High Performance Relative Humidity
and Temperature Sensor
HS300x
Datasheet
© 2018 Integrated Device Technology, Inc.
1
August 6, 2018
Description
The HS300x series is a highly accurate, fully calibrated relative
humidity and temperature sensor. The MEMS sensor features a
proprietary sensor-level protection, ensuring high reliability and
long-term stability.
Integrated calibration and temperature-compensation logic pro-
vides fully corrected RH and temperature values via a standard I2C
output. No user calibration of the output data is required.
The high accuracy, fast measurement response time, and long-
term stability combined with the small package size makes the
HS300x series ideal for a wide number of applications ranging from
portable devices to products designed for harsh environments.
The HS300x series digital sensor accurately measures relative
humidity and temperature levels. The measured data is internally
corrected and compensated for accurate operation over a wide
range of temperature and humidity levels user calibration is not
required.
Typical Applications
Climate control systems
Home appliances
Weather stations
Industrial automation
Medical equipment
Automotive cabin climate control
Features
RH accuracy: ±1.5%RH, typical (HS3001, 10 to 90%RH,
25°C)
14-bit resolution: 0.01%RH, typical
Fast RH response time: 6 seconds, typical
Temperature sensor accuracy: ±0.2°C, typical (HS3001,
HS3002, -10 to +80°C)
Low current consumption: 24.4µA average (one RH and
temperature measurement per second, 14-bit resolution,
3.3V supply)
Excellent stability against aging
Highly robust protection from harsh environmental conditions
and mechanical shock
Very low power consumption
Physical Characteristics
Extended supply voltage: 2.3V to 5.5V
Operating temperature: -40°C to +125°C
3.0 × 2.41 × 0.8 mm DFN-style 6-LGA package
Product Image
© 2018 Integrated Device Technology, Inc.
2
August 6, 2018
Contents
1. Pin Assignments ...........................................................................................................................................................................................4
2. Pin Descriptions ............................................................................................................................................................................................4
3. Absolute Maximum Ratings ..........................................................................................................................................................................5
4. Recommended Operating Conditions ..........................................................................................................................................................5
5. Humidity and Temperature Sensor Performance .........................................................................................................................................6
5.1 Humidity Sensor Specification .............................................................................................................................................................6
5.2 Temperature Sensor Specification ......................................................................................................................................................7
5.3 Humidity Sensor Accuracy Graphs ......................................................................................................................................................8
5.4 Temperature Sensor Accuracy Graphs ...............................................................................................................................................9
6. Sensor Interface .........................................................................................................................................................................................10
6.1 I2C Features and Timing ...................................................................................................................................................................10
6.2 Sensor Slave Address .......................................................................................................................................................................10
6.3 I2C Communication ...........................................................................................................................................................................11
6.4 Measurement Mode ...........................................................................................................................................................................11
6.5 Measurement Requests (MR) ...........................................................................................................................................................11
6.6 Data Fetch (DF) .................................................................................................................................................................................12
6.7 Status Bits .........................................................................................................................................................................................12
7. Calculating Humidity and Temperature Output ...........................................................................................................................................13
8. Application Circuit .......................................................................................................................................................................................13
9. Package Drawings and Land Pattern .........................................................................................................................................................14
10. Soldering Information .................................................................................................................................................................................14
11. Storage and Handling .................................................................................................................................................................................15
12. Quality and Reliability .................................................................................................................................................................................15
13. Ordering Information ...................................................................................................................................................................................15
14. Revision History ..........................................................................................................................................................................................16
List of Figures
Figure 1. Pin Assignments for 3mm 2.41mm 6-LGA Package (Top View) .....................................................................................................4
Figure 2. HS3001 RH Accuracy Tolerance at 25°C ...........................................................................................................................................8
Figure 3. HS3001 RH Accuracy over Temperature ............................................................................................................................................8
Figure 4. HS3002 RH Accuracy Tolerance at 25°C ...........................................................................................................................................8
Figure 5. HS3002 RH Accuracy over Temperature ............................................................................................................................................8
Figure 6. HS3003 RH Accuracy Tolerance at 25°C ...........................................................................................................................................8
Figure 7. HS3003 RH Accuracy over Temperature ............................................................................................................................................8
Figure 8. HS3004 RH Accuracy Tolerance at 25°C ...........................................................................................................................................9
Figure 9. HS3004 RH Accuracy over Temperature ............................................................................................................................................9
Figure 10. HS3001/HS3002 Temperature Sensor Accuracy Tolerance ...............................................................................................................9
© 2018 Integrated Device Technology, Inc.
