0
100K 1M 10M 100M
FREQUENCY (Hz) 1G
0
45
90
135
180
PHASE MARGIN (DEGREES)
GAIN
PHASE
RL = 100
10M 100M 1G1M FREQUENCY (Hz)
GAIN (dB)
0
-10
-20
0
45
90
135
180
PHASE MARGIN (DEGREES)
20
10
GAIN
PHASE
VIN
50100
VOUT
50
AV = +1, RL = 100, RF = 50
10M 100M 1G
1M
FREQUENCY (Hz)
GAIN (dB)
PHASE MARGIN (DEGREES)
0
45
90
135
180
20
10
0
-10
-20
VIN
50100
VOUT
100
100K 1M 10M 100M
FREQUENCY (Hz) 1G
GAIN (dB)
PHASE MARGIN (DEGREES)
0
45
90
135
180
30
20
10
0
-10
VIN VOUT
900100
100
50
AV = +10
RL = 100
700
600
500
400
300
200
100
RISE TIME (ps)
-60 -40 -20 0 20 40 60 80 100 120
TEMPERATURE (oC)
AV = +1, RL = 100
VOUT = 0mV to 200mV
100K 1M 10M 100M
FREQUENCY (Hz)
1G
CMRR (dB)
50
40
30
20
10
0
60
70
80
HFA-0001
6
FIGURE 10. PSRR vs FREQUENCY FIGURE 11. OFFSET VOLTAGE vs TEMPERATURE
(3 REPRES ENTAT IVE UN ITS )
FIGURE 12. BIAS CURRENT vs TEMPERATURE
(3 REPRES ENTAT IVE UN ITS ) FIGURE 13. OFFSET CURRENT vs TEMPERATURE
(3 REPRES ENTAT IVE UN ITS )
FIGURE 14. OPEN LOOP GAIN vs TEMPERATURE FIGURE 15. OUTPUT VOLTAGE SWING vs TEMPERATURE
Typical Performan ce Cu rves VS = ±5V, TA = +25oC, Unl ess O therwise Specif ied (Continued)
100K 1M 10M 100M
FREQUENCY (Hz) 1G
PSRR (dB)
50
40
30
20
10
0
80
70
60
+PSRR
-PSRR
OFFSET VOLTAGE (mV)
-20
TEMPERATURE (oC)
0 20 40 60 80 100 120-60 -40 -20
25
20
15
10
0
5
-5
-10
-15
TEMPERATURE (oC)
0 20 40 60 80 100 120-60 -40 -20
-20
-10
30
20
10
0
40
BIAS CURRENT (µA)
TEMPERATURE (oC)
0 20 40 60 80 100 120-60 -40 -20
OFFSET CURRENT (µA)
-20
20
15
10
5
0
-5
-10
-15
-25
TEMPERATURE (oC)
OPEN LOOP GAIN (V/V)
0 20 40 60 80 100 120-60 -40 -20
300
280
260
240
220
200
180
160
140
120
100
80
60
40
20
0
-AVOL
+AVOL
RL = 1k, VOUT = 0V to ±2V
TEMPERATURE (oC)
OUTPUT VOLTAGE (V)
4.6
4.4
4.2
4.0
3.8
3.6
3.4
3.2
3.0
2.8
2.6
2.4
2.2
2.0 0 20406080100120-60 -40 -20
-VOUT
+VOUT
RL = 1k
HFA-0001
7
FIGURE 16. SLEW RATE vs TEMPERATURE FIGURE 17. CMRR vs TEMPERATURE
FIGURE 18. PSRR vs TEMPERATURE FIGURE 19. SUPPLY CURRENT vs SUPPLY VOLTAGE
FIGURE 20. SUPPLY CURRENT vs TEMPERATURE FI GURE 21 . MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY
Typical Performan ce Cu rves VS = ±5V, TA = +25oC, Unl ess O therwise Specif ied (Continued)
TEMPERATURE (oC)
020406080100120-60 -40 -20
SLEW RATE (V/µs)
1200
1100
1000
900
800
700
600
500
+SLEW RATE
-SLEW RATE
AV = +1, RL = 100
VOUT = ±3V
TEMPERATURE (oC)
CMRR (dB)
