MT9V138:1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Features
MT9V138 DS Rev. D Pub. 5/15 EN 1©Semiconductor Components Industries, LLC 2015,
1/4-Inch Color CMOS NTSC/PAL Digital Image SOC
with Overlay Processor
MT9V138 Datasheet, Rev. D
For the latest datasheet, please visit www.onsemi.com
Features
Low-power CMOS image sensor with integrated
image flow processor (IFP) and video encoder
1/4-inch optical format, VGA resolution (640H x
480V)
±2.5% additional columns and rows to compensate
for lens alignment tolerances
Overlay generator for dynamic bitmap overlay
Integrated video encoder for NTSC/PAL with overlay
capability and 10-bit I-DAC
Integrated microcontroller for flexibility
On-chip image flow processor performs
sophisticated processing, such as color recovery and
correction, sharpening, gamma, lens shading
correction, on-the-fly defect correction, auto white
balancing, and auto exposure
Auto black level calibration
10-bit, on-chip analog-to-digital converter (ADC)
Internal master clock generated by on-chip phase-
locked loop (PLL)
Two-wire serial programming interface
Interface to low-cost Flash through SPI bus
High-level host command interface
Stand alone operation support
Comprehensive tool support for overlay generation
and lens correction setup
Development system with DevWare
Overlay generation and compilation tools
Applications
Analog surveillance CCTV
Surveillance network IP camera
Key parameters are continued on next page.
See details of new features on page 3.
See “Ordering Information” on page 3.
Table 1: Key Parameters
Parameter Typical Value
Pixel size
and type
5.6 m x 5.6 m active pinned-
photodiode with high-sensitivity mode
for low-light conditions
Sensor format 680H x 512V (includes ±2.5% of rows
and columns for lens alignment)
NTSC output 720H x 480V
PAL output 720H x 576V
Imaging area Total array size: 3.584 mm x 2.688 mm
Optical format ¼-inch
Frame rate 50/60 fields/sec
Sensor scan mode Progressive scan
Color filter array RGB standard Bayer
Shutter type Electronic rolling shutter (ERS)
Automatic
Functions
Exposure, white balance, black level
offset correction, flicker avoidance,
color saturation control, on-the-fly
defect correction, aperture correction
Programmable
Controls
Exposure, white balance, horizontal
and vertical blanking, color, sharpness,
gamma correction, lens shading
correction, horizontal and vertical
image flip, windowing, sampling rates,
GPIO control
MT9V138 DS Rev. D Pub. 5/15 EN 2©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Applications
Notes: 1. Graphical overlay is available only in CCIR656 output format.
2. Analog output enabled; parallel output disabled.
Table 2: Key Parameters (continued)
Parameter Typical Value
Overlay Support1
Utilizes SPI interface to load overlay data from external flash/EEPROM memory with the
following features:
•Overlay Size 360 x 480 pixel rendered into 720 x 480 pixel display format
•Up to four (4) overlays may be blended simultaneously
•Selectable readout: Rotating order user selected
•Dynamic scenes by loading pre-rendered frames from external memory
•Palette of 32 colors out of 64,000
•8 colors per bitmap
•Blend factor dynamically programmable for smooth transitions
•Fast Update rate of up to 30 fps
•Every bitmap object has independent x/y position
•Statistic Engine to calibrate optical alignment
•Number Generator
Windowing Programmable to any size
Max analog gain 0.5–16x
ADC 10-bit, on-chip
Output interface Analog composite video out, single-ended or differential; 8-, 10-bit parallel digital
output
Output data formats1Digital: Raw Bayer 8-,10-bit, CCIR656, 565RGB, 555RGB, 444RGB
Data rate
Parallel: 27 MB/s
NTSC: 60 fields/sec
PAL: 50 fields/sec
Control interface
Two-wire I/F for register interface plus high-level command exchange. SPI port to
interface to external memory to load overlay data, register settings, or firmware
extensions.
