FUJITSU SEMICONDUCTOR DATA SHEET DS704-00001-2v0-E 16-bit Proprietary Microcontroller 2 F MC-16FX MB96670 Series MB96F673R/A, MB96F675R/A DESCRIPTION MB96670 series is based on FUJITSU's advanced F2MC-16FX architecture (16-bit with instruction pipeline for RISC-like performance). The CPU uses the same instruction set as the established F2MC-16LX family thus allowing for easy migration of F2MC-16LX Software to the new F2MC-16FX products. F2MC-16FX product improvements compared to the previous generation include significantly improved performance - even at the same operation frequency, reduced power consumption and faster start-up time. For high processing speed at optimized power consumption an internal PLL can be selected to supply the CPU with up to 32MHz operation frequency from an external 4MHz to 8MHz resonator. The result is a minimum instruction cycle time of 31.2ns going together with excellent EMI behavior. The emitted power is minimized by the on-chip voltage regulator that reduces the internal CPU voltage. A flexible clock tree allows selecting suitable operation frequencies for peripheral resources independent of the CPU speed. Note: F2MC is the abbreviation of FUJITSU Flexible Microcontroller. FUJITSU SEMICONDUCTOR provides information facilitating product development via the following website. The website contains information useful for customers. http://edevice.fujitsu.com/micom/en-support/ Copyright(c)2011-2013 FUJITSU SEMICONDUCTOR LIMITED All rights reserved 2013.6 FUJITSU SEMICONDUCTOR CONFIDENTIAL r2.0 MB96670 Series FEATURES * Technology 0.18m CMOS * CPU * F2MC-16FX CPU * Optimized instruction set for controller applications (bit, byte, word and long-word data types, 23 different addressing modes, barrel shift, variety of pointers) * 8-byte instruction queue * Signed multiply (16-bit x 16-bit) and divide (32-bit/16-bit) instructions available * System clock * On-chip PLL clock multiplier (x1 to x8, x1 when PLL stop) * 4MHz to 8MHz crystal oscillator (maximum frequency when using ceramic resonator depends on Q-factor) * Up to 8MHz external clock for devices with fast clock input feature * 32.768kHz subsystem quartz clock * 100kHz/2MHz internal RC clock for quick and safe startup, clock stop detection function, watchdog * Clock source selectable from mainclock oscillator, subclock oscillator and on-chip RC oscillator, independently for CPU and 2 clock domains of peripherals * The subclock oscillator is enabled by the Boot ROM program controlled by a configuration marker after a Power or External reset * Low Power Consumption - 13 operating modes (different Run, Sleep, Timer, Stop modes) * On-chip voltage regulator Internal voltage regulator supports a wide MCU supply voltage range (Min=2.7V), offering low power consumption * Low voltage detection function Reset is generated when supply voltage falls below programmable reference voltage * Code Security Protects Flash Memory content from unintended read-out * DMA Automatic transfer function independent of CPU, can be assigned freely to resources * Interrupts * Fast Interrupt processing * 8 programmable priority levels * Non-Maskable Interrupt (NMI) * CAN * Supports CAN protocol version 2.0 part A and B * ISO16845 certified * Bit rates up to 1Mbps * 32 message objects * Each message object has its own identifier mask * Programmable FIFO mode (concatenation of message objects) * Maskable interrupt * Disabled Automatic Retransmission mode for Time Triggered CAN applications * Programmable loop-back mode for self-test operation 2 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series * USART * Full duplex USARTs (SCI/LIN) * Wide range of baud rate settings using a dedicated reload timer * Special synchronous options for adapting to different synchronous serial protocols * LIN functionality working either as master or slave LIN device * Extended support for LIN-Protocol to reduce interrupt load * I2C * Up to 400kbps * Master and Slave functionality, 7-bit and 10-bit addressing * A/D converter * SAR-type * 8/10-bit resolution * Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs * Range Comparator Function * Scan Disable Function * ADC Pulse Detection Function * Source Clock Timers Three independent clock timers (23-bit RC clock timer, 23-bit Main clock timer, 17-bit Sub clock timer) * Hardware Watchdog Timer * Hardware watchdog timer is active after reset * Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval * Reload Timers * 16-bit wide * Prescaler with 1/21, 1/22, 1/23, 1/24, 1/25, 1/26 of peripheral clock frequency * Event count function * Free-Running Timers * Signals an interrupt on overflow * Prescaler with 1, 1/21, 1/22, 1/23, 1/24, 1/25, 1/26, 1/27, 1/28 of peripheral clock frequency * Input Capture Units * 16-bit wide * Signals an interrupt upon external event * Rising edge, Falling edge or Both (rising & falling) edges sensitive * Programmable Pulse Generator * 16-bit down counter, cycle and duty setting registers * Can be used as 2 x 8-bit PPG * Interrupt at trigger, counter borrow and/or duty match * PWM operation and one-shot operation * Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input * Can be triggered by software or reload timer * Can trigger ADC conversion * Timing point capture DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 3 MB96670 Series * Stepping Motor Controller * Stepping Motor Controller with integrated high current output drivers * Four high current outputs for each channel * Two synchronized 8/10-bit PWMs per channel * Internal prescaling for PWM clock: 1, 1/4, 1/5, 1/6, 1/8, 1/10, 1/12, 1/16 of peripheral clock * Dedicated power supply for high current output drivers * LCD Controller * LCD controller with up to 4COM x 24SEG * Internal or external voltage generation * Duty cycle: Selectable from options: 1/2, 1/3 and 1/4 * Fixed 1/3 bias * Programmable frame period * Clock source selectable from four options (main clock, peripheral clock, subclock or RC oscillator clock) * Internal divider resistors or external divider resistors * On-chip data memory for display * LCD display can be operated in Timer Mode * Blank display: selectable * All SEG, COM and V pins can be switched between general and specialized purposes * Sound Generator * 8-bit PWM signal is mixed with tone frequency from 16-bit reload counter * PWM clock by internal prescaler: 1, 1/2, 1/4, 1/8 of peripheral clock * Real Time Clock * Operational on main oscillation (4MHz), sub oscillation (32kHz) or RC oscillation (100kHz/2MHz) * Capable to correct oscillation deviation of Sub clock or RC oscillator clock (clock calibration) * Read/write accessible second/minute/hour registers * Can signal interrupts every half second/second/minute/hour/day * Internal clock divider and prescaler provide exact 1s clock * External Interrupts * Edge or Level sensitive * Interrupt mask bit per channel * Each available CAN channel RX has an external interrupt for wake-up * Selected USART channels SIN have an external interrupt for wake-up * Non Maskable Interrupt * Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block * Once enabled, can not be disabled other than by reset * High or Low level sensitive * Pin shared with external interrupt 0 * I/O Ports * Most of the external pins can be used as general purpose I/O * All push-pull outputs (except when used as I2C SDA/SCL line) * Bit-wise programmable as input/output or peripheral signal * Bit-wise programmable input enable * One input level per GPIO-pin (either Automotive or CMOS hysteresis) * Bit-wise programmable pull-up resistor 4 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series * Built-in On Chip Debugger (OCD) * One-wire debug tool interface * Break function: - Hardware break: 6 points (shared with code event) - Software break: 4096 points * Event function - Code event: 6 points (shared with hardware break) - Data event: 6 points - Event sequencer: 2 levels + reset * Execution time measurement function * Trace function: 42 branches * Security function * Flash Memory * Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank * Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory * Supports automatic programming, Embedded Algorithm * Write/Erase/Erase-Suspend/Resume commands * A flag indicating completion of the automatic algorithm * Erase can be performed on each sector individually * Sector protection * Flash Security feature to protect the content of the Flash * Low voltage detection during Flash erase or write DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 5 MB96670 Series PRODUCT LINEUP Features MB96670 Product Type Subclock Dual Operation Flash Memory RAM Flash Memory Product Subclock can be set by software - 64.5KB + 32KB 4KB MB96F673R, MB96F673A 128.5KB + 32KB 4KB MB96F675R, MB96F675A LQFP-64 FPT-64P-M23/M24 2ch 2ch Package DMA USART 2 with automatic LIN-Header transmission/reception with 16 byte RX- and TX-FIFO IC 8/10-bit A/D Converter with Data Buffer with Range Comparator with Scan Disable with ADC Pulse