0 20 40 60 80 100 120-60 -40 -20
60
58
56
54
52
50
48
46
44
42
40
38
36
34
-CMRR
+CMRR
TEMPERATURE (oC)
0 20406080100120-60 -40 -20
PSRR (dB)
10
90
80
70
60
50
30
20
0
40 +PSRR
-PSRR
VS = ±4V TO ±6V
SUPPLY CURRENT (mA)
70
60
50
40
30
20
10
0512340SUPPLY VOLTAGE (±V)
SUPPLY CURRENT (mA)
0 20 40 60 80 100 120-60 -40 -20
70
68
66
64
62
60
58
56
54
52
50
48
46
44
TEMPERATURE (oC)
10M 100M 1G1M FREQUENCY (Hz)
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
PEAK OUTPUT VOLTAGE SWING (V)
AV = +1, RL = 100
THD < 1%
HFA-0001
8
FIGURE 22. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE FIGURE 23. OPEN LOOP GAIN vs LOAD RESISTANCE
FIGURE 24. INPUT NOISE vs FREQUENCY FIGURE 25. INPUT NOISE vs FREQUENCY
FIGURE 26. INPUT VOLTAGE NOISE 0.1Hz to 10Hz
AV = 50, Noise Voltage = 1.605µVrms (RTI)
Noise Voltage = 10.12µVP-P
FIGURE 27. INPUT NOISE VOLTAGE 10Hz to 1MHz
AV = 50 , Noise Voltage = 5.36µVrms (RTI)
Noise Voltage = 29.88µVP-P
Typical Performan ce Cu rves VS = ±5V, TA = +25oC, Unl ess O therwise Specif ied (Continued)
100 1K 10K10
PEAK OUTPUT VOLTAGE SWING (V)
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
LOAD RESISTANCE ( )
AV = +1, fO = 50kHz
THD < 1%
240
220
200
180
160
140
120
100
80
60
40
OPEN LOOP GAIN (V/V)
LOAD RESISTANCE ()
100 1K 10K10
VOUT = ±2V
-AVOL
+AVOL
NO ISE VO LTAG E (µV/Hz)
8
7
6
5
4
3
2
1
0
FREQUENCY (Hz)
1 10 100 1K 10K 100K
NOISE CURRENT (nA/Hz)
8
7
6
5
4
3
2
1
0
NOISE CURRENT
NOISE VOLTAGE
FREQUENCY (Hz )
NOISE VOLTAGE (nV/Hz)
100 1K 10K 100K
600
500
400
300
200
100
0
NOISE CURRENT (pA/Hz)
600
500
400
300
200
100
0
NOISE CURRENT
NOISE VOLTAGE
HFA-0001
9
Applications Information
Offset Adjustment
When applications require the offset voltage to be as lo w as
possible, the fi gure below shows two possible schemes f or
adjusting offs et voltage.
For a vol tage f ollowe r appl ication, us e the ci rcui t in Figure 29
with out R2 and with RI shorted. R1 should be 1M to 10M.
The adjustment resistors will cause only a very small gain error.
FIGURE 28. INVERTING GAIN
FIGURE 29. NON-INVERTING GAIN
PC Board Layout Guidelines
When designing with the HFA-0001, good high frequency
(RF) techni ques should be us ed when m aking a PC board. A
mas sive ground plane should be used to maintai n a low
impedance ground. Proper shielding and use of short
interconnection leads are also very important.