3
August 6, 2018
Figure 11. HS3003 Temperature Sensor Accuracy Tolerance .............................................................................................................................9
Figure 12. HS3004 Temperature Sensor Accuracy Tolerance .............................................................................................................................9
Figure 13. Timing Diagram .................................................................................................................................................................................10
Figure 14. START and STOP Condition Waveform............................................................................................................................................11
Figure 15. Measurement Request ......................................................................................................................................................................11
Figure 16. Data Fetch .........................................................................................................................................................................................12
Figure 17. Recommended Soldering Profile .......................................................................................................................................................14
List of Tables
Table 1. Pin Descriptions ...................................................................................................................................................................................4
Table 2. Absolute Maximum Ratings .................................................................................................................................................................5
Table 3. Operating Conditions ...........................................................................................................................................................................5
Table 4. Humidity Sensor Specification, TA = +25°C, VDD = 2.3V to 5.5V .........................................................................................................6
Table 5. Temperature Sensor Specification, TA = +25°C, VDD = 2.3V to 5.5V ..................................................................................................7
Table 6. I2C Timing Parameters ......................................................................................................................................................................10
Table 7. Status Bits .........................................................................................................................................................................................12
© 2018 Integrated Device Technology, Inc.
4
August 6, 2018
1. Pin Assignments
Figure 1. Pin Assignments for 3mm 2.41mm 6-LGA Package (Top View)
1
54
3 2
6
VC SDA SCL
VDD NC VSS
Pin 1 marker
on bottom side
2. Pin Descriptions
Table 1. Pin Descriptions
Pin Number
Name
Type
Description
1
SCL
In/out
Serial clock
2
SDA
In/out
Serial data
3
VC
Connect a 0.1µF decoupling capacitor from VC to ground
4
VDD
In
Supply voltage
5
NC
Do not connect
6
VSS
In
Ground
[a] “NC” stands for not connected / no connection required / not bonded.
© 2018 Integrated Device Technology, Inc.
5
August 6, 2018
3. Absolute Maximum Ratings
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device.
Functional operation of the HS300x at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions might affect
device reliability.
Table 2. Absolute Maximum Ratings
Symbol
Parameter
Conditions
Minimum
Maximum
Units
Analog Supply Voltage
-0.3
6.0
V
Storage Temperature Range
-55
150
°C
4. Recommended Operating Conditions
Important note: The HS300x series sensors are optimized to perform best in the more common temperature and humidity ranges of 10°C to
50°C and 20% RH to 80% RH, respectively. If operated outside of these conditions for extended periods, especially at high humidity levels, the
sensors may exhibit an offset. In most cases, this offset is temporary and will gradually disappear once the sensor is returned to normal
temperature and humidity conditions. The amount of the shift and the duration of the offset vary depending on the duration of exposure and the
severity of the relative humidity and temperature conditions. The time needed for the offset to disappear can also be decreased by using the
procedures described in sections 10 and 11.
Table 3. Operating Conditions
Parameter
Condition
Minimum
Typical
Maximum
Units
Operating Supply Voltage
2.3
3.3
5.5
V
Sleep Current
Sleep Mode
-40 to 85°C
0.6
1
µA
-40 to 125°C
1
3
Average Current[a]
One RH + temperature
measurement/second
14-bit resolution
24.4
24.4
µA
Measurement Time
Wake-up
0.10
ms
Humidity or temperature
including the digital
compensation
14-bit resolution
16.90
Operating Temperature Range
-40
125
°C
[a] Typical and maximum average currents are given at 3.3V and 5.5V respectively.
© 2018 Integrated Device Technology, Inc.
6
August 6, 2018
5. Humidity and Temperature Sensor Performance
5.1 Humidity Sensor Specification
Table 4. Humidity Sensor Specification, TA = +25°C, VDD = 2.3V to 5.5V
Parameter
Condition
Minimum
Typical
Maximum
Units
Range
0
100
%RH
Accuracy[a]
HS3001
10% to 90%RH
±1.5
±1.8
%RH
HS3002
±1.8
±2.0
HS3003
±2.8
±4.0
HS3004
±3.8
±5.0
Resolution
14 bits
0.01
0.015
%RH
Hysteresis
±1.0
%RH
Non-Linearity from Response Curve
HS3001
10% to 90%RH
±0.15
±0.25
%RH
HS3002
HS3003
20% to 80%RH
HS3004
Long-Term Stability
±0.1
±0.25
%RH/Yr
Response Time Constant[b] (H)
20% to 80% RH Still Air
4.5
6.0
8.0
sec
[a] Monotonic increases from 10 to 90%RH after sensor has been stabilized at 50%RH.
[b] Initial value to 63% of total variation.
© 2018 Integrated Device Technology, Inc.