Detection 16-bit Reload Timer (RLT) 16-bit Free-Running Timer (FRT) 16-bit Input Capture Unit (ICU) 8/16-bit Programmable Pulse Generator (PPG) with Timing point capture with Start delay with Ramp Yes (only 1ch) LIN-USART 0 I2C 0 AN 8/9/12/13/16 to 23 RLT 1/2/6 FRT 0/1 ICU 0/1/4/5 ICU 0/1 for LIN-USART 4ch (16-bit) / 8ch (8-bit) PPG 0 to 3 Yes No No Stepping Motor Controller (SMC) External Interrupts (INT) Non-Maskable Interrupt (NMI) Sound Generator (SG) 2ch 7ch 1ch 1ch LCD Controller Clock Calibration Unit (CAL) Clock Output Function LIN-USART 0/1 1ch 12ch No Yes Yes Yes 3ch 2ch 4ch (2 channels for LIN-USART) 1ch I/O Ports Product Options R: MCU with CAN A: MCU without CAN No CAN Interface Real Time Clock (RTC) Remark 4COM x 24SEG 1ch 48 (Dual clock mode) 50 (Single clock mode) 1ch 2ch Low Voltage Detection Function Yes CAN 0 32 Message Buffers SMC 0/1 INT 0 to 4/6/7 SG 0 COM 0 to 3 SEG 3 to 6/8 to 11/ 19 to 21/23/30/36 to 39/42/45 to 47/54 to 56 Low voltage detection function can be disabled by software Hardware Watchdog Timer Yes On-chip RC-oscillator Yes On-chip Debugger Yes Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the general I/O port according to your function use. 6 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series BLOCK DIAGRAM DEBUG I/F CKOT0_R, CKOT1 CKOTX0 X0, X1 X0A, X1A RSTX MD NMI Flash Memory A Interrupt Controller 16FX CPU OCD Clock & Mode Controller 16FX Core Bus (CLKB) Peripheral Bus Bridge Watchdog AVcc AVss AVRH AN8, AN9 AN12, AN13 AN16 to AN23 ADTG TIN1, TIN1_R, TIN2_R TOT1, TOT1_R, TOT2_R IN0_R, IN1, IN1_R IN4_R, IN5_R INT0 to INT4 INT6, INT7 INT1_R, INT2_R V0 to V3 COM0 to COM3 SEG3 to SEG6, SEG8 to SEG11 SEG19 to SEG21, SEG23 SEG30,SEG36 to SEG39 SEG42,SEG45 to SEG47 SEG54 to SEG56 I 2C 1ch 8/10-bit ADC 12ch 16-bit Reload Timer 1/2/6 3ch I/O Timer 0 FRT 0 ICU 0/1 I/O Timer 1 FRT 1 ICU 4/5 Peripheral Bus Bridge Peripheral Bus 2 (CLKP2) SDA0 SCL0 Peripheral Bus 1 (CLKP1) DMA Controller External Interrupt 7ch RAM CAN Interface 1ch RX0 PPG 4ch (16-bit) / 8ch (8-bit) Voltage Regulator Vcc Vss C TX0 Sound Generator 1ch USART 2ch Boot ROM SGO0 SGA0 SIN0, SIN1 SOT0, SOT1 SCK0, SCK1 TTG1 PPG0_R, PPG1_R, PPG2_R, PPG3 PPG0_B, PPG1_B, PPG2_B, PPG3_B Stepping Motor Controller 2ch Real Time Clock DVcc DVss PWM1P0, PWM1P1 PWM1M0, PWM1M1 PWM2P0, PWM2P1 PWM2M0, PWM2M1 WOT_R LCD controller/ driver 4COM24SEG DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 7 MB96670 Series PIN ASSIGNMENT 40 39 38 37 36 P04_5 / SCL0*2 41 P17_0 42 DEBUG I/F X1 43 X0 Vss 44 MD P04_0 / X0A*3 45 P04_1 / X1A*3 P11_1 / COM1 / PPG0_R 46 RSTX P11_2 / COM2 / PPG1_R 47 P11_0 / COM0 P11_3 / COM3 / PPG2_R 48 P11_7 / SEG3 / IN0_R P12_0 / SEG4 / IN1_R (Top view) 35 34 33 P12_1 / SEG5 / TIN1_R / PPG0_B 49 32 P04_4 / PPG3 / SDA0*2 P12_2 / SEG6 / TOT1_R / PPG1_B 50 31 P13_6 / SCK0 / CKOTX0 / SEG47*1 P12_4 / SEG8 51 30 P13_5 / SOT0 / ADTG / INT7 / SEG46 P12_5 / SEG9 / TIN2_R / PPG2_B 52 29 P13_4 / SIN0 / INT6 / SEG45*1 P12_6 / SEG10 / TOT2_R / PPG3_B 53 28 P08_7 / PWM2M1 / AN23 P12_7 / SEG11 / INT1_R 54 27 P08_6 / PWM2P1 / AN22 P01_1 / SEG21 / CKOT1 55 26 P08_5 / PWM1M1 / AN21 P01_3 / SEG23 56 25 P08_4 / PWM1P1 / AN20 P03_0 / SEG36 / V0 57 24 DVss P03_1 / SEG37 / V1 58 23 DVcc P03_2 / SEG38 / V2 59 22 P08_3 / PWM2M0 / AN19 P03_3 / SEG39 / V3 60 21 P08_2 / PWM2P0 / AN18 INT4*1 61 20 P08_1 / PWM1M0 / AN17 P03_5 / TX0 62 19 P08_0 / PWM1P0 / AN16 P03_6 / INT0 / NMI 63 18 P05_5 / AN13 Vcc 64 17 P05_4 / AN12 / INT2_R / WOT_R 10 11 12 13 14 15 16 P05_1 / AN9 AVcc AVRH AVss P13_1 / INT3 / SCK1 / SEG42*1 9 P05_0 / AN8 P13_0 / INT2 / SOT1 8 P06_6 / TIN1 / SEG55 / IN4_R SIN1*1 7 P06_7 / TOT1 / SEG56 / IN5_R C 6 P06_5 / IN1 / SEG54 / TTG1 5 P01_0 / SEG20 / SGA0 4 P02_2 / SEG30 / CKOT0_R 3 P00_7 / SEG19 / SGO0 2 P03_7 / INT1 / 1 Vss P03_4 / RX0 / LQFP-64 (FPT-64P-M23/M24) *1: CMOS input level only 2 *2: CMOS input level only for I C *3: Please set ROM Configuration Block (RCB) to use the subclock. Other than those above, general-purpose pins have only Automotive input level. 8 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series PIN DESCRIPTION Pin name Feature Description ADTG ANn AVcc AVRH ADC ADC Supply ADC AVss C CKOTn CKOTn_R CKOTXn COMn Supply Voltage regulator Clock Output function Clock Output function Clock Output function LCD DEBUG I/F DVcc DVss INn INn_R INTn OCD Supply Supply ICU ICU External Interrupt On Chip Debugger input/output pin SMC pins power supply SMC pins power supply Input Capture Unit n input pin Relocated Input Capture Unit n input pin External Interrupt n input pin INTn_R MD NMI Pnn_m PPGn External Interrupt Core External Interrupt GPIO PPG PPGn_R PPG PPGn_B PWMn RSTX RXn SCKn SCLn PPG SMC Core CAN USART I2C Relocated External Interrupt n input pin Input pin for specifying the operating mode Non-Maskable Interrupt input pin General purpose I/O pin Programmable Pulse Generator n output pin (16bit/8bit) Relocated Programmable Pulse Generator n output pin (16bit/8bit) Programmable Pulse Generator n output pin (16bit/8bit) SMC PWM high current output pin Reset input pin CAN interface n RX input pin USART n serial clock input/output pin I2C interface n clock I/O input/output pin SDAn SEGn SGAn SGOn SINn SOTn I2C LCD Sound Generator Sound Generator USART USART TINn TINn_R Reload Timer Reload Timer Reload Timer n event input pin Relocated Reload Timer n event input pin TOTn TOTn_R Reload Timer Reload Timer Reload Timer n output pin Relocated Reload Timer n output pin TTGn TXn PPG CAN Programmable Pulse Generator n trigger input pin CAN interface n TX output pin Vn LCD LCD voltage reference pin Vcc Vss Supply Supply WOT_R RTC A/D converter trigger input pin A/D converter channel n input pin Analog circuits power supply pin A/D converter high reference voltage input pin Analog circuits power supply pin Internally regulated power supply stabilization capacitor pin Clock Output function n output pin Relocated Clock Output function n output pin Clock Output function n inverted output pin LCD Common driver pin I2C interface n serial data I/O input/output pin LCD Segment driver pin Sound Generator amplitude output pin Sound Generator sound/tone output pin USART n serial data input pin USART n serial data output pin Power supply pin Power supply pin Relocated Real Time clock output pin DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 9 MB96670 Series Pin name Feature X0 Clock Oscillator input pin Description X0A X1 Clock Clock Subclock Oscillator input pin Oscillator output pin X1A Clock Subclock Oscillator output pin 10 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series PIN CIRCUIT TYPE Pin no. I/O circuit type* Pin name 1 Supply Vss 2 F C 3 M P03_7 / INT1 / SIN1 4 H P13_0 / INT2 / SOT1 5 P P13_1 / INT3 / SCK1 / SEG42 6 J P00_7 / SEG19 / SGO0 7 J P01_0 / SEG20 / SGA0 8 J P02_2 / SEG30 / CKOT0_R 9 J P06_5 / IN1 / SEG54 / TTG1 10 J P06_6 / TIN1 / SEG55 / IN4_R 11 J P06_7 / TOT1 / SEG56 / IN5_R 12 K P05_0 / AN8 13 K P05_1 / AN9 14 Supply AVcc 15 G AVRH 16 Supply AVss 17 K P05_4 / AN12 / INT2_R / WOT_R 18 K P05_5 / AN13 19 R P08_0 / PWM1P0 / AN16 20 R P08_1 / PWM1M0 / AN17 21 R P08_2 / PWM2P0 / AN18 22 R P08_3 / PWM2M0 / AN19 23 Supply DVcc 24 Supply DVss 25 R P08_4 / PWM1P1 / AN20 26 R P08_5 / PWM1M1 / AN21 27 R P08_6 / PWM2P1 / AN22 28 R P08_7 / PWM2M1 / AN23 29 P P13_4 / SIN0 / INT6 / SEG45 30 J P13_5 / SOT0 / ADTG / INT7 / SEG46 31 P P13_6 / SCK0 / CKOTX0 / SEG47 32 N P04_4 / PPG3 / SDA0 DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 11 MB96670 Series Pin no. I/O circuit type* Pin name 33 N P04_5 / SCL0 34 O DEBUG I/F 35 H P17_0 36 C MD 37 A X0 38 A X1 39 Supply Vss 40 B P04_0 / X0A 41 B P04_1 / X1A 42 C RSTX 43 J P11_7 / SEG3 / IN0_R 44 J P11_0 / COM0 45 J P11_1 / COM1 / PPG0_R 46 J P11_2 / COM2 / PPG1_R 47 J P11_3 / COM3 / PPG2_R 48 J P12_0 / SEG4 / IN1_R 49 J P12_1 / SEG5 / TIN1_R / PPG0_B 50 J P12_2 / SEG6 / TOT1_R / PPG1_B 51 J P12_4 / SEG8 52 J P12_5 / SEG9 / TIN2_R / PPG2_B 53 J P12_6 / SEG10 / TOT2_R / PPG3_B 54 J P12_7 / SEG11 / INT1_R 55 J P01_1 / SEG21 / CKOT1 56 J P01_3 / SEG23 57 L P03_0 / SEG36 / V0 58 L P03_1 / SEG37 / V1 59 L P03_2 / SEG38 / V2 60 L P03_3 / SEG39 / V3 61 M P03_4 / RX0 / INT4 62 H P03_5 / TX0 63 H P03_6 / INT0 / NMI 64 Supply Vcc I/O CIRCUIT TYPE" for details on the I/O circuit types. *: See " 12 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series I/O CIRCUIT TYPE Type A Circuit Remarks X1 R 0 1 FCI X0 X out High-speed oscillation circuit: * Programmable between oscillation mode (external crystal or resonator connected to X0/X1 pins) and Fast external Clock Input (FCI) mode (external clock connected to X0 pin) * Feedback resistor = approx. 1.0M * The amplitude: 1.8V0.15V to operate by the internal supply voltage FCI or Osc disable DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 13 MB96670 Series Type Circuit B Remarks Pull-up control P-ch Standby control for input shutdown P-ch Pout N-ch Nout R Automotive input Low-speed oscillation circuit shared with GPIO functionality: * Feedback resistor = approx. 