CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
EZ-USB FX2LP™ USB Microcontroller
High Speed USB Peripheral Controller
Cypress Semiconductor Corporation 198 Champion Court San Jose,CA 95134-1709 408-943-2600
Document #: 38-08032 Rev. *M Revised May 22, 2009
1. Features (CY7C68013A/14A/15A/16A)
USB 2.0 USB IF High Speed Certified (TID # 40460272)
Single Chip Integrated USB 2.0 Transceiver, Smart SIE, and
Enhanced 8051 Microprocessor
Fit, Form, and Function Compatible with the FX2
Pin compatible
Object-code-compatible
Functionally Compatible (FX2LP is a superset)
Ultra Low Power: ICC No More than 85 mA in any Mode
Ideal for bus and battery powered applications
Software: 8051 Code Runs from:
Internal RAM, which is downloaded through USB
Internal RAM, which is loaded from EEPROM
External memory device (128 pin package)
16 KBytes of On-Chip Code/Data RAM
Four Programmable BULK/INTERRUPT/ISOCHRONOUS
Endpoints
Buffering options: double, triple, and quad
Additional Programmable (BULK/INTERRUPT) 64 Byte
Endpoint
8-bit or 16-bit External Data Interface
Smart Media Standard ECC Generation
GPIF (General Programmable Interface)
Enables direct connection to most parallel interfaces
Programmable waveform descriptors and configuration
registers to define waveforms
Supports multiple Ready (RDY) inputs and Control (CTL)
outputs
Integrated, Industry Standard Enhanced 8051
48 MHz, 24 MHz, or 12 MHz CPU operation
Four clocks per instruction cycle
Two USARTS
Three counter/timers
Expanded interrupt system
Two data pointers
3.3V Operation with 5V Tolerant Inputs
Vectored USB Interrupts and GPIF/FIFO Interrupts
Separate Data Buffers for the Setup and Data Portions of a
CONTROL Transfer
Integrated I2C Controller, Runs at 100 or 400 kHz
Four Integrated FIFOs
Integrated glue logic and FIFOs lower system cost
Automatic conversion to and from 16-bit buses
Master or slave operation
Uses external clock or asynchronous strobes
Easy interface to ASIC and DSP ICs
Available in Commercial and Industrial Temperature Grade
(all packages except VFBGA)
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 2 of 62
1.1 Features (CY7C68013A/14A only)
CY7C68014A: Ideal for Battery Powered Applications
Suspend current: 100 μA (typ)
CY7C68013A: Ideal for Non-battery Powered Applications
Suspend current: 300 μA (typ)
Available in Five Pb-free Packages with Up to 40 GPIOs
128-pin TQFP (40 GPIOs), 100-pin TQFP (40 GPIOs), 56-pin
QFN (24 GPIOs), 56-pin SSOP (24 GPIOs), and 56-pin VF-
BGA (24 GPIOs)
1.2 Features (CY7C68015A/16A only)
CY7C68016A: Ideal for Battery Powered Applications
Suspend current: 100 μA (typ)
CY7C68015A: Ideal for Non-battery Powered Applications
Suspend current: 300 μA (typ)
Available in Pb-free 56-pin QFN Package (26 GPIOs)
Two more GPIOs than CY7C68013A/14A enabling additional
features in same footprint
Cypress’s EZ-USB FX2LP (CY7C68013A/14A) is a low power
version of the EZ-USB FX2(CY7C68013), which is a highly
integrated, low power USB 2.0 microcontroller. By integrating the
USB 2.0 transceiver, serial interface engine (SIE), enhanced
8051 microcontroller, and a programmable peripheral interface
in a single chip,
Cypress has created a cost effective solution that provides
superior time-to-market advantages with low power to enable
bus powered applications.
The ingenious architecture of FX2LP results in data transfer
rates of over 53 Mbytes per second, the maximum allowable
USB 2.0 bandwidth, while still using a low cost 8051 microcon-
troller in a package as small as a 56 VFBGA (5 mm x 5 mm).
Because it incorporates the USB 2.0 transceiver, the FX2LP is
more economical, providing a smaller footprint solution than
USB 2.0 SIE or external transceiver implementations. With
EZ-USB FX2LP, the Cypress Smart SIE handles most of the
USB 1.1 and 2.0 protocol in hardware, freeing the embedded
microcontroller for application specific functions and decreasing
development time to ensure USB compatibility.
The General Programmable Interface (GPIF) and Master/Slave
Endpoint FIFO (8-bit or 16-bit data bus) provides an easy and
glueless interface to popular interfaces such as ATA, UTOPIA,
EPP, PCMCIA, and most DSP/processors.
The FX2LP draws less current than the FX2 (CY7C68013), has
double the on-chip code/data RAM, and is fit, form and function
compatible with the 56, 100, and 128 pin FX2.
Five packages are defined for the family: 56VFBGA, 56 SSOP,
56 QFN, 100 TQFP, and 128 TQFP.
Address (16)
x20
PLL
/0.5
/1.0
/2.0
8051 Core
12/24/48 MHz,
four clocks/cycle
I
2
C
VCC
1.5k
D+
D–
Address (16) / Data Bus (8)
FX2LP
GPIF
CY
Smart
USB
1.1/2.0
Engine
USB
2.0
XCVR
16 KB
RAM
4 kB
FIFO
Integrated
full speed and
Additional I/Os (24)
ADDR (9)
CTL (6)
RDY (6)
8/16
Data (8)
24 MHz
Ext. XTAL
Enhanced USB core
Simplifies 8051 code
“Soft Configuration”
Easy firmware changes
FIFO and endpoint memory
(master or slave operation)
Up to 96 MBytes/s
burst rate
General
programmable I/F
to ASIC/DSP or bus
standards such as
ATAPI, EPP, etc.
Abundant I/O
including two USARTS
High performance micro
using standard tools
with lower-power options
Master
connected for
full speed
ECC
XCVR
high speed
Logic Block Diagram
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 3 of 62
2. Applications
Portable video recorder
MPEG/TV conversion
DSL modems
ATA interface
Memory card readers
Legacy conversion devices
Cameras
Scanners
Home PNA
Wireless LAN
MP3 players
Networking
The “Reference Designs” section of the Cypress web site
provides additional tools for typical USB 2.0 applications. Each
reference design comes complete with firmware source and
object code, schematics, and documentation. Visit
www.cypress.com for more information.
3. Functional Overview
3.1 USB Signaling Speed
FX2LP operates at two of the three rates defined in the USB
Specification Revision 2.0, dated April 27, 2000:
Full speed, with a signaling bit rate of 12 Mbps
High speed, with a signaling bit rate of 480 Mbps.
FX2LP does not support the low speed signaling mode of
1.5 Mbps.
3.2 8051 Microprocessor
The 8051 microprocessor embedded in the FX2LP family has
256 bytes of register RAM, an expanded interrupt system, three
timer/counters, and two USARTs.
3.2.1 8051 Clock Frequency
FX2LP has an on-chip oscillator circuit that uses an external
24 MHz (±100 ppm) crystal with the following characteristics:
Parallel resonant
Fundamental mode
500 μW drive level
12 pF (5% tolerance) load capacitors
An on-chip PLL multiplies the 24 MHz oscillator up to 480 MHz,
as required by the transceiver/PHY and internal counters divide
it down for use as the 8051 clock. The default 8051 clock
frequency is 12 MHz. The clock frequency of the 8051 can be
changed by the 8051 through the CPUCS register, dynamically.
The CLKOUT pin, which can be three-stated and inverted using
internal control bits, outputs the 50% duty cycle 8051 clock, at
the selected 8051 clock frequency: 48 MHz, 24 MHz, or 12 MHz.
3.2.2 USARTS
FX2LP contains two standard 8051 USARTs, addressed through
Special Function Register (SFR) bits. The USART interface pins
are available on separate I/O pins, and are not multiplexed with
port pins.
UART0 and UART1 can operate using an internal clock at
230 KBaud with no more than 1% baud rate error. 230 KBaud
operation is achieved by an internally derived clock source that
generates overflow pulses at the appropriate time. The internal
clock adjusts for the 8051 clock rate (48 MHz, 24 MHz, and
12 MHz) such that it always presents the correct frequency for
230 KBaud operation.[1]
3.2.3 Special Function Registers
Certain 8051 SFR addresses are populated to provide fast
access to critical FX2LP functions. These SFR additions are
shown in Tab l e 1 on page 4. Bold type indicates non standard,
enhanced 8051 registers. The two SFR rows that end with “0”
and “8” contain bit addressable registers. The four I/O ports A to
D use the SFR addresses used in the standard 8051 for ports 0
to 3, which are not implemented in FX2LP. Because of the faster
and more efficient SFR addressing, the FX2LP I/O ports are not
addressable in external RAM space (using the MOVX
instruction).
3.3 I2C Bus
FX2LP supports the I2C bus as a master only at 100/400 KHz.
SCL and SDA pins have open-drain outputs and hysteresis
inputs. These signals must be pulled up to 3.3V, even if no I2C
device is connected.
3.4 Buses
All packages, 8-bit or 16-bit “FIFO” bidirectional data bus, multi-
plexed on I/O ports B and D. 128-pin package: adds 16-bit
output-only 8051 address bus, 8-bit bidirectional data bus.
Figure 1. Crystal Configuration
12 pf
12 pf
24 MHz
20 × PLL
C1 C2
12-pF capacitor values assumes a trace capacitance
of 3 pF per side on a four-layer FR4 PCA
Note
1. 115 KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0, UART1, or both respectively.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 4 of 62
3.5 USB Boot Methods
During the power up sequence, internal logic checks the I2C port
for the connection of an EEPROM whose first byte is either 0xC0
or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM
in place of the internally stored values (0xC0), or it boot-loads the
EEPROM contents into internal RAM (0xC2). If no EEPROM is
detected, FX2LP enumerates using internally stored descriptors.
The default ID values for FX2LP are VID/PID/DID (0x04B4,
0x8613, 0xAxxx where xxx = Chip revision).[2]
3.6 ReNumeration
Because the FX2LP’s configuration is soft, one chip can take on
the identities of multiple distinct USB devices.
When first plugged into USB, the FX2LP enumerates automati-
cally and downloads firmware and USB descriptor tables over
the USB cable. Next, the FX2LP enumerates again, this time as
a device defined by the downloaded information. This patented
two step process called ReNumeration happens instantly when
the device is plugged in, without a hint that the initial download
step has occurred.
Two control bits in the USBCS (USB Control and Status) register,
control the ReNumeration process: DISCON and RENUM. To
simulate a USB disconnect, the firmware sets DISCON to 1. To
reconnect, the firmware clears DISCON to 0.
Before reconnecting, the firmware sets or clears the RENUM bit
to indicate whether the firmware or the Default USB Device
handles device requests over endpoint zero: if RENUM = 0, the
Default USB Device handles device requests; if RENUM = 1, the
firmware services the requests.
3.7 Bus-Powered Applications
The FX2LP fully supports bus powered designs by enumerating
with less than 100 mA as required by the USB 2.0 specification.
3.8 Interrupt System
3.8.1 INT2 Interrupt Request and Enable Registers
FX2LP implements an autovector feature for INT2 and INT4.
There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF)
vectors. See EZ-USB Technical Reference Manual (TRM) for
more details.
3.8.2 USB Interrupt Autovectors
The main USB interrupt is shared by 27 interrupt sources. To
save the code and processing time that is required to identify the
individual USB interrupt source, the FX2LP provides a second
level of interrupt vectoring, called Autovectoring. When a USB
interrupt is asserted, the FX2LP pushes the program counter to
its stack, and then jumps to the address 0x0043 where it expects
to find a “jump” instruction to the USB Interrupt service routine.
Table 1. Special Function Registers
x8x 9x Ax Bx Cx Dx Ex Fx
0IOA IOB IOC IOD SCON1 PSW ACC B
1SP EXIF INT2CLR IOE SBUF1
2DPL0 MPAGE INT4CLR OEA
3DPH0 OEB
4DPL1 OEC
5DPH1 OED
6DPS OEE
7PCON
8 TCON SCON0 IE IP T2CON EICON EIE EIP
9 TMOD SBUF0
ATL0AUTOPTRH1 EP2468STAT EP01STAT RCAP2L
BTL1AUTOPTRL1 EP24FIFOFLGS GPIFTRIG RCAP2H
CTH0reserved EP68FIFOFLGS TL2
DTH1AUTOPTRH2 GPIFSGLDATH TH2
ECKCON AUTOPTRL2 GPIFSGLDATLX
Freserved AUTOPTRSET-UP GPIFSGLDATLNOX
Table 2. Default ID Values for FX2LP
Default VID/PID/DID
Vendor ID 0x04B4 Cypress Semiconductor
Product ID 0x8613 EZ-USB FX2LP
Device release 0xAnnn Depends on chip revision
(nnn = chip revision where first
silicon = 001)
Note
2. The I2C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 5 of 62
The FX2LP jump instruction is encoded as follows:
If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP register), the FX2LP substitutes its INT2VEC byte. Therefore, if the high
byte (“page”) of a jump table address is preloaded at the location 0x0044, the automatically inserted INT2VEC byte at 0x0045 directs
the jump to the correct address out of the 27 addresses within the page.
3.8.3 FIFO/GPIF Interrupt (INT4)
Just as the USB Interrupt is shared among 27 individual USB interrupt sources, the FIFO/GPIF interrupt is shared among 14 individual
FIFO/GPIF sources. The FIFO/GPIF Interrupt, like the USB Interrupt, can employ autovectoring. Table 4 on page 6 shows the priority
and INT4VEC values for the 14 FIFO/GPIF interrupt sources.
Table 3. INT2 USB Interrupts
USB INTERRUPT TABLE FOR INT2
Priority INT2VEC Value Source Notes
1 00 SUDAV Setup Data Available
2 04 SOF Start of Frame (or microframe)
3 08 SUTOK Setup Token Received
4 0C SUSPEND USB Suspend request
5 10 USB RESET Bus reset
6 14 HISPEED Entered high speed operation
7 18 EP0ACK FX2LP ACK’d the CONTROL Handshake
8 1C reserved
9 20 EP0-IN EP0-IN ready to be loaded with data
10 24 EP0-OUT EP0-OUT has USB data
11 28 EP1-IN EP1-IN ready to be loaded with data
12 2C EP1-OUT EP1-OUT has USB data
13 30 EP2 IN: buffer available. OUT: buffer has data
14 34 EP4 IN: buffer available. OUT: buffer has data
15 38 EP6 IN: buffer available. OUT: buffer has data
16 3C EP8 IN: buffer available. OUT: buffer has data
17 40 IBN IN-Bulk-NAK (any IN endpoint)
18 44 reserved
19 48 EP0PING EP0 OUT was Pinged and it NAK’d
20 4C EP1PING EP1 OUT was Pinged and it NAK’d
21 50 EP2PING EP2 OUT was Pinged and it NAK’d
22 54 EP4PING EP4 OUT was Pinged and it NAK’d
23 58 EP6PING EP6 OUT was Pinged and it NAK’d
24 5C EP8PING EP8 OUT was Pinged and it NAK’d
25 60 ERRLIMIT Bus errors exceeded the programmed limit
26 64
27 68 reserved
28 6C reserved
29 70 EP2ISOERR ISO EP2 OUT PID sequence error
30 74 EP4ISOERR ISO EP4 OUT PID sequence error
31 78 EP6ISOERR ISO EP6 OUT PID sequence error
32 7C EP8ISOERR ISO EP8 OUT PID sequence error
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 6 of 62
If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP
register), the FX 2LP substitutes its INT4VEC byte. Therefore, if
the high byte (“page”) of a jump-table address is preloaded at
location 0x0054, the automatically inserted INT4VEC byte at
0x0055 directs the jump to the correct address out of the 14
addresses within the page. When the ISR occurs, the FX2LP
pushes the program counter to its stack then jumps to address
0x0053, where it expects to find a “jump” instruction to the ISR
Interrupt service routine.
3.9 Reset and Wakeup
3.9.1 Reset Pin
The input pin, RESET#, resets the FX2LP when asserted. This
pin has hysteresis and is active LOW. When a crystal is used with
the CY7C680xxA the reset period must enable stabilization of
the crystal and the PLL. This reset period must be approximately
5 ms after VCC reaches 3.0V. If the crystal input pin is driven by
a clock signal the internal PLL stabilizes in 200 μs after VCC has
reached 3.0V.[3]
Figure 2 on page 7 shows a power on reset condition and a reset
applied during operation. A power on reset is defined as the time
reset that is asserted while power is being applied to the circuit.
A powered reset is when the FX2LP powered on and operating
and the RESET# pin is asserted.
Cypress provides an application note which describes and
recommends power on reset implementation. For more infor-
mation about reset implementation for the FX2 family of products
visit http://www.cypress.com.
Table 4. Individual FIFO/GPIF Interrupt Sources
Priority INT4VEC Value Source Notes
1 80 EP2PF Endpoint 2 Programmable Flag
2 84 EP4PF Endpoint 4 Programmable Flag
3 88 EP6PF Endpoint 6 Programmable Flag
4 8C EP8PF Endpoint 8 Programmable Flag
5 90 EP2EF Endpoint 2 Empty Flag
6 94 EP4EF Endpoint 4 Empty Flag
7 98 EP6EF Endpoint 6 Empty Flag
8 9C EP8EF Endpoint 8 Empty Flag
9 A0 EP2FF Endpoint 2 Full Flag
10 A4 EP4FF Endpoint 4 Full Flag
11 A8 EP6FF Endpoint 6 Full Flag
12 AC EP8FF Endpoint 8 Full Flag
13 B0 GPIFDONE GPIF Operation Complete
14 B4 GPIFWF GPIF Waveform
Note
3. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 μs.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 7 of 62
3.9.2 Wakeup Pins
The 8051 puts itself and the rest of the chip into a power down
mode by setting PCON.0 = 1. This stops the oscillator and PLL.
When WAKEUP is asserted by external logic the oscillator
restarts after the PLL stabilizes, and the 8051 receives a wakeup
interrupt. This applies whether or not FX2LP is connected to the
USB.
The FX2LP exits the power down (USB suspend) state using one
of the following methods:
USB bus activity (if D+/D– lines are left floating, noise on these
lines may indicate activity to the FX2LP and initiate a wakeup)
External logic asserts the WAKEUP pin
External logic asserts the PA3/WU2 pin
The second wakeup pin, WU2, can also be configured as a
general purpose I/O pin. This enables a simple external R-C
network to be used as a periodic wakeup source. WAKEUP is by
default active LOW.