7
August 6, 2018
5.2 Temperature Sensor Specification
Table 5. Temperature Sensor Specification, TA = +25°C, VDD = 2.3V to 5.5V
Parameter
Condition
Minimum
Typical
Maximum
Units
Range
-40
125
°C
Accuracy
HS3001
-10°C to 80°C
±0.2
±0.3
°C
HS3002
HS3003
0°C to 70°C
±0.25
±0.35
HS3004
±0.3
±0.5
Resolution
14 bits
0.01
0.015
0.025
°C
Response Time Constant[a] (T)
2.0
Sec.
Long-Term Stability
0.04
°C/Yr
Supply Voltage Dependency[b]
VDD 2.8V
0.03
0.1
°C/V
2.3V < VDD < 2.8V
1.25
2.25
°C/V
[a] Response time depends on system thermal mass and air flow.
[b] Temperature accuracy can be optimized for specified supply voltages upon request.
© 2018 Integrated Device Technology, Inc.
8
August 6, 2018
5.3 Humidity Sensor Accuracy Graphs
The typical and maximum relative humidity sensor accuracy tolerances are shown in the following figures.
Figure 2. HS3001 RH Accuracy Tolerance at 25°C
Figure 3. HS3001 RH Accuracy over Temperature
Figure 4. HS3002 RH Accuracy Tolerance at 25°C
Figure 5. HS3002 RH Accuracy over Temperature
Figure 6. HS3003 RH Accuracy Tolerance at 25°C
Figure 7. HS3003 RH Accuracy over Temperature
90
70
50
30
10
0
10
20
30
40
50
60
70
Temperature (°C)
Rel. Humidity (%RH)
±2.0
±2.5
±3.0
±2.0
±1.5
±2.0
±2.0
MVH3001D - Typical RH Accuracy over Temperature
90
70
50
30
10
0
10
20
30
40
50
60
70
Temperature (°C)
Rel. Humidity (%RH)
±2.5
±3.0
±2.5
±1.8
±2.5
MVH3002D - Typical RH Accuracy over Temperature
90
70
50
30
10
0
10
20
30
40
50
60
70
Temperature (°C)
Rel. Humidity (%RH)
±3.5
±4.0
±3.5
±2.8
MVH3003D - Typical RH Accuracy over Temperature
© 2018 Integrated Device Technology, Inc.
9
August 6, 2018
Figure 8. HS3004 RH Accuracy Tolerance at 25°C
Figure 9. HS3004 RH Accuracy over Temperature
5.4 Temperature Sensor Accuracy Graphs
The typical and maximum temperature sensor accuracy tolerances are shown in the following figures.
Figure 10. HS3001/HS3002 Temperature
Sensor Accuracy Tolerance
Figure 11. HS3003 Temperature Sensor
Accuracy Tolerance
Figure 12. HS3004 Temperature Sensor
Accuracy Tolerance
90
70
50
30
10
0
10
20
30
40
50
60
70
Temperature (°C)
Rel. Humidity (%RH)
±4.5
±4.5
±3.8
MVH3004D - Typical RH Accuracy over Temperature
© 2018 Integrated Device Technology, Inc.
10
August 6, 2018
6. Sensor Interface
The HS300x series sensor uses a digital I2C-compatible communication protocol. To accommodate multiple devices, the protocol uses two
bi-directional open-drain lines: the Serial Data Line (SDA) and the Serial Clock Line (SCL). Pull-up resistors to VDD are required. Several slave
devices can share the bus; however only one master device can be present on the line.
6.1 I2C Features and Timing
The HS300x series sensor operates as a slave device on the I2C bus with support for 100kHz and 400kHz bit rates. Each transmission is
initiated when the master sends a 0 START bit (S), and the transmission is terminated when the master sends a 1 STOP bit (P). These bits are
only transmitted while the SCL line is HIGH.
Figure 13. Timing Diagram
tBUS
tHDSTA
tSUDAT
tLOW
SDA
SCL
tHDSTA tSUSTO
tSUSTA
tHIGH
tHDDAT
Table 6. I2C Timing Parameters
Parameter
Symbol
Minimum
Typical
Maximum
Units
SCL Clock Frequency[a]
fSCL
20
400
kHz
START Condition Hold Time Relative to SCL Edge
tHDSTA
0.1
µs
Minimum SCL Clock LOW Width[b]
tLOW
0.6
µs
Minimum SCL Clock HIGH Width[b]
tHIGH
0.6
µs
START Condition Setup Time Relative to SCL Edge
tSUSTA
0.1
µs
Data Hold Time on SDA Relative to SCL Edge
tHDDAT
0
0.5
µs
Data Setup Time on SDA Relative to SCL Edge
tSUDAT
0.1
µs
STOP Condition Setup Time on SCL
tSUSTO
0.1
µs
Bus Free Time Between STOP Condition and START Condition
tBUS
1
µs
[a] The minimum frequency of 20kHz applies to test only; no minimum under normal operations.
[b] Combined LOW and HIGH widths must equal or exceed the minimum SCL period.
