DTC114EET1 Series, SDTC114EET1 Series Bias Resistor Transistor NPN Silicon Surface Mount Transistor with Monolithic Bias Resistor Network This new series of digital transistors is designed to replace a single device and its external resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SC-75/SOT-416 package which is designed for low power surface mount applications. Features * * * * * * * Simplifies Circuit Design Reduces Board Space Reduces Component Count The SC-75/SOT-416 Package Can be Soldered Using Wave or Reflow The Modified Gull-Winged Leads Absorb Thermal Stress During Soldering Eliminating the Possibility of Damage to the Die Pb-Free Packages are Available S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable http://onsemi.com NPN SILICON BIAS RESISTOR TRANSISTORS PIN 1 BASE (INPUT) Rating Symbol Value Unit VCBO 50 Vdc Collector-Emitter Voltage VCEO 50 Vdc IC 100 mAdc Symbol Value Unit 200 1.6 mW mW/C 600 C/W 300 2.4 mW mW/C RqJA 400 C/W TJ, Tstg -55 to +150 C Collector Current Total Device Dissipation, FR-4 Board (Note 1) @ TA = 25C Derate above 25C Thermal Resistance, Junction-to-Ambient (Note 1) Total Device Dissipation, FR-4 Board (Note 2) @ TA = 25C Derate above 25C Thermal Resistance, Junction-to-Ambient (Note 2) Junction and Storage Temperature Range PD RqJA PD Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. FR-4 @ Minimum Pad 2. FR-4 @ 1.0 x 1.0 Inch Pad (c) Semiconductor Components Industries, LLC, 2012 May, 2012 - Rev. 12 1 R2 3 1 2 SC-75 (SOT-416) CASE 463 STYLE 1 MARKING DIAGRAM THERMAL CHARACTERISTICS Rating R1 PIN 2 EMITTER (GROUND) MAXIMUM RATINGS (TA = 25C unless otherwise noted) Collector-Base Voltage PIN 3 COLLECTOR (OUTPUT) xx M G G xx = Specific Device Code xx = (Refer to page 2) M = Date Code* G = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location. ORDERING INFORMATION See detailed ordering, marking, and shipping information in the package dimensions section on page 2 of this data sheet. Publication Order Number: DTC114EET1/D DTC114EET1 Series, SDTC114EET1 Series ORDERING INFORMATION, DEVICE MARKING and RESISTOR VALUES Device Marking R1 (K) DTC114EET1 DTC114EET1G 8A 10 10 SDTC114EET1G DTC124EET1 DTC124EET1G 8B 22 22 8C 47 47 SDTC124EET1G DTC144EET1 DTC144EET1G DTC114YET1 DTC114YET1G 8D 10 47 94 10 8F 4.7 8H 2.2 2.2 8J 4.7 4.7 8K 4.7 47 8L 22 47 8M 2.2 47 8N 100 100 8P 47 22 SDTC114YET1G DTC114TET1 DTC114TET1G DTC143TET1 DTC143TET1G DTC123EET1 DTC123EET1G DTC143EET1 DTC143EET1G DTC143ZET1 DTC143ZET1G DTC124XET1 DTC124XET1G DTC123JET1 DTC123JET1G DTC115EET1 DTC115EET1G DTC144WET1 DTC144WET1G Package Shipping SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 (Pb-Free) 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel SC-75/SOT-416 3000 Tape & Reel R2 (K) For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 2 DTC114EET1 Series, SDTC114EET1 Series ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit Collector-Base Cutoff Current (VCB = 50 V, IE = 0) ICBO - - 100 nAdc Collector-Emitter Cutoff Current (VCE = 50 V, IB = 0) ICEO - - 500 nAdc Emitter-Base Cutoff Current (VEB = 6.0 V, IC = 0) IEBO - - - - - - - - - - - - - - - - - - - - - - - - - - 0.5 0.2 0.1 0.2 0.9 1.9 2.3 1.5 0.18 0.13 0.2 0.05 0.13 mAdc Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0) V(BR)CBO 50 - - Vdc Collector-Emitter