3.10 Program/Data RAM
3.10.1 Size
The FX2LP has 16 KBytes of internal program/data RAM, where
PSEN#/RD# signals are internally ORed to enable the 8051 to
access it as both program and data memory. No USB control
registers appear in this space.
Two memory maps are shown in the following diagrams:
Figure 3 on page 8 shows the Internal Code Memory, EA = 0
Figure 4 on page 9 shows the External Code Memory, EA = 1.
3.10.2 Internal Code Memory, EA = 0
This mode implements the internal 16 KByte block of RAM
(starting at 0) as combined code and data memory. When
external RAM or ROM is added, the external read and write
strobes are suppressed for memory spaces that exist inside the
chip. This enables the user to connect a 64 KByte memory
without requiring address decodes to keep clear of internal
memory spaces.
Only the internal 16 KBytes and scratch pad 0.5 KBytes RAM
spaces have the following access:
USB download
USB upload
Setup data pointer
I2C interface boot load.
3.10.3 External Code Memory, EA = 1
The bottom 16 KBytes of program memory is external and
therefore the bottom 16 KBytes of internal RAM is accessible
only as a data memory.
Figure 2. Reset Timing Plots
VIL
0V
3.3V
3.0V
TRESET
VCC
RESET#
Power on Reset
TRESET
VCC
RESET#
VIL
Powered Reset
3.3V
0V
Table 5. Reset Timing Values
Condition TRESET
Power on Reset with Crystal 5 ms
Power on Reset with External
Clock
200 μs + Clock stability time
Powered Reset 200 μs
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 8 of 62
Figure 3. Internal Code Memory, EA = 0
Inside FX2LP Outside FX2LP
7.5 KBytes
USB regs and
4K FIFO buffers
(RD#,WR#)
0.5 KBytes RAM
Data (RD#,WR#)*
(OK to populate
data memory
here—RD#/WR#
strobes are not
active)
40 KBytes
External
Data
Memory
(RD#,WR#)
(Ok to populate
data memory
here—RD#/WR#
strobes are not
active)
16 KBytes RAM
Code and Data
(PSEN#,RD#,WR#)*
48 KBytes
External
Code
Memory
(PSEN#)
(OK to populate
program
memory here—
PSEN# strobe
is not active)
*SUDPTR, USB upload/download, I2C interface boot access
FFFF
E200
E1FF
E000
3FFF
0000
Data Code
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 9 of 62
Figure 4. External Code Memory, EA = 1
3.11 Register Addresses
Inside FX2LP Outside FX2LP
7.5 KBytes
USB regs and
4K FIFO buffers
(RD#,WR#)
0.5 KBytes RAM
Data (RD#,WR#)*
(OK to populate
data memory
here—RD#/WR#
strobes are not
active)
40 KBytes
External
Data
Memory
(RD#,WR#)
(Ok to populate
data memory
here—RD#/WR#
strobes are not
active)
16 KBytes
RAM
Data
(RD#,WR#)*
64 KBytes
External
Code
Memory
(PSEN#)
*SUDPTR, USB upload/download, I2C interface boot access
FFFF
E200
E1FF
E000
3FFF
0000
Data Code
FFFF
E800
E7BF
E740
E73F
E700
E6FF
E500
E4FF
E480
E47F
E400
E200
E1FF
E000
E3FF
EFFF
2 KBytes RESERVED
64 Bytes EP0 IN/OUT
64 Bytes RESERVED
8051 Addressable Registers
Reserved (128)
128 bytes GPIF Waveforms
512 bytes
8051 xdata RAM
F000
(512)
Reserved (512)
E780 64 Bytes EP1OUT
E77F
64 Bytes EP1IN
E7FF
E7C0
4 KBytes EP2-EP8
buffers
(8 x 512)
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 10 of 62
3.12 Endpoint RAM
3.12.1 Size
3× 64 bytes (Endpoints 0 and 1)
8 × 512 bytes (Endpoints 2, 4, 6, 8)
3.12.2 Organization
EP0
Bidirectional endpoint zero, 64 byte buffer
EP1IN, EP1OUT
64 byte buffers, bulk or interrupt
EP2, 4, 6, 8
Eight 512 byte buffers, bulk, interrupt, or isochronous. EP4 and
EP8 can be double buffered; EP2 and 6 can be either double,
triple, or quad buffered. For high speed endpoint configuration
options, see Figure 5.
3.12.3 Setup Data Buffer
A separate 8 byte buffer at 0xE6B8-0xE6BF holds the setup data
from a CONTROL transfer.
3.12.4 Endpoint Configurations (High Speed Mode)
Endpoints 0 and 1 are the same for every configuration. Endpoint
0 is the only CONTROL endpoint, and endpoint 1 can be either
BULK or INTERRUPT.
The endpoint buffers can be configured in any 1 of the 12 config-
urations shown in the vertical columns. When operating in the full
speed BULK mode only the first 64 bytes of each buffer are used.
For example, in high speed, the max packet size is 512 bytes but
in full speed it is 64 bytes. Even though a buffer is configured to
a 512 byte buffer, in full speed only the first 64 bytes are used.
The unused endpoint buffer space is not available for other
operations. An example endpoint configuration is the EP2–1024
double buffered; EP6–512 quad buffered (column 8).
Figure 5. Endpoint Configuration
64
64
64
512
512
1024
1024
1024
1024
1024
1024
1024
512
512
512
512
512
512
512
512
512
512
EP2 EP2 EP2
EP6
EP6
EP8 EP8
EP0 IN&OUT
EP1 IN
EP1 OUT
1024
1024
EP6 1024
512
512
EP8
512
512
EP6
512
512
512
512
EP2
512
512
EP4
512
512
EP2
512
512
EP4
512
512
EP2
512
512
EP4
512
512
EP2
512
512
512
512
EP2
512
512
512
512
EP2
512
512
1024
EP2
1024
1024
EP2
1024
1024
EP2
1024
512
512
EP6
1024
1024
EP6
512
512
EP8
512
512
EP6
512
512
512
512
EP6
1024
1024
EP6
512
512
EP8
512
512
EP6
512
512
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
12345678910 11 12
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 11 of 62
3.12.5 Default Full Speed Alternate Settings
3.12.6 Default High Speed Alternate Settings
3.13 External FIFO Interface
3.13.1 Architecture
The FX2LP slave FIFO architecture has eight 512 byte blocks in
the endpoint RAM that directly serve as FIFO memories and are
controlled by FIFO control signals (such as IFCLK, SLCS#,
SLRD, SLWR, SLOE, PKTEND, and flags).
In operation, some of the eight RAM blocks fill or empty from the
SIE, while the others are connected to the I/O transfer logic. The
transfer logic takes two forms, the GPIF for internally generated
control signals and the slave FIFO interface for externally
controlled transfers.
3.13.2 Master/Slave Control Signals
The FX2LP endpoint FIFOS are implemented as eight physically
distinct 256x16 RAM blocks. The 8051/SIE can switch any of the
RAM blocks between two domains, the USB (SIE) domain and
the 8051-I/O Unit domain. This switching is done virtually instan-
taneously, giving essentially zero transfer time between “USB
FIFOS” and “Slave FIFOS.” Because they are physically the
same memory no bytes are actually transferred between buffers.
At any given time, some RAM blocks are filling/emptying with
USB data under SIE control, while other RAM blocks are
available to the 8051, the I/O control unit or both. The RAM
blocks operate as single port in the USB domain, and dual port
in the 8051-I/O domain. The blocks can be configured as single,
double, triple, or quad buffered as previously shown.
The I/O control unit implements either an internal master (M for
master) or external master (S for Slave) interface.
In Master (M) mode, the GPIF internally controls FIFOADR[1..0]
to select a FIFO. The RDY pins (two in the 56-pin package, six
in the 100-pin and 128-pin packages) can be used as flag inputs
from an external FIFO or other logic if desired. The GPIF can be
run from either an internally derived clock or externally supplied
clock (IFCLK), at a rate that transfers data up to 96 Megabytes/s
(48-MHz IFCLK with 16-bit interface).
In Slave (S) mode, the FX2LP accepts either an internally
derived clock or externally supplied clock (IFCLK, max frequency
48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals
from external logic. When using an external IFCLK, the external
clock must be present before switching to the external clock with
the IFCLKSRC bit. Each endpoint can individually be selected
for byte or word operation by an internal configuration bit and a
Slave FIFO Output Enable signal SLOE enables data of the
selected width. External logic must ensure that the output enable
signal is inactive when writing data to a slave FIFO. The slave
interface can also operate asynchronously, where the SLRD and
SLWR signals act directly as strobes, rather than a clock qualifier
as in synchronous mode. The signals SLRD, SLWR, SLOE and
PKTEND are gated by the signal SLCS#.
Table 6. Default Full Speed Alternate Settings[4, 5]
Alternate Setting 0 1 2 3
ep0 64 64 64 64
ep1out 0 64 bulk 64 int 64 int
ep1in 0 64 bulk 64 int 64 int
ep2 0 64 bulk out (2×) 64 int out (2×) 64 iso out (2×)
ep4 0 64 bulk out (2×) 64 bulk out (2×) 64 bulk out (2×)
ep6 0 64 bulk in (2×) 64 int in (2×) 64 iso in (2×)
ep8 0 64 bulk in (2×) 64 bulk in (2×) 64 bulk in (2×)
Notes
4. “0” means “not implemented.”
5. “2×” means “double buffered.”
6. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.
Table 7. Default High Speed Alternate Settings[4, 5]
Alternate Setting 0 1 2 3
ep0 64 64 64 64
ep1out 0 512 bulk[6] 64 int 64 int
ep1in 0 512 bulk[6] 64 int 64 int
ep2 0 512 bulk out (2×) 512 int out (2×) 512 iso out (2×)
ep4 0 512 bulk out (2×) 512 bulk out (2×) 512 bulk out (2×)
ep6 0 512 bulk in (2×) 512 int in (2×) 512 iso in (2×)
ep8 0 512 bulk in (2×) 512 bulk in (2×) 512 bulk in (2×)
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 12 of 62
3.13.3 GPIF and FIFO Clock Rates
An 8051 register bit selects one of two frequencies for the
internally supplied interface clock: 30 MHz and 48 MHz. Alterna-
tively, an externally supplied clock of 5 MHz–48 MHz feeding the
IFCLK pin can be used as the interface clock. IFCLK can be
configured to function as an output clock when the GPIF and
FIFOs are internally clocked. An output enable bit in the
IFCONFIG register turns this clock output off, if desired. Another
bit within the IFCONFIG register inverts the IFCLK signal
whether internally or externally sourced.
3.14 GPIF
The GPIF is a flexible 8-bit or 16-bit parallel interface driven by
a user programmable finite state machine. It enables the
CY7C68013A/15A to perform local bus mastering and can
implement a wide variety of protocols such as ATA interface,
printer parallel port, and Utopia.
The GPIF has six programmable control outputs (CTL), nine
address outputs (GPIFADRx), and six general-purpose ready
inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF
vector defines the state of the control outputs, and determines
what state a ready input (or multiple inputs) must be before
proceeding. The GPIF vector can be programmed to advance a
FIFO to the next data value, advance an address, etc. A
sequence of the GPIF vectors make up a single waveform that
is executed to perform the desired data move between the
FX2LP and the external device.
3.14.1 Six Control OUT Signals
The 100-pin and 128-pin packages bring out all six Control
Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to
define the CTL waveforms. The 56-pin package brings out three
of these signals, CTL0–CTL2. CTLx waveform edges can be
programmed to make transitions as fast as once per clock (20.8
ns using a 48-MHz clock).
3.14.2 Six Ready IN Signals
The 100-pin and 128-pin packages bring out all six Ready inputs
(RDY0–RDY5). The 8051 programs the GPIF unit to test the
RDY pins for GPIF branching. The 56-pin package brings out two
of these signals, RDY0–1.
3.14.3 Nine GPIF Address OUT Signals
Nine GPIF address lines are available in the 100-pin and 128-pin
packages, GPIFADR[8..0]. The GPIF address lines enable
indexing through up to a 512 byte block of RAM. If more address
lines are needed I/O port pins are used.
3.14.4 Long Transfer Mode
In the master mode, the 8051 appropriately sets GPIF trans-
action count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or
GPIFTCB0) for unattended transfers of up to 232 transactions.
The GPIF automatically throttles data flow to prevent under or
overflow until the full number of requested transactions
complete. The GPIF decrements the value in these registers to
represent the current status of the transaction.
3.15 ECC Generation[7]
The EZ-USB can calculate ECCs (Error Correcting Codes) on
data that passes across its GPIF or Slave FIFO interfaces. There
are two ECC configurations: Two ECCs, each calculated over
256 bytes (SmartMedia Standard); and one ECC calculated over
512 bytes.
The ECC can correct any one-bit error or detect any two-bit error.
3.15.1 ECC Implementation
The two ECC configurations are selected by the ECCM bit:
ECCM = 0
Two 3 byte ECCs, each calculated over a 256 byte block of data.
This configuration conforms to the SmartMedia Standard.
Write any value to ECCRESET, then pass data across the GPIF
or Slave FIFO interface. The ECC for the first 256 bytes of data
is calculated and stored in ECC1. The ECC for the next 256 bytes
is stored in ECC2. After the second ECC is calculated, the values
in the ECCx registers do not change until ECCRESET is written
again, even if more data is subsequently passed across the
interface.
ECCM = 1
One 3 byte ECC calculated over a 512 byte block of data.
Write any value to ECCRESET then pass data across the GPIF
or Slave FIFO interface. The ECC for the first 512 bytes of data
is calculated and stored in ECC1; ECC2 is unused. After the
ECC is calculated, the values in ECC1 do not change even if
more data is subsequently passed across the interface, till
ECCRESET is written again.
3.16 USB Uploads and Downloads
The core has the ability to directly edit the data contents of the
internal 16 KByte RAM and of the internal 512 byte scratch pad
RAM via a vendor specific command. This capability is normally
used when soft downloading user code and is available only to
and from internal RAM, only when the 8051 is held in reset. The
available RAM spaces are 16 KBytes from 0x0000–0x3FFF
(code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad
data RAM).[8]
3.17 Autopointer Access
FX2LP provides two identical autopointers. They are similar to
the internal 8051 data pointers but with an additional feature:
they can optionally increment after every memory access. This
capability is available to and from both internal and external
RAM. The autopointers are available in external FX2LP registers
under control of a mode bit (AUTOPTRSET-UP.0). Using the
external FX2LP autopointer access (at 0xE67B – 0xE67C)
enables the autopointer to access all internal and external RAM
to the part.
Also, the autopointers can point to any FX2LP register or
endpoint buffer space. When autopointer access to external
memory is enabled, location 0xE67B and 0xE67C in XDATA and
code space cannot be used.
Notes
7. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.
8. After the data has been downloaded from the host, a “loader” can execute from internal RAM to transfer downloaded data to external memory.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 13 of 62
3.18 I2C Controller
FX2LP has one I2C port that is driven by two internal controllers,
one that automatically operates at boot time to load VID/PID/DID
and configuration information, and another that the 8051 uses
when running to control external I2C devices. The I2C port
operates in master mode only.
3.18.1 I2C Port Pins
The I2C pins SCL and SDA must have external 2.2 kΩ pull up
resistors even if no EEPROM is connected to the FX2LP.
External EEPROM device address pins must be configured
properly. See Table 8 for configuring the device address pins.
3.18.2 I2C Interface Boot Load Access
At power on reset the I2C interface boot loader loads the
VID/PID/DID configuration bytes and up to 16 KBytes of
program/data. The available RAM spaces are 16 KBytes from
0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051
is in reset. I2C interface boot loads only occur after power on
reset.
3.18.3 I2C Interface General-Purpose Access
The 8051 can control peripherals connected to the I2C bus using
the I2CTL and I2DAT registers. FX2LP provides I2C master
control only, it is never an I2C slave.
3.19 Compatible with Previous Generation
EZ-USB FX2
The EZ-USB FX2LP is form, fit and with minor exceptions
functionally compatible with its predecessor, the EZ-USB FX2.
This makes for an easy transition for designers wanting to
upgrade their systems from the FX2 to the FX2LP. The pinout
and package selection are identical and a vast majority of
firmware previously developed for the FX2 functions in the
FX2LP.
For designers migrating from the FX2 to the FX2LP a change in
the bill of material and review of the memory allocation (due to
increased internal memory) is required. For more information
about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the
application note titled Migrating from EZ-USB FX2 to EZ-USB
FX2LP available in the Cypress web site.
Table 8. Strap Boot EEPROM Address Lines to These Values
Bytes Example EEPROM A2 A1 A0
16 24LC00[9] N/A N/A N/A
128 24LC01 0 0 0
256 24LC02 0 0 0
4K 24LC32 0 0 1
8K 24LC64 0 0 1
16K 24LC128 0 0 1
Table 9. Part Number Conversion Table
EZ-USB FX2
Part Number
EZ-USB FX2LP
Part Number Package Description
CY7C68013-56PVC CY7C68013A-56PVXC or CY7C68014A-56PVXC 56-pin SSOP
CY7C68013-56PVCT CY7C68013A-56PVXCT or CY7C68014A-56PVXCT 56-pin SSOP – Tape and Reel
CY7C68013-56LFC CY7C68013A-56LFXC or CY7C68014A-56LFXC 56-pin QFN
CY7C68013-100AC CY7C68013A-100AXC or CY7C68014A-100AXC 100-pin TQFP
CY7C68013-128AC CY7C68013A-128AXC or CY7C68014A-128AXC 128-pin TQFP
Note
9. This EEPROM does not have address pins.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 14 of 62
3.20 CY7C68013A/14A and CY7C68015A/16A
Differences
CY7C68013A is identical to CY7C68014A in form, fit, and
functionality. CY7C68015A is identical to CY7C68016A in form,
fit, and functionality. CY7C68014A and CY7C68016A have a
lower suspend current than CY7C68013A and CY7C68015A
respectively and are ideal for power sensitive battery applica-
tions.
CY7C68015A and CY7C68016A are available in 56-pin QFN
package only. Two additional GPIO signals are available on the
CY7C68015A and CY7C68016A to provide more flexibility when
neither IFCLK or CLKOUT are needed in the 56-pin package.