6.2 Sensor Slave Address
The HS300x series default I2C address is 44HEX. The device will respond only to this 7-bit address. See section 6.3 for further information.
© 2018 Integrated Device Technology, Inc.
11
August 6, 2018
6.3 I2C Communication
The sensor transmission is initiated when the master sends a 0 START bit (S). The transmission is terminated when the master sends a 1 STOP
bit (P). These bits are only transmitted while the SCL line is HIGH (see Figure 14 for waveforms).
Once the START condition has been set, the SCL line is toggled at the prescribed data rate, clocking subsequent data transfers. Data on the
SDA line is always sampled on the rising edge of the SCL line and must remain stable while SCL is HIGH to prevent false START or STOP
conditions.
Figure 14. START and STOP Condition Waveform
START Condition STOP Condition
STOP
SDA
SCL
SDA
SCL
START
After the START bit, the master device sends the 7-bit slave address (see section 6.2) to the HS300x, followed by the read/write bit, which
indicates the transfer direction of any subsequent data. This bit is set to 1 to indicate a read from slave to master or set to 0 to indicate a write
from master to slave.
All transfers consist of 8 bits and a response bit: 0 for Acknowledge (ACK) or 1 for Not Acknowledge (NACK). After the ACK is received, another
data byte can be transferred or the communication can be stopped with a STOP bit.
6.4 Measurement Mode
The HS300x is factory-programmed to operate in Sleep Mode. In Sleep Mode, the sensor waits for commands from the master before taking
measurements. The digital core only performs conversions when it receives a Measurement Request command (MR); otherwise, it is always
powered down.
6.5 Measurement Requests (MR)
The MR command is required to wake up the HS300x from its Sleep Mode. Initiate the Measurement Request by sending the 7-bit slave address
followed by an eighth bit = 0 (WRITE).
A measurement cycle consists of a humidity and temperature conversion followed by the digital signal processor (DSP) correction calculations.
At the end of a measurement cycle, the digital output register will be updated before powering down.
The output is always scaled to 14 bits. The order of the bits is big-endian.
Figure 15. Measurement Request
S
Device Slave Address [6:0]
Slave Address Bit
(MSB first)
Start Condition Stop Condition Acknowledge (ACK) Read/Write
(Example: Write = 0)
S S W
Wait for
Slave ACK
1S0 0 10 0 W
(0)
0A
A
© 2018 Integrated Device Technology, Inc.
12
August 6, 2018
6.6 Data Fetch (DF)
At the end of a measurement cycle, valid data can be fetched. The status bits of the DF results can be used to detect if the data is valid or stale
(see section 6.7); otherwise, wait for the measurements to complete before performing the DF.
The DF command starts with the 7-bit slave address followed by an eighth bit = 1 (READ). The HS300x as a slave sends an acknowledge
(ACK) indicating success.
The number of data bytes returned by the HS300x is determined by when the master sends the NACK and STOP condition. The full 14 bits of
the humidity data are fetched in the first two bytes. The two MSBs of the first byte are the status bits.
The 14 bits of temperature data follow the humidity data. The last two bits (LSBs) of the fourth data byte are undetermined and should be
masked off. In the event that the temperature data is not needed, the read can be terminated by sending a NACK after the second byte.
Figure 16. Data Fetch
Device Slave Address [6:0] Humidity Data [13:8] Humidity Data [7:0]
Humidity Data [13:8] Humidity Data [7:0] Temp. Data [15:8]
Slave Address Bit (MSB first) Command or Data Bit (Example: Bit 2) Status Bit
Start Condition Stop Condition Acknowledge (ACK) Not Acknowledge Read/Write
(NACK) (Read = 1)
S S RN
Wait for
Slave ACK Master ACK Master ACK Master NACK
14 13 1112 10 89 A 6 57 34 2 N1 0 S1S0 0 10 0 R
(1)
0A15
1S0 1 0 R
(1)
0A14 1315 1112 10 89 A 6 57 34 2 A1 0 14 1315 1112 10 A9 800
Device Slave Address [6:0]
A
2
Temp. Data [7:2]
6 57 34 2 SN1 0
Mask [1:0]
6.7 Status Bits
The status bits are used to indicate the current state of the fetched data. The two MSBs of the humidity data byte are the status bits (see the
following table).
Table 7. Status Bits
Status Bits
Definition
00B
Valid Data: Data that has not been fetched since the last measurement cycle
01B
Stale Data: Data that has already been fetched since the last measurement cycle
Note: If a data fetch is performed before or during the first measurement after power-on reset, then the stale status will be
returned, but this data is actually invalid since the first measurement has not been completed.
© 2018 Integrated Device Technology, Inc.