Input clock for PLL 27 MHz
SPI Clock Frequencies 4.5 - 9.0 - 18 MHz, programmable
Supply voltage
Analog: 2.8 V ±5%
Core: 1.8 V ±5%
IO: 2.8V ±5%
Power consumption Full resolution at 60 fps: <350mW2
Package 48-pin Ceramic LCC, 11.43mm x 11.43mm, 0.8mm pitch
Ambient temperature
Operating: –30°C to 70°C
Storage: –50°C to +150°C
Dark Current < 200e/s at 60°C with a gain of 1
Fixed pattern noise Column < 2%
Row < 2%
Responsivity 15.8 V/lux-s at 550nm
Signal to noise ratio (S/N) 46 dB
Pixel dynamic range 74.8 dB
MT9V138 DS Rev. D Pub. 5/15 EN 3©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
New Features
New Features
Integrated Video Encoder for PAL/NTSC with Overlay Capability
Composite analog output (NTSC/PAL)
8-bit parallel digital output ITU-R BT.656 format
Raw Bayer format
On-Chip Overlay Generator
Static and dynamic overlay graphics with four overlay planes plus number plane
Support for serial SPI memory up to 16 megabytes
•Number generator
Overlay blending and x/y positioning
Overlay position adjustment and statistics engine to calibrate overlay
Overlay support utilizes SPI interface to load overlay data from external
Serial Flash/EEPROM to support the following features:
Overlay size 360 x 480 pixel rendered into 720 x 480 pixel display format
Up to four overlays may be blended simultaneously
Selectable readout: rotating order user selected
Dynamic scenes by loading pre-rendered frames from external memory
Palette of 32 colors out of 64,000
Eight colors per bitmap
Blend factor dynamically programmable for smooth transitions
Fast update rate of up to 30 fps
Every bitmap object has independent x/y position
Statistics engine to calibrate optical alignment
Ordering Information
Table 3: Available Part Numbers
Part Number Product Description Orderable Product Attribute Description
MT9V138C12STC-DP VGA 1/4" SOC Dry Pack with Protective Film
MT9V138C12STC-DR VGA 1/4" CIS SOC Dry Pack without Protective Film
MT9V138D00STCK22BC1-200 VGA 1/4" SOC Die Sales, 200m Thickness
MT9V138 DS Rev. D Pub. 5/15 EN 4©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Table of Contents
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Pin Descriptions and Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
SOC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Sensor Pixel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Usage Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
External Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Slave Two-Wire Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Overlay Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Serial Memory Partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Overlay Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Overlay Character Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Modes and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Spectral Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
MT9V138 DS Rev. D Pub. 5/15 EN 5©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
List of Figures
List of Figures
Figure 1: Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 2: System Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Figure 3: Using a Crystal Instead of an External Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Figure 4: Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 5: Sensor Core Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 6: Pixel Array Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 7: Image Capture Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Figure 8: Sensor Pixel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 9: Pixel Color Pattern Detail (top right corner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 10: Spatial Illustration of Image Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 11: Color Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 12: Color Bar Test Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Figure 13: Color Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 14: Gamma Correction Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Figure 15: Auto-Config Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 16: Flash Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 17: Host Mode with Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Figure 18: Host Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Figure 19: External Signal Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 20: Power-Up Sequence – Configuration Options Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Figure 21: Interface Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Figure 22: Single READ from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Figure 23: Single Read from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Figure 24: Sequential READ, Start from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Figure 25: Sequential READ, Start from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Figure 26: Single WRITE to Random Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Figure 27: Sequential WRITE, Start at Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Figure 28: Overlay Data Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Figure 29: Memory Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Figure 30: Overlay Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 31: Internal Block Diagram Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Figure 32: Example of Character Descriptor 0 Stored in ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Figure 33: Full Character Set for Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Figure 34: Single-Ended Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Figure 35: Differential Connection—Grounded Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Figure 36: CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems . . . . . . . . . . . . . . . . . . . .52
Figure 37: Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System. . . . . . . . . . . . . . . . . . . . . . . . . .53
Figure 38: Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System. . . . . . . . . . . . . . . . . . . . . . . . . .54