5.0M * GPIO functionality selectable (CMOS level output (IOL = 4mA, IOH = -4mA), Automotive input with input shutdown function and programmable pull-up resistor) X1A R 0 X out 1 FCI X0A FCI or Osc disable Pull-up control P-ch Standby control for input shutdown P-ch Pout N-ch Nout R Automotive input C CMOS hysteresis input pin R 14 FUJITSU SEMICONDUCTOR CONFIDENTIAL Hysteresis inputs DS704-00001-2v0-E MB96670 Series Type Circuit F Remarks Power supply input protection circuit P-ch N-ch G * A/D converter ref+ (AVRH) power supply input pin with protection circuit * Without protection circuit against VCC for pins AVRH P-ch N-ch H Pull-up control P-ch P-ch Pout N-ch Nout * CMOS level output (IOL = 4mA, IOH = -4mA) * Automotive input with input shutdown function * Programmable pull-up resistor R Standby control for input shutdown Automotive input J Pull-up control P-ch P-ch Pout N-ch Nout R * CMOS level output (IOL = 4mA, IOH = -4mA) * Automotive input with input shutdown function * Programmable pull-up resistor * SEG or COM output Automotive input Standby control for input shutdown SEG or COM output DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 15 MB96670 Series Type Circuit K Remarks Pull-up control P-ch P-ch Pout N-ch Nout R * CMOS level output (IOL = 4mA, IOH = -4mA) * Automotive input with input shutdown function * Programmable pull-up resistor * Analog input Automotive input Standby control for input shutdown Analog input L Pull-up control P-ch P-ch Pout N-ch Nout R * CMOS level output (IOL = 4mA, IOH = -4mA) * Automotive input with input shutdown function * Programmable pull-up resistor * Vn input or SEG output Automotive input Standby control for input shutdown Vn input or SEG output M Pull-up control P-ch P-ch Pout N-ch Nout R * CMOS level output (IOL = 4mA, IOH = -4mA) * CMOS hysteresis input with input shutdown function * Programmable pull-up resistor Hysteresis input Standby control for input shutdown 16 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series Type Circuit N Remarks Pull-up control P-ch P-ch Pout N-ch Nout* R * CMOS level output (IOL = 3mA, IOH = -3mA) * CMOS hysteresis input with input shutdown function * Programmable pull-up resistor *: N-channel transistor has slew rate control according to I2C spec, irrespective of usage. Hysteresis input Standby control for input shutdown O * Open-drain I/O * Output 25mA, Vcc = 2.7V * TTL input Nout N-ch R Standby control for input shutdown TTL input P Pull-up control P-ch P-ch Pout N-ch Nout R * CMOS level output (IOL = 4mA, IOH = -4mA) * CMOS hysteresis inputs with input shutdown function * Programmable pull-up resistor * SEG or COM output Hysteresis input Standby control for input shutdown SEG or COM output DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 17 MB96670 Series Type Circuit R Remarks Pull-up control P-ch N-ch P-ch Pout N-ch Nout * CMOS level output (programmable IOL = 4mA, IOH = -4mA and IOL = 30mA, IOH = -30mA) * Automotive input with input shutdown function * Programmable pull-up / pull-down resistor * Analog input Pull-down control R Standby control for input shutdown Automotive input Analog input 18 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series MEMORY MAP FF:FFFFH USER ROM*1 DE:0000H DD:FFFFH Reserved 10:0000H 0F:C000H 0E:9000H Boot-ROM Peripheral Reserved 01:0000H 00:8000H RAMSTART0*2 ROM/RAM MIRROR Internal RAM bank0 Reserved 00:0C00H 00:0380H Peripheral 00:0180H GPR*3 00:0100H DMA 00:00F0H Reserved 00:0000H Peripheral *1: For details about USER ROM area, see "USER ROM MEMORY MAP FOR FLASH DEVICES" on the following pages. *2: For RAMSTART addresses, see the table on the next page. *3: Unused GPR banks can be used as RAM area. GPR: General-Purpose Register The DMA area is only available if the device contains the corresponding resource. The available RAM and ROM area depends on the device. DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 19 MB96670 Series RAMSTART ADDRESSES Devices MB96F673 MB96F675 Bank 0 RAM size RAMSTART0 4KB 00:7200H 20 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series USER ROM MEMORY MAP FOR FLASH DEVICES CPU mode address Flash memory mode address FF:FFFF H FF:0000 H FE:FFFF H FE:0000 H FD:FFFF H 3F:FFFF H 3F:0000 H 3E:FFFF H 3E:0000 H MB96F673 MB96F675 Flash size 64.5KB + 32KB Flash size 128.5KB + 32KB SA39 - 64KB SA39 - 64KB SA38 - 64KB Reserved Bank A of Flash A Reserved DF:A000 H DF:9FFF H DF:8000 H DF:7FFF H DF:6000 H DF:5FFF H DF:4000 H DF:3FFF H DF:2000 H DF:1FFF H DF:0000 H DE:FFFF H DE:0000 H 1F:9FFF H 1F:8000 H 1F:7FFF H 1F:6000 H 1F:5FFF H 1F:4000 H 1F:3FFF H 1F:2000 H 1F:1FFF H 1F:0000 H SA4 - 8KB SA4 - 8KB SA3 - 8KB SA3 - 8KB SA2 - 8KB SA2 - 8KB SA1 - 8KB SA1 - 8KB SAS - 512B* Reserved SAS - 512B* Bank B of Flash A Bank A of Flash A Reserved *: Physical address area of SAS-512B is from DF:0000H to DF:01FFH. Others (from DF:0200H to DF:1FFFH) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000H -DF:01FFH. 2 SAS can not be used for E PROM emulation. DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 21 MB96670 Series SERIAL PROGRAMMING COMMUNICATION INTERFACE USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode) MB96670 Pin Number USART Number 29 30 Normal Function SIN0 USART0 SOT0 31 SCK0 3 SIN1 4 USART1 5 22 FUJITSU SEMICONDUCTOR CONFIDENTIAL SOT1 SCK1 DS704-00001-2v0-E MB96670 Series INTERRUPT VECTOR TABLE Vector number Offset in vector table Vector name Cleared by DMA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 3FCH 3F8H 3F4H 3F0H 3ECH 3E8H 3E4H 3E0H 3DCH 3D8H 3D4H 3D0H 3CCH 3C8H 3C4H 3C0H 3BCH 3B8H 3B4H 3B0H 3ACH 3A8H 3A4H 3A0H 39CH 398H 394H 390H 38CH 388H 384H 380H 37CH 378H 374H 370H 36CH 368H 364H 360H 35CH CALLV0 CALLV1 CALLV2 CALLV3 CALLV4 CALLV5 CALLV6 CALLV7 RESET INT9 EXCEPTION NMI DLY RC_TIMER MC_TIMER SC_TIMER LVDI EXTINT0 EXTINT1 EXTINT2 EXTINT3 EXTINT4 EXTINT6 EXTINT7 CAN0 PPG0 PPG1 PPG2 No No No No No No No No No No No No No No No No No Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL Index in ICR to program 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Description CALLV instruction CALLV instruction CALLV instruction CALLV instruction CALLV instruction CALLV instruction CALLV instruction CALLV instruction Reset vector INT9 instruction Undefined instruction execution Non-Maskable Interrupt Delayed Interrupt RC Clock Timer Main Clock Timer Sub Clock Timer Low Voltage Detector External Interrupt 0 External Interrupt 1 External Interrupt 2 External Interrupt 3 External Interrupt 4 Reserved External Interrupt 6 External Interrupt 7 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved CAN Controller 0 Reserved Reserved Reserved Reserved Programmable Pulse Generator 0 Programmable Pulse Generator 1 Programmable Pulse Generator 2 23 MB96670 Series Vector number Offset in vector table Vector name Cleared by DMA 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 358H 354H 350H 34CH 348H 344H 340H 33CH 338H 334H 330H 32CH 328H 324H 320H 31CH 318H 314H 310H 30CH 308H 304H 300H 2FCH 2F8H 2F4H 2F0H 2ECH 2E8H 2E4H 2E0H 2DCH 2D8H 2D4H 2D0H 2CCH 2C8H 2C4H 2C0H 2BCH PPG3 RLT1 RLT2 RLT6 ICU0 ICU1 ICU4 ICU5 - Yes Yes Yes Yes Yes Yes Yes Yes - 24 FUJITSU SEMICONDUCTOR CONFIDENTIAL Index in ICR to program 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Description Programmable Pulse Generator 3 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reload Timer 1 Reload Timer 2 Reserved Reserved Reserved Reload Timer 6 Input Capture Unit 0 Input Capture Unit 1 Reserved Reserved Input Capture Unit 4 Input Capture Unit 5 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved DS704-00001-2v0-E MB96670 Series Vector number Offset in vector table Vector name Cleared by DMA 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 2B8H 2B4H 2B0H 2ACH 2A8H 2A4H 2A0H 29CH 298H 294H 290H 28CH 288H 284H 280H 27CH 278H 274H 270H 26CH 268H 264H 260H 25CH 258H 254H 250H 24CH 248H 244H 240H 23CH 238H 234H 230H 22CH 228H 224H 220H 21CH FRT0 FRT1 RTC0 CAL0 SG0 IIC0 ADC0 LINR0 LINT0 LINR1 LINT1 - Yes Yes No No No Yes Yes Yes Yes Yes Yes - DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL Index in ICR to program 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Free-Running Timer 0 Free-Running Timer 1 Reserved Reserved Real Time Clock Clock Calibration Unit Sound Generator 0 I2C interface 0 Reserved A/D Converter 0 Reserved Reserved LIN USART 0 RX LIN USART 0 TX LIN USART 1 RX LIN USART 1 TX Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 25 MB96670 Series Vector number Offset in vector table Vector name Cleared by DMA 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 218H 214H 210H 20CH 208H 204H 200H 1FCH 1F8H 1F4H 1F0H 1ECH 1E8H 1E4H 1E0H 1DCH 1D8H 1D4H 1D0H 1CCH 1C8H 1C4H 1C0H FLASHA ADCRC0 ADCPD0 - Yes No No - 26 FUJITSU SEMICONDUCTOR CONFIDENTIAL Index in ICR to program 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Flash memory A interrupt Reserved Reserved Reserved Reserved Reserved A/D Converter 0 - Range Comparator A/D Converter 0 - Pulse detection Reserved Reserved Reserved DS704-00001-2v0-E MB96670 Series HANDLING PRECAUTIONS Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your FUJITSU SEMICONDUCTOR semiconductor devices. 1. Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. (1) Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. (2) Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. (3) Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. (2) Be sure that abnormal current flows do not occur during the power-on sequence. Code: DS00-00004-1Ea DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 27 MB96670 Series Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Precautions Related to Usage of Devices FUJITSU SEMICONDUCTOR semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 2. Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under FUJITSU SEMICONDUCTOR's recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to FUJITSU SEMICONDUCTOR recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. FUJITSU SEMICONDUCTOR recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with FUJITSU SEMICONDUCTOR ranking of recommended conditions. 28 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5C and 30C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. (3) When necessary, FUJITSU SEMICONDUCTOR packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the FUJITSU SEMICONDUCTOR recommended conditions for baking. Condition: 125C/24 h Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 M). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. (4) Ground all fixtures and instruments, or protect with anti-static measures. (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 29 MB96670 Series 3. Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: (1) Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. (2) Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. (3) Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. (4) Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. (5) Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of FUJITSU SEMICONDUCTOR products in other special environmental conditions should consult with sales representatives. Please check the latest handling precautions at the following URL. http://edevice.fujitsu.com/fj/handling-e.pdf 30 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series HANDLING DEVICES Special care is required for the following when handling the device: * Latch-up prevention * Unused pins handling * External clock usage * Notes on PLL clock mode operation * Power supply pins (Vcc/Vss) * Crystal oscillator and ceramic resonator circuit * Turn on sequence of power supply to A/D converter and analog inputs * Pin handling when not using the A/D converter * Notes on Power-on * Stabilization of power supply voltage * SMC power supply pins * Serial communication * Mode Pin (MD) 1. Latch-up prevention CMOS IC chips may suffer latch-up under the following conditions: - A voltage higher than VCC or lower than VSS is applied to an input or output pin. - A voltage higher than the rated voltage is applied between Vcc pins and Vss pins. - The AVCC power supply is applied before the VCC voltage. Latch-up may increase the power supply current dramatically, causing thermal damages to the device. For the same reason, extra care is required to not let the analog power-supply voltage (AVCC, AVRH) exceed the digital power-supply voltage. 2. Unused pins handling Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0). Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than 2k. Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above. 3. External clock usage The permitted frequency range of an external clock depends on the oscillator type and configuration. See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows: (1) Single phase external clock for Main oscillator When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock. X0 X1 DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 31 MB96670 Series (2) Single phase external clock for Sub oscillator When using a single phase external clock for the Sub oscillator, "External clock mode" must be selected and X0A/P04_0 pin must be driven. X1A/P04_1 pin can be configured as GPIO. (3) Opposite phase external clock When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V. X0 X1 4. Notes on PLL clock mode operation If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed. 5. Power supply pins (Vcc/Vss) It is required that all VCC-level as well as all VSS-level power supply pins are at the same potential. If there is more than one VCC or VSS level, the device may operate incorrectly or be damaged even within the guaranteed operating range. Vcc and Vss pins must be connected to the device from the power supply with lowest possible impedance. The smoothing capacitor at Vcc pin must use the one of a capacity value that is larger than Cs. Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1F between Vcc and Vss pins as close as possible to Vcc and Vss pins. 6. Crystal oscillator and ceramic resonator circuit Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits. It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation. It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies. 7. Turn on sequence of power supply to A/D converter and analog inputs It is required to turn the A/D converter power supply (AVCC, AVRH) and analog inputs (ANn) on after turning the digital power supply (VCC) on. It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AVCC . Input voltage for ports shared with analog input ports also must not exceed AVCC (turning the analog and digital power supplies simultaneously on or off is acceptable). 8. Pin handling when not using the A/D converter If the A/D converter is not used, the power supply pins for A/D converter should be connected such as AVCC = VCC , AVSS = AVRH = VSS. 32 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series 9. Notes on Power-on To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than 50s from 0.2V to 2.7V. 10. Stabilization of power supply voltage If the power supply voltage varies acutely even within the operation safety range of the VCC power supply voltage, a malfunction may occur. The VCC power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that VCC ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard VCC power supply voltage and the transient fluctuation rate becomes 0.1V/s or less in instantaneous fluctuation for power supply switching. 11. SMC power supply pins All DVcc /DVss pins must be set to the same level as the Vcc /Vss pins. Note that the SMC I/O pin state is undefined if DVCC is powered on and VCC is below 3V. To avoid this, VCC must always be powered on before DVCC. DVcc/DVss must be applied when using SMC I/O pin as GPIO. 12. Serial communication There is a possibility to receive wrong data due to noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs. 13. Mode Pin (MD) Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection. DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 33 MB96670 Series ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings Parameter Power supply voltage*1 Analog power supply voltage*1 Analog reference voltage*1 SMC Power supply*1 LCD power supply voltage*1 Input voltage*1 Output voltage*1 Maximum Clamp Current Total Maximum Clamp Current "L" level maximum output current Condition VCC - VSS - 0.3 VSS + 6.0 V AVCC - VSS - 0.3 VSS + 6.0 V VCC = AVCC*2 AVRH - VSS - 0.3 VSS + 6.0 V AVCC AVRH, AVRH AVSS DVCC - VSS - 0.3 VSS + 6.0 V VCC = AVCC= DVCC*2 V0 to V3 - VSS - 0.3 VSS + 6.0 V VI VO - VSS - 0.3 VSS - 0.3 VSS + 6.0 VSS + 6.0 V V ICLAMP - -4.0 +4.0 mA |ICLAMP| - - 16 mA IOL IOL TA= -40C TA= +25C TA= +85C TA= +105C TA= -40C TA= +25C TA= +85C TA= +105C - - 15 52 39 32 30 4 40 30 25 23 34 mA mA mA mA mA mA mA mA mA mA mA IOLSMC - - 180 mA High current port IOLAV - - 17 mA Normal port IOLAVSMC - - 90 mA High current port IOH - -15 -52 -39 -32 -30 -4 -40 -30 -25 -23 -34 mA mA mA mA mA mA mA mA mA mA mA Normal port IOH TA= -40C TA= +25C TA= +85C TA= +105C TA= -40C TA= +25C TA= +85C TA= +105C - IOHSMC - - -180 mA High current port IOHAV - - -17 mA Normal port IOHAVSMC - - -90 mA High current port PD TA= +105C - 281*6 mW IOLSMC IOLAV "L" level average output current "L" level maximum overall output current "L" level average overall output current "H" level maximum output current IOLAVSMC IOHSMC IOHAV "H" level average output current "H" level maximum overall output current "H" level average overall output current Power consumption*5 Rating Min Max Symbol IOHAVSMC 34 FUJITSU SEMICONDUCTOR CONFIDENTIAL Unit Remarks V0 to V3 must not exceed VCC VI (D)VCC + 0.3V*3 VO (D)VCC + 0.3V*3 Applicable to general purpose I/O pins *4 Applicable to general purpose I/O pins *4 Normal port High current port Normal port High current port Normal port High current port Normal port High current port Normal port DS704-00001-2v0-E MB96670 Series Parameter Symbol