13
August 6, 2018
7. Calculating Humidity and Temperature Output
The entire output of the HS300x is 4 bytes. The relative humidity (in percent) and the temperature (in degrees Celsius) are calculated with
Equation 1 and Equation 2, respectively.
14
[13 0]
[%RH] 100
21
Humidity :
Humidity 



Equation 1
o
14
[15 2]
[ C] 165 40
21
Temperature :
Temperature 


Equation 2
8. Application Circuit
Figure 17. HS300x Application Circuit (Top View)
0.1µF
VDD
RP = Pull-up resistor (2.2kΩ typical)
0.1µF
1 SCL
VDD 43 VC
2 SDA NC 5
VSS 6
RPRP
© 2018 Integrated Device Technology, Inc.
14
August 6, 2018
9. Package Drawings and Land Pattern
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is
the most current data available.
www.idt.com/document/psc/6-lga-package-outline-drawing-30-x-241-x-08-mm-body-10mm-pitch-lhg6d1
10. Soldering Information
This section discusses soldering considerations for the HS300x. When a relative humidity sensor is exposed to the high heat associated with
the soldering process, the sensor element tends to dry out. To avoid an offset in the relative humidity readings, the sensor element must be
rehydrated after the soldering process. Care must also be taken when selecting the temperatures and durations involved in the soldering
process to avoid irreversibly damaging the sensor element.
The recommended soldering profile for a lead-free (RoHS-compliant) process is shown below.
Figure 17. Recommended Soldering Profile
It is important to ensure this temperature profile is measured at the sensor itself. Measuring the profile at a larger component with a higher
thermal mass means the temperature at the small sensor will be higher than expected.
For manual soldering, the contact time must be limited to 5 seconds with a maximum iron temperature of 350°C.
In either case, a board wash after soldering is not recommended. Therefore, if a solder paste is used, it is strongly recommended that a
“no-clean” solder paste is used to avoid the need to wash the PCB.
After soldering, the recommended rehydration conditions are either:
A relative humidity of 75% RH at room temperature for at least 12 hours
A relative humidity of 40% to 50% RH at room temperature for 3 to 5 days
Otherwise, in the relative humidity readings, there might be an initial offset, which will slowly disappear as the sensor is exposed to ambient
conditions.
© 2018 Integrated Device Technology, Inc.
15
August 6, 2018
11. Storage and Handling
Recommendation: Once the sensors are removed from their original packaging, store them in metal-in antistatic bags.
Avoid using polyethylene antistatic bags as they may affect sensor accuracy.
The nominal storage conditions are 10 to 50°C and humidity levels within 20% to 60%RH. If stored outside of these conditions for extended
periods of time, the sensor readings may exhibit an offset. The sensor can be reconditioned and brought back to its calibration state by applying
the following procedure:
1. Bake at a temperature of 100°C with a humidity < 10%RH for 10 to 12 hours.
2. Rehydrate the sensor at a humidity of 75%RH and a temperature between 20 to 30°C for 12 to 14 hours.
12. Quality and Reliability
The HS300x series is available as a qualified product for consumer and industrial market applications. All data specified parameters are
guaranteed if not stated otherwise.
13. Ordering Information
Orderable Part Number
Description and Package
Carrier Type
Temperature
HS3001
Digital Relative Humidity and Temperature Sensor.
±1.5%RH (Typical), 3.0 × 2.41 × 0.8mm, 6-LGA (LHG6D1)
Cut Tape
-40°C to +125°C
HS3002
Digital Relative Humidity and Temperature Sensor.
±1.8%RH (Typical), 3.0 × 2.41 × 0.8mm, 6-LGA (LHG6D1)
Cut Tape
-40°C to +125°C
HS3003
Digital Relative Humidity and Temperature Sensor.
±2.8%RH (Typical), 3.0 × 2.41 × 0.8mm, 6-LGA (LHG6D1)
Cut Tape
-40°C to +125°C
HS3004
Digital Relative Humidity and Temperature Sensor.
±3.8%RH (Typical), 3.0 × 2.41 × 0.8mm, 6-LGA (LHG6D1)
Cut Tape
-40°C to +125°C
© 2018 Integrated Device Technology, Inc.
16
August 6, 2018
14. Revision History
Revision Date
Description of Change
August 6, 2018
Updated temperature sensor response time in Table 5.
April 24, 2018
Clarified Figure 15 and Figure 16.
Update for Equation 2.
Edits for section 6.6.
Template updates for section 9.
February 14, 2018
Changed operating voltage and added recommended operating conditions.
November 8, 2017
Initial release.