Breakdown Voltage (Note 3) (IC = 2.0 mA, IB = 0) V(BR)CEO 50 - - Vdc hFE 35 60 80 80 160 160 8.0 15 80 80 80 80 80 60 100 140 140 350 350 15 30 200 150 140 150 140 - - - - - - - - - - - - - VCE(sat) - - 0.25 Characteristic OFF CHARACTERISTICS DTC114EET1, SDTC114EET1 DTC124EET1, SDTC124EET1 DTC144EET1 DTC114YET1, SDTC114YET1 DTC114TET1 DTC143TET1 DTC123EET1 DTC143EET1 DTC143ZET1 DTC124XET1 DTC123JET1 DTC115EET1 DTC144WET1 ON CHARACTERISTICS (Note 3) DC Current Gain (VCE = 10 V, IC = 5.0 mA) DTC114EET1, SDTC114EET1 DTC124EET1, SDTC124EET1 DTC144EET1 DTC114YET1, SDTC114YET1 DTC114TET1 DTC143TET1 DTC123EET1 DTC143EET1 DTC143ZET1 DTC124XET1 DTC123JET1 DTC115EET1 DTC144WET1 Collector-Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA) (IC = 10 mA, IB = 5 mA) DTC123EET1 (IC = 10 mA, IB = 1 mA) DTC143TET1/DTC114TET1/ DTC143EET1/DTC143ZET1/DTC124XET1 Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW) DTC114EET1, SDTC114EET1 DTC124EET1, SDTC124EET1 DTC114YET1, SDTC114YET1 DTC114TET1 DTC143TET1 DTC123EET1 DTC143EET1 DTC143ZET1 DTC124XET1 DTC123JET1 (VCC = 5.0 V, VB = 3.5 V, RL = 1.0 kW) DTC144EET1 (VCC = 5.0 V, VB = 5.5 V, RL = 1.0 kW) DTC115EET1 (VCC = 5.0 V, VB = 4.0 V, RL = 1.0 kW) DTC144WET1 VOL Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW) (VCC = 5.0 V, VB = 0.25 V, RL = 1.0 kW) DTC143TET1 DTC143ZET1 DTC114TET1 VOH 3. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0% http://onsemi.com 3 Vdc Vdc - - - - - - - - - - - - - - - - - - - - - - - - - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 4.9 - - Vdc DTC114EET1 Series, SDTC114EET1 Series ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) (Continued) Characteristic Input Resistor SDTC114EET1, SDTC114ET1 DTC124EET1, SDTC124EET1 DTC144EET1 DTC114YET1, SDTC114YET1 DTC114TET1 DTC143TET1 DTC123EET1 DTC143EET1 DTC143ZET1 DTC124XET1 DTC123JET1 DTC115EET1 DTC144WET1 Resistor Ratio DTC114EET1/SDTC114EET1/DTC115EET1 DTC124EET1/SDTC124EET1/DTC144EET1 DTC114YET1/SDTC114YET1 DTC143TET1/DTC114TET1 DTC123EET1/DTC143EET1 DTC143ZET1 DTC124XET1 DTC123JET1 DTC144WET1D Symbol Min Typ Max Unit R1 7.0 15.4 32.9 7.0 7.0 3.3 1.5 3.3 3.3 15.4 1.54 70 32.9 10 22 47 10 10 4.7 2.2 4.7 4.7 22 2.2 100 47 13 28.6 61.1 13 13 6.1 2.9 6.1 6.1 28.6 2.86 130 61.1 kW 0.8 0.17 - 0.8 0.055 0.38 0.038 1.7 1.0 0.21 - 1.0 0.1 0.47 0.047 2.1 1.2 0.25 - 1.2 0.185 0.56 0.056 2.6 R1/R2 PD , POWER DISSIPATION (MILLIWATTS) 250 200 150 100 RqJA = 600C/W 50 0 -50 0 50 100 TA, AMBIENT TEMPERATURE (C) 150 r(t), NORMALIZED TRANSIENT THERMAL RESISTANCE Figure 1. Derating Curve 1.0 D = 0.5 0.1 0.2 0.1 0.05 0.02 0.01 0.01 SINGLE PULSE 0.001 0.00001 0.0001 0.001 0.01 0.1 t, TIME (s) 1.0 Figure 2. Normalized Thermal Response http://onsemi.com 4 10 100 1000 DTC114EET1 Series, SDTC114EET1 Series 1 1000 IC/IB = 10 hFE, DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS - DTC114EET1, SDTC114EET1 TA=-25C 25C 0.1 75C 0.01 0.001 0 20 40 IC, COLLECTOR CURRENT (mA) VCE = 10 V TA=75C 25C -25C 100 10 50 1 10 IC, COLLECTOR CURRENT (mA) Figure 3. VCE(sat) versus IC Figure 4. DC Current Gain 4 100 IC, COLLECTOR CURRENT (mA) 2 1 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) 1 0.1 0.01 0.001 50 TA=-25C 10 VO = 5 V 0 1 2 5 6 7 3 4 Vin, INPUT VOLTAGE (VOLTS) 10 VO = 0.2 V TA=-25C 25C 75C 1 0.1 0 10 8 9 Figure 6. Output Current versus