Condition Min Rating Max Unit Remarks Operating ambient TA -40 +105 C temperature Storage temperature TSTG -55 +150 C *1: This parameter is based on VSS = AVSS = DVSS = 0V. *2: AVCC and VCC and DVCC must be set to the same voltage. It is required that AVCC does not exceed VCC, DVCC and that the voltage at the analog inputs does not exceed AVCC when the power is switched on. *3: VI and VO should not exceed VCC + 0.3V. VI should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the ICLAMP rating supersedes the VI rating. Input/Output voltages of high current ports depend on DVCC. Input/Output voltages of standard ports depend on VCC. *4: * Applicable to all general purpose I/O pins (Pnn_m). * Use within recommended operating conditions. * Use at DC voltage (current). * The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller. * The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods. * Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices. * Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result. * Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset. * The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V. DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 35 MB96670 Series * Sample recommended circuits: Protective diode VCC Limiting resistance P-ch +B input (0V to 16V) N-ch R *5: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB. The actual power dissipation depends on the customer application and can be calculated as follows: PD = PIO + PINT PIO = (VOL x IOL + VOH x IOH) (I/O load power dissipation, sum is performed on all I/O ports) PINT = VCC x (ICC + IA) (internal power dissipation) ICC is the total core current consumption into VCC as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming. IA is the analog current consumption into AVCC. *6: Worst case value for a package mounted on single layer PCB at specified TA without air flow. Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. 36 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series 2. Recommended Operating Conditions Parameter Power supply voltage Smoothing capacitor at C pin Symbol VCC, AVCC, DVCC CS (VSS = AVSS = DVSS = 0V) Min Value Typ Max 5.5 V 2.0 - 5.5 V Maintains RAM data in stop mode F 1.0F (Allowance within 50%) 3.9F (Allowance within 20%) Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at VCC must use the one of a capacity value that is larger than CS. 2.7 0.5 - 1.0 to 3.9 4.7 Unit Remarks The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 37 MB96670 Series 3. DC Characteristics (1) Current Rating Parameter (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Symbol Pin name ICCPLL Conditions PLL Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32MHz ICCMAIN ICCRCH ICCRCL Remarks - 25 - mA TA = +25C - - 34 mA TA = +105C - 3.5 - mA TA = +25C - - 7.5 mA TA = +105C - 1.7 - mA TA = +25C - - 5.5 mA TA = +105C - 0.15 - mA TA = +25C - - 3.2 mA TA = +105C - 0.1 - mA TA = +25C - - 3 mA TA = +105C Flash 0 wait (CLKPLL, CLKSC and CLKRC stopped) RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz Vcc Flash 0 wait (CLKMC, CLKPLL and CLKSC stopped) RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz Flash 0 wait (CLKMC, CLKPLL and CLKSC stopped) Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz ICCSUB Unit Flash 0 wait (CLKRC and CLKSC stopped) Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz Power supply current in Run modes*1 Min Value Typ Max Flash 0 wait (CLKMC, CLKPLL and CLKRC stopped) 38 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series Parameter Symbol Pin name ICCSPLL ICCSMAIN Power supply current in Sleep modes*1 ICCSRCH ICCSRCL ICCSSUB ICCTPLL ICCTMAIN Power supply current in Timer modes*2 ICCTRCH ICCTRCL ICCTSUB Vcc Conditions PLL Sleep mode with CLKS1/2 = CLKP1/2 = 32MHz (CLKRC and CLKSC stopped) Main Sleep mode with CLKS1/2 = CLKP1/2 = 4MHz, SMCR:LPMSS = 0 (CLKPLL, CLKRC and CLKSC stopped) RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKMC, CLKPLL and CLKSC stopped) RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 100kHz (CLKMC, CLKPLL and CLKSC stopped) Sub Sleep mode with CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and CLKRC stopped) PLL Timer mode with CLKPLL = 32MHz (CLKRC and CLKSC stopped) Main Timer mode with CLKMC = 4MHz, SMCR:LPMSS = 0 (CLKPLL, CLKRC and CLKSC stopped) RC Timer mode with CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped) RC Timer mode with CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC stopped) Sub Timer mode with CLKSC = 32kHz (CLKMC, CLKPLL and CLKRC stopped) DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL Min Value Typ Max Unit Remarks - 6.5 - mA TA = +25C - - 13 mA TA = +105C - 0.9 - mA TA = +25C - - 4 mA TA = +105C - 0.5 - mA TA = +25C - - 3.5 mA TA = +105C - 0.06 - mA TA = +25C - - 2.7 mA TA = +105C - 0.04 - mA TA = +25C - - 2.5 mA TA = +105C - 1800 2245 A TA = +25C - - 3140 A TA = +105C - 285 325 A TA = +25C - - 1055 A TA = +105C - 160 210 A TA = +25C - - 970 A TA = +105C - 30 70 A TA = +25C - - 820 A TA = +105C - 25 55 A TA = +25C - - 800 A TA = +105C 39 MB96670 Series Parameter Power supply current in Stop mode*3 Flash Power Down current Power supply current for active Low Voltage detector*4 Flash Write/ Erase current*5 Symbol Pin name Conditions ICCH - ICCFLASHPD Vcc ICCLVD Low voltage detector enabled ICCFLASH - Min Value Typ Max Unit Remarks - 20 55 A TA = +25C - - 800 A TA = +105C - 36 70 A - 5 - A TA = +25C - - 12.5 A TA = +105C - 12.5 - mA TA = +25C 20 mA TA = +105C *1: The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current. *2: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode. When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current. The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. The current for "On Chip Debugger" part is not included. *3: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode. When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current. *4: When low voltage detector is enabled, ICCLVD must be added to Power supply current. *5: When Flash Write / Erase program is executed, ICCFLASH must be added to Power supply current. 40 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series (2) Pin Characteristics (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Symbol "H" level input voltage "L" level input voltage Pin name Conditions - VIH Port inputs Pnn_m VIHX0S X0 VIHX0AS X0A VIHR RSTX - VIHM MD - VIHD DEBUG I/F - VIL Port inputs Pnn_m VILX0S X0 VILX0AS X0A VILR RSTX - VILM MD - VILD DEBUG I/F - External clock in "Fast Clock Input mode" External clock in "Oscillation mode" External clock in "Fast Clock Input mode" External clock in "Oscillation mode" DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL Value Unit Min Typ Max VCC x 0.7 VCC x 0.8 VD x 0.8 VCC x 0.8 VCC x 0.8 VCC - 0.3 2.0 VSS - 0.3 VSS - 0.3 VSS VSS - 0.3 VSS - 0.3 VSS - 0.3 VSS - 0.3 - VCC + 0.3 VCC + 0.3 VD VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC + 0.3 VCC x 0.3 VCC x 0.5 VD x 0.2 VCC x 0.2 VCC x 0.2 VSS + 0.3 0.8 V V V Remarks CMOS Hysteresis input AUTOMOTIVE Hysteresis input VD=1.8V0.15V V V V V V V V CMOS Hysteresis input CMOS Hysteresis input TTL Input CMOS Hysteresis input AUTOMOTIVE Hysteresis input VD=1.8V0.15V V V V V CMOS Hysteresis input CMOS Hysteresis input TTL Input 41 MB96670 Series Parameter Symbol VOH4 "H" level output voltage "L" level output voltage VOH30 Pin name 4mA type High Drive type* VOH3 3mA type VOL4 4mA type VOL30 VOL3 VOLD High Drive type* 3mA type DEBUG I/F Conditions 4.5V (D)VCC 5.5V IOH = -4mA 2.7V (D)VCC < 4.5V IOH = -1.5mA 4.5V DVCC 5.5V IOH = -52mA 2.7V DVCC < 4.5V IOH = -18mA 4.5V DVCC 5.5V IOH = -39mA 2.7V DVCC < 4.5V IOH = -16mA 4.5V DVCC 5.5V IOH = -32mA 2.7V DVCC < 4.5V IOH = -14.5mA 4.5V DVCC 5.5V IOH = -30mA 2.7V DVCC < 4.5V IOH = -14mA 4.5V VCC 5.5V IOH = -3mA 2.7V VCC < 4.5V IOH = -1.5mA 4.5V (D)VCC 5.5V IOL = +4mA 2.7V (D)VCC < 4.5V IOL = +1.7mA 4.5V DVCC 5.5V IOL = +52mA 2.7V DVCC < 4.5V IOL = +22mA 4.5V DVCC 5.5V IOL = +39mA 2.7V DVCC < 4.5V IOL = +18mA 4.5V DVCC 5.5V IOL = +32mA 2.7V DVCC < 4.5V IOL = +14mA 4.5V DVCC 5.5V IOL = +30mA 2.7V DVCC < 4.5V IOL = +13.5mA 2.7V VCC < 5.5V IOL = +3mA VCC = 2.7V IOL = +25mA 42 FUJITSU SEMICONDUCTOR CONFIDENTIAL Min (D)VCC - 0.5 Value Typ Max - Unit (D)VCC Remarks V TA = -40C TA = +25C DVCC - 0.5 - DVCC V TA = +85C TA = +105C VCC - 0.5 - VCC V - - 0.4 V TA = -40C TA = +25C - - 0.5 V TA = +85C TA = +105C - - 0.4 V 0 - 0.25 V DS704-00001-2v0-E MB96670 Series Parameter Symbol Pin name Input leak current Total LCD leak current Internal LCD divide resistance Pull-up resistance value Pull-down resistance value Input capacitance Conditions Min Value Unit Typ Max Pnn_m VSS < VI < VCC AVSS < VI < AVCC, AVRH -1 - +1 A P08_m DVSS < VI < DVCC AVSS < VI < AVCC, AVRH -3 - +3 A IIL |IILCD| All SEG/ COM pin VCC = 5.0V - 0.5 10 A RLCD Between V3 and V2, V2 and V1, V1 and V0 VCC = 5.0V 6.25 12.5 25 k RPU Pnn_m VCC = 5.0V 10% 25 50 100 k RDOWN P08_m VCC = 5.0V 10% 25 50 100 k Other than C, Vcc, Vss, DVcc