Corporate Headquarters
6024 Silver Creek Valley Road
San Jose, CA 95138
www.IDT.com
Sales
1-800-345-7015 or 408-284-8200
Fax: 408-284-2775
www.IDT.com/go/sales
Tech Support
www.IDT.com/go/support
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as IDT) reserve the right to modify the products and/or specifications described herein at an y time,
without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same
way when installed in customer products. The information contained herein is provided without representation or warranty of a ny kind, whether express or implied, including, but not limited to, the suitability
of IDT's products for any particular purpose, an implied warranty of merchantability, or non -infringement of the intellectual property rights of others. This document is presented only as a guide and does not
convey any license under intellectual property rights of IDT or any third parties.
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trade marks used herein are the
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated
Device Technology, Inc. All rights reserved.
12 3
456
© Integrated Device Technology, Inc.
6-LGA Package Outline Drawing
3.0 x 2.41 x 0.8 mm Body, 1.0mm Pitch
LHG6D1, PSC-4719-01, Rev 01, Page 1
1 2 3
4
56
© Integrated Device Technology, Inc.
6-LGA Package Outline Drawing
3.0 x 2.41 x 0.8 mm Body, 1.0mm Pitch
LHG6D1, PSC-4719-01, Rev 01, Page 2
Package Revision History
Rev No.
Date Created Description
Sept 25, 2017 Rev 00 Initial Release
June 25, 2018 Rev 01 Revise Lead Length
5HQHVDV(OHFWURQLFV&RUSRUDWLRQ$OOULJKWVUHVHUYHG
1RWLFH
 'HVFULSWLRQVRIFLUFXLWVVRIWZDUHDQGRWKHUUHODWHGLQIRUPDWLRQLQWKLVGRFXPHQWDUHSURYLGHGRQO\WRLOOXVWUDWHWKHRSHUDWLRQRIVHPLFRQGXFWRUSURGXFWV
DQGDSSOLFDWLRQH[DPSOHV<RXDUHIXOO\UHVSRQVLEOHIRUWKHLQFRUSRUDWLRQRUDQ\RWKHUXVHRIWKHFLUFXLWVVRIWZDUHDQGLQIRUPDWLRQLQWKHGHVLJQRI\RXU
SURGXFWRUV\VWHP5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\ORVVHVDQGGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPWKHXVHRI
WKHVHFLUFXLWVVRIWZDUHRULQIRUPDWLRQ
 5HQHVDV(OHFWURQLFVKHUHE\H[SUHVVO\GLVFODLPVDQ\ZDUUDQWLHVDJDLQVWDQGOLDELOLW\IRULQIULQJHPHQWRUDQ\RWKHUFODLPVLQYROYLQJSDWHQWVFRS\ULJKWVRU
RWKHULQWHOOHFWXDOSURSHUW\ULJKWVRIWKLUGSDUWLHVE\RUDULVLQJIURPWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRUWHFKQLFDOLQIRUPDWLRQGHVFULEHGLQWKLV
GRFXPHQWLQFOXGLQJEXWQRWOLPLWHGWRWKHSURGXFWGDWDGUDZLQJVFKDUWVSURJUDPVDOJRULWKPVDQGDSSOLFDWLRQH[DPSOHV
 1ROLFHQVHH[SUHVVLPSOLHGRURWKHUZLVHLVJUDQWHGKHUHE\XQGHUDQ\SDWHQWVFRS\ULJKWVRURWKHULQWHOOHFWXDOSURSHUW\ULJKWVRI5HQHVDV(OHFWURQLFVRU
RWKHUV