USB developers wanting to convert their FX2 56-pin application
to a bus-powered system directly benefit from these additional
signals. The two GPIOs give developers the signals they need
for the power control circuitry of their bus-powered application
without pushing them to a high pincount version of FX2LP.
The CY7C68015A is only available in the 56-pin QFN package
4. Pin Assignments
Figure 6 on page 15 identifies all signals for the five package
types. The following pages illustrate the individual pin diagrams,
plus a combination diagram showing which of the full set of
signals are available in the 128-pin, 100-pin, and 56-pin
packages.
The signals on the left edge of the 56-pin package in Figure 6
on page 15 are common to all versions in the FX2LP family with
the noted differences between the CY7C68013A/14A and the
CY7C68015A/16A.
Three modes are available in all package versions: Port, GPIF
master, and Slave FIFO. These modes define the signals on the
right edge of the diagram. The 8051 selects the interface mode
using the IFCONFIG[1:0] register bits. Port mode is the power on
default configuration.
The 100-pin package adds functionality to the 56-pin package by
adding these pins:
PORTC or alternate GPIFADR[7:0] address signals
PORTE or alternate GPIFADR[8] address signal and seven
additional 8051 signals
Three GPIF Control signals
Four GPIF Ready signals
Nine 8051 signals (two USARTs, three timer inputs, INT4,and
INT5#)
BKPT, RD#, WR#.
The 128-pin package adds the 8051 address and data buses
plus control signals. Note that two of the required signals, RD#
and WR#, are present in the 100-pin version.
In the 100-pin and 128-pin versions, an 8051 control bit can be
set to pulse the RD# and WR# pins when the 8051 reads
from/writes to PORTC. This feature is enabled by setting
PORTCSTB bit in CPUCS register.
Section 10.5 displays the timing diagram of the read and write
strobing function on accessing PORTC.
Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Dif-
ferences
CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A
IFCLK PE0
CLKOUT PE1
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 15 of 62
Figure 6. Signal
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 16 of 62
Figure 7. CY7C68013A/CY7C68014A 128-pin TQFP Pin Assignment
CLKOUT
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
AVCC
DPLUS
DMINUS
AGND
A11
A12
A13
A14
A15
VCC
GND
INT4
T0
T1
T2
*IFCLK
RESERVED
BKPT
EA
SCL
SDA
OE#
PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
A3
A2
A1
A0
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
D7
D6
D5
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3
GND
PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
A4
A5
A6
A7
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
A8
A9
A10
CY7C68013A/CY7C68014A
128-pin TQFP
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
VCC
D4
D3
D2
D1
D0
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
RXD1
TXD1
RXD0
TXD0
GND
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
CS#
WR#
RD#
PSEN#
* denotes programmable polarity
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 17 of 62
Figure 8. CY7C68013A/CY7C68014A 100-pin TQFP Pin Assignment
PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3
PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT
CY7C68013A/CY7C68014A
100-pin TQFP
GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
RXD1
TXD1
RXD0
TXD0
GND
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
WR#
RD#
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
AVCC
DPLUS
DMINUS
AGND
VCC
GND
INT4
T0
T1
T2
*IFCLK
RESERVED
BKPT
SCL
SDA
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
* denotes programmable polarity
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 18 of 62
Figure 9. CY7C68013A/CY7C68014A 56-pin SSOP Pin Assignment
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
AVCC
XTALOUT
XTALIN
AGND
AVCC
DPLUS
DMINUS
AGND
VCC
GND
*IFCLK
RESERVED
SCL
SDA
VCC
PB0/FD0
PB1/FD1
PB2/FD2
PB3/FD3
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
PD4/FD12
PD3/FD11
PD2/FD10
PD1/FD9
PD0/FD8
*WAKEUP
VCC
RESET#
GND
PA7/*FLAGD/SLCS#
PA6/PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
CY7C68013A/CY7C68014A
56-pin SSOP
* denotes programmable polarity
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 19 of 62
Figure 10. CY7C68013A/14A/15A/16A 56-pin QFN Pin Assignment
28
27
26
25
24
23
22
21
20
19
18
17
16
15
43
44
45
46
47
48
49
50
51
52
53
54
55
56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
42
41
40
39
38
37
36
35
34
33
32
31
30
29
* denotes programmable polarity
RESET#
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
RDY0/*SLRD
RDY1/*SLWR
AVCC
XTALOUT
XTALIN
AGND
AVCC
DPLUS
DMINUS
AGND
VCC
GND
*IFCLK/**PE0
RESERVED
GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
SDA
SCL
CY7C68013A/CY7C68014A
&
CY7C68015A/CY7C68016A
56-pin QFN
** denotes CY7C68015A/CY7C68016A pinout
VCC
*WAKEUP
PD0/FD8
PD1/FD9
PD2/FD10
PD3/FD11
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT/**PE1
VCC
GND
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 20 of 62
Figure 11. CY7C68013A 56-pin VFBGA Pin Assignment - Top View
12345678
A
B
C
D
E
F
G
H
1A 2A 3A 4A 5A 6A 7A 8A
1B 2B 3B 4B 5B 6B 7B 8B
1C 2C 3C 4C 5C 6C 7C 8C
1D 2D 7D 8D
1E 2E 7E 8E
1F 2F 3F 4F 5F 6F 7F 8F
1G 2G 3G 4G 5G 6G 7G 8G
1H 2H 3H 4H 5H 6H 7H 8H
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 21 of 62
4.1 CY7C68013A/15A Pin Descriptions
The FX2LP Pin Descriptions follows.[10]
Table 11. FX2LP Pin Descriptions
128
TQFP
100
TQFP
56
SSOP
56
QFN
56 VF-
BGA Name Type Default Description
10 9 10 3 2D AVCC Power N/A Analog VCC. Connect this pin to 3.3V power source.
This signal provides power to the analog section of the
chip.
17 16 14 7 1D AVCC Power N/A Analog VCC. Connect this pin to 3.3V power source.
This signal provides power to the analog section of the
chip.
13 12 13 6 2F AGND Ground N/A Analog Ground. Connect to ground with as short a path
as possible.
20 19 17 10 1F AGND Ground N/A Analog Ground. Connect to ground with as short a path
as possible.
19 18 16 9 1E DMINUS I/O/Z Z USB D– Signal. Connect to the USB D– signal.
18 17 15 8 2E DPLUS I/O/Z Z USB D+ Signal. Connect to the USB D+ signal.
94 A0 Output L 8051 Address Bus. This bus is driven at all times.
When the 8051 is addressing internal RAM it reflects
the internal address.
95 A1 Output L
96 A2 Output L
97 A3 Output L
117 A4 Output L
118 A5 Output L
119 A6 Output L
120 A7 Output L
126 A8 Output L
127 A9 Output L
128 A10 Output L
21 A11 Output L
22 A12 Output L
23 A13 Output L
24 A14 Output L
25 A15 Output L
59 D0 I/O/Z Z 8051 Data Bus. This bidirectional bus is high
impedance when inactive, input for bus reads, and
output for bus writes. The data bus is used for external
8051 program and data memory. The data bus is active
only for external bus accesses, and is driven LOW in
suspend.
60 D1 I/O/Z Z
61 D2 I/O/Z Z
62 D3 I/O/Z Z
63 D4 I/O/Z Z
86 D5 I/O/Z Z
87 D6 I/O/Z Z
88 D7 I/O/Z Z
39 PSEN# Output H Program Store Enable. This active-LOW signal
indicates an 8051 code fetch from external memory. It
is active for program memory fetches from
0x4000–0xFFFF when the EA pin is LOW, or from
0x0000–0xFFFF when the EA pin is HIGH.
Note
10. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in
standby. Note also that no pins should be driven while the device is powered down.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 22 of 62
34 28 BKPT Output L Breakpoint. This pin goes active (HIGH) when the 8051
address bus matches the BPADDRH/L registers and
breakpoints are enabled in the BREAKPT register
(BPEN = 1). If the BPPULSE bit in the BREAKPT
register is HIGH, this signal pulses HIGH for eight
12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the
signal remains HIGH until the 8051 clears the BREAK
bit (by writing 1 to it) in the BREAKPT register.
99 77 49 42 8B RESET# Input N/A Active LOW Reset. Resets the entire chip. See section
3.9 ”Reset and Wakeup” on page 6 for more details.
35 EA Input N/A External Access. This pin determines where the 8051
fetches code between addresses 0x0000 and 0x3FFF.
If EA = 0 the 8051 fetches this code from its internal
RAM. IF EA = 1 the 8051 fetches this code from external
memory.
12 11 12 5 1C XTALIN Input N/A Crystal Input. Connect this signal to a 24-MHz
parallel-resonant, fundamental mode crystal and load
capacitor to GND.
It is also correct to drive XTALIN with an external
24-MHz square wave derived from another clock
source. When driving from an external source, the
driving signal should be a 3.3V square wave.
11 10 11 4 2C XTALOUT Output N/A Crystal Output. Connect this signal to a 24-MHz
parallel-resonant, fundamental mode crystal and load
capacitor to GND.
If an external clock is used to drive XTALIN, leave this
pin open.
1 100 5 54 2B CLKOUT on
CY7C68013A
and
CY7C68014A
------------------
PE1 on
CY7C68015A
and
CY7C68016A
O/Z
-----------
I/O/Z
12 MHz
----------
I
CLKOUT: 12-, 24- or 48-MHz clock, phase locked to the
24-MHz input clock. The 8051 defaults to 12-MHz
operation. The 8051 may three-state this output by
setting CPUCS.1 = 1.
------------------------------------------------------------------------
PE1 is a bidirectional I/O port pin.
Port A
82 67 40 33 8G PA0 or
INT0#
I/O/Z I
(PA0)
Multiplexed pin whose function is selected by
PORTACFG.0
PA0 is a bidirectional I/O port pin.
INT0# is the active-LOW 8051 INT0 interrupt input
signal, which is either edge triggered (IT0 = 1) or level
triggered (IT0 = 0).
83 68 41 34 6G PA1 or
INT1#
I/O/Z I
(PA1)
Multiplexed pin whose function is selected by:
PORTACFG.1
PA1 is a bidirectional I/O port pin.
INT1# is the active-LOW 8051 INT1 interrupt input
signal, which is either edge triggered (IT1 = 1) or level
triggered (IT1 = 0).
84 69 42 35 8F PA2 or
SLOE or
I/O/Z I
(PA2)
Multiplexed pin whose function is selected by two bits:
IFCONFIG[1:0].
PA2 is a bidirectional I/O port pin.
SLOE is an input-only output enable with program-
mable polarity (FIFOPINPOLAR.4) for the slave FIFOs
connected to FD[7..0] or FD[15..0].
Table 11. FX2LP Pin Descriptions (continued)
128
TQFP
100
TQFP
56
SSOP
56
QFN
56 VF-
BGA Name Type Default Description
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 23 of 62
85 70 43 36 7F PA3 or
WU2
I/O/Z I
(PA3)
Multiplexed pin whose function is selected by:
WAKEUP.7 and OEA.3
PA3 is a bidirectional I/O port pin.
WU2 is an alternate source for USB Wakeup, enabled
by WU2EN bit (WAKEUP.1) and polarity set by
WU2POL (WAKEUP.4). If the 8051 is in suspend and
WU2EN = 1, a transition on this pin starts up the oscil-
lator and interrupts the 8051 to enable it to exit the
suspend mode. Asserting this pin inhibits the chip from
suspending, if WU2EN = 1.
89 71 44 37 6F PA4 or
FIFOADR0
I/O/Z I
(PA4)
Multiplexed pin whose function is selected by:
IFCONFIG[1..0].
PA4 is a bidirectional I/O port pin.
FIFOADR0 is an input-only address select for the slave
FIFOs connected to FD[7..0] or FD[15..0].
90 72 45 38 8C PA5 or
FIFOADR1
I/O/Z I
(PA5)
Multiplexed pin whose function is selected by:
IFCONFIG[1..0].
PA5 is a bidirectional I/O port pin.
FIFOADR1 is an input-only address select for the slave
FIFOs connected to FD[7..0] or FD[15..0].
91 73 46 39 7C PA6 or
PKTEND
I/O/Z I
(PA6)
Multiplexed pin whose function is selected by the
IFCONFIG[1:0] bits.
PA6 is a bidirectional I/O port pin.
PKTEND is an input used to commit the FIFO packet
data to the endpoint and whose polarity is program-
mable via FIFOPINPOLAR.5.
92 74 47 40 6C PA7 or
FLAGD or
SLCS#
I/O/Z I
(PA7)
Multiplexed pin whose function is selected by the
IFCONFIG[1:0] and PORTACFG.7 bits.
PA7 is a bidirectional I/O port pin.
FLAGD is a programmable slave-FIFO output status
flag signal.
SLCS# gates all other slave FIFO enable/strobes
Port B
44 34 25 18 3H PB0 or
FD[0]
I/O/Z I
(PB0)
Multiplexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB0 is a bidirectional I/O port pin.
FD[0] is the bidirectional FIFO/GPIF data bus.
45 35 26 19 4F PB1 or
FD[1]
I/O/Z I
(PB1)
Multiplexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB1 is a bidirectional I/O port pin.
FD[1] is the bidirectional FIFO/GPIF data bus.
46 36 27 20 4H PB2 or
FD[2]
I/O/Z I
(PB2)
Multiplexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB2 is a bidirectional I/O port pin.
FD[2] is the bidirectional FIFO/GPIF data bus.
47 37 28 21 4G PB3 or
FD[3]
I/O/Z I
(PB3)
Multiplexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB3 is a bidirectional I/O port pin.
FD[3] is the bidirectional FIFO/GPIF data bus.
54 44 29 22 5H PB4 or
FD[4]
I/O/Z I
(PB4)
Multiplexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB4 is a bidirectional I/O port pin.
FD[4] is the bidirectional FIFO/GPIF data bus.
Table 11. FX2LP Pin Descriptions (continued)
128
TQFP
100
TQFP
56
SSOP
56
QFN
56 VF-
BGA Name Type Default Description
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 24 of 62
55 45 30 23 5G PB5 or
FD[5]
I/O/Z I
(PB5)
Multiplexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB5 is a bidirectional I/O port pin.
FD[5] is the bidirectional FIFO/GPIF data bus.
56 46 31 24 5F PB6 or
FD[6]
I/O/Z I
(PB6)
Multiplexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB6 is a bidirectional I/O port pin.
FD[6] is the bidirectional FIFO/GPIF data bus.
57 47 32 25 6H PB7 or
FD[7]
I/O/Z I
(PB7)
Multiplexed pin whose function is selected by the
following bits: IFCONFIG[1..0].
PB7 is a bidirectional I/O port pin.
FD[7] is the bidirectional FIFO/GPIF data bus.
PORT C
72 57 PC0 or
GPIFADR0
I/O/Z I
(PC0)
Multiplexed pin whose function is selected by
PORTCCFG.0
PC0 is a bidirectional I/O port pin.
GPIFADR0 is a GPIF address output pin.
73 58 PC1 or
GPIFADR1
I/O/Z I
(PC1)
Multiplexed pin whose function is selected by
PORTCCFG.1
PC1 is a bidirectional I/O port pin.
GPIFADR1 is a GPIF address output pin.
74 59 PC2 or
GPIFADR2
I/O/Z I
(PC2)
Multiplexed pin whose function is selected by
PORTCCFG.2
PC2 is a bidirectional I/O port pin.
GPIFADR2 is a GPIF address output pin.
75 60 PC3 or
GPIFADR3
I/O/Z I
(PC3)
Multiplexed pin whose function is selected by
PORTCCFG.3
PC3 is a bidirectional I/O port pin.
GPIFADR3 is a GPIF address output pin.
76 61 PC4 or
GPIFADR4
I/O/Z I
(PC4)
Multiplexed pin whose function is selected by
PORTCCFG.4
PC4 is a bidirectional I/O port pin.
GPIFADR4 is a GPIF address output pin.
77 62 PC5 or
GPIFADR5
I/O/Z I
(PC5)
Multiplexed pin whose function is selected by
PORTCCFG.5
PC5 is a bidirectional I/O port pin.
GPIFADR5 is a GPIF address output pin.
78 63 PC6 or
GPIFADR6
I/O/Z I
(PC6)
Multiplexed pin whose function is selected by
PORTCCFG.6
PC6 is a bidirectional I/O port pin.
GPIFADR6 is a GPIF address output pin.
79 64 PC7 or
GPIFADR7
I/O/Z I
(PC7)
Multiplexed pin whose function is selected by
PORTCCFG.7
PC7 is a bidirectional I/O port pin.
GPIFADR7 is a GPIF address output pin.
PORT D
102 80 52 45 8A PD0 or
FD[8]
I/O/Z I
(PD0)
Multiplexed pin whose function is selected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[8] is the bidirectional FIFO/GPIF data bus.
103 81 53 46 7A PD1 or
FD[9]
I/O/Z I
(PD1)
Multiplexed pin whose function is selected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[9] is the bidirectional FIFO/GPIF data bus.
Table 11. FX2LP Pin Descriptions (continued)
128
TQFP
100
TQFP
56
SSOP
56
QFN
56 VF-
BGA Name Type Default Description
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 25 of 62
104 82 54 47 6B PD2 or
FD[10]
I/O/Z I
(PD2)
Multiplexed pin whose function is selected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[10] is the bidirectional FIFO/GPIF data bus.
105 83 55 48 6A PD3 or
FD[11]
I/O/Z I
(PD3)
Multiplexed pin whose function is selected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[11] is the bidirectional FIFO/GPIF data bus.
121 95 56 49 3B PD4 or
FD[12]
I/O/Z I
(PD4)
Multiplexed pin whose function is selected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[12] is the bidirectional FIFO/GPIF data bus.
122 96 1 50 3A PD5 or
FD[13]
I/O/Z I
(PD5)
Multiplexed pin whose function is selected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[13] is the bidirectional FIFO/GPIF data bus.
123 97 2 51 3C PD6 or
FD[14]
I/O/Z I
(PD6)
Multiplexed pin whose function is selected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[14] is the bidirectional FIFO/GPIF data bus.
124 98 3 52 2A PD7 or
FD[15]
I/O/Z I
(PD7)
Multiplexed pin whose function is selected by the
IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[15] is the bidirectional FIFO/GPIF data bus.