Figure 39: Primary Clock Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Figure 40: Typical I/O Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 41: NTSC Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Figure 42: Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Figure 43: Digital Output I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Figure 44: Slew Rate Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Figure 45: Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Figure 46: Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Figure 47: Power Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Figure 48: Reset to SPI Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Figure 49: Reset to Serial Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Figure 50: Reset to AE/AWB Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Figure 51: SPI Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Figure 52: Video Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Figure 53: Equivalent Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Figure 54: V Pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Figure 55: Two-Wire Serial Bus Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Figure 56: Quantum Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
MT9V138 DS Rev. D Pub. 5/15 EN 6©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
List of Figures
Figure 57: 48-Pin CLCC Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
MT9V138 DS Rev. D Pub. 5/15 EN 7©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
List of Tables
List of Tables
Table 1: Key Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table 2: Key Parameters (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Table 3: Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Table 4: Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Table 5: Reset/Default State of Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 6: EIA Color Bars (NTSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 7: EBU Color Bars (PAL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 8: NTSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 9: PAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Table 10: YCbCr Output Data Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 11: RGB Ordering in Default Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 12: 2-Byte Bayer Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 13: SPI Flash Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 14: SPI Commands Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 15: GPIO Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 16: System Manager Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 17: Overlay Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 18: GPIO Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 19: Flash Manager Host Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 20: Sequencer Host Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 21: TX Manager Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 22: Two-Wire Interface ID Address Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 23: Transfer Time Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Table 24: Character Generator Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Table 25: Field, Vertical Blanking, EAV, and SAV States 525/60 Video System . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Table 26: Field, Vertical Blanking, EAV, and SAV States for 625/50 Video System . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 27: Output Data Ordering in DOUT RGB Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Table 28: Output Data Ordering in Sensor Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Table 29: Parallel Digital Output I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 30: Slew Rate for PIXCLK and DOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 31: Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Table 32: Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Table 33: Power Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Table 34: RESET_BAR Delay Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 35: SPI Data Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Table 36: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Table 37: Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Table 38: Video DAC Electrical Characteristics–Single-Ended Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Table 39: Video DAC Electrical Characteristics–Differential Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Table 40: Digital I/O Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Table 41: Power Consumption – Condition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Table 42: Power Consumption – Condition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Table 43: NTSC Signal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Table 44: Video Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Table 45: Equivalent Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Table 46: V Pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Table 47: Two-Wire Serial Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
MT9V138 DS Rev. D Pub. 5/15 EN 8©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
General Description
General Description
The ON Semiconductor MT9V138 is a VGA-format, single-chip CMOS active-pixel
digital image sensor for surveillance applications. It captures high-quality color images
at VGA resolution and outputs NTSC or PAL interlaced composite video.
The VGA CMOS image sensor features ON Semiconductors breakthrough low-noise
CMOS imaging technology that achieves near-CCD image quality (based on signal-to-
noise ratio and low-light sensitivity) while maintaining the inherent size, cost, low
power, and integration advantages of ON Semiconductor's advanced active pixel CMOS
process technology.
The MT9V138 is a complete camera-on-a-chip. It incorporates sophisticated camera
functions on-chip and is programmable through a simple two-wire serial interface or by
an attached SPI Flash memory that contains setup information that may be loaded auto-
matically at startup.
The MT9V138 performs sophisticated processing functions including color recovery,
color correction, sharpening, programmable gamma correction, auto black reference
clamping, auto exposure, 50Hz/60Hz flicker avoidance, lens shading correction, auto
white balance (AWB), and on-the-fly defect identification and correction.
The MT9V138 outputs interlaced-scan images at 30 or 25 fps, supporting both NTSC and
PAL video formats. The image data can be output on one or two output ports:
Composite analog video (single-ended and differential output support)
Parallel 8-, 10-bit digital
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Architecture
MT9V138 DS Rev. D Pub. 5/15 EN 9©Semiconductor Components Industries, LLC,2015.
Architecture
Internal Block Diagram
Figure 1: Internal Block Diagram
Note: The active array is smaller than the sensor array.