 <RXVKDOOQRWDOWHUPRGLI\FRS\RUUHYHUVHHQJLQHHUDQ\5HQHVDV(OHFWURQLFVSURGXFWZKHWKHULQZKROHRULQSDUW5HQHVDV(OHFWURQLFVGLVFODLPVDQ\
DQGDOOOLDELOLW\IRUDQ\ORVVHVRUGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPVXFKDOWHUDWLRQPRGLILFDWLRQFRS\LQJRUUHYHUVHHQJLQHHULQJ
 5HQHVDV(OHFWURQLFVSURGXFWVDUHFODVVLILHGDFFRUGLQJWRWKHIROORZLQJWZRTXDOLW\JUDGHV6WDQGDUGDQG+LJK4XDOLW\7KHLQWHQGHGDSSOLFDWLRQVIRU
HDFK5HQHVDV(OHFWURQLFVSURGXFWGHSHQGVRQWKHSURGXFWVTXDOLW\JUDGHDVLQGLFDWHGEHORZ
6WDQGDUG &RPSXWHUVRIILFHHTXLSPHQWFRPPXQLFDWLRQVHTXLSPHQWWHVWDQGPHDVXUHPHQWHTXLSPHQWDXGLRDQGYLVXDOHTXLSPHQWKRPH
HOHFWURQLFDSSOLDQFHVPDFKLQHWRROVSHUVRQDOHOHFWURQLFHTXLSPHQWLQGXVWULDOURERWVHWF
+LJK4XDOLW\ 7UDQVSRUWDWLRQHTXLSPHQWDXWRPRELOHVWUDLQVVKLSVHWFWUDIILFFRQWUROWUDIILFOLJKWVODUJHVFDOHFRPPXQLFDWLRQHTXLSPHQWNH\
ILQDQFLDOWHUPLQDOV\VWHPVVDIHW\FRQWUROHTXLSPHQWHWF
8QOHVVH[SUHVVO\GHVLJQDWHGDVDKLJKUHOLDELOLW\SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV
(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWVDUHQRWLQWHQGHGRUDXWKRUL]HGIRUXVHLQSURGXFWVRUV\VWHPVWKDWPD\SRVHDGLUHFWWKUHDWWR
KXPDQOLIHRUERGLO\LQMXU\DUWLILFLDOOLIHVXSSRUWGHYLFHVRUV\VWHPVVXUJLFDOLPSODQWDWLRQVHWFRUPD\FDXVHVHULRXVSURSHUW\GDPDJHVSDFHV\VWHP
XQGHUVHDUHSHDWHUVQXFOHDUSRZHUFRQWUROV\VWHPVDLUFUDIWFRQWUROV\VWHPVNH\SODQWV\VWHPVPLOLWDU\HTXLSPHQWHWF5HQHVDV(OHFWURQLFVGLVFODLPV
DQ\DQGDOOOLDELOLW\IRUDQ\GDPDJHVRUORVVHVLQFXUUHGE\\RXRUDQ\WKLUGSDUWLHVDULVLQJIURPWKHXVHRIDQ\5HQHVDV(OHFWURQLFVSURGXFWWKDWLV
LQFRQVLVWHQWZLWKDQ\5HQHVDV(OHFWURQLFVGDWDVKHHWXVHUVPDQXDORURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW
 :KHQXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVUHIHUWRWKHODWHVWSURGXFWLQIRUPDWLRQGDWDVKHHWVXVHUVPDQXDOVDSSOLFDWLRQQRWHV*HQHUDO1RWHVIRU
+DQGOLQJDQG8VLQJ6HPLFRQGXFWRU'HYLFHVLQWKHUHOLDELOLW\KDQGERRNHWFDQGHQVXUHWKDWXVDJHFRQGLWLRQVDUHZLWKLQWKHUDQJHVVSHFLILHGE\
5HQHVDV(OHFWURQLFVZLWKUHVSHFWWRPD[LPXPUDWLQJVRSHUDWLQJSRZHUVXSSO\YROWDJHUDQJHKHDWGLVVLSDWLRQFKDUDFWHULVWLFVLQVWDOODWLRQHWF5HQHVDV
(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\PDOIXQFWLRQVIDLOXUHRUDFFLGHQWDULVLQJRXWRIWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRXWVLGHRIVXFK
VSHFLILHGUDQJHV
 $OWKRXJK5HQHVDV(OHFWURQLFVHQGHDYRUVWRLPSURYHWKHTXDOLW\DQGUHOLDELOLW\RI5HQHVDV(OHFWURQLFVSURGXFWVVHPLFRQGXFWRUSURGXFWVKDYHVSHFLILF
FKDUDFWHULVWLFVVXFKDVWKHRFFXUUHQFHRIIDLOXUHDWDFHUWDLQUDWHDQGPDOIXQFWLRQVXQGHUFHUWDLQXVHFRQGLWLRQV8QOHVVGHVLJQDWHGDVDKLJKUHOLDELOLW\
SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWV
DUHQRWVXEMHFWWRUDGLDWLRQUHVLVWDQFHGHVLJQ<RXDUHUHVSRQVLEOHIRULPSOHPHQWLQJVDIHW\PHDVXUHVWRJXDUGDJDLQVWWKHSRVVLELOLW\RIERGLO\LQMXU\
LQMXU\RUGDPDJHFDXVHGE\ILUHDQGRUGDQJHUWRWKHSXEOLFLQWKHHYHQWRIDIDLOXUHRUPDOIXQFWLRQRI5HQHVDV(OHFWURQLFVSURGXFWVVXFKDVVDIHW\