Port E
108 86 PE0 or
T0OUT
I/O/Z I
(PE0)
Multiplexed pin whose function is selected by the
PORTECFG.0 bit.
PE0 is a bidirectional I/O port pin.
T0OUT is an active-HIGH signal from 8051
Timer-counter0. T0OUT outputs a high level for one
CLKOUT clock cycle when Timer0 overflows. If Timer0
is operated in Mode 3 (two separate timer/counters),
T0OUT is active when the low byte timer/counter
overflows.
109 87 PE1 or
T1OUT
I/O/Z I
(PE1)
Multiplexed pin whose function is selected by the
PORTECFG.1 bit.
PE1 is a bidirectional I/O port pin.
T1OUT is an active-HIGH signal from 8051
Timer-counter1. T1OUT outputs a high level for one
CLKOUT clock cycle when Timer1 overflows. If Timer1
is operated in Mode 3 (two separate timer/counters),
T1OUT is active when the low byte timer/counter
overflows.
110 88 PE2 or
T2OUT
I/O/Z I
(PE2)
Multiplexed pin whose function is selected by the
PORTECFG.2 bit.
PE2 is a bidirectional I/O port pin.
T2OUT is the active-HIGH output signal from 8051
Timer2. T2OUT is active (HIGH) for one clock cycle
when Timer/Counter 2 overflows.
111 89 PE3 or
RXD0OUT
I/O/Z I
(PE3)
Multiplexed pin whose function is selected by the
PORTECFG.3 bit.
PE3 is a bidirectional I/O port pin.
RXD0OUT is an active-HIGH signal from 8051 UART0.
If RXD0OUT is selected and UART0 is in Mode 0, this
pin provides the output data for UART0 only when it is
in sync mode. Otherwise it is a 1.
Table 11. FX2LP Pin Descriptions (continued)
128
TQFP
100
TQFP
56
SSOP
56
QFN
56 VF-
BGA Name Type Default Description
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 26 of 62
112 90 PE4 or
RXD1OUT
I/O/Z I
(PE4)
Multiplexed pin whose function is selected by the
PORTECFG.4 bit.
PE4 is a bidirectional I/O port pin.
RXD1OUT is an active-HIGH output from 8051 UART1.
When RXD1OUT is selected and UART1 is in Mode 0,
this pin provides the output data for UART1 only when
it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH.
113 91 PE5 or
INT6
I/O/Z I
(PE5)
Multiplexed pin whose function is selected by the
PORTECFG.5 bit.
PE5 is a bidirectional I/O port pin.
INT6 is the 8051 INT6 interrupt request input signal. The
INT6 pin is edge-sensitive, active HIGH.
114 92 PE6 or
T2EX
I/O/Z I
(PE6)
Multiplexed pin whose function is selected by the
PORTECFG.6 bit.
PE6 is a bidirectional I/O port pin.
T2EX is an active-HIGH input signal to the 8051 Timer2.
T2EX reloads timer 2 on its falling edge. T2EX is active
only if the EXEN2 bit is set in T2CON.
115 93 PE7 or
GPIFADR8
I/O/Z I
(PE7)
Multiplexed pin whose function is selected by the
PORTECFG.7 bit.
PE7 is a bidirectional I/O port pin.
GPIFADR8 is a GPIF address output pin.
4 3 8 1 1A RDY0 or
SLRD
Input N/A Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
RDY0 is a GPIF input signal.
SLRD is the input-only read strobe with programmable
polarity (FIFOPINPOLAR.3) for the slave FIFOs
connected to FD[7..0] or FD[15..0].
5 4 9 2 1B RDY1 or
SLWR
Input N/A Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
RDY1 is a GPIF input signal.
SLWR is the input-only write strobe with programmable
polarity (FIFOPINPOLAR.2) for the slave FIFOs
connected to FD[7..0] or FD[15..0].
6 5 RDY2 Input N/A RDY2 is a GPIF input signal.
7 6 RDY3 Input N/A RDY3 is a GPIF input signal.
8 7 RDY4 Input N/A RDY4 is a GPIF input signal.
9 8 RDY5 Input N/A RDY5 is a GPIF input signal.
69 54 36 29 7H CTL0 or
FLAGA
O/Z H Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
CTL0 is a GPIF control output.
FLAGA is a programmable slave-FIFO output status
flag signal.
Defaults to programmable for the FIFO selected by the
FIFOADR[1:0] pins.
Table 11. FX2LP Pin Descriptions (continued)
128
TQFP
100
TQFP
56
SSOP
56
QFN
56 VF-
BGA Name Type Default Description
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 27 of 62
70 55 37 30 7G CTL1 or
FLAGB
O/Z H Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
CTL1 is a GPIF control output.
FLAGB is a programmable slave-FIFO output status
flag signal.
Defaults to FULL for the FIFO selected by the
FIFOADR[1:0] pins.
71 56 38 31 8H CTL2 or
FLAGC
O/Z H Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
CTL2 is a GPIF control output.
FLAGC is a programmable slave-FIFO output status
flag signal.
Defaults to EMPTY for the FIFO selected by the
FIFOADR[1:0] pins.
66 51 CTL3 O/Z H CTL3 is a GPIF control output.
67 52 CTL4 Output H CTL4 is a GPIF control output.
98 76 CTL5 Output H CTL5 is a GPIF control output.
32 26 20 13 2G IFCLK on
CY7C68013A
and
CY7C68014A
------------------
PE0 on
CY7C68015A
and
CY7C68016A
I/O/Z
-----------
I/O/Z
Z
----------
I
Interface Clock, used for synchronously clocking data
into or out of the slave FIFOs. IFCLK also serves as a
timing reference for all slave FIFO control signals and
GPIF. When internal clocking is used (IFCONFIG.7 = 1)
the IFCLK pin can be configured to output 30/48 MHz
by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be
inverted, whether internally or externally sourced, by
setting the bit IFCONFIG.4 =1.
-----------------------------------------------------------------------
PE0 is a bidirectional I/O port pin.
28 22 INT4 Input N/A INT4 is the 8051 INT4 interrupt request input signal. The
INT4 pin is edge-sensitive, active HIGH.
106 84 INT5# Input N/A INT5# is the 8051 INT5 interrupt request input signal.
The INT5 pin is edge-sensitive, active LOW.
31 25 T2 Input N/A T2 is the active-HIGH T2 input signal to 8051 Timer2,
which provides the input to Timer2 when C/T2 = 1.
When C/T2 = 0, Timer2 does not use this pin.
30 24 T1 Input N/A T1 is the active-HIGH T1 signal for 8051 Timer1, which
provides the input to Timer1 when C/T1 is 1. When C/T1
is 0, Timer1 does not use this bit.
29 23 T0 Input N/A T0 is the active-HIGH T0 signal for 8051 Timer0, which
provides the input to Timer0 when C/T0 is 1. When C/T0
is 0, Timer0 does not use this bit.
53 43 RXD1 Input N/A RXD1is an active-HIGH input signal for 8051 UART1,
which provides data to the UART in all modes.
52 42 TXD1 Output H TXD1is an active-HIGH output pin from 8051 UART1,
which provides the output clock in sync mode, and the
output data in async mode.
51 41 RXD0 Input N/A RXD0 is the active-HIGH RXD0 input to 8051 UART0,
which provides data to the UART in all modes.
Table 11. FX2LP Pin Descriptions (continued)
128
TQFP
100
TQFP
56
SSOP
56
QFN
56 VF-
BGA Name Type Default Description
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 28 of 62
50 40 TXD0 Output H TXD0 is the active-HIGH TXD0 output from 8051
UART0, which provides the output clock in sync mode,
and the output data in async mode.
42 CS# Output H CS# is the active-LOW chip select for external memory.
41 32 WR# Output H WR# is the active-LOW write strobe output for external
memory.
40 31 RD# Output H RD# is the active-LOW read strobe output for external
memory.
38 OE# Output H OE# is the active-LOW output enable for external
memory.
33 27 21 14 2H Reserved Input N/A Reserved. Connect to ground.
101 79 51 44 7B WAKEUP Input N/A USB Wakeup. If the 8051 is in suspend, asserting this
pin starts up the oscillator and interrupts the 8051 to
enable it to exit the suspend mode. Holding WAKEUP
asserted inhibits the EZ-USB® chip from suspending.
This pin has programmable polarity (WAKEUP.4).
36 29 22 15 3F SCL OD Z Clock for the I2C interface. Connect to VCC with a 2.2K
resistor, even if no I2C peripheral is attached.
37 30 23 16 3G SDA OD Z Data for I2C-compatible interface. Connect to VCC
with a 2.2K resistor, even if no I2C-compatible
peripheral is attached.
216555AVCC PowerN/AVCC. Connect to 3.3V power source.
26 20 18 11 1G VCC Power N/A VCC. Connect to 3.3V power source.
43 33 24 17 7E VCC Power N/A VCC. Connect to 3.3V power source.
48 38 VCC Power N/A VCC. Connect to 3.3V power source.
64 49 34 27 8E VCC Power N/A VCC. Connect to 3.3V power source.
68 53 VCC Power N/A VCC. Connect to 3.3V power source.
81 66 39 32 5C VCC Power N/A VCC. Connect to 3.3V power source.
100 78 50 43 5B VCC Power N/A VCC. Connect to 3.3V power source.
107 85 VCC Power N/A VCC. Connect to 3.3V power source.
3 2 7 56 4B GND Ground N/A Ground.
27 21 19 12 1H GND Ground N/A Ground.
49 39 GND Ground N/A Ground.
58 48 33 26 7D GND Ground N/A Ground.
65 50 35 28 8D GND Ground N/A Ground.
80 65 GND Ground N/A Ground.
93 75 48 41 4C GND Ground N/A Ground.
116 94 GND Ground N/A Ground.
125 99 4 53 4A GND Ground N/A Ground.
14 13 NC N/A N/A No Connect. This pin must be left open.
15 14 NC N/A N/A No Connect. This pin must be left open.
16 15 NC N/A N/A No Connect. This pin must be left open.
Table 11. FX2LP Pin Descriptions (continued)
128
TQFP
100
TQFP
56
SSOP
56
QFN
56 VF-
BGA Name Type Default Description
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 29 of 62
5. Register Summary
FX2LP register bit definitions are described in the FX2LP TRM in greater detail.
Table 12. FX2LP Register Summary
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
GPIF Waveform Memories
E400 128 WAVEDATA GPIF Waveform
Descriptor 0, 1, 2, 3 data
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E480 128 reserved
GENERAL CONFIGURATION
E50D GPCR2 General Purpose Configu-
ration Register 2
reserved reserved reserved FULL_SPEE
D_ONLY
reserved reserved reserved reserved 00000000 R
E600 1CPUCS CPU Control & Status 0 0 PORTCSTB CLKSPD1 CLKSPD0 CLKINV CLKOE 8051RES 00000010 rrbbbbbr
E601 1IFCONFIG Interface Configuration
(Ports, GPIF, slave FIFOs)
IFCLKSRC 3048MHZ IFCLKOE IFCLKPOL ASYNC GSTATE IFCFG1 IFCFG0 10000000 RW
E602 1PINFLAGSAB[11]
Slave FIFO FLAGA and
FLAGB Pin Configuration
FLAGB3 FLAGB2 FLAGB1 FLAGB0 FLAGA3 FLAGA2 FLAGA1 FLAGA0 00000000 RW
E603 1PINFLAGSCD[11] Slave FIFO FLAGC and
FLAGD Pin Configuration
FLAGD3 FLAGD2 FLAGD1 FLAGD0 FLAGC3 FLAGC2 FLAGC1 FLAGC0 00000000 RW
E604 1FIFORESET[11]
Restore FIFOS to default
state
NAKALL 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W
E605 1BREAKPT Breakpoint Control 0 0 0 0 BREAK BPPULSE BPEN 000000000 rrrrbbbr
E606 1BPADDRH Breakpoint Address H A15 A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW
E607 1BPADDRL Breakpoint Address L A7 A6 A5 A4 A3 A2 A1 A0 xxxxxxxx RW
E608 1UART230 230 Kbaud internally
generated ref. clock
0 0 0 0 0 0 230UART1 230UART0 00000000 rrrrrrbb
E609 1FIFOPINPOLAR[11]
Slave FIFO Interface pins
polarity
0 0 PKTEND SLOE SLRD SLWR EF FF 00000000 rrbbbbbb
E60A 1REVID Chip Revision rv7 rv6 rv5 rv4 rv3 rv2 rv1 rv0 RevA
00000001
R
E60B 1REVCTL[11] Chip Revision Control 0 0 0 0 0 0 dyn_out enh_pkt 00000000 rrrrrrbb
UDMA
E60C 1GPIFHOLDAMOUNT MSTB Hold Time
(for UDMA)
0 0 0 0 0 0 HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb
3reserved
ENDPOINT CONFIGURATION
E610 1EP1OUTCFG Endpoint 1-OUT
Configuration
VALID 0TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr
E611 1EP1INCFG Endpoint 1-IN
Configuration
VALID 0TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr
E612 1EP2CFG Endpoint 2 Configuration VALID DIR TYPE1 TYPE0 SIZE 0BUF1 BUF0 10100010 bbbbbrbb
E613 1EP4CFG Endpoint 4 Configuration VALID DIR TYPE1 TYPE0 0 0 0 0 10100000 bbbbrrrr
E614 1EP6CFG Endpoint 6 Configuration VALID DIR TYPE1 TYPE0 SIZE 0BUF1 BUF0 11100010 bbbbbrbb
E615 1EP8CFG Endpoint 8 Configuration VALID DIR TYPE1 TYPE0 0 0 0 0 1110000 0 bbbbrrrr
2reserved
E618 1EP2FIFOCFG[11]
Endpoint 2 / slave FIFO
configuration
0INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0WORDWIDE 00000101 rbbbbbrb
E619 1EP4FIFOCFG[11]
Endpoint 4 / slave FIFO
configuration
0INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0WORDWIDE 00000101 rbbbbbrb
E61A 1EP6FIFOCFG[11]
Endpoint 6 / slave FIFO
configuration
0INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0WORDWIDE 00000101 rbbbbbrb
E61B 1EP8FIFOCFG[11]
Endpoint 8 / slave FIFO
configuration
0INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0WORDWIDE 00000101 rbbbbbrb
E61C 4reserved
E620 1EP2AUTOINLENH[11 Endpoint 2 AUTOIN
Packet Length H
0 0 0 0 0 PL10 PL9 PL8 00000010 rrrrrbbb
E621 1EP2AUTOINLENL[11] Endpoint 2 AUTOIN
Packet Length L
PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
E622 1EP4AUTOINLENH[11] Endpoint 4 AUTOIN
Packet Length H
0 0 0 0 0 0 PL9 PL8 00000010 rrrrrrbb
E623 1EP4AUTOINLENL[11] Endpoint 4 AUTOIN
Packet Length L
PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
E624 1EP6AUTOINLENH[11] Endpoint 6 AUTOIN
Packet Length H
0 0 0 0 0 PL10 PL9 PL8 00000010 rrrrrbbb
E625 1EP6AUTOINLENL[11] Endpoint 6 AUTOIN
Packet Length L
PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
E626 1EP8AUTOINLENH[11] Endpoint 8 AUTOIN
Packet Length H
0 0 0 0 0 0 PL9 PL8 00000010 rrrrrrbb
E627 1EP8AUTOINLENL[11] Endpoint 8 AUTOIN
Packet Length L
PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW
E628 1ECCCFG ECC Configuration 0 0 0 0 0 0 0 ECCM 00000000 rrrrrrrb
E629 1ECCRESET ECC Reset x x x x x x x x 00000000 W
E62A 1ECC1B0 ECC1 Byte 0 Address LINE15 LINE14 LINE13 LINE12 LINE11 LINE10 LINE9 LINE8 00000000 R
Note
11. Read and writes to these registers may require synchronization delay, see Technical Reference Manual for “Synchronization Delay.”
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 30 of 62
E62B 1ECC1B1 ECC1 Byte 1 Address LINE7 LINE6 LINE5 LINE4 LINE3 LINE2 LINE1 LINE0 00000000 R
E62C 1ECC1B2 ECC1 Byte 2 Address COL5 COL4 COL3 COL2 COL1 COL0 LINE17 LINE16 00000000 R
E62D 1ECC2B0 ECC2 Byte 0 Address LINE15 LINE14 LINE13 LINE12 LINE11 LINE10 LINE9 LINE8 00000000 R
E62E 1ECC2B1 ECC2 Byte 1 Address LINE7 LINE6 LINE5 LINE4 LINE3 LINE2 LINE1 LINE0 00000000 R
E62F 1ECC2B2 ECC2 Byte 2 Address COL5 COL4 COL3 COL2 COL1 COL0 0 0 00000000 R
E630
H.S.
1EP2FIFOPFH[11]
Endpoint 2 / slave FIFO
Programmable Flag H
DECIS PKTSTAT IN:PKTS[2]
OUT:PFC12
IN:PKTS[1]
OUT:PFC11
IN:PKTS[0]
OUT:PFC10
0PFC9 PFC8 10001000 bbbbbrbb
E630
F.S .
1EP2FIFOPFH[11]
Endpoint 2 / slave FIFO
Programmable Flag H
DECIS PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10 0PFC9 IN:PKTS[2]
OUT:PFC8
10001000 bbbbbrbb
E631
H.S.
1EP2FIFOPFL[11]
Endpoint 2 / slave FIFO
Programmable Flag L
PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E631
F.S
1EP2FIFOPFL[11]
Endpoint 2 / slave FIFO
Programmable Flag L
IN:PKTS[1]
OUT:PFC7
IN:PKTS[0]
OUT:PFC6
PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E632
H.S.
1EP4FIFOPFH[11]
Endpoint 4 / slave FIFO
Programmable Flag H
DECIS PKTSTAT 0IN: PKTS[1]
OUT:PFC10
IN: PKTS[0]
OUT:PFC9
0 0 PFC8 10001000 bbrbbrrb
E632
F.S
1EP4FIFOPFH[11]
Endpoint 4 / slave FIFO
Programmable Flag H
DECIS PKTSTAT 0OUT:PFC10 OUT:PFC9 0 0 PFC8 10001000 bbrbbrrb
E633
H.S.
1EP4FIFOPFL[11]
Endpoint 4 / slave FIFO
Programmable Flag L
PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E633
F.S
1EP4FIFOPFL[11]
Endpoint 4 / slave FIFO
Programmable Flag L
IN: PKTS[1]
OUT:PFC7
IN: PKTS[0]
OUT:PFC6
PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E634
H.S.