Image Flow Processor
Color & Gamma Correction
Color Space Conversion
Edge Enhancement
Camera Control
AW B
AE
Overlay
Graphics
Generation
¼” VGA ROI
@ 60 Frames/s
640 x 480 Active Array
VideoEncoder
DAC
SPI & 2W I/F
Interface
SPI
4 2
8
10
NTSC/
PAL
BT-656
2.8V 1. 8V
Two-Wire I/F
Lens Shading
Correction
MT9V138 DS Rev. D Pub. 5/15 EN 10 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
System Block Diagram
System Block Diagram
The system block diagram will depend on the application. The system block diagram in
Figure 2 shows all components; optional peripheral components are highlighted. The
optional microcontroller controls the MT9V138 sensor using the two-wire serial bus.
Optional components will vary by application. For further details, see the MT9V138
Register and Variable Reference.
Figure 2: System Block Diagram
SPI Serial Data
Flash
10Kb - 16 MB
LP Filter
27
MHz
DAC _POS
μC 2WIRE I/F
Composite
Video
PAL /NTSC
VAA (2.8V )
VAA_PIX (2.8V)
VDD (1.8V)
EXTCLK
4.7 kΩ
DAC_REF
2.8V
DAC _NEG
LDO
VDD_IO (2.8V)
CCIR 656/
GPO
Optional
XTAL
75Ω
VDD_PLL (2.8V)
VDD_DAC (2.8V)
RESET_BAR
PIXCLK
FRAME _VALID
LINE _VALID
DOUT [7:0]
DOUT_LSB0,1
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
System Block Diagram
MT9V138 DS Rev. D Pub. 5/15 EN 11 ©Semiconductor Components Industries, LLC,2015.
Crystal Usage
As an alternative to using an external oscillator, a fundamental 27 MHz crystal may be
connected between EXTCLK and XTAL. Two small loading capacitors of 15–22pF of NPO
dielectric should be added as shown in Figure 3.
ON Semiconductor does not recommend using the crystal option for applications
above 85°C. A crystal oscillator with temperature compensation is recommended.
Figure 3: Using a Crystal Instead of an External Oscillator
When using Xtal as the clock source, the internal inverter circuit has a 100K bias resistor
in parallel to Xtal, which can be connected or disconnected by register 0x0014 bit[14].
The clockin_bias_en bit is set to 1 by default.
EXTCLK
XTAL
18pF
-
NPO
27.000 MHz
Sensor
18
pF
-
NPO
MT9V138 DS Rev. D Pub. 5/15 EN 12 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Pin Descriptions and Assignments
Pin Descriptions and Assignments
Table 4: Pin Descriptions
Pin Number Pin Name Type Description
Clock and Reset
9 EXTCLK Input Master input clock (27MHz): This either can be a square-wave generated from
an oscillator (in which case the XTAL input must be left unconnected) or
connected directly to a crystal.
10 XTAL Output If EXTCLK is connected to one pin of a crystal, this signal is connected to the
other pin; otherwise this signal must be left unconnected.
12 RESET_BAR Input Asynchronous active-low reset: When asserted, the device will return all
interfaces to their reset state. When released, the device will initiate the boot
sequence.
Register Interface
17 SCLK Input These two signals implement serial communications protocol for access to
the internal register set and memory.
18 SDATA Input/OD
16 SADDR Input This signal controls the device ID that will respond to serial communication
commands.
Two-wire serial interface device ID selection:
0: 0x90
1: 0xBA
SPI Interface
22 SPI_SCLK Output Clock output for interfacing to an external SPI memory such as Flash/
EEPROM. Tristated when RESET_BAR is asserted.
21 SPI_SDI Input Data in from SPI device. This signal has an internal pull-up resistor.
20 SPI_SDO Output Data out to SPI device. Tristated when RESET_BAR is asserted.
19 SPI_CS_N Output Chip selects to SPI device. Tristated when RESET_BAR is asserted.
(Parallel) Pixel Data Output
32 FRAME_VALID Input/Output Pixel data from the MT9V138 can be routed out on this interface and
processed externally.