Input Voltage Figure 5. Output Capacitance V in , INPUT VOLTAGE (VOLTS) C ob, CAPACITANCE (pF) 3 0 25C 75C f = 1 MHz TA = 25C 0 100 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 7. Input Voltage versus Output Current http://onsemi.com 5 50 10 DTC114EET1 Series, SDTC114EET1 Series 100 1 IC/IB = 10 hFE, DC CURRENT GAIN VCE(sat), COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS - DTC123EET1 75C 0.1 -25C 25C 0.01 0.001 30 10 20 40 IC, COLLECTOR CURRENT (mA) 0 TA = -25C VCE = 10 V 1 50 1 10 IC, COLLECTOR CURRENT (mA) Figure 8. VCE(sat) versus IC IC, COLLECTOR CURRENT (mA) 100 4 f = 1 MHz TA = 25C 3.5 3 2.5 2 1.5 1 0.5 0 5 10 15 20 25 30 35 40 45 VR, REVERSE BIAS VOLTAGE (VOLTS) 75C 10 25C 1 TA = -25C 0.1 0.01 0.001 50 Figure 10. Output Capacitance VO = 5 V 0 1 2 3 4 5 6 7 8 Vin, INPUT VOLTAGE (VOLTS) TA = -25C 75C 1 25C VO = 0.2 V 0.1 0 9 10 Figure 11. Output Current versus Input Voltage 10 Vin, INPUT VOLTAGE (VOLTS) Cob, CAPACITANCE (pF) 100 Figure 9. DC Current Gain 4.5 0 25C 75C 10 10 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 12. Input Voltage versus Output Current http://onsemi.com 6 50 DTC114EET1 Series, SDTC114EET1 Series 1000 1 hFE, DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS - DTC124EET1, SDTC124EET1 IC/IB = 10 25C TA=-25C 0.1 75C 0.01 VCE = 10 V TA=75C 25C -25C 100 10 0.001 0 20 IC, COLLECTOR CURRENT (mA) 40 50 1 IC, COLLECTOR CURRENT (mA) Figure 13. VCE(sat) versus IC Figure 14. DC Current Gain 4 100 IC, COLLECTOR CURRENT (mA) f = 1 MHz TA = 25C 3 2 1 75C 25C TA=-25C 10 1 0.1 0.01 VO = 5 V 0 0 0.001 50 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) Figure 15. Output Capacitance 0 2 4 6 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V TA=-25C 10 25C 75C 1 0.1 0 10 8 10 Figure 16. Output Current versus Input Voltage 100 V in , INPUT VOLTAGE (VOLTS) C ob , CAPACITANCE (pF) 100 10 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 17. Input Voltage versus Output Current http://onsemi.com 7 50 DTC114EET1 Series, SDTC114EET1 Series 10 1000 IC/IB = 10 hFE, DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS - DTC144EET1 1 25C TA=-25C 75C 0.1 0.01 0 20 IC, COLLECTOR CURRENT (mA) TA=75C 25C -25C 100 10 50 40 VCE = 10 V 1 10 IC, COLLECTOR CURRENT (mA) Figure 18. VCE(sat) versus IC Figure 19. DC Current Gain 1 100 f = 1 MHz TA = 25C IC, COLLECTOR CURRENT (mA) 0.4 TA=-25C 10 1 0.1 0.01 0.2 0 25C 75C 0.6 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (VOLTS) VO = 5 V 0.001 50 0 Figure 20. Output Capacitance 2 4 6 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V TA=-25C 10 25C 75C 1 0.1 0 10 8 10 Figure 21. Output Current versus Input Voltage 100 V in , INPUT VOLTAGE (VOLTS) C ob , CAPACITANCE (pF) 0.8 100 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 22. Input Voltage versus Output Current http://onsemi.com 8 50 DTC114EET1 Series, SDTC114EET1 Series 1 300 IC/IB = 10 hFE, DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS - DTC114YET1, SDTC114YET1 TA=-25C 25C 0.1 75C 0.01 0.001 0 20 40 60 IC, COLLECTOR CURRENT (mA) 25C 200 -25C 150 100 50 0 80 TA=75C VCE = 10 250 1 2 4 6 Figure 23. VCE(sat) versus IC 100 f = 1 MHz TA = 25C TA=75C IC, COLLECTOR CURRENT (mA) 3.5 3 2.5 2 1.5 1 0.5 0 2 4 6 8 10 15 20 25 30 35 VR, REVERSE BIAS VOLTAGE (VOLTS) 40 45 25C -25C 10 VO = 5 V 1 50 Figure 