1EP6FIFOPFH[11]
Endpoint 6 / slave FIFO
Programmable Flag H
DECIS PKTSTAT IN:PKTS[2]
OUT:PFC12
IN:PKTS[1]
OUT:PFC11
IN:PKTS[0]
OUT:PFC10
0PFC9 PFC8 00001000 bbbbbrbb
E634
F.S
1EP6FIFOPFH[11]
Endpoint 6 / slave FIFO
Programmable Flag H
DECIS PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10 0PFC9 IN:PKTS[2]
OUT:PFC8
00001000 bbbbbrbb
E635
H.S.
1EP6FIFOPFL[11]
Endpoint 6 / slave FIFO
Programmable Flag L
PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E635
F.S
1EP6FIFOPFL[11]
Endpoint 6 / slave FIFO
Programmable Flag L
IN:PKTS[1]
OUT:PFC7
IN:PKTS[0]
OUT:PFC6
PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E636
H.S.
1EP8FIFOPFH[11]
Endpoint 8 / slave FIFO
Programmable Flag H
DECIS PKTSTAT 0IN: PKTS[1]
OUT:PFC10
IN: PKTS[0]
OUT:PFC9
0 0 PFC8 00001000 bbrbbrrb
E636
F.S
1EP8FIFOPFH[11]
Endpoint 8 / slave FIFO
Programmable Flag H
DECIS PKTSTAT 0OUT:PFC10 OUT:PFC9 0 0 PFC8 00001000 bbrbbrrb
E637
H.S.
1EP8FIFOPFL[11]
Endpoint 8 / slave FIFO
Programmable Flag L
PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
E637
F.S
1EP8FIFOPFL[11]
Endpoint 8 / slave FIFO
Programmable Flag L
IN: PKTS[1]
OUT:PFC7
IN: PKTS[0]
OUT:PFC6
PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW
8reserved
E640 1EP2ISOINPKTS EP2 (if ISO) IN Packets
per frame (1-3)
AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrbb
E641 1EP4ISOINPKTS EP4 (if ISO) IN Packets
per frame (1-3)
AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrrr
E642 1EP6ISOINPKTS EP6 (if ISO) IN Packets
per frame (1-3)
AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrbb
E643 1EP8ISOINPKTS EP8 (if ISO) IN Packets
per frame (1-3)
AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrrr
E644 4reserved
E648 1INPKTEND[11] Force IN Packet End Skip 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W
E649 7OUTPKTEND[11] Force OUT Packet End Skip 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W
INTERRUPTS
E650 1EP2FIFOIE[11]
Endpoint 2 slave FIFO
Flag Interrupt Enable
0 0 0 0 EDGEPF PF EF FF 00000000 RW
E651 1EP2FIFOIRQ[11,12] Endpoint 2 slave FIFO
Flag Interrupt Request
0 0 0 0 0 PF EF FF 00000000 rrrrrbbb
E652 1EP4FIFOIE[11]
Endpoint 4 slave FIFO
Flag Interrupt Enable
0 0 0 0 EDGEPF PF EF FF 00000000 RW
E653 1EP4FIFOIRQ[11,12] Endpoint 4 slave FIFO
Flag Interrupt Request
0 0 0 0 0 PF EF FF 00000000 rrrrrbbb
E654 1EP6FIFOIE[11]
Endpoint 6 slave FIFO
Flag Interrupt Enable
0 0 0 0 EDGEPF PF EF FF 00000000 RW
E655 1EP6FIFOIRQ[11,12] Endpoint 6 slave FIFO
Flag Interrupt Request
0 0 0 0 0 PF EF FF 00000000 rrrrrbbb
E656 1EP8FIFOIE[11]
Endpoint 8 slave FIFO
Flag Interrupt Enable
0 0 0 0 EDGEPF PF EF FF 00000000 RW
E657 1EP8FIFOIRQ[11,12] Endpoint 8 slave FIFO
Flag Interrupt Request
0 0 0 0 0 PF EF FF 00000000 rrrrrbbb
E658 1IBNIE IN-BULK-NAK Interrupt
Enable
0 0 EP8 EP6 EP4 EP2 EP1 EP0 00000000 RW
E659 1 IBNIRQ[12] IN-BULK-NAK interrupt
Request
0 0 EP8 EP6 EP4 EP2 EP1 EP0 00xxxxxx rrbbbbbb
E65A 1NAKIE Endpoint Ping-NAK / IBN
Interrupt Enable
EP8 EP6 EP4 EP2 EP1 EP0 0IBN 00000000 RW
E65B 1NAKIRQ[12] Endpoint Ping-NAK / IBN
Interrupt Request
EP8 EP6 EP4 EP2 EP1 EP0 0IBN xxxxxx0x bbbbbbrb
E65C 1USBIE USB Int Enables 0EP0ACK HSGRANT URES SUSP SUTOK SOF SUDAV 00000000 RW
Note
12. The register can only be reset, it cannot be set.
Table 12. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 31 of 62
E65D 1USBIRQ[12] USB Interrupt Requests 0EP0ACK HSGRANT URES SUSP SUTOK SOF SUDAV 0xxxxxxx rbbbbbbb
E65E 1EPIE Endpoint Interrupt
Enables
EP8 EP6 EP4 EP2 EP1OUT EP1IN EP0OUT EP0IN 00000000 RW
E65F 1EPIRQ[12] Endpoint Interrupt
Requests
EP8 EP6 EP4 EP2 EP1OUT EP1IN EP0OUT EP0IN 0RW
E660 1GPIFIE[11] GPIF Interrupt Enable 0 0 0 0 0 0 GPIFWF GPIFDONE 00000000 RW
E661 1GPIFIRQ[11] GPIF Interrupt Request 0 0 0 0 0 0 GPIFWF GPIFDONE 000000xx RW
E662 1USBERRIE USB Error Interrupt
Enables
ISOEP8 ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT 00000000 RW
E663 1USBERRIRQ[12] USB Error Interrupt
Requests
ISOEP8 ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT 0000000x bbbbrrrb
E664 1ERRCNTLIM USB Error counter and
limit
EC3 EC2 EC1 EC0 LIMIT3 LIMIT2 LIMIT1 LIMIT0 xxxx0100 rrrrbbbb
E665 1CLRERRCNT Clear Error Counter EC3:0 x x x x x x x x xxxxxxxx W
E666 1INT2IVEC Interrupt 2 (USB)
Autovector
0I2V4 I2V3 I2V2 I2V1 I2V0 0 0 00000000 R
E667 1INT4IVEC Interrupt 4 (slave FIFO &
GPIF) Autovector
1 0 I4V3 I4V2 I4V1 I4V0 0 0 10000000 R
E668 1INTSET-UP Interrupt 2&4 setup 0 0 0 0 AV2EN 0INT4SRC AV4EN 00000000 RW
E669 7reserved
INPUT / OUTPUT
E670 1PORTACFG I/O PORTA Alternate
Configuration
FLAGD SLCS 0 0 0 0 INT1 INT0 00000000 RW
E671 1PORTCCFG I/O PORTC Alternate
Configuration
GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0 00000000 RW
E672 1PORTECFG I/O PORTE Alternate
Configuration
GPIFA8 T2EX INT6 RXD1OUT RXD0OUT T2OUT T1OUT T0OUT 00000000 RW
E673 4reserved
E677 1reserved
E678 1 I2CS I²C Bus
Control & Status
START STOP LASTRD ID1 ID0 BERR ACK DONE 000xx000 bbbrrrrr
E679 1I2DAT I²C Bus
Data
d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW
E67A 1 I2CTL I²C Bus
Control
0 0 0 0 0 0 STOPIE 400KHZ 00000000 RW
E67B 1XAUTODAT1 Autoptr1 MOVX access,
when APTREN=1
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E67C 1XAUTODAT2 Autoptr2 MOVX access,
when APTREN=1
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
UDMA CRC
E67D 1UDMACRCH[11] UDMA CRC MSB CRC15 CRC14 CRC13 CRC12 CRC11 CRC10 CRC9 CRC8 01001010 RW
E67E 1UDMACRCL[11] UDMA CRC LSB CRC7 CRC6 CRC5 CRC4 CRC3 CRC2 CRC1 CRC0 10111010 RW
E67F 1UDMACRC-
QUALIFIER
UDMA CRC Qualifier QENABLE 0 0 0 QSTATE QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb
USB CONTROL
E680 1USBCS USB Control & Status HSM 0 0 0 DISCON NOSYNSOF RENUM SIGRSUME x0000000 rrrrbbbb
E681 1SUSPEND Put chip into suspend x x x x x x x x xxxxxxxx W
E682 1WAKEUPCS Wakeup Control & Status WU2 WU WU2POL WUPOL 0DPEN WU2EN WUEN xx000101 bbbbrbbb
E683 1TOGCTL Tog gl e Co n tr o l Q S R I/O EP3 EP2 EP1 EP0 x0000000 rrrbbbbb
E684 1USBFRAMEH USB Frame count H 0 0 0 0 0 FC10 FC9 FC8 00000xxx R
E685 1USBFRAMEL USB Frame count L FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 xxxxxxxx R
E686 1MICROFRAME Microframe count, 0-7 0 0 0 0 0 MF2 MF1 MF0 00000xxx R
E687 1FNADDR USB Function address 0FA6 FA5 FA4 FA3 FA2 FA1 FA0 0xxxxxxx R
E688 2reserved
ENDPOINTS
E68A 1EP0BCH[11] Endpoint 0 Byte Count H (BC15) (BC14) (BC13) (BC12) (BC11) (BC10) (BC9) (BC8) xxxxxxxx RW
E68B 1EP0BCL[11] Endpoint 0 Byte Count L (BC7) BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
E68C 1reserved
E68D 1EP1OUTBC Endpoint 1 OUT Byte
Count
0BC6 BC5 BC4 BC3 BC2 BC1 BC0 0xxxxxxx RW
E68E 1reserved
E68F 1EP1INBC Endpoint 1 IN Byte Count 0BC6 BC5 BC4 BC3 BC2 BC1 BC0 0xxxxxxx RW
E690 1EP2BCH[11] Endpoint 2 Byte Count H 0 0 0 0 0 BC10 BC9 BC8 00000xxx RW
E691 1EP2BCL[11] Endpoint 2 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
E692 2reserved
E694 1EP4BCH[11] Endpoint 4 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW
E695 1EP4BCL[11] Endpoint 4 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
E696 2reserved
E698 1EP6BCH[11] Endpoint 6 Byte Count H 0 0 0 0 0 BC10 BC9 BC8 00000xxx RW
E699 1EP6BCL[11] Endpoint 6 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
E69A 2reserved
E69C 1EP8BCH[11] Endpoint 8 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW
Table 12. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 32 of 62
E69D 1EP8BCL[11] Endpoint 8 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW
E69E 2reserved
E6A0 1EP0CS Endpoint 0 Control and
Status
HSNAK 0 0 0 0 0 BUSY STALL 10000000 bbbbbbrb
E6A1 1EP1OUTCS Endpoint 1 OUT Control
and Status
0 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb
E6A2 1EP1INCS Endpoint 1 IN Control and
Status
0 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb
E6A3 1EP2CS Endpoint 2 Control and
Status
0NPAK2 NPAK1 NPAK0 FULL EMPTY 0STALL 00101000 rrrrrrrb
E6A4 1EP4CS Endpoint 4 Control and
Status
0 0 NPAK1 NPAK0 FULL EMPTY 0STALL 00101000 rrrrrrrb
E6A5 1EP6CS Endpoint 6 Control and
Status
0NPAK2 NPAK1 NPAK0 FULL EMPTY 0STALL 00000100 rrrrrrrb
E6A6 1EP8CS Endpoint 8 Control and
Status
0 0 NPAK1 NPAK0 FULL EMPTY 0STALL 00000100 rrrrrrrb
E6A7 1EP2FIFOFLGS Endpoint 2 slave FIFO
Flags
0 0 0 0 0 PF EF FF 00000010 R
E6A8 1EP4FIFOFLGS Endpoint 4 slave FIFO
Flags
0 0 0 0 0 PF EF FF 00000010 R
E6A9 1EP6FIFOFLGS Endpoint 6 slave FIFO
Flags
0 0 0 0 0 PF EF FF 00000110 R
E6AA 1EP8FIFOFLGS Endpoint 8 slave FIFO
Flags
0 0 0 0 0 PF EF FF 00000110 R
E6AB 1EP2FIFOBCH Endpoint 2 slave FIFO
total byte count H
0 0 0 BC12 BC11 BC10 BC9 BC8 00000000 R
E6AC 1EP2FIFOBCL Endpoint 2 slave FIFO
total byte count L
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R
E6AD 1EP4FIFOBCH Endpoint 4 slave FIFO
total byte count H
0 0 0 0 0 BC10 BC9 BC8 00000000 R
E6AE 1EP4FIFOBCL Endpoint 4 slave FIFO
total byte count L
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R
E6AF 1EP6FIFOBCH Endpoint 6 slave FIFO
total byte count H
0 0 0 0 BC11 BC10 BC9 BC8 00000000 R
E6B0 1EP6FIFOBCL Endpoint 6 slave FIFO
total byte count L
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R
E6B1 1EP8FIFOBCH Endpoint 8 slave FIFO
total byte count H
0 0 0 0 0 BC10 BC9 BC8 00000000 R
E6B2 1EP8FIFOBCL Endpoint 8 slave FIFO
total byte count L
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R
E6B3 1SUDPTRH Setup Data Pointer high
address byte
A15 A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW
E6B4 1SUDPTRL Setup Data Pointer low ad-
dress byte
A7 A6 A5 A4 A3 A2 A1 0 xxxxxxx0 bbbbbbbr
E6B5 1SUDPTRCTL Setup Data Pointer Auto
Mode
0 0 0 0 0 0 0 SDPAUTO 00000001 RW
2reserved
E6B8 8SET-UPDAT 8 bytes of setup data D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R
SET-UPDAT[0] =
bmRequestType
SET-UPDAT[1] =
bmRequest
SET-UPDAT[2:3] = wVal-
ue
SET-UPDAT[4:5] = wInd-
ex
SET-UPDAT[6:7] =
wLength
GPIF
E6C0 1GPIFWFSELECT Waveform Selector SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 FIFOWR0 FIFORD1 FIFORD0 11100 100 RW
E6C1 1GPIFIDLECS GPIF Done, GPIF IDLE
drive mode
DONE 0 0 0 0 0 0 IDLEDRV 10000000 RW
E6C2 1GPIFIDLECTL Inactive Bus, CTL states 0 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTL0 11111111 RW
E6C3 1GPIFCTLCFG CTL Drive Type TRICTL 0CTL5 CTL4 CTL3 CTL2 CTL1 CTL0 00000000 RW
E6C4 1GPIFADRH[11] GPIF Address H 0 0 0 0 0 0 0 GPIFA8 00000000 RW
E6C5 1GPIFADRL[11] GPIF Address L GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0 00000000 RW
FLOWSTATE
E6C6 1 FLOWSTATE Flowstate Enable and
Selector
FSE 0 0 0 0 FS2 FS1 FS0 00000000 brrrrbbb
E6C7 1FLOWLOGIC Flowstate Logic LFUNC1 LFUNC0 TERMA2 TERMA1 TERMA0 TERMB2 TERMB1 TERMB0 00000000 RW
E6C8 1FLOWEQ0CTL CTL-Pin States in
Flowstate
(when Logic = 0)
CTL0E3 CTL0E2 CTL0E1/
CTL5
CTL0E0/
CTL4
CTL3 CTL2 CTL1 CTL0 00000000 RW
E6C9 1FLOWEQ1CTL CTL-Pin States in Flow-
state (when Logic = 1)
CTL0E3 CTL0E2 CTL0E1/
CTL5
CTL0E0/
CTL4
CTL3 CTL2 CTL1 CTL0 00000000 RW
E6CA 1FLOWHOLDOFF Holdoff Configuration HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD
0
HOSTATE HOCTL2 HOCTL1 HOCTL0 00010010 RW
Table 12. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 33 of 62
E6CB 1FLOWSTB Flowstate Strobe
Configuration
SLAVE RDYASYNC CTLTOGL SUSTAIN 0MSTB2 MSTB1 MSTB0 00100000 RW
E6CC 1FLOWSTBEDGE Flowstate Rising/Falling
Edge Configuration
0 0 0 0 0 0 FALLING RISING 00000001 rrrrrrbb
E6CD 1FLOWSTBPERIOD Master-Strobe Half-Period D7 D6 D5 D4 D3 D2 D1 D0 00000010 RW
E6CE 1GPIFTCB3[11] GPIF Transaction Count
Byte 3
TC31 TC30 TC29 TC28 TC27 TC26 TC25 TC24 00000000 RW
E6CF 1GPIFTCB2[11] GPIF Transaction Count
Byte 2
TC23 TC22 TC21 TC20 TC19 TC18 TC17 TC16 00000000 RW
E6D0 1GPIFTCB1[11] GPIF Transaction Count
Byte 1
TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8 00000000 RW
E6D1 1GPIFTCB0[11] GPIF Transaction Count
Byte 0
TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0 00000001 RW
2reserved 00000000 RW
reserved
reserved
E6D2 1EP2GPIFFLGSEL[11] Endpoint 2 GPIF Flag
select
0 0 0 0 0 0 FS1 FS0 00000000 RW
E6D3 1EP2GPIFPFSTOP Endpoint 2 GPIF stop
transaction on prog. flag
0 0 0 0 0 0 0 FIFO2FLAG 00000000 RW
E6D4 1EP2GPIFTRIG[11] Endpoint 2 GPIF Trigger x x x x x x x x xxxxxxxx W
3reserved
reserved
reserved
E6DA 1EP4GPIFFLGSEL[11] Endpoint 4 GPIF Flag
select
0 0 0 0 0 0 FS1 FS0 00000000 RW
E6DB 1EP4GPIFPFSTOP Endpoint 4 GPIF stop
transaction on GPIF Flag
0 0 0 0 0 0 0 FIFO4FLAG 00000000 RW
E6DC 1EP4GPIFTRIG[11] Endpoint 4 GPIF Trigger x x x x x x x x xxxxxxxx W
3reserved
reserved
reserved
E6E2 1EP6GPIFFLGSEL[11] Endpoint 6 GPIF Flag
select
0 0 0 0 0 0 FS1 FS0 00000000 RW
E6E3 1EP6GPIFPFSTOP Endpoint 6 GPIF stop
transaction on prog. flag
0 0 0 0 0 0 0 FIFO6FLAG 00000000 RW
E6E4 1EP6GPIFTRIG[11] Endpoint 6 GPIF Trigger x x x x x x x x xxxxxxxx W
3reserved
reserved
reserved
E6EA 1EP8GPIFFLGSEL[11] Endpoint 8 GPIF Flag
select
0 0 0 0 0 0 FS1 FS0 00000000 RW
E6EB 1EP8GPIFPFSTOP Endpoint 8 GPIF stop
transaction on prog. flag
0 0 0 0 0 0 0 FIFO8FLAG 00000000 RW
E6EC 1EP8GPIFTRIG[11] Endpoint 8 GPIF Trigger x x x x x x x x xxxxxxxx W
3reserved
E6F0 1 XGPIFSGLDATH GPIF Data H
(16-bit mode only)
D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW
E6F1 1XGPIFSGLDATLX Read/Write GPIF Data L &
trigger transaction
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E6F2 1XGPIFSGLDATL-
NOX
Read GPIF Data L, no
transaction trigger
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R
E6F3 1GPIFREADYCFG Internal RDY, Sync/Async,
RDY pin states
INTRDY SAS TCXRDY5 0 0 0 0 0 00000000 bbbrrrrr
E6F4 1GPIFREADYSTAT GPIF Ready Status 0 0 RDY5 RDY4 RDY3 RDY2 RDY1 RDY0 00xxxxxx R
E6F5 1GPIFABORT Abort GPIF Waveforms x x x x x x x x xxxxxxxx W
E6F6 2reserved
ENDPOINT BUFFERS
E740 64 EP0BUF EP0-IN/-OUT buffer D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E780 64 EP10UTBUF EP1-OUT buffer D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E7C0 64 EP1INBUF EP1-IN buffer D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
E800 2048 reserved RW
F000 1024 EP2FIFOBUF 512/1024 byte EP 2 / slave
FIFO buffer (IN or OUT)
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
F400 512 EP4FIFOBUF 512 byte EP 4 / slave FIFO
buffer (IN or OUT)
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