To save power, these signals are driven to a constant logic level unless the
parallel pixel data output or alternate (GPIO) function is enabled for these
pins.
This interface is disabled by default.
The slew rate of these outputs is programmable.
These signals can also be used as general purpose input/outputs.
31 LINE_VALID Input/Output
33 PIXCLK Output
39, 40, 41,
42, 43, 44,
45, 46
DOUT[7:0] Output
38 DOUT_LSB1 Input/Output When the sensor core is running in bypass mode, it will generate 10 bits of
output data per pixel. These two pins make the two LSB of pixel data
available externally. Leave DOUT_LSB1 unconnected if not used. To save
power, these signals are driven to a constant logic level unless the sensor core
is running in bypass mode or the alternate function is enabled for these pins.
The slew rate of these outputs is programmable. For analog output, the
DOUT_LSB0 cannot be left unconnected, and must be strapped to select either
NTSC or PAL mode. For more information, see Table 15, “GPIO Bit
Descriptions,” on page 33.
37 DOUT_LSB0 Input/Output
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Pin Descriptions and Assignments
MT9V138 DS Rev. D Pub. 5/15 EN 13 ©Semiconductor Components Industries, LLC,2015.
Composite Video Output
6 DAC_POS Output Positive video DAC output in differential mode.
Video DAC output in single-ended mode.
This interface is enabled by default using NTSC/PAL signaling. For
applications where composite video output is not required, the video DAC can
be placed in a power-down state under software control.
4 DAC_NEG Output Negative video DAC output in differential mode. Connect to AGND in single-
ended mode.
2 DAC_REF Output External reference resistor for the video DAC.
Manufacturing Test Interface
27 TDI Input JTAG Test pin (Reserved for Test Mode)
26 TDO Output JTAG Test pin (Reserved for Test Mode)
25 TMS Input JTAG Test pin (Reserved for Test Mode)
24 TCK Input JTAG Test pin (Reserved for Test Mode)
23 TRST_N Input Connect to GND
Power
8, 14, 35, 48 DGND Supply Digital ground.
3 GND_DAC Supply Video DAC GND
1, 7, 15, 34 VDD Supply Supply for VDD core: 1.8V nominal.
13, 36, 47 VDD_IO Supply Supply for digital IOs: 2.8V nominal.
5VDD_DAC Supply Supply for video DAC: 2.8V nominal.
11 VDD_PLL Supply Supply for PLL: 2.8V nominal.
29 AGND Supply Analog ground.
28 VAA Supply Analog power: 2.8V nominal.
30 VAA_PIX Supply Analog pixel array power: 2.8V nominal. Must be at same voltage potential as
VAA.
Table 4: Pin Descriptions (continued)
Pin Number Pin Name Type Description
MT9V138 DS Rev. D Pub. 5/15 EN 14 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Pin Descriptions and Assignments
Pin Assignments
Figure 4: Pin Assignments
Table 5: Reset/Default State of Interfaces
Name Reset State Default State Notes
EXTCLK Clock running or stopped Clock running Input
XTAL N/A N/A Input
RESET_BAR Asserted De-asserted Input
SCLK N/A N/A Input. Must always be driven to a valid logic
level.
SDATA High impedance High impedance Input/Output. A valid logic level should be
established by pull-up resistor.
SADDR N/A N/A Input. Must always be driven to a valid logic
level. Must be permanently tied to VDD_IO or
GND.
SPI_SCLK High impedance. Driven, logic 0 Output. Output enable is R0x0032[9].
SPI_SDI Internal pull-up enabled. Internal pull-up enabled Input. Internal pull-up is permanently
enabled.
SPI_SDO High impedance Driven, logic 0 Output enable is R0x0032[9].
SPI_CS_N High impedance Driven, logic 1 Output enable is R0x0032[9].