DVss, AVcc, AVss, AVRH, P08_m - - 5 15 pF P08_m - - 15 30 pF CIN Remarks Single port pin except high current output I/O for SMC Maximum leakage current of all LCD pins *: In the case of driving stepping motor directly or high current outputs, set "1" to the bit in the Port High Drive Register (PHDRnn:HDx="1"). DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 43 MB96670 Series 4. AC Characteristics (1) Main Clock Input Characteristics (VCC = AVCC = DVCC = 2.7V to 5.5V, VD=1.8V0.15V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Input frequency Input frequency Symbol Pin name fC fFCI Min Value Typ Max 4 - 8 MHz - - 8 MHz 4 - 8 MHz - - 8 MHz 4 - 8 MHz X0, X1 Unit X0 Input clock cycle tCYLH - 125 - - ns Input clock pulse width PWH, PWL - 55 - - ns Remarks When using a crystal oscillator, PLL off When using an opposite phase external clock, PLL off When using a crystal oscillator or opposite phase external clock, PLL on When using a single phase external clock in "Fast Clock Input mode", PLL off When using a single phase external clock in "Fast Clock Input mode", PLL on When using the crystal oscillator tCYLH Reference value: 1.8V0.15V X0,X1 The amplitude changes by resistance, capacity which added outside or the difference of the device. When using the external clock X0 VIHX0S tCYLH VIHX0S VIHX0S VILX0S PWH 44 FUJITSU SEMICONDUCTOR CONFIDENTIAL VILX0S PWL DS704-00001-2v0-E MB96670 Series (2) Sub Clock Input Characteristics (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Symbol Input frequency fCL Min Value Typ Max - - 32.768 - kHz - - - 100 kHz X0A - - - 50 kHz Pin Conditions name X0A, X1A Unit Input clock cycle tCYLL - - 10 - - s Input clock pulse width - - PWH/tCYLL, PWL/tCYLL 30 - 70 % When using the crystal oscillator When using an oscillation circuit When using an opposite phase external clock When using a single phase external clock tCYLL X0A,X1A VCC When using the external clock X0A Remarks VIHX0AS tCYLL VIHX0AS VIHX0AS VILX0AS PWH DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL VILX0AS PWL 45 MB96670 Series (3) Built-in RC Oscillation Characteristics (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Clock frequency Symbol fRC RC clock stabilization time Min Value Typ Max 50 100 200 kHz 1 2 4 MHz 80 160 320 s 64 128 256 s Unit tRCSTAB Remarks When using slow frequency of RC oscillator When using fast frequency of RC oscillator When using slow frequency of RC oscillator (16 RC clock cycles) When using fast frequency of RC oscillator (256 RC clock cycles) (4) Internal Clock Timing (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Symbol Value Min Max Unit Internal System clock frequency (CLKS1 and CLKS2) fCLKS1, fCLKS2 - 54 MHz Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1) fCLKB, fCLKP1 - 32 MHz Internal peripheral clock frequency (CLKP2) fCLKP2 - 32 MHz 46 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series (5) Operating Conditions of PLL (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Symbol Value Min Typ Max Unit PLL oscillation stabilization wait time tLOCK 1 - 4 ms PLL input clock frequency fPLLI 4 - 8 MHz PLL oscillation clock frequency fCLKVCO 56 - 108 MHz PLL phase jitter tPSKEW -5 - +5 ns Remarks For CLKMC = 4MHz Permitted VCO output frequency of PLL (CLKVCO) For CLKMC (PLL input clock) 4MHz Deviation time from the ideal clock is assured per cycle out of 20,000 cycles. PLL output t1 t2 t3 tn-1 tn Ideal clock Slow Deviation time t3 t2 t1 tn-1 tn Fast (6) Reset Input (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Reset input time Rejection of reset input time Symbol Pin name tRSTL RSTX 0.2VCC FUJITSU SEMICONDUCTOR CONFIDENTIAL Unit Max 10 - s 1 - s tRSTL RSTX DS704-00001-2v0-E Value Min 0.2VCC 47 MB96670 Series (7) Power-on Reset Timing (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Symbol Pin name tR tOFF Vcc Vcc Power on rise time Power off time tR Min Value Typ Max 0.05 1 - 30 - Unit ms ms tOFF 2.7V VCC 0.2V 0.2V 0.2V If the power supply is changed too rapidly, a power-on reset may occur. We recommend a smooth startup by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. 5.0V VCC 2.7V 0V VSS 48 FUJITSU SEMICONDUCTOR CONFIDENTIAL It is required that rises in voltage have a slope of 50 mV/ms or less. DS704-00001-2v0-E MB96670 Series (8) USART Timing (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C, CL=50pF) Parameter Symbol 4.5V VCC < 5.5V Pin Conditions Min Max name Serial clock cycle time tSCYC SCKn SCKn, SOTn SCKn, Internal shift SOTn clock mode SCKn, SINn SCKn, SINn SCK SOT delay time tSLOVI SOT SCK delay time tOVSHI SIN SCK setup time tIVSHI SCK SIN hold time tSHIXI Serial clock "L" pulse width tSLSH SCKn Serial clock "H" pulse width tSHSL SCKn 2.7V VCC < 4.5V Min Max Unit 4tCLKP1 - 4tCLKP1 - ns - 20 + 20 - 30 + 30 ns - ns - ns - ns - ns - ns NxtCLKP1 - 20* tCLKP1 + 45 0 tCLKP1 + 10 tCLKP1 + 10 - NxtCLKP1 - 30* tCLKP1 + 55 0 tCLKP1 + 10 tCLKP1 + 10 SCKn, 2tCLKP1 2tCLKP1 ns SOTn External shift + 45 + 55 SCKn, clock mode tCLKP1/2 tCLKP1/2 SIN SCK setup time tIVSHE ns SINn + 10 + 10 SCKn, tCLKP1 tCLKP1 ns tSHIXE SCK SIN hold time SINn + 10 + 10 SCK fall time tF SCKn ns 20 20 SCK rise time tR SCKn ns 20 20 Notes: * AC characteristic in CLK synchronized mode. * CL is the load capacity value of pins when testing. * Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "MB96600 series HARDWARE MANUAL". * tCLKP1 indicates the peripheral clock 1 (CLKP1), Unit: ns * These characteristics only guarantee the same relocate port number. For example, the combination of SCKn and SOTn_R is not guaranteed. tSLOVE SCK SOT delay time *: Parameter N depends on tSCYC and can be calculated as follows: * If tSCYC = 2 x k x tCLKP1, then N = k, where k is an integer > 2 * If tSCYC = (2 x k + 1) x tCLKP1, then N = k + 1, where k is an integer > 1 Examples: tSCYC N 4 x tCLKP1 2 5 x tCLKP1, 6 x tCLKP1 3 7 x tCLKP1, 8 x tCLKP1 4 ... ... DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 49 MB96670 Series tSCYC VOH SCK VOL VOL tOVSHI tSLOVI VOH SOT VOL tIVSHI SIN tSHIXI VIH VIH VIL VIL Internal shift clock mode SCK tSLSH VIH VIL SOT tF tSLOVE tSHSL VIH VIL VIH tR VOH VOL SIN tIVSHE VIH VIL tSHIXE VIH VIL External shift clock mode 50 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series (9) External Input Timing (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Symbol Value Min Max Pin name Pnn_m Unit Remarks General Purpose I/O A/D Converter trigger ADTG 2tCLKP1 +200 input ns (tCLKP1= TINn, TINn_R Reload Timer 1/fCLKP1)* tINH, TTGn Input pulse width PPG trigger input tINL INn, INn_R Input Capture INTn, INTn_R External Interrupt 200 ns Non-Maskable NMI Interrupt *: tCLKP1 indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode. tINH External input timing VIH tINL VIH DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL VIL VIL 51 MB96670 Series 2 (10) I C Timing Parameter (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Symbol Conditions High-speed mode*4 Min Max Typical mode Min Max Unit SCL clock frequency fSCL 0 100 0 400 kHz (Repeated) START condition hold time tHDSTA 4.0 0.6 s SDA SCL SCL clock "L" width tLOW 4.7 1.3 s SCL clock "H" width tHIGH 4.0 0.6 s (Repeated) START condition setup time tSUSTA 4.7 0.6 s CL = 50pF, SCL SDA R = (Vp/IOL)*1 Data hold time tHDDAT 0 3.45*2 0 0.9*3 s SCL SDA Data setup time tSUDAT 250 100 ns SDA SCL STOP condition setup time tSUSTO 4.0 0.6 s SCL SDA Bus free time between "STOP condition" and tBUS 4.7 1.3 s "START condition" Pulse width of spikes which (1-1.5) x (1-1.5) x will be suppressed by input tSP 0 0 ns tCLKP1*5 tCLKP1*5 noise filter *1: R and CL represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current. *2: The maximum tHDDAT only has to be met if the device does not extend the "L" width (tLOW) of the SCL signal. *3: A high-speed mode I2C bus device can be used on a standard mode I2C bus system as long as the device satisfies the requirement of "tSUDAT 250ns". *4: For use at over 100kHz, set the peripheral clock1 (CLKP1) to at least 6MHz. *5: tCLKP1 indicates the peripheral clock1 (CLKP1) cycle time. SDA tSUDAT tLOW tSUSTA tBUS SCL tHDSTA tHDDAT tHIGH 52 FUJITSU SEMICONDUCTOR CONFIDENTIAL tHDSTA tSP tSUSTO DS704-00001-2v0-E MB96670 Series 5. A/D Converter (1) Electrical Characteristics for the A/D Converter (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Symbol Pin name Max 10 bit - Total error - - - 3.0 - + 3.0 LSB Nonlinearity error - - - 2.5 - + 2.5 LSB Differential Nonlinearity error - - - 1.9 - + 1.9 LSB Zero transition voltage VOT ANn Typ - 20 AVSS + 0.5LSB Typ + 20 mV Full scale transition voltage VFST ANn Typ - 20 Typ + 20 mV Compare time* - - Sampling time* - - 5.0 8.0 3.1 s s s s mA Reference power supply current (between AVRH and AVSS ) IA IAH IR IRH - Remarks 1.0 2.2 0.5 1.2 - AVRH - 1.5LSB 2.0 - - 3.3 A - 520 810 A A/D Converter active - - 1.0 A A/D Converter not operated - - 15.5 pF Normal outputs - - 17.4 1450 2700 pF High current outputs 4.5V AVCC 5.5V 2.7V AVCC < 4.5V - 1.0 - + 1.0 