F600 512 reserved
F800 1024 EP6FIFOBUF 512/1024 byte EP 6 / slave
FIFO buffer (IN or OUT)
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
FC00 512 EP8FIFOBUF 512 byte EP 8 / slave FIFO
buffer (IN or OUT)
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
FE00 512 reserved
Table 12. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 34 of 62
xxxx I²C Configuration Byte 0DISCON 0 0 0 0 0 400KHZ xxxxxxxx
[14] n/a
Special Function Registers (SFRs)
80 1IOA[13] Port A (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
81 1SP Stack Pointer D7 D6 D5 D4 D3 D2 D1 D0 00000111 RW
82 1DPL0 Data Pointer 0 L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW
83 1DPH0 Data Pointer 0 H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
84 1DPL1[13] Data Pointer 1 L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW
85 1DPH1[13] Data Pointer 1 H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
86 1DPS[13] Data Pointer 0/1 select 0 0 0 0 0 0 0 SEL 00000000 RW
87 1PCON Power Control SMOD0 x 1 1 x x x IDLE 00110000 RW
88 1TCON Timer/Counter Control
(bit addressable)
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00000000 RW
89 1TMOD Timer/Counter Mode
Control
GATE CT M1 M0 GATE CT M1 M0 00000000 RW
8A 1TL0 Timer 0 reload L D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
8B 1TL1 Timer 1 reload L D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
8C 1TH0 Timer 0 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW
8D 1TH1 Timer 1 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW
8E 1CKCON[13] Clock Control x x T2M T1M T0M MD2 MD1 MD0 00000001 RW
8F 1reserved
90 1IOB[13] Port B (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
91 1EXIF[13] External Interrupt Flag(s) IE5 IE4 I²CINT USBNT 1 0 0 0 00001000 RW
92 1MPAGE[13] Upper Addr Byte of MOVX
using @R0 / @R1
A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
93 5reserved
98 1SCON0 Serial Port 0 Control
(bit addressable)
SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 00000000 RW
99 1SBUF0 Serial Port 0 Data Buffer D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
9A 1AUTOPTRH1[13] Autopointer 1 Address H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
9B 1AUTOPTRL1[13] Autopointer 1 Address L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW
9C 1reserved
9D 1AUTOPTRH2[13] Autopointer 2 Address H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW
9E 1AUTOPTRL2[13] Autopointer 2 Address L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW
9F 1reserved
A0 1IOC[13] Port C (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
A1 1INT2CLR[13] Interrupt 2 clear x x x x x x x x xxxxxxxx W
A2 1INT4CLR[13] Interrupt 4 clear x x x x x x x x xxxxxxxx W
A3 5reserved
A8 1IE Interrupt Enable
(bit addressable)
EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 00000000 RW
A9 1reserved
AA 1EP2468STAT[13] Endpoint 2,4,6,8 status
flags
EP8F EP8E EP6F EP6E EP4F EP4E EP2F EP2E 01011010 R
AB 1EP24FIFOFLGS
[13] Endpoint 2,4 slave FIFO
status flags
0EP4PF EP4EF EP4FF 0EP2PF EP2EF EP2FF 00100010 R
AC 1EP68FIFOFLGS
[13] Endpoint 6,8 slave FIFO
status flags
0EP8PF EP8EF EP8FF 0EP6PF EP6EF EP6FF 01100110 R
AD 2reserved
AF 1AUTOPTRSETUP[13] Autopointer 1&2 setup 0 0 0 0 0 APTR2INC APTR1INC APTREN 00000110 RW
B0 1IOD[13] Port D (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
B1 1IOE[13] Port E
(NOT bit addressable)
D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
B2 1OEA[13] Port A Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
B3 1OEB[13] Port B Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
B4 1OEC[13] Port C Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
B5 1OED[13] Port D Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
B6 1OEE[13] Port E Output Enable D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
B7 1reserved
B8 1IP Interrupt Priority (bit ad-
dressable)
1PS1 PT2 PS0 PT1 PX1 PT0 PX0 10000000 RW
B9 1reserved
BA 1EP01STAT[13] Endpoint 0&1 Status 0 0 0 0 0 EP1INBSY EP1OUTBS
Y
EP0BSY 00000000 R
BB 1GPIFTRIG[13, 11] Endpoint 2,4,6,8 GPIF
slave FIFO Trigger
DONE 0 0 0 0 RW EP1 EP0 10000xxx brrrrbbb
BC 1reserved
BD 1GPIFSGLDATH[13] GPIF Data H (16-bit mode
only)
D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW
Note
13. SFRs not part of the standard 8051 architecture.
14. If no EEPROM is detected by the SIE then the default is 00000000.
Table 12. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 35 of 62
BE 1GPIFSGLDATLX[13] GPIF Data L w/ Trigger D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW
BF 1GPIFSGLDATL-
NOX[13] GPIF Data L w/ No Trigger D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R
C0 1SCON1[13] Serial Port 1 Control (bit
addressable)
SM0_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 00000000 RW
C1 1SBUF1[13] Serial Port 1 Data Buffer D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
C2 6reserved
C8 1T2CON Timer/Counter 2 Control
(bit addressable)
TF2 EXF2 RCLK TCLK EXEN2 TR2 CT2 CPRL2 00000000 RW
C9 1reserved
CA 1RCAP2L Capture for Timer 2, au-
to-reload, up-counter
D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
CB 1RCAP2H Capture for Timer 2, au-
to-reload, up-counter
D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
CC 1TL2 Timer 2 reload L D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
CD 1TH2 Timer 2 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW
CE 2reserved
D0 1PSW Program Status Word (bit
addressable)
CY AC F0 RS1 RS0 OV F1 P00000000 RW
D1 7reserved
D8 1EICON[13] External Interrupt Control SMOD1 1ERESI RESI INT6 0 0 0 01000000 RW
D9 7reserved
E0 1ACC Accumulator (bit address-
able)
D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
E1 7reserved
E8 1EIE[13] External Interrupt En-
able(s)
1 1 1 EX6 EX5 EX4 EI²C EUSB 11100000 RW
E9 7reserved
F0 1 B B (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW
F1 7reserved
F8 1EIP[13] External Interrupt Priority
Control
1 1 1 PX6 PX5 PX4 PI²C PUSB 11100000 RW
F9 7reserved
Table 12. FX2LP Register Summary (continued)
Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access
r = read-only bit
w = write-only bit
b = both read/write bit
R = all bits read-only
W = all bits write-only
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 36 of 62
6. Absolute Maximum Ratings
Exceeding maximum ratings may impair the useful life of the
device. These user guidelines are not tested.
Storage Temperature ......................................–65°C to +150°C
Ambient Temperature with
Power Supplied (Commercial)...............................0°C to +70°C
Ambient Temperature with
Power Supplied (Industrial) ............................–40°C to + 105°C
Supply Voltage to Ground Potential.................... –0.5V to +4.0V
DC Input Voltage to Any Input Pin[15] ................................5.25V
DC Voltage Applied to Outputs
in High Z State .......................................... –0.5V to VCC + 0.5V
Power Dissipation..........................................................300 mW
Static Discharge Voltage................. ...............................>2000V
Max Output Current, per I/O port......................................10 mA
Max Output Current, all five I/O ports
(128- and 100-pin packages)............................................50 mA
7. Operating Conditions
TA (Ambient Temperature Under Bias)
Commercial ...........................................................0°C to +70°C
TA (Ambient Temperature Under Bias)
Industrial–40°C to +105°C
Supply Voltage................................................ +3.00V to +3.60V
Ground Voltage.......................................................................0V
FOSC (Oscillator or Crystal Frequency)............24 MHz ± 10 ppm,
Parallel Resonant
8. Thermal Characteristics
The following table displays the thermal characteristics of various packages:
The Junction Temperature θj, can be calculated using the following equation: θj = P*θJa + θa
where,
P = Power
θJa = Junction to Ambient Temperature (θJc + θCa)
θa = Ambient Temperature (70 C)
The Case Temperature θc, can be calculated using the following equation: θc = P*θCa + θa
where,
P = Power
θCa = Case to Ambient Temperature
θa = Ambient Temperature (70 C)
Table 13. Thermal Characteristics
Package
θa
Ambient Temperature
(°C)
θJc
Junction to Case
Temperature
(°C/W)
θCa
Case to Ambient
Temperature
(°C/W)
θJa
Junction to Ambient Temperature
θJc + θCa
(°C/W)
56 SSOP 70 24.4 23.3 47.7
100 TQFP 70 11.9 34.0 45.9
128 TQFP 70 15.5 27.7 43.2
56 QFN 70 10.6 14.6 25.2
56 VFBGA 70 30.9 27.7 58.6
Note
15. Do not power I/O with chip power off.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 37 of 62
9. DC Characteristics
9.1 USB Transceiver
USB 2.0 compliant in full speed and high speed modes.
10. AC Electrical Characteristics
10.1 USB Transceiver
USB 2.0 compliant in full speed and high speed modes.
Table 14. DC Characteristics
Parameter Description Conditions Min Typ Max Unit
VCC Supply Voltage 3.00 3.3 3.60 V
VCC Ramp Up 0 to 3.3V 200 μs
VIH Input HIGH Voltage 2 5.25 V
VIL Input LOW Voltage –0.5 0.8 V
VIH_X Crystal Input HIGH Voltage 2 5.25 V
VIL_X Crystal Input LOW Voltage –0.5 0.8 V
IIInput Leakage Current 0< VIN < VCC ±10 μA
VOH Output Voltage HIGH IOUT = 4 mA 2.4 V
VOL Output LOW Voltage IOUT = –4 mA 0.4 V
IOH Output Current HIGH 4mA
IOL Output Current LOW 4mA
CIN Input Pin Capacitance Except D+/D– 10 pF
D+/D– 15 pF
ISUSP Suspend Current Connected 300 380[16] μA
CY7C68014/CY7C68016 Disconnected 100 150[16] μA
Suspend Current Connected 0.5 1.2[16] mA
CY7C68013/CY7C68015 Disconnected 0.3 1.0[16] mA
ICC Supply Current 8051 running, connected to USB HS 50 85 mA
8051 running, connected to USB FS 35 65 mA
TRESET Reset Time after Valid Power VCC min = 3.0V 5.0 mS
Pin Reset after powered on 200 μS
Note
16. Measured at Max VCC, 25°C.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 38 of 62
10.2 Program Memory Read
Figure 12. Program Memory Read Timing Diagram
tCL
tDH
tSOEL
tSCSL
PSEN#
D[7..0]
OE#
A[15..0]
CS#
tSTBL
data in
tACC1
tAV
tSTBH
tAV
CLKOUT[17]
[18]
Table 15. Program Memory Read Parameters
Parameter Description Min Typ Max Unit Notes
tCL 1/CLKOUT Frequency 20.83 ns 48 MHz
41.66 ns 24 MHz
83.2 ns 12 MHz
tAV Delay from Clock to Valid Address 0 10.7 ns
tSTBL Clock to PSEN Low 0 8 ns
tSTBH Clock to PSEN High 0 8 ns
tSOEL Clock to OE Low 11.1 ns
tSCSL Clock to CS Low 13 ns
tDSU Data Setup to Clock 9.6 ns
tDH Data Hold Time 0 ns
Notes
17. CLKOUT is shown with positive polarity.
18. tACC1 is computed from the above parameters as follows:
tACC1(24 MHz) = 3*tCL – tAV – tDSU = 106 ns
tACC1(48 MHz) = 3*tCL – tAV – tDSU = 43 ns.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 39 of 62
10.3 Data Memory Read
Figure 13. Data Memory Read Timing Diagram
data in
tCL
A[15..0]
tAV tAV
RD#
tSTBL tSTBH
tDH
D[7..0] data in
tACC1
[19] tDSU
Stretch = 0
Stretch = 1
tCL
A[15..0]
tAV
RD#
tDH
D[7..0] tACC1
tDSU
CS#
CS#
tSCSL
OE#
tSOEL
CLKOUT[17]
CLKOUT[17]
[19]
Table 16. Data Memory Read Parameters
Parameter Description Min Typ Max Unit Notes
tCL 1/CLKOUT Frequency 20.83 ns 48 MHz
41.66 ns 24 MHz
83.2 ns 12 MHz
tAV Delay from Clock to Valid Address 10.7 ns
tSTBL Clock to RD LOW 11 ns
tSTBH Clock to RD HIGH 11 ns
tSCSL Clock to CS LOW 13 ns
tSOEL Clock to OE LOW 11.1 ns
tDSU Data Setup to Clock 9.6 ns
tDH Data Hold Time 0 ns
When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either
RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for
which is based on the stretch value
Note
19. tACC2 and tACC3 are computed from the above parameters as follows:
tACC2(24 MHz) = 3*tCL – tAV –tDSU = 106 ns
tACC2(48 MHz) = 3*tCL – tAV – tDSU = 43 ns
tACC3(24 MHz) = 5*tCL – tAV –tDSU = 190 ns
tACC3(48 MHz) = 5*tCL – tAV – tDSU = 86 ns.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 40 of 62
10.4 Data Memory Write
Figure 14. Data Memory Write Timing Diagram
When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD#
or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for which is
based on the stretch value.
t
OFF1
CLKOUT
A[15..0]
WR#
t
AV
D[7..0]
t
CL
t
STBL
t
STBH
data out
t
OFF1
CLKOUT
A[15..0]
WR#
t
AV
D[7..0]
t
CL
data out
Stretch = 1
t
ON1
t
SCSL
t
AV
CS#
t
ON1
CS#
Table 17. Data Memory Write Parameters
Parameter Description Min Max Unit Notes
tAV Delay from Clock to Valid Address 0 10.7 ns
tSTBL Clock to WR Pulse LOW 0 11.2 ns
tSTBH Clock to WR Pulse HIGH 0 11.2 ns
tSCSL Clock to CS Pulse LOW 13.0 ns
tON1 Clock to Data Turn-on 0 13.1 ns
tOFF1 Clock to Data Hold Time 0 13.1 ns
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 41 of 62
10.5 PORTC Strobe Feature Timings
The RD# and WR# are present in the 100-pin version and the
128-pin package. In these 100-pin and 128-pin versions, an
8051 control bit can be set to pulse the RD# and WR# pins when
the 8051 reads from or writes to PORTC. This feature is enabled
by setting PORTCSTB bit in CPUCS register.
The RD# and WR# strobes are asserted for two CLKOUT cycles
when PORTC is accessed.
The WR# strobe is asserted two clock cycles after PORTC is
updated and is active for two clock cycles after that, as shown in
Figure 15.
As for read, the value of PORTC three clock cycles before the
assertion of RD# is the value that the 8051 reads in. The RD# is
pulsed for 2 clock cycles after 3 clock cycles from the point when
the 8051 has performed a read function on PORTC.
The RD# signal prompts the external logic to prepare the next
data byte. Nothing gets sampled internally on assertion of the
RD# signal itself, it is just a prefetch type signal to get the next
data byte prepared. So, using it with that in mind easily meets the
setup time to the next read.
The purpose of this pulsing of RD# is to allow the external
peripheral to know that the 8051 is done reading PORTC and the
data was latched into PORTC three CLKOUT cycles before
asserting the RD# signal. After the RD# is pulsed, the external
logic can update the data on PORTC.
Following is the timing diagram of the read and write strobing
function on accessing PORTC. Refer to Section 10.3 and
Section 10.4 for details on propagation delay of RD# and WR#
signals.