123456 48474645
44 43
19 20 21 22 23 24 25 26 27 28 29 30
7
8
9
10
11
12
13
14
15
16
17
18
42
41
40
39
38
37
36
35
34
33
32
31
VDD
GND
EXTCLK
XTAL
V
DD
_PLL
RESET_BAR
VDD_IO
GND
VDD
SADDR
SCLK
SDATA
DOUT4
DOUT5
DOUT6
DOUT7
DOUT_LSB1
DOUT_LSB0
V
DD
IO
GND
V
DD
PIXCLK
FRAME_VALID
LINE_VALID
SPI_CS_N
SPI_SD0
SPI_SDI
SPI_CLK
TRST_N
TCK
TMS
TDO
TDI
VAA
AGND
V
AA
_PIX
DAC_POS
VDD_DAC
DAC_NEG
GND_DAC
DAC_REF
VDD
GND
VDD-IO
DOUT0
DOUT1
DOUT2
DOUT3
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Pin Descriptions and Assignments
MT9V138 DS Rev. D Pub. 5/15 EN 15 ©Semiconductor Components Industries, LLC,2015.
Notes: 1. The reason for defining the default state as logic 0 rather than high impedance is this: when wired
in a system (for example, on our demo boards), these outputs will be connected, and the inputs to
which they are connected will want to see a valid logic level. No current drain should result from
driving these to a valid logic level (unless there is a pull-up at the system level).
2. These pads have their input circuitry powered down, but they are not output-enabled. Therefore,
they can be left floating but they will not drive a valid logic level to an attached device.
FRAME_VALID High impedance High impedance Input/Output. This interface disabled by
default. Input buffers (used for GPIO function)
powered down by default, so these pins can
be left unconnected (floating). After reset,
these pins are powered up, sampled, then
powered down again as part of the auto-
configuration mechanism. See Note 2.
LINE_VALID
PIXCLK High impedance Driven, logic 0
Output. This interface disabled by default.
See Note 1.
DOUT7
DOUT6
DOUT5
DOUT4
DOUT3
DOUT2
DOUT1
DOUT0
DOUT_LSB1 High impedance High impedance Input/Output. This interface disabled by
default. Input buffers (used for GPIO function)
powered down by default, so these pins can
be left unconnected (floating). After reset,
these pins are powered-up, sampled, then
powered down again as part of the auto-
configuration mechanism. For analog output,
the DOUT_LSB0 cannot be left unconnected,
and must be strapped to select either NTSC or
PAL mode
DOUT_LSB0 High impedance Driven, logic 0
DAC_POS High impedance Driven Output. Interface disabled by hardware reset
and enabled by default when the device starts
streaming.
DAC_NEG
DAC_REF
TDI Internal pull-up enabled Internal pull-up enabled Input. Internal pull-up means that this pin can
be left unconnected (floating).
TDO High impedance High impedance Output. Driven only during appropriate parts
of the JTAG shifter sequence.
TMS Internal pull-up enabled Internal pull-up enabled Input. Internal pull-up means that this pin can
be left unconnected (floating).
TCK Internal pull-up enabled Internal pull-up enabled Input. Internal pull-up means that this pin can
be left unconnected (floating).
TRST_N N/A N/A Input. Must always be driven to a valid logic
level. Must be driven to GND for normal
operation.
Table 5: Reset/Default State of Interfaces (continued)
Name Reset State Default State Notes
MT9V138 DS Rev. D Pub. 5/15 EN 16 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
SOC Description
SOC Description
Detailed Architecture Overview
Sensor Core
The sensor consists of a pixel array, an analog readout chain, a 10-bit ADC with programmable
gain and black offset, and timing and control as illustrated in Figure 5.
Figure 5: Sensor Core Block Diagram
Pixel Array Structure
The sensor core pixel array is configured as 744 columns by 512 rows, as shown in
Figure 6. This includes black rows and columns.
Figure 6: Pixel Array Description
The black row data are used internally for the automatic black level adjustment.
However, these black rows can also be read out by setting the sensor to raw data output
mode.