25. Output Capacitance 0 2 4 6 Vin, INPUT VOLTAGE (VOLTS) VO = 0.2 V TA=-25C 25C 75C 1 0.1 0 10 8 Figure 26. Output Current versus Input Voltage 10 V in , INPUT VOLTAGE (VOLTS) Cob , CAPACITANCE (pF) 90 100 Figure 24. DC Current Gain 4 0 8 10 15 20 40 50 60 70 80 IC, COLLECTOR CURRENT (mA) 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 27. Input Voltage versus Output Current http://onsemi.com 9 50 10 DTC114EET1 Series, SDTC114EET1 Series 1000 1 VCE = 10 V IC/IB = 10 75C hFE, DC CURRENT GAIN VCE(sat), COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS - DTC123JET1G 75C 0.1 -25C 25C 0.01 0.001 30 10 20 40 IC, COLLECTOR CURRENT (mA) 0 100 1 10 IC, COLLECTOR CURRENT (mA) Figure 28. VCE(sat) versus IC f = 1 MHz TA = 25C 3 2.5 2 1.5 1 0.5 0 0 5 10 15 20 25 30 35 40 45 VR, REVERSE BIAS VOLTAGE (VOLTS) 10 75C 1 TA = -25C 0.1 0.01 0.001 50 25C VO = 5 V 0 Figure 30. Output Capacitance 1 2 3 4 5 6 7 8 Vin, INPUT VOLTAGE (VOLTS) 75C 1 25C TA = -25C VO = 0.2 V 0.1 0 9 10 Figure 31. Output Current versus Input Voltage 10 Vin, INPUT VOLTAGE (VOLTS) Cob, CAPACITANCE (pF) IC, COLLECTOR CURRENT (mA) 100 3.5 100 Figure 29. DC Current Gain 4.5 4 25C 10 1 50 TA = -25C 10 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 32. Input Voltage versus Output Current http://onsemi.com 10 50 DTC114EET1 Series, SDTC114EET1 Series TYPICAL ELECTRICAL CHARACTERISTICS - DTC143ZET1 1 VCE = 10 V IC/IB = 10 0.1 hFE, DC CURRENT GAIN VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE (V) 1 150C -55C 150C 0.1 -55C TA = 25C TA = 25C 0.01 1 10 0.01 100 1 10 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 33. VCE(sat) versus IC Figure 34. DC Current Gain 4 100 IC, COLLECTOR CURRENT (mA) f = 1 MHz TA = 25C 3 2 1 150C 10 -55C 1 0.1 TA = 25C 0.01 VO = 5 V 0.001 0 0 5 10 15 20 25 30 35 40 45 0 50 1 2 Figure 36. Output Current versus Input Voltage Figure 35. Output Capacitance 10 150C 1 -55C TA = 25C VO = 0.2 V 0.1 0 10 3 Vin, INPUT VOLTAGE (V) VR, REVERSE BIAS VOLTAGE (V) Vin, INPUT VOLTAGE (V) Cob, CAPACITANCE (pF) 100 20 30 40 50 IC, COLLECTOR CURRENT (mA) Figure 37. Input Voltage versus Output Current http://onsemi.com 11 4 DTC114EET1 Series, SDTC114EET1 Series TYPICAL APPLICATIONS FOR NPN BRTs +12 V ISOLATED LOAD FROM mP OR OTHER LOGIC Figure 38. Level Shifter: Connects 12 or 24 Volt Circuits to Logic +12 V VCC OUT IN LOAD Figure 39. Open Collector Inverter: Inverts the Input Signal Figure 40. Inexpensive, Unregulated Current Source http://onsemi.com 12 DTC114EET1 Series, SDTC114EET1 Series PACKAGE DIMENSIONS SC-75/SOT-416 CASE 463 ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. -E- 2 3 b 3 PL 0.20 (0.008) e -D- DIM A A1 b C D E e L HE 1 M D HE C 0.20 (0.008) E INCHES NOM MAX 0.031 0.035 0.002 0.004 0.008 0.012 0.006 0.010 0.063 0.067 0.031 0.035 0.04 BSC 0.004 0.006 0.008 0.061 0.063 0.065 MIN 0.027 0.000 0.006 0.004 0.059 0.027 STYLE 1: PIN 1. BASE 2. EMITTER 3. COLLECTOR A L MILLIMETERS MIN NOM MAX 0.70 0.80 0.90 0.00 0.05 0.10 0.15 0.20 0.30 0.10 0.15 0.25 1.55 1.60 1.65 0.70 0.80 0.90 1.00 BSC 0.10 0.15 0.20 1.50 1.60 1.70 A1 SOLDERING FOOTPRINT* 0.356 0.014 1.803 0.071 0.787 0.031 0.508 0.020 1.000 0.039 SCALE 10:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 http://onsemi.com 13 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative DTC114EET1/D