A - 3.0 - + 3.0 A AVSS < VAIN < AVCC, AVRH ANn AVSS - AVRH V AVRH AVCC - 0.1 - AVCC V ANn - - 4.0 LSB AVCC AVRH Analog input capacity CVIN AN8, 9, 12, 13 AN16 to 23 Analog impedance RVIN ANn Analog port input current (during IAIN conversion) Analog input VAIN voltage Reference voltage range Variation between channels *: Time for each channel. - Unit Resolution Power supply current - Min Value Typ AN8, 9, 12, 13 AN16 to 23 DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 4.5V VCC 5.5V 2.7V VCC < 4.5V 4.5V VCC 5.5V 2.7V VCC < 4.5V A/D Converter active A/D Converter not operated 53 MB96670 Series (2) Accuracy and Setting of the A/D Converter Sampling Time If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision. To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance Rext, the board capacitance of the A/D converter input pin Cext and the AVCC voltage level. The following replacement model can be used for the calculation: MCU Rext Analog input RVIN Source Comparator Cext CVIN Sampling switch (During sampling:ON) Rext: External driving impedance Cext: Capacitance of PCB at A/D converter input CVIN: Analog input capacity (I/O, analog switch and ADC are contained) RVIN: Analog input impedance (I/O, analog switch and ADC are contained) The following approximation formula for the replacement model above can be used: Tsamp = 7.62 x (Rext x Cext + (Rext + RVIN) x CVIN) * Do not select a sampling time below the absolute minimum permitted value. (0.5s for 4.5V AVCC 5.5V, 1.2s for 2.7V AVCC < 4.5V) * If the sampling time cannot be sufficient, connect a capacitor of about 0.1F to the analog input pin. * A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor. * The accuracy gets worse as |AVRH - AVSS| becomes smaller. 54 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series (3) Definition of A/D Converter Terms * Resolution * Nonlinearity error : Analog variation that is recognized by an A/D converter. : Deviation of the actual conversion characteristics from a straight line that connects the zero transition point (0b0000000000 0b0000000001) to the full-scale transition point (0b1111111110 0b1111111111). * Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by 1LSB. *Total error : Difference between the actual value and the theoretical value. The total error includes zero transition error, full-scale transition error and nonlinearity error. * Zero transition voltage: Input voltage which results in the minimum conversion value. * Full scale transition voltage: Input voltage which results in the maximum conversion value. Nonlinearity error 0x3FF Actual conversion characteristics 0x3FE Actual conversion characteristics 0x(N+1) {1 LSB(N-1) + VOT} VFST (Actuallymeasured value) VNT (Actually-measured value) 0x004 0x003 Digital output Digital output 0x3FD Differential nonlinearity error 0xN Ideal characteristics Actual conversion characteristics 0x002 Ideal characteristics 0x001 0x(N-2) VOT (Actually-measured value) AVSS Analog input AVRH Nonlinearity error of digital output N = AVSS N VOT VFST VNT : : : : VNT (Actually-measured value) Actual conversion characteristics Analog input VNT - {1LSB x (N - 1) + VOT} 1LSB Differential nonlinearity error of digital output N = 1LSB = V(N+1)T (Actually-measured value) 0x(N-1) V(N + 1) T - VNT 1LSB AVRH [LSB] - 1 [LSB] VFST - VOT 1022 A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. Voltage at which the digital output changes from 0x3FE to 0x3FF. Voltage at which the digital output changes from 0x(N - 1) to 0xN. DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 55 MB96670 Series Total error 0x3FF 1.5 LSB 0x3FE Digital output 0x3FD Actual conversion characteristics {1 LSB (N-1) + 0.5 LSB} 0x004 VNT (Actually-measured value) Actual conversion characteristics Ideal characteristics 0x003 0x002 0x001 0.5 LSB AVSS 1LSB (Ideal value) = AVRH Analog input AVRH - AVSS 1024 Total error of digital output N = [V] VNT - {1LSB x (N - 1) + 0.5LSB} 1LSB N : A/D converter digital output value. VNT : Voltage at which the digital output changes from 0x(N + 1) to 0xN. VOT (Ideal value) = AVSS + 0.5LSB[V] VFST (Ideal value) = AVRH - 1.5LSB[V] 56 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series 6. High Current Output Slew Rate (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Symbol Output rise/fall time tR30, tF30 Pin Conditions name P08_m Outputs driving strength set to "30mA" Min Value Typ Max 15 - 75 Voltage Unit ns Remarks CL=85pF VH=VOL30+0.9 x (V OH30-VOL30) VL=VOL30+0.1 x (V OH30-VOL30) VH VH VL VL tR30 tF30 Time DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 57 MB96670 Series 7. Low Voltage Detection Function Characteristics (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Symbol Conditions Detected voltage*1 VDL0 VDL1 VDL2 VDL3 VDL4 VDL5 VDL6 CILCR:LVL = 0000B CILCR:LVL = 0001B CILCR:LVL = 0010B CILCR:LVL = 0011B CILCR:LVL = 0100B CILCR:LVL = 0111B CILCR:LVL = 1001B Power supply voltage change rate*2 dV/dt - - 0.004 Hysteresis width VHYS CILCR:LVHYS=0 CILCR:LVHYS=1 Stabilization time TLVDSTAB - Min 2.70 2.79 2.98 3.26 3.45 3.73 3.91 Value Typ 2.90 3.00 3.20 3.50 3.70 4.00 4.20 Max Unit 3.10 3.21 3.42 3.74 3.95 4.27 4.49 V V V V V V V - + 0.004 V/s 80 100 50 120 mV mV - - 75 s Detection delay time td 30 s *1: If the power supply voltage fluctuates within the time less than the detection delay time (td), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range. *2: In order to perform the low voltage detection at the detection voltage (VDLX), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage. 58 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series Voltage Vcc dV Detected Voltage dt VDLX max VDLX min Time Voltage Internal Reset Vcc Release Voltage dV dt VHYS td Normal Operation Time td Low Voltage Reset Assertion Power Reset Extension Time RCR:LVDE ***Low voltage detection function enable Low voltage detection function disable DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL Stabilization time TLVDSTAB Low voltage detection function enable*** 59 MB96670 Series 8. Flash Memory Write/Erase Characteristics (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Parameter Sector erase time Conditions Large Sector Small Sector Security Sector - Value Min Typ Max Unit Remarks Includes write time prior to internal erase. - 1.6 0.4 0.31 7.5 2.1 1.65 s s s Word (16-bit) write time - - 25 400 s Chip erase time - - 5.11 25.05 s Not including system-level overhead time. Includes write time prior to internal erase. Note: While the Flash memory is written or erased, shutdown of the external power (VCC) is prohibited. In the application system where the external power (VCC) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function. To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/s to +0.004V/s) after the external power falls below the detection voltage (VDLX)*1. Write/Erase cycles and data hold time Write/Erase cycles (cycle) 1,000 10,000 100,000 Data hold time (year) 20 *2 10 *2 5 *2 *1: See "7. Low Voltage Detection Function Characteristics". *2: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85C). 60 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series EXAMPLE CHARACTERISTICS This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value. * MB96F675 Run Mode 100.00 (VCC = 5.5V) PLL clock (32MHz) 10.00 ICC [mA] Main osc. (4MHz) 1.00 RC clock (2MHz) RC clock (100kHz) 0.10 Sub osc. (32kHz) 0.01 -50 0 50 100 150 TA [C] Sleep Mode 100.000 PLL clock (32MHz) ICC [mA] 10.000 Main osc. (4MHz) 1.000 RC clock (2MHz) 0.100 RC clock (100kHz) 0.010 0.001 (VCC = 5.5V) Sub osc. (32kHz) -50 0 50 100 150 TA [C] DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 61 MB96670 Series * MB96F675 Timer Mode 10.000 (VCC = 5.5V) PLL clock (32MHz) 1.000 ICC [mA] Main osc. (4MHz) 0.100 RC clock (2MHz) RC clock (100kHz) 0.010 0.001 Sub osc. (32kHz) -50 0 50 100 150 TA [C] Stop Mode 1.000 (VCC = 5.5V) ICC [mA] 0.100 0.010 0.001 -50 0 50 100 150 TA [C] 62 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series * Used setting Selected Source Clock Mode Run mode Sleep mode PLL Main osc. RC clock fast RC clock slow Sub osc. PLL Main osc. RC clock fast RC clock slow Sub osc. Timer mode PLL Main osc. RC clock fast RC clock slow Sub osc. Stop mode stopped Clock/Regulator and FLASH Settings CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz Regulator in High Power Mode, (CLKB is stopped in this mode) CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz Regulator in High Power Mode, (CLKB is stopped in this mode) CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz Regulator in High Power Mode, (CLKB is stopped in this mode) CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz Regulator in Low Power Mode, (CLKB is stopped in this mode) CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz Regulator in Low Power Mode, (CLKB is stopped in this mode) CLKMC = 4MHz, CLKPLL = 32MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode CLKMC = 4MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode CLKMC = 2MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode CLKMC = 100kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode CLKMC = 32 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode (All clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 63 MB96670 Series ORDERING INFORMATION MCU with CAN controller Part number Flash memory MB96F673RBPMC-GSE1 MB96F673RBPMC-GSE2 Flash A (96.5KB) MB96F673RBPMC1-GSE1 MB96F673RBPMC1-GSE2 MB96F675RBPMC-GSE1 MB96F675RBPMC-GSE2 Flash A (160.5KB) MB96F675RBPMC1-GSE1 MB96F675RBPMC1-GSE2 *: For details about package, see "PACKAGE DIMENSION". MCU without CAN controller Part number Flash memory MB96F673ABPMC-GSE1 MB96F673ABPMC-GSE2 Flash A (96.5KB) MB96F673ABPMC1-GSE1 MB96F673ABPMC1-GSE2 MB96F675ABPMC-GSE1 Flash A MB96F675ABPMC-GSE2 (160.5KB) MB96F675ABPMC1-GSE1 MB96F675ABPMC1-GSE2 *: For details about package, see "PACKAGE DIMENSION". 