GHVLJQIRUKDUGZDUHDQGVRIWZDUHLQFOXGLQJEXWQRWOLPLWHGWRUHGXQGDQF\ILUHFRQWURODQGPDOIXQFWLRQSUHYHQWLRQDSSURSULDWHWUHDWPHQWIRUDJLQJ
GHJUDGDWLRQRUDQ\RWKHUDSSURSULDWHPHDVXUHV%HFDXVHWKHHYDOXDWLRQRIPLFURFRPSXWHUVRIWZDUHDORQHLVYHU\GLIILFXOWDQGLPSUDFWLFDO\RXDUH
UHVSRQVLEOHIRUHYDOXDWLQJWKHVDIHW\RIWKHILQDOSURGXFWVRUV\VWHPVPDQXIDFWXUHGE\\RX
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHIRUGHWDLOVDVWRHQYLURQPHQWDOPDWWHUVVXFKDVWKHHQYLURQPHQWDOFRPSDWLELOLW\RIHDFK5HQHVDV
(OHFWURQLFVSURGXFW<RXDUHUHVSRQVLEOHIRUFDUHIXOO\DQGVXIILFLHQWO\LQYHVWLJDWLQJDSSOLFDEOHODZVDQGUHJXODWLRQVWKDWUHJXODWHWKHLQFOXVLRQRUXVHRI
FRQWUROOHGVXEVWDQFHVLQFOXGLQJZLWKRXWOLPLWDWLRQWKH(85R+6'LUHFWLYHDQGXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVLQFRPSOLDQFHZLWKDOOWKHVH
DSSOLFDEOHODZVDQGUHJXODWLRQV5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUGDPDJHVRUORVVHVRFFXUULQJDVDUHVXOWRI\RXUQRQFRPSOLDQFH
ZLWKDSSOLFDEOHODZVDQGUHJXODWLRQV
 5HQHVDV(OHFWURQLFVSURGXFWVDQGWHFKQRORJLHVVKDOOQRWEHXVHGIRURULQFRUSRUDWHGLQWRDQ\SURGXFWVRUV\VWHPVZKRVHPDQXIDFWXUHXVHRUVDOHLV
SURKLELWHGXQGHUDQ\DSSOLFDEOHGRPHVWLFRUIRUHLJQODZVRUUHJXODWLRQV<RXVKDOOFRPSO\ZLWKDQ\DSSOLFDEOHH[SRUWFRQWUROODZVDQGUHJXODWLRQV
SURPXOJDWHGDQGDGPLQLVWHUHGE\WKHJRYHUQPHQWVRIDQ\FRXQWULHVDVVHUWLQJMXULVGLFWLRQRYHUWKHSDUWLHVRUWUDQVDFWLRQV
 ,WLVWKHUHVSRQVLELOLW\RIWKHEX\HURUGLVWULEXWRURI5HQHVDV(OHFWURQLFVSURGXFWVRUDQ\RWKHUSDUW\ZKRGLVWULEXWHVGLVSRVHVRIRURWKHUZLVHVHOOVRU
WUDQVIHUVWKHSURGXFWWRDWKLUGSDUW\WRQRWLI\VXFKWKLUGSDUW\LQDGYDQFHRIWKHFRQWHQWVDQGFRQGLWLRQVVHWIRUWKLQWKLVGRFXPHQW
 7KLVGRFXPHQWVKDOOQRWEHUHSULQWHGUHSURGXFHGRUGXSOLFDWHGLQDQ\IRUPLQZKROHRULQSDUWZLWKRXWSULRUZULWWHQFRQVHQWRI5HQHVDV(OHFWURQLFV
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHLI\RXKDYHDQ\TXHVWLRQVUHJDUGLQJWKHLQIRUPDWLRQFRQWDLQHGLQWKLVGRFXPHQWRU5HQHVDV
(OHFWURQLFVSURGXFWV
1RWH 5HQHVDV(OHFWURQLFVDVXVHGLQWKLVGRFXPHQWPHDQV5HQHVDV(OHFWURQLFV&RUSRUDWLRQDQGDOVRLQFOXGHVLWVGLUHFWO\RULQGLUHFWO\FRQWUROOHG
VXEVLGLDULHV
1RWH 5HQHVDV(OHFWURQLFVSURGXFWVPHDQVDQ\SURGXFWGHYHORSHGRUPDQXIDFWXUHGE\RUIRU5HQHVDV(OHFWURQLFV
5HY1RYHPEHU
&RUSRUDWH+HDGTXDUWHUV &RQWDFW,QIRUPDWLRQ
72<268)25(6,$7R\RVX
.RWRNX7RN\R-DSDQ
ZZZUHQHVDVFRP
)RUIXUWKHULQIRUPDWLRQRQDSURGXFWWHFKQRORJ\WKHPRVWXSWRGDWH
YHUVLRQRIDGRFXPHQWRU\RXUQHDUHVWVDOHVRIILFHSOHDVHYLVLW
ZZZUHQHVDVFRPFRQWDFW
7UDGHPDUNV
5HQHVDVDQGWKH5HQHVDVORJRDUHWUDGHPDUNVRI5HQHVDV(OHFWURQLFV
&RUSRUDWLRQ$OOWUDGHPDUNVDQGUHJLVWHUHGWUDGHPDUNVDUHWKHSURSHUW\
RIWKHLUUHVSHFWLYHRZQHUV
Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
Contact Information
For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support
Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.