There are 744 columns by 512 rows of optically-active pixels that include a pixel
boundary around the VGA (640 x 480) image to avoid boundary effects during color
interpolation and correction.
Communication
Bus
to IFP
10-Bit Data
to IFP
Sync
Signals
Clock
Control Register
Analog Processing
Active Pixel
Sensor (APS)
Array Timing and Control
ADC
active border rows
black row
black rows
black columns
black columns
active border rows
active border columns
active border columns
Active pixel array
640 x 480
(not to scale)
Pixel logical address = (743, 511)
Pixel logical address = (0, 0)
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
SOC Description
MT9V138 DS Rev. D Pub. 5/15 EN 17 ©Semiconductor Components Industries, LLC,2015.
The one additional active column and two additional active rows are used to enable
horizontally and vertically mirrored readout to start on the same color pixel.
Figure 7 illustrates the process of capturing the image. The original scene is flipped and
mirrored by the sensor optics. Sensor readout starts at the lower right corner. The image
is presented in true orientation by the output display.
Figure 7: Image Capture Example
SCENE
(Front view)
OPTICS
IMAGE CAPTURE
IMAGE RENDERING
Start Readout
Row by Row
IMAGE SENSOR
(Rear view)
Start Rasterization
Process of Image Gathering and Image Display
DISPLAY
(Front view)
MT9V138 DS Rev. D Pub. 5/15 EN 18 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
Sensor Pixel Array
The active pixel array is 640 x 480 pixels. In addition, there are rows and columns for lens
alignment and demosaic.
Not shown in Figure 8 are pixels for black level calibration.
Figure 8: Sensor Pixel Array
The range of adjustment is from Row 0 to 22 and Column 0 to 30. There are 4 rows/
columns needed to calculate the RGB values. The window should be moved only at even
numbers.
Figure 9: Pixel Color Pattern Detail (top right corner)
Lens Alignment Pixels - 16 Columns
Lens Alignment Pixels - 12 Rows
Lens Alignment Pixels - 12 Rows
Lens Alignment Pixels - 16 Columns
Demosaic Pixels - 4 Columns
Demosaic Pixels - 4 Columns
Demosaic Pixels - 4 Rows
Demosaic Pixels - 4 Rows
Active Pixels
640 Rows, 480 Columns
Black Pixels
Column Readout Direction
.
.
.
...
Row
Readout
Direction
R
G
R
G
B
G
First Active
Border
Pixel
(64, 0)
R
G
R
G
B
G
R
G
R
G
B
G
G
B
G
G
R
G
B
G
B
G
R
G
B
G
B
G
R
G
B
G
B
B
G
B
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
MT9V138 DS Rev. D Pub. 5/15 EN 19 ©Semiconductor Components Industries, LLC,2015.
Output Data Format
The sensor core image data are read out in progressive scan order. Valid image data are
surrounded by horizontal and vertical blanking, shown in Figure 10.
For NTSC output, the horizontal size is stretched from 640 to 720 pixels. The vertical size
is 243 pixels per field; 240 image pixels and 3 dark pixels that are located at the bottom of
the image field.
For PAL output, the horizontal size is also stretched from 640 to 720 pixels. The vertical
size is 288 pixels per field.
Figure 10: Spatial Illustration of Image Readout
P0,0 P0,1 P0,2.....................................P0,n-1 P0,n
P2,0 P2,1 P2,2.....................................P2,n-1 P2,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
Pm-2,0 Pm-2,1.....................................Pm-2,n-1 Pm-2,n
Pm,0 Pm,1.....................................Pm,n-1 Pm,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
Valid Image Odd Field Horizontal
Blanking
Vertical Even Blanking Vertical/Horizontal
Blanking
P1,0 P1,1 P1,2.....................................P1,n-1 P1,n
P3,0 P3,1 P3,2.....................................P3,n-1 P3,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
Pm-1,0 Pm-1,1.....................................Pm-1,n-1 Pm-1,n
Pm+1,0 Pm+1,1..................................Pm+1,n-1 Pm+1,n
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 .................. 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
00 00 00 ..................................... 00 00 00
Valid Image Even Field Horizontal
Blanking
Vertical Odd Blanking Vertical/Horizontal
Blanking
MT9V138 DS Rev. D Pub. 5/15 EN 20 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
Image Flow Processor
Image and color processing in the MT9V138 are implemented as an image flow
processor (IFP) coded in hardware logic. During normal operation, the embedded
microcontroller will automatically adjust the operation parameters. The IFP is broken
down into different sections, as outlined in Figure 11.