64 FUJITSU SEMICONDUCTOR CONFIDENTIAL Package* 64-pin plastic LQFP (FPT-64P-M23) 64-pin plastic LQFP (FPT-64P-M24) 64-pin plastic LQFP (FPT-64P-M23) 64-pin plastic LQFP (FPT-64P-M24) Package* 64-pin plastic LQFP (FPT-64P-M23) 64-pin plastic LQFP (FPT-64P-M24) 64-pin plastic LQFP (FPT-64P-M23) 64-pin plastic LQFP (FPT-64P-M24) DS704-00001-2v0-E MB96670 Series PACKAGE DIMENSION 64-pin plastic LQFP Lead pitch 0.65 mm Package width x package length 12.0 x 12.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 0.47 g Code (Reference) P-LQFP64-12 x 12-0.65 (FPT-64P-M23) 64-pin plastic LQFP (FPT-64P-M23) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 14.00 0.20(.551 .008)SQ *12.00 0.10(.472 .004)SQ 48 0.145 0.055 (.006 .002) 33 49 32 0.10(.004) Details of "A" part +0.20 1.50 -0.10 +.008 (Mounting height) .059 -.004 0.25(.010) INDEX 0~8 64 17 1 0.65(.026) C "A" 16 0.32 0.05 (.013 .002) 0.13(.005) 0.50 0.20 (.020 .008) 0.60 0.15 (.024 .006) 0.10 0.10 (.004 .004) (Stand off) M 2003-2010 FUJITSU SEMICONDUCTOR LIMITED F64034S-c-1-4 Dimensions in mm (inches). Note: The values in parentheses are reference values Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/ DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 65 MB96670 Series 64-pin plastic LQFP Lead pitch 0.50 mm Package width x package length 10.0 x 10.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 0.32 g Code (Reference) P-LFQFP64-10x10-0.50 (FPT-64P-M24) 64-pin plastic LQFP (FPT-64P-M24) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 12.000.20(.472.008)SQ *10.000.10(.394.004)SQ 48 0.1450.055 (.006.002) 33 32 49 0.08(.003) Details of "A" part +0.20 1.50 -0.10 +.008 (Mounting height) .059 -.004 INDEX 0~8 17 64 0.100.10 (.004.004) (Stand off) "A" LEAD No. 1 16 0.50(.020) 0.200.05 (.008.002) C 0.08(.003) M 2005-2010 FUJITSU SEMICONDUCTOR LIMITED F64036S-c-1-3 0.500.20 (.020.008) 0.600.15 (.024.006) 0.25(.010) Dimensions in mm (inches). Note: The values in parentheses are reference values Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/ 66 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series MAJOR CHANGES IN THIS EDITION A change on a page is indicated by a vertical line drawn on the left side of that page. Page Section FEATURES 4 9 27 to 30 PIN DESCRIPTION HANDLING PRECAUTIONS HANDLING DEVICES 33 ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings 35 3. DC Characteristics (1) Current Rating 39 Change Results Changed the description of "LCD Controller" On-chip drivers for internal divider resistors or external divider resistors Internal divider resistors or external divider resistors Changed the description of "External Interrupts" Interrupt mask and pending bit per channel Interrupt mask bit per channel Deleted Pin name WOT Added a section Changed the description in "11. SMC power supply pins" To avoid this, VCC must always be powered on before DVCC. To avoid this, VCC must always be powered on before DVCC. DVcc/DVss must be applied when using SMC I/O pin as GPIO. Changed the annotation *2 It is required that AVCC does not exceed VCC and that the voltage at the analog inputs does not exceed AVCC when the power is switched on. It is required that AVCC does not exceed VCC, DVCC and that the voltage at the analog inputs does not exceed AVCC when the power is switched on. Changed the Conditions for ICCSRCH CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz, CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, Changed the Conditions for ICCSRCL CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz CLKS1/2 = CLKP1/2 = CLKRC = 100kHz Changed the Conditions for ICCTPLL PLL Timer mode with CLKP1 = 32MHz PLL Timer mode with CLKPLL = 32MHz Changed the Value of "Power supply current in Timer modes" ICCTPLL Typ: 2480A 1800A (TA = +25C) Max: 2710A 2245A (TA = +25C) Max: 3955A 3140A (TA = +105C) Changed the Conditions for ICCTRCL RC Timer mode with CLKRC = 100kHz, SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped) RC Timer mode with CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC stopped) DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 67 MB96670 Series Page Section ELECTRICAL 40 52 54 CHARACTERISTICS 3. DC Characteristics (1) Current Rating 4. AC Characteristics (10) I2C timing 5. A/D Converter (2) Accuracy and Setting of the A/D Converter Sampling Time 6. High Current Output Slew Rate 57 8. Flash Memory Write/Erase Characteristics 60 Change Results Changed the annotation *2 Power supply for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current. The current for "On Chip Debugger" part is not included. Added the description to annotation *2, *3 When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current. Added parameter, "Noise filter" and an annotation *5 for it Added tSP to the figure Deleted the unit "[Min]" from approximation formula of Sampling time Changed the condition (VCC = AVCC = DVCC = 2.7V to 5.5V, VD=1.8V0.15V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Changed the condition (VCC = AVCC = DVCC = 2.7V to 5.5V, VD=1.8V0.15V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) (VCC = AVCC = DVCC = 2.7V to 5.5V, VSS = AVSS = DVSS = 0V, TA = - 40C to + 105C) Changed the Note While the Flash memory is written, shutdown of the external power (VCC) is prohibited. In the application system where the external power (VCC) might be shut down while writing, be sure to turn the power off by using an external voltage detector. While the Flash memory is written or erased, shutdown of the external power (VCC) is prohibited. In the application system where the external power (VCC) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function. 68 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 69 MB96670 Series 70 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E MB96670 Series DS704-00001-2v0-E FUJITSU SEMICONDUCTOR CONFIDENTIAL 71 MB96670 Series FUJITSU SEMICONDUCTOR LIMITED Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/ For further information please contact: North and South America FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/ Asia Pacific FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://sg.fujitsu.com/semiconductor/ Europe FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/ FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. 30F, Kerry Parkside, 1155 Fang Dian Road, Pudong District, Shanghai 201204, China Tel : +86-21-6146-3688 Fax : +86-21-6146-3660 http://cn.fujitsu.com/fss/ Korea FUJITSU SEMICONDUCTOR KOREA LTD. 902 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://www.fujitsu.com/kr/fsk/ FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 2/F, Green 18 Building, Hong Kong Science Park, Shatin, N.T., Hong Kong Tel : +852-2736-3232 Fax : +852-2314-4207 http://cn.fujitsu.com/fsp/ All Rights Reserved. FUJITSU SEMICONDUCTOR LIMITED, its subsidiaries and affiliates (collectively, "FUJITSU SEMICONDUCTOR") reserves the right to make changes to the information contained in this document without notice. Please contact your FUJITSU SEMICONDUCTOR sales representatives before order of FUJITSU SEMICONDUCTOR device. Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of FUJITSU SEMICONDUCTOR device. FUJITSU SEMICONDUCTOR disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the FUJITSU SEMICONDUCTOR device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof. Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of FUJITSU SEMICONDUCTOR or any third party by license or otherwise, express or implied. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof. The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). FUJITSU SEMICONDUCTOR shall not be liable for you and/or any third party for any claims or damages arising out of or in connection with above-mentioned uses of the products. Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions. The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein. All company names, brand names and trademarks herein are property of their respective owners. Edited: Sales Promotion Department 72 FUJITSU SEMICONDUCTOR CONFIDENTIAL DS704-00001-2v0-E