Figure 15. WR# Strobe Function when PORTC is Accessed by 8051
Figure 16. RD# Strobe Function when PORTC is Accessed by 8051
CLKOUT
WR#
tCLKOUT
PORTC IS UPDATED
tSTBL tSTBH
CLKOUT
tCLKOUT
DATA MUST BE HELD FOR 3 CLK CYLCES DATA CAN BE UPDATED BY EXTERNAL LOGIC
8051 READS PORTC
RD#
tSTBL tSTBH
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 42 of 62
10.6 GPIF Synchronous Signals
Figure 17. GPIF Synchronous Signals Timing Diagram[20]
DATA(output)
tXGD
IFCLK
RDYX
DATA(input) valid
tSRY
tRYH
tIFCLK
tSGD
CTL
X
t
XCTL
tDAH
NN+1
GPIFADR[8:0]
tSGA
Table 18. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[20, 21]
Parameter Description Min Max Unit
tIFCLK IFCLK Period 20.83 ns
tSRY RDYX to Clock Setup Time 8.9 ns
tRYH Clock to RDYX 0ns
tSGD GPIF Data to Clock Setup Time 9.2 ns
tDAH GPIF Data Hold Time 0 ns
tSGA Clock to GPIF Address Propagation Delay 7.5 ns
tXGD Clock to GPIF Data Output Propagation Delay 11 ns
tXCTL Clock to CTLX Output Propagation Delay 6.7 ns
Table 19. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK[21]
Parameter Description Min. Max. Unit
tIFCLK IFCLK Period[22] 20.83 200 ns
tSRY RDYX to Clock Setup Time 2.9 ns
tRYH Clock to RDYX 3.7 ns
tSGD GPIF Data to Clock Setup Time 3.2 ns
tDAH GPIF Data Hold Time 4.5 ns
tSGA Clock to GPIF Address Propagation Delay 11.5 ns
tXGD Clock to GPIF Data Output Propagation Delay 15 ns
tXCTL Clock to CTLX Output Propagation Delay 10.7 ns
Notes
20. Dashed lines denote signals with programmable polarity.
21. GPIF asynchronous RDYx signals have a minimum Setup time of 50 ns when using internal 48-MHz IFCLK.
22. IFCLK must not exceed 48 MHz.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 43 of 62
10.7 Slave FIFO Synchronous Read
Figure 18. Slave FIFO Synchronous Read Timing Diagram[20]
IFCLK
SLRD
FLAGS
SLOE
tSRD tRDH
tOEon tXFD
tXFLG
DATA
tIFCLK
N+1
tOEoff
N
Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK[21]
Parameter Description Min Max Unit
tIFCLK IFCLK Period 20.83 ns
tSRD SLRD to Clock Setup Time 18.7 ns
tRDH Clock to SLRD Hold Time 0 ns
tOEon SLOE Turn-on to FIFO Data Valid 10.5 ns
tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns
tXFLG Clock to FLAGS Output Propagation Delay 9.5 ns
tXFD Clock to FIFO Data Output Propagation Delay 11 ns
Table 21. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[21]
Parameter Description Min Max Unit
tIFCLK IFCLK Period 20.83 200 ns
tSRD SLRD to Clock Setup Time 12.7 ns
tRDH Clock to SLRD Hold Time 3.7 ns
tOEon SLOE Turn-on to FIFO Data Valid 10.5 ns
tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns
tXFLG Clock to FLAGS Output Propagation Delay 13.5 ns
tXFD Clock to FIFO Data Output Propagation Delay 15 ns
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 44 of 62
10.8 Slave FIFO Asynchronous Read
Figure 19. Slave FIFO Asynchronous Read Timing Diagram[20]
SLRD
FLAGS
tRDpwl
tRDpwh
SLOE
tXFLG
tXFD
DATA
tOEon tOEoff
N+1
N
Table 22. Slave FIFO Asynchronous Read Parameters[23]
Parameter Description Min Max Unit
tRDpwl SLRD Pulse Width LOW 50 ns
tRDpwh SLRD Pulse Width HIGH 50 ns
tXFLG SLRD to FLAGS Output Propagation Delay 70 ns
tXFD SLRD to FIFO Data Output Propagation Delay 15 ns
tOEon SLOE Turn-on to FIFO Data Valid 10.5 ns
tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns
Note
23. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 45 of 62
10.9 Slave FIFO Synchronous Write
Figure 20. Slave FIFO Synchronous Write Timing Diagram[20]
Z
Z
tSFD tFDH
DATA
IFCLK
SLWR
FLAGS
tWRH
tXFLG
tIFCLK
tSWR
N
Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK[21]
Parameter Description Min Max Unit
tIFCLK IFCLK Period 20.83 ns
tSWR SLWR to Clock Setup Time 10.4 ns
tWRH Clock to SLWR Hold Time 0 ns
tSFD FIFO Data to Clock Setup Time 9.2 ns
tFDH Clock to FIFO Data Hold Time 0 ns
tXFLG Clock to FLAGS Output Propagation Time 9.5 ns
Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK[21]
Parameter Description Min Max Unit
tIFCLK IFCLK Period 20.83 200 ns
tSWR SLWR to Clock Setup Time 12.1 ns
tWRH Clock to SLWR Hold Time 3.6 ns
tSFD FIFO Data to Clock Setup Time 3.2 ns
tFDH Clock to FIFO Data Hold Time 4.5 ns
tXFLG Clock to FLAGS Output Propagation Time 13.5 ns
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 46 of 62
10.10 Slave FIFO Asynchronous Write
Figure 21. Slave FIFO Asynchronous Write Timing Diagram[20]
10.11 Slave FIFO Synchronous Packet End Strobe
Figure 22. Slave FIFO Synchronous Packet End Strobe Timing Diagram[20]
DATA
tSFD tFDH
FLAGS tXFD
SLWR/SLCS#
tWRpwh
tWRpwl
SLWR
Table 25. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK [23]
Parameter Description Min Max Unit
tWRpwl SLWR Pulse LOW 50 ns
tWRpwh SLWR Pulse HIGH 70 ns
tSFD SLWR to FIFO DATA Setup Time 10 ns
tFDH FIFO DATA to SLWR Hold Time 10 ns
tXFD SLWR to FLAGS Output Propagation Delay 70 ns
FLAGS
tXFLG
IFCLK
PKTEND tSPE
tPEH
Table 26. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK[21]
Parameter Description Min Max Unit
tIFCLK IFCLK Period 20.83 ns
tSPE PKTEND to Clock Setup Time 14.6 ns
tPEH Clock to PKTEND Hold Time 0 ns
tXFLG Clock to FLAGS Output Propagation Delay 9.5 ns
Table 27. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK[21]
Parameter Description Min Max Unit
tIFCLK IFCLK Period 20.83 200 ns
tSPE PKTEND to Clock Setup Time 8.6 ns
tPEH Clock to PKTEND Hold Time 2.5 ns
tXFLG Clock to FLAGS Output Propagation Delay 13.5 ns
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 47 of 62
There is no specific timing requirement that should be met for
asserting PKTEND pin to asserting SLWR. PKTEND can be
asserted with the last data value clocked into the FIFOs or there-
after. The setup time tSPE and the hold time tPEH must be met.
Although there are no specific timing requirements for the
PKTEND assertion, there is a specific corner case condition that
needs attention while using the PKTEND to commit a one byte
or word packet. There is an additional timing requirement that
needs to be met when the FIFO is configured to operate in auto
mode and it is required to send two packets back to back: a full
packet (full defined as the number of bytes in the FIFO meeting
the level set in AUTOINLEN register) committed automatically
followed by a short one byte or word packet committed manually
using the PKTEND pin. In this scenario, the user must ensure to
assert PKTEND at least one clock cycle after the rising edge that
caused the last byte or word to be clocked into the previous auto
committed packet. Figure 23 shows this scenario. X is the value
the AUTOINLEN register is set to when the IN endpoint is
configured to be in auto mode.
Figure 23 shows a scenario where two packets are committed.
The first packet gets committed automatically when the number
of bytes in the FIFO reaches X (value set in AUTOINLEN
register) and the second one byte/word short packet being
committed manually using PKTEND.
Note that there is at least one IFCLK cycle timing between the
assertion of PKTEND and clocking of the last byte of the previous
packet (causing the packet to be committed automatically).
Failing to adhere to this timing results in the FX2 failing to send
the one byte or word short packet.
Figure 23. Slave FIFO Synchronous Write Sequence and Timing Diagram[20]
10.12 Slave FIFO Asynchronous Packet End Strobe
Figure 24. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[20]
IFCLK
SLWR
DATA
tIFCLK
>= tSWR >= tWRH
X-2
PKTEND
X-3
tFAH
tSPE tPEH
FIFOADR
tSFD tSFD tSFD
X-4
tFDH
tFDH
tFDH
tSFA
1
X
tSFD tSFD tSFD
X-1
tFDH
tFDH
tFDH
At least one IFCLK cycle
Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters[23]
Parameter Description Min Max Unit
tPEpwl PKTEND Pulse Width LOW 50 ns
tPWpwh PKTEND Pulse Width HIGH 50 ns
tXFLG PKTEND to FLAGS Output Propagation Delay 115 ns
FLAGS
tXFLG
PKTEND tPEpwl
tPEpwh
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 48 of 62
10.13 Slave FIFO Output Enable
Figure 25. Slave FIFO Output Enable Timing Diagram[20]
10.14 Slave FIFO Address to Flags/Data
Figure 26. Slave FIFO Address to Flags/Data Timing Diagram[20]
Table 29. Slave FIFO Output Enable Parameters
Parameter Description Min Max Unit
tOEon SLOE Assert to FIFO DATA Output 10.5 ns
tOEoff SLOE Deassert to FIFO DATA Hold 10.5 ns
SLOE
DATA tOEon
tOEoff
Table 30. Slave FIFO Address to Flags/Data Parameters
Parameter Description Min Max Unit
tXFLG FIFOADR[1:0] to FLAGS Output Propagation Delay 10.7 ns
tXFD FIFOADR[1:0] to FIFODATA Output Propagation Delay 14.3 ns
FIFOADR [1.0]
DATA
tXFLG
tXFD
FLAGS
NN+1
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 49 of 62
10.15 Slave FIFO Synchronous Address
Figure 27. Slave FIFO Synchronous Address Timing Diagram[20]
10.16 Slave FIFO Asynchronous Address
Figure 28. Slave FIFO Asynchronous Address Timing Diagram[20]
IFCLK
SLCS/FIFOADR [1:0]
tSFA tFAH
Table 31. Slave FIFO Synchronous Address Parameters [21]
Parameter Description Min Max Unit
tIFCLK Interface Clock Period 20.83 200 ns
tSFA FIFOADR[1:0] to Clock Setup Time 25 ns
tFAH Clock to FIFOADR[1:0] Hold Time 10 ns
Table 32. Slave FIFO Asynchronous Address Parameters[23]
Parameter Description Min Max Unit
tSFA FIFOADR[1:0] to SLRD/SLWR/PKTEND Setup Time 10 ns
tFAH RD/WR/PKTEND to FIFOADR[1:0] Hold Time 10 ns
SLRD/SLWR/PKTEND
SLCS/FIFOADR [1:0]
tSFA
tFAH
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 50 of 62
10.17 Sequence Diagram
10.17.1 Single and Burst Synchronous Read Example
Figure 29. Slave FIFO Synchronous Read Sequence and Timing Diagram[20]
Figure 30. Slave FIFO Synchronous Sequence of Events Diagram
Figure 29 shows the timing relationship of the SLAVE FIFO
signals during a synchronous FIFO read using IFCLK as the
synchronizing clock. The diagram illustrates a single read
followed by a burst read.
At t = 0 the FIFO address is stable and the signal SLCS is
asserted (SLCS may be tied low in some applications). Note
that tSFA has a minimum of 25 ns. This means when IFCLK is
running at 48 MHz, the FIFO address setup time is more than
one IFCLK cycle.
At t = 1, SLOE is asserted. SLOE is an output enable only,
whose sole function is to drive the data bus. The data that is
driven on the bus is the data that the internal FIFO pointer is
currently pointing to. In this example it is the first data value in
the FIFO. Note: the data is pre-fetched and is driven on the bus
when SLOE is asserted.
At t = 2, SLRD is asserted. SLRD must meet the setup time of
tSRD (time from asserting the SLRD signal to the rising edge of
the IFCLK) and maintain a minimum hold time of tRDH (time
from the IFCLK edge to the deassertion of the SLRD signal).
If the SLCS signal is used, it must be asserted before SLRD is
asserted (The SLCS and SLRD signals must both be asserted
to start a valid read condition).
The FIFO pointer is updated on the rising edge of the IFCLK,
while SLRD is asserted. This starts the propagation of data
from the newly addressed location to the data bus. After a
propagation delay of tXFD (measured from the rising edge of
IFCLK) the new data value is present. N is the first data value
read from the FIFO. To have data on the FIFO data bus, SLOE
MUST also be asserted.
The same sequence of events are shown for a burst read and
are marked with the time indicators of T = 0 through 5.
Note For the burst mode, the SLRD and SLOE are left asserted
during the entire duration of the read. In the burst read mode,
when SLOE is asserted, data indexed by the FIFO pointer is on
the data bus. During the first read cycle, on the rising edge of the
clock the FIFO pointer is updated and increments to point to
address N+1. For each subsequent rising edge of IFCLK, while
the SLRD is asserted, the FIFO pointer is incremented and the
next data value is placed on the data bus.
IFCLK
SLRD
FLAGS
SLOE
DATA
tSRD tRDH
tOEon
tXFD
tXFLG
tIFCLK
N+1
Data Driven: N
>= tSRD
tOEon
tXFD
N+2
tXFD tXFD
>= tRDH
tOEoff
N+4
N+3
tOEoff
tSFA tFAH
FIFOADR
SLCS
t=0
N+1
t=1
t=2 t=3
t=4
tFAH
T=0
tSFA
T=1
T=2 T=3
T=4
NNN+1 N+2
FIFO POINTER N+3
FIFO DATA BUS
N+4
Not Driven Driven: N
SLOE SLRD
N+1 N+2 N+3 Not Driven
SLRD
SLOE
IFCLK IFCLK IFCLK IFCLK IFCLK
N+4
N+4
IFCLK IFCLK
IFCLK IFCLK
SLRD
N+1
SLRD
N+1
N+1
SLOE
Not Driven
N+4
N+4
IFCLK
SLOE
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 51 of 62
10.17.2 Single and Burst Synchronous Write
Figure 31. Slave FIFO Synchronous Write Sequence and Timing Diagram[20]
The Figure 31 shows the timing relationship of the SLAVE FIFO
signals during a synchronous write using IFCLK as the synchro-
nizing clock. The diagram illustrates a single write followed by
burst write of 3 bytes and committing all 4 bytes as a short packet
using the PKTEND pin.
At t = 0 the FIFO address is stable and the signal SLCS is
asserted. (SLCS may be tied low in some applications) Note
that tSFA has a minimum of 25 ns. This means when IFCLK is
running at 48 MHz, the FIFO address setup time is more than
one IFCLK cycle.
At t = 1, the external master/peripheral must outputs the data
value onto the data bus with a minimum set up time of tSFD
before the rising edge of IFCLK.
At t = 2, SLWR is asserted. The SLWR must meet the setup
time of tSWR (time from asserting the SLWR signal to the rising
edge of IFCLK) and maintain a minimum hold time of tWRH (time
from the IFCLK edge to the deassertion of the SLWR signal).
If the SLCS signal is used, it must be asserted with SLWR or
before SLWR is asserted (The SLCS and SLWR signals must
both be asserted to start a valid write condition).
While the SLWR is asserted, data is written to the FIFO and on
the rising edge of the IFCLK, the FIFO pointer is incremented.
The FIFO flag is also updated after a delay of tXFLG from the
rising edge of the clock.
The same sequence of events are also shown for a burst write
and are marked with the time indicators of T = 0 through 5.
Note For the burst mode, SLWR and SLCS are left asserted for
the entire duration of writing all the required data values. In this
burst write mode, after the SLWR is asserted, the data on the
FIFO data bus is written to the FIFO on every rising edge of
IFCLK. The FIFO pointer is updated on each rising edge of
IFCLK. In Figure 31, after the four bytes are written to the FIFO,
SLWR is deasserted. The short 4 byte packet can be committed
to the host by asserting the PKTEND signal.
There is no specific timing requirement that should be met for
asserting PKTEND signal with regards to asserting the SLWR
signal. PKTEND can be asserted with the last data value or
thereafter. The only requirement is that the setup time tSPE and
the hold time tPEH must be met. In the scenario of Figure 31, the
number of data values committed includes the last value written
to the FIFO. In this example, both the data value and the
PKTEND signal are clocked on the same rising edge of IFCLK.
PKTEND can also be asserted in subsequent clock cycles. The
FIFOADDR lines should be held constant during the PKTEND
assertion.
Although there are no specific timing requirement for the
PKTEND assertion, there is a specific corner case condition that
needs attention while using the PKTEND to commit a one
byte/word packet. Additional timing requirements exists when
the FIFO is configured to operate in auto mode and it is desired
to send two packets: a full packet (full defined as the number of
bytes in the FIFO meeting the level set in AUTOINLEN register)
committed automatically followed by a short one byte or word
packet committed manually using the PKTEND pin.
In this case, the external master must ensure to assert the
PKTEND pin at least one clock cycle after the rising edge that
caused the last byte or word that needs to be clocked into the
previous auto committed packet (the packet with the number of
bytes equal to what is set in the AUTOINLEN register). Refer to
Figure 23 for further details on this timing.
IFCLK
SLWR
FLAGS
DATA
tSWR tWRH
tSFD
tXFLG
tIFCLK
N
>= tSWR
>= tWRH
N+3
PKTEND
N+2
tXFLG
tSFA tFAH
tSPE tPEH
FIFOADR
SLCS
tSFD tSFD tSFD
N+1
tFDH
tFDH
tFDH tFDH
t=0
t=1
t=2 t=3
tSFA
tFAH
T=1
T=0
T=2 T=5
T=3 T=4
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 52 of 62
10.17.3 Sequence Diagram of a Single and Burst Asynchronous Read
Figure 32. Slave FIFO Asynchronous Read Sequence and Timing Diagram[20]
Figure 33. Slave FIFO Asynchronous Read Sequence of Events Diagram
Figure 32 shows the timing relationship of the SLAVE FIFO
signals during an asynchronous FIFO read. It shows a single
read followed by a burst read.
At t = 0 the FIFO address is stable and the SLCS signal is
asserted.
At t = 1, SLOE is asserted. This results in the data bus being
driven. The data that is driven on to the bus is previous data,
it data that was in the FIFO from a prior read cycle.
At t = 2, SLRD is asserted. The SLRD must meet the minimum
active pulse of tRDpwl and minimum de-active pulse width of
tRDpwh. If SLCS is used then, SLCS must be asserted before
SLRD is asserted (The SLCS and SLRD signals must both be
asserted to start a valid read condition.)