Figure 11: Color Pipeline
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
MT9V138 DS Rev. D Pub. 5/15 EN 21 ©Semiconductor Components Industries, LLC,2015.
Test Patterns
During normal operation of the MT9V138, a stream of raw image data from the sensor
core is continuously fed into the color pipeline. For test purposes, this stream can be
replaced with a fixed image generated by a special test module in the pipeline. The
module provides a selection of test patterns sufficient for basic testing of the pipeline.
Test patterns are accessible by programming a register and are shown in Figure 12. ON
Semiconductor recommends disabling the MCU before enabling test patterns.
Figure 12: Color Bar Test Pattern
Test Pattern Example
Flat Field
Vertical Ramp
Color Bar
Vertical Stripes
Pseudo-Random
MT9V138 DS Rev. D Pub. 5/15 EN 22 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
NTSC/PAL Test Pattern Generation
There is a built-in standard EIA (NTSC) and EBU (PAL) color bars to support hue and
color saturation characterization. Each pattern consists of seven color bars (white,
yellow, cyan, green, magenta, red, and blue). The Y, Cb and Cr values for each bar are
detailed in Tables 6 and 7.
The test pattern is invoked through a Host Command call to the TX Manager. See the
MT9V138 Host Command Specification.
Figure 13: Color Bars
CCIR-656 Format
The color bar data is encoded in 656 data streams. The duration of the blanking and
active video periods of the generated 656 data are summarized in the following tables.
Table 6: EIA Color Bars (NTSC)
Nominal Range White Yellow Cyan Green Magenta Red Blue
Y 16 to 235 180 162 131 112 84 65 35
Cb 16 to 240 128 44 156 72 184 100 212
Cr 16 to 240 128 142 44 58 198 212 114
Table 7: EBU Color Bars (PAL)
Nominal Range White Yellow Cyan Green Magenta Red Blue
Y 16 to 235 235 162 131 112 84 65 35
Cb 16 to 240 128 44 156 72 184 100 212
Cr 16 to 240 128 142 44 58 198 212 114
Table 8: NTSC
Line Numbers Field Description
1-3 2 Blanking
4-19 1 Blanking
20-263 1 Active video
264-265 1 Blanking
266-282 2 Blanking
283-525 2 Active Video
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
MT9V138 DS Rev. D Pub. 5/15 EN 23 ©Semiconductor Components Industries, LLC,2015.
Black Level Subtraction and Digital Gain
Image stream processing starts with black level subtraction and multiplication of all
pixel values by a programmable digital gain. Both operations can be independently set
to separate values for each color channel (R, Gr, Gb, B). Independent color channel
digital gain can be adjusted with registers. Independent color channel black level adjust-
ments can also be made. If the black level subtraction produces a negative result for a
particular pixel, the value of this pixel is set to 0.
Positional Gain Adjustments (PGA)
Lenses tend to produce images whose brightness is significantly attenuated near the
edges. There are also other factors causing fixed pattern signal gradients in images
captured by image sensors. The cumulative result of all these factors is known as image
shading. The MT9V138 has an embedded shading correction module that can be
programmed to counter the shading effects on each individual R, Gb, Gr, and B color
signal.
The Correction Function
The correction functions can then be applied to each pixel value to equalize the
response across the image as follows:
(EQ 1)
where P are the pixel values and f is the color dependent correction functions for each
color channel.
Color Interpolation
In the raw data stream fed by the