To achieve ma ximum high fr equency performance, the use
of low im pedance t ransmissi on lines with impeda nce
matching is recommended: 50 lines are common in
com munications an d 75 l ines i n vide o sy stem s. I mpedanc e
matching is important to minimi ze reflected energy therefore
minim izing transmitted signal distort ion. This is
accom plished by using a series matching resist or (50 or
75), ma tched transmission line (50 or 75), and a
matched t erminating resistor, as shown in Fi gure 30. Note
that ther e wil l be a 6dB loss from input to output.The HFA-
0001 has a n integral 50 ±20% resistor connected t o the op
amps output wit h the other end of the resistor pinned out.
This 50 resistor can be used as the series resistor instead
of an external resistor.
FIGURE 30.
PC board tr aces can be mad e to lo ok li ke a 50 or 75
transmissi on li ne, called microstrip. Microstrip is a PC board
trace with a ground plane directly beneath, on the opposite
side of the boar d, as shown in Figure 31.
FIGURE 31.
When manuf acturin g pc boards, the trace width can be
calculated based on a number of variables. The following
equation is reasonably accurate for calculat ing the proper
trace width for a 5 0 transmissi on line.
Power supply decoupling is essential for high frequen cy op
amps . A 0.01µF hi gh quality ceramic capacitor at each
supply pin in parall el with a 1µF tantal um capacitor wil l
provide excellent decoupling as shown in Figure 32.
FIGURE 32. POWER SUPPLY DECOUPLING
+
RI
50kKR1
100k
+5V
VOUT
100
R2
RF
-5V
VIN -
Adjustment Range V R2
R1
-------



±
RI
+
50k
+V
-V
R1
100k
100
R2RF
VOUT
VIN -
Adjustment Range V R2
R1
-------



± Gain 1 RF
RIR2
+
--------------------



+
50
+
RF
VOUT
VIN 50COAX CABLE
50
50
SIGNAL
TRACE
GROUND
PLANE DIELECTRIC
(PC BOARD)
h
wt
ER
ZO87
ER1.41+
------------------------------ ln 5.98h
0.8w t+
---------------------


=
+
V+
1.0µF
V-
0.01µF
0.01µF
1.0µF
HFA-0001
10
FIGURE 33. IMPROVED DECOUPLING/ CURRENT LIMITING
Chip capacitors produce the best results due to ease of
placement next to the op amp and they have negligible lead
inductance. If leaded capacitors are used, the leads should
be ke pt as short as possible to minimize lead inductance.
Figures 32 and 33 illus trate two diff erent decoupling
schem es. Figure 33 improv es the PSRR beca use the
resistor and capacitors create low pass fil ters. Note that th e
supply current wil l create a voltage drop across the resistor.
Saturation Recovery
When an op amp is over driven output dev ices can satur ate
and som etimes tak e a long time to recover. By clamping the
input to safe level s, output saturati on can be avoided. If
output saturation cannot be avo ided, the recovery time from
25% over-drive is 20ns and 30ns from 50% over-drive.
Thermal Management
The HFA-0001 ca n sink and source a large amount of
current making it very useful in many app li cations. Care
must be t ake n not to exce ed the power hand ling c apabil ity o f
the part to insur e proper performance and maintai n high
reliability. The following graph shows the maximum power
handling capability of the HFA-0001 wit hout exceedin g the
maxim um all owable junction temperature of +175oC. The
curves also show t he improved power handling capability
when heatsinks are used based on AVVID heats ink #5801B
for the 8 lead Plastic DIP and IERC heatsink #PEP50AB for
the 14 lead Sidebraze DIP. These curves are based on
natural co nvection. Forced ai r will gr eatly im prove the power
dissipation capabilities of a h eatsink.
FIGURE 34.
+
V-
V+
R
R
C
C
C
C
3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
POWER DISSIPATION (W)
AMBIENT TEMPERATURE (oC)
20 40 60 80 100 120
A
D
B
C
A: 8 LEAD PLASTIC DIP WITH HEATSINK
B: 14 LEAD SIDEBRAZE DIP WITH HEATSINK
C: 8 LEAD PLASTIC DIP ONLY
D: 14 LEAD SIDEBRAZE DIP ONLY
HFA-0001