The data that is driven, after asserting SLRD, is the updated
data from the FIFO. This data is valid after a propagation delay
of tXFD from the activating edge of SLRD. In Figure 32, data N
is the first valid data read from the FIFO. For data to appear on
the data bus during the read cycle (SLRD is asserted), SLOE
must be in an asserted state. SLRD and SLOE can also be tied
together.
The same sequence of events is also shown for a burst read
marked with T = 0 through 5.
Note In burst read mode, during SLOE is assertion, the data bus
is in a driven state and outputs the previous data. After SLRD is
asserted, the data from the FIFO is driven on the data bus (SLOE
must also be asserted) and then the FIFO pointer is incre-
mented.
SLRD
FLAGS
SLOE
DATA
tRDpwh
tRDpwl
tOEon
tXFD
tXFLG
N
Data (X)
tXFD
N+1
tXFD
tOEoff
N+3
N+2
tOEoff
tXFLG
tSFA tFAH
FIFOADR
SLCS
Driven
tXFD
tOEon
tRDpwh
tRDpwl tRDpwh
tRDpwl tRDpwh
tRDpwl
tFAH tSFA
N
t=0 T=0
T=1 T=7
T=2 T=3 T=4 T=5 T=6
t=1
t=2 t=3
t=4
NN
SLOE SLRD
FIFO POINTER
N+3
FIFO DATA BUS Not Driven Driven: X N Not Driven
SLOE
N
N+2
N+3
SLRD
N
N+1
SLRD
N+1
SLRD
N+1
N+2
SLRD
N+2
SLRD
N+2
N+1
SLOE
Not Driven
SLOE
N
N+1
N+1
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 53 of 62
10.17.4 Sequence Diagram of a Single and Burst Asynchronous Write
Figure 34. Slave FIFO Asynchronous Write Sequence and Timing Diagram[20]
Figure 34 shows the timing relationship of the SLAVE FIFO write
in an asynchronous mode. The diagram shows a single write
followed by a burst write of 3 bytes and committing the 4 byte
short packet using PKTEND.
At t = 0 the FIFO address is applied, insuring that it meets the
setup time of tSFA. If SLCS is used, it must also be asserted
(SLCS may be tied low in some applications).
At t = 1 SLWR is asserted. SLWR must meet the minimum
active pulse of tWRpwl and minimum de-active pulse width of
tWRpwh. If the SLCS is used, it must be asserted with SLWR or
before SLWR is asserted.
At t = 2, data must be present on the bus tSFD before the
deasserting edge of SLWR.
At t = 3, deasserting SLWR causes the data to be written from
the data bus to the FIFO and then increments the FIFO pointer.
The FIFO flag is also updated after tXFLG from the deasserting
edge of SLWR.
The same sequence of events are shown for a burst write and is
indicated by the timing marks of T = 0 through 5.
Note In the burst write mode, after SLWR is deasserted, the data
is written to the FIFO and then the FIFO pointer is incremented
to the next byte in the FIFO. The FIFO pointer is post incre-
mented.
In Figure 34 after the four bytes are written to the FIFO and
SLWR is deasserted, the short 4 byte packet can be committed
to the host using the PKTEND. The external device should be
designed to not assert SLWR and the PKTEND signal at the
same time. It should be designed to assert the PKTEND after
SLWR is deasserted and met the minimum deasserted pulse
width. The FIFOADDR lines have to held constant during the
PKTEND assertion.
PKTEND
SLWR
FLAGS
DATA
tWRpwh
tWRpwl
tXFLG
N
tSFD
N+1
tXFLG
tSFA tFAH
FIFOADR
SLCS
tWRpwh
tWRpwl tWRpwh
tWRpwl tWRpwh
tWRpwl
tFAH tSFA
tFDH tSFD
N+2
tFDH tSFD
N+3
tFDH
tSFD tFDH
tPEpwh
tPEpwl
t=0
t=2
t =1 t=3
T=0
T=2
T=1 T=3 T=6 T=9
T=5 T=8
T=4 T=7
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 54 of 62
11. Ordering Information
Table 33. Ordering Information
Ordering Code Package Type RAM Size # Prog I/Os 8051 Address
/Data Busses
Ideal for battery powered applications
CY7C68014A-128AXC 128 TQFP – Pb-Free 16K 40 16/8 bit
CY7C68014A-100AXC 100 TQFP – Pb-Free 16K 40
CY7C68014A-56PVXC 56 SSOP – Pb-Free 16K 24
CY7C68014A-56LFXC 56 QFN – Pb-Free 16K 24
CY7C68014A-56BAXC 56 VFBGA – Pb-Free 16K 24
CY7C68016A-56LFXC 56 QFN – Pb-Free 16K 26
Ideal for non-battery powered applications
CY7C68013A-128AXC 128 TQFP – Pb-Free 16K 40 16/8 bit
CY7C68013A-128AXI 128 TQFP – Pb-Free (Industrial) 16K 40 16/8 bit
CY7C68013A-100AXC 100 TQFP – Pb-Free 16K 40
CY7C68013A-100AXI 100 TQFP – Pb-Free (Industrial) 16K 40
CY7C68013A-56PVXC 56 SSOP – Pb-Free 16K 24
CY7C68013A-56PVXI 56 SSOP – Pb-Free (Industrial) 16K 24
CY7C68013A-56LFXC 56 QFN – Pb-Free 16K 24
CY7C68013A-56LFXI 56 QFN – Pb-Free (Industrial) 16K 24
CY7C68015A-56LFXC 56 QFN – Pb-Free 16K 26
CY7C68013A-56BAXC 56 VFBGA – Pb-Free 16K 24
CY7C68013A-56LTXC 56 QFN 16K 24
CY7C68013A-56LTXCT 56 QFN 16K 24
CY7C68013A-56LTXI 56 QFN 16K 24
CY7C68014A-56LTXC 56 QFN 16K 24
CY7C68015A-56LTXC 56 QFN 16K 24
CY7C68016A-56LTXC 56 QFN 16K 24
CY7C68016A-56LTXCT 56 QFN 16K 24
Development Tool Kit
CY3684 EZ-USB FX2LP Development Kit
Reference Design Kit
CY4611B USB 2.0 to ATA/ATAPI Reference Design using EZ-USB FX2LP
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 55 of 62
12. Package Diagrams
The FX2LP is available in five packages:
56-pin SSOP
56-pin QFN
100-pin TQFP
128-pin TQFP
56-ball VFBGA
Package Diagrams
51-85062-*C
Figure 35. 56-Pin Shrunk Small Outline Package O56 (51-85062)
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 56 of 62
Figure 37. 56-Pin QFN 8 x 8 mm (Sawn Version)
Package Diagrams (continued)
51-85144-*D
Figure 36. 56-Pin QFN 8 x 8 mm LF56A (51-85144)
TOP VIEW
0.80[0.031]
7.70[0.303]
7.90[0.311]
A
C
1.00[0.039] MAX.
N
BOTTOM VIEW
SEATING PLANE
N
2
0.18[0.007]
0.50[0.020]
11
0.08[0.003]
0.50[0.020]
0.05[0.002] MAX.
2
SIDE VIEW
(4X)
C
0.24[0.009]
0.20[0.008] REF.
0.80[0.031] MAX.
PIN1 ID
0°-12°
6.45[0.254]
8.10[0.319]
7.80[0.307]
6.55[0.258]
0.45[0.018]
0.20[0.008] R.
8.10[0.319]
7.90[0.311]
7.80[0.307]
7.70[0.303]
DIA.
0.28[0.011]
0.30[0.012]
6.55[0.258]
6.45[0.254]
0.60[0.024]
1. HATCH AREA IS SOLDERABLE EXPOSED METAL.
2. REFERENCE JEDEC#: MO-220
4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
NOTES:
PART #
PB-FREE
STANDARD
LY56
5. PACKAGE CODE
DESCRIPTION
3. PACKAGE WEIGHT: 0.162g
LF56
SOLDERABLE
EXPOSED
PAD
(SUBCON PUNCH TYPE PKG with 6.1 x 6.1 EPAD)
6.1
6.1
51-85144-*G
51-85187 *C
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 57 of 62
Package Diagrams (continued)
NOTE:
1. JEDEC STD REF MS-026
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
3. DIMENSIONS IN MILLIMETERS
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
0.30±0.08
0.65
20.00±0.10
22.00±0.20
1.40±0.05
12°±1°
1.60 MAX.
0.05 MIN.
0.60±0.15
MIN.
0.25
-7°
(8X)
STAND-OFF
R 0.08 MIN.
TYP.
0.20 MAX.
0.15 MAX.
0.20 MAX.
R 0.08 MIN.
0.20 MAX.
14.00±0.10
16.00±0.20
0.10
SEE DETAIL A
DETAIL
A
1
100
30
31 50
51
80
81
GAUGE PLANE
1.00 REF.
0.20 MIN.
SEATING PLANE
51-85050-*B
Figure 38. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A100RA (51-85050)
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 58 of 62
Package Diagrams (continued)
NOTE:
1. JEDEC STD REF MS-026
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
3. DIMENSIONS IN MILLIMETERS
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
0.22±0.05
0.50
20.00±0.10
22.00±0.20
1.40±0.05
12°±1°
1.60 MAX.
0.05 MIN.
0.60±0.15
MIN.
0.25
-7°
(8X)
STAND-OFF
R 0.08 MIN.
TYP.
0.20 MAX.
0.15 MAX.
0.20 MAX.
R 0.08 MIN.
0.20 MAX.
14.00±0.10
16.00±0.20
0.08
SEE DETAIL A
DETAIL
A
128
GAUGE PLANE
1.00 REF.
0.20 MIN.
SEATING PLANE
1
51-85101-*C
Figure 39. 128-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128 (51-85101)
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 59 of 62
13. PCB Layout Recommendations
Follow these recommendations to ensure reliable high perfor-
mance operation:[24]
Four layer impedance controlled boards are required to
maintain signal quality.
Specify impedance targets (ask your board vendor what they
can achieve).
To control impedance, maintain trace widths and trace spacing.
Minimize stubs to minimize reflected signals.
Connections between the USB connector shell and signal
ground must be near the USB connector.
Bypass and flyback caps on VBus, near connector, are recom-
mended.
DPLUS and DMINUS trace lengths should be kept to within 2
mm of each other in length, with preferred length of 20 to
30 mm.
Maintain a solid ground plane under the DPLUS and DMINUS
traces. Do not allow the plane to split under these traces.
Do not place vias on the DPLUS or DMINUS trace routing.
Isolate the DPLUS and DMINUS traces from all other signal
traces by no less than 10 mm.
Package Diagrams (continued)
TOP VIEW
PIN A1 CORNER
0.50
3.50
5.00±0.10
BOTTOM VIEW
0.10(4X)
3.50
5.00±0.10
0.50
Ø0.15 M C A B
Ø0.05 M C
Ø0.30±0.05(56X)
A1 CORNER
-B-
-A-
1.0 max
0.160 ~0.260
0.080 C
0.45
SEATING PLANE
0.21
0.10 C
-C-
SIDE VIEW
5.00±0.10
5.00±0.10
REFERENCE JEDEC: MO-195C
PACKAGE WEIGHT: 0.02 grams
E
G
H
F
D
C
B
A
132654867856 2341
E
G
H
F
D
C
B
A
001-03901-*B
Figure 40. 56 VFBGA (5 x 5 x 1.0 mm) 0.50 Pitch, 0.30 Ball BZ56 (001-03901)
Note
24. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and High
Speed USB Platform Design Guidelines, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 60 of 62
14. Quad Flat Package No Leads (QFN) Package Design Notes
Electrical contact of the part to the Printed Circuit Board (PCB)
is made by soldering the leads on the bottom surface of the
package to the PCB. Hence, special attention is required to the
heat transfer area below the package to provide a good thermal
bond to the circuit board. Design a Copper (Cu) fill in the PCB as
a thermal pad under the package. Heat is transferred from the
FX2LP through the device’s metal paddle on the bottom side of
the package. Heat from here is conducted to the PCB at the
thermal pad. It is then conducted from the thermal pad to the
PCB inner ground plane by a 5 x 5 array of via. A via is a plated
through hole in the PCB with a finished diameter of 13 mil. The
QFN’s metal die paddle must be soldered to the PCB’s thermal
pad. Solder mask is placed on the board top side over each via
to resist solder flow into the via. The mask on the top side also
minimizes outgassing during the solder reflow process.
For further information on this package design refer to Appli-
cation Notes for Surface Mount Assembly of Amkor's MicroLead-
Frame (MLF) Packages. You can find this on Amkor's website
http://www.amkor.com.
The application note provides detailed information about board
mounting guidelines, soldering flow, rework process, etc.
Figure 41 shows a cross-sectional area underneath the
package. The cross section is of only one via. The solder paste
template should be designed to allow at least 50% solder
coverage. The thickness of the solder paste template should be
5 mil. Use the No Clean type 3 solder paste for mounting the part.
Nitrogen purge is recommended during reflow.
Figure 42 is a plot of the solder mask pattern and Figure 43
displays an X-Ray image of the assembly (darker areas indicate
solder).
Figure 41. Cross-section of the Area Underneath the QFN Package
0.017” dia
Solder Mask
Cu Fill
Cu Fill
PCB Material
PCB Material 0.013” dia
Via hole for thermally connecting the
QFN to the circuit board ground plane.
This figure only shows the top three layers of the
circuit board: Top Solder, PCB Dielectric, and
the Ground Plane
Figure 42. Plot of the Solder Mask (White Area)
Figure 43. X-ray Image of the Assembly
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document #: 38-08032 Rev. *M Page 61 of 62
Document History Page
Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller High
Speed USB Peripheral Controller
Document Number: 38-08032
REV. ECN NO. Submission
Date
Orig. of
Change Description of Change
** 124316 03/17/03 VCS New data sheet
*A 128461 09/02/03 VCS Added PN CY7C68015A throughout data sheet
Modified Figure 1 to add ECC block and fix errors
Removed word “compatible” where associated with I2C
Corrected grammar and formatting in various locations
Updated Sections 3.2.1, 3.9, 3.11, Table 9, Section 5.0
Added Sections 3.15, 3.18.4, 3.20
Modified Figure 5 for clarity
Updated Figure 36 to match current spec revision
*B 130335 10/09/03 KKV Restored PRELIMINARY to header (had been removed in error from rev. *A)
*C 131673 02/12/04 KKU Section 8.1 changed “certified” to “compliant”
Tab le 14 added parameter VIH_X and VIL_X
Added Sequence diagrams Section 9.16
Updated Ordering information with lead-free parts
Updated Registry Summary
Section 3.12.4:example changed to column 8 from column 9
Updated Figure 14 memory write timing Diagram
Updated section 3.9 (reset)
Updated section 3.15 ECC Generation
*D 230713 See ECN KKU Changed Lead free Marketing part numbers in Table 33 as per spec change in 28-00054.
*E 242398 See ECN TMD Minor Change: data sheet posted to the web,
*F 271169 See ECN MON Added USB-IF Test ID number
Added USB 2.0 logo
Added values for Isusp, Icc, Power Dissipation, Vih_x, Vil_x
Changed VCC from + 10% to + 5%
Changed E-Pad size to 4.3 mm x 5.0 mm
Changed PKTEND to FLAGS output propagation delay (asynchronous interface) in
Tab le 28 from a max value of 70 ns to 115 ns
*G 316313 See ECN MON Removed CY7C68013A-56PVXCT part availability
Added parts ideal for battery powered applications: CY7C68014A, CY7C68016A
Provided additional timing restrictions and requirement about the use of PKETEND pin to
commit a short one byte/word packet subsequent to committing a packet automatically
(when in auto mode).
Added Min Vcc Ramp Up time (0 to 3.3v)
*H 338901 See ECN MON Added information about the AUTOPTR1/AUTOPTR2 address timing with regards to data
memory read/write timing diagram.
Removed TBD for Min value of Clock to FIFO Data Output Propagation Delay (tXFD) for
Slave FIFO Synchronous Read
Changed Table 33 to include part CY7C68016A-56LFXC in the part listed for battery
powered applications
Added register GPCR2 in register summary
*I 371097 See ECN MON Added timing for strobing RD#/WR# signals when using PortC strobe feature (Section 10.5)
*J 397239 See ECN MON Removed XTALINSRC register from register summary.
Changed Vcc margins to +10%
Added 56-pin VFBGA Pin Package Diagram
Added 56-pin VFBGA definition in pin listing
Added RDK part number to the Ordering Information table
[+] Feedback
Document #: 38-08032 Rev. *M Revised May 22, 2009 Page 62 of 62
Purchase of I2C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided
that the system conforms to the I2C Standard Specification as defined by Philips. EZ-USB FX2LP and EZ-USB FX2 are trademarks, and EZ-USB is a registered trademark, of Cypress Semiconductor
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
© Cypress Semiconductor Corporation, 2003-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without
the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at cypress.com/sales.
Products
PSoC psoc.cypress.com
Clocks & Buffers clocks.cypress.com
Wireless wireless.cypress.com
Memories memory.cypress.com
Image Sensors image.cypress.com
PSoC Solutions
General psoc.cypress.com/solutions
Low Power/Low Voltage psoc.cypress.com/low-power
Precision Analog psoc.cypress.com/precision-analog
LCD Drive psoc.cypress.com/lcd-drive
CAN 2.0b psoc.cypress.com/can
USB psoc.cypress.com/usb
*K 420505 See ECN MON Remove SLCS from figure in Section 10.10.
Removed indications that SLRD can be asserted simultaneously with SLCS in Section
10.17.2 and Section 10.17.3
Added Absolute Maximum Temperature Rating for industrial packages in Section 6.
Changed number of packages stated in the description in Section 4. to five.
Added Ta b le 1 3 on Thermal Coefficients for various packages
*L 2064406 See ECN CMCC/
PYRS
Changed TID number
Removed T0OUT and T1OUT from CY7C68015A/16A
Updated tSWR Min value in Figure 20
Updated 56-lead QFN package diagram
*M 2710327 05/22/2009 DPT Added 56-Pin QFN (8 X 8 mm) package diagram
Updated ordering information for CY7C68013A-56LTXC, CY7C68013A-56LTXI,
CY7C68014A-56LTXC, CY7C68015A-56LTXC, and CY7C68016A-56LTXC parts.
Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller High
Speed USB Peripheral Controller
Document Number: 38-08032
REV. ECN NO. Submission
Date
Orig. of
Change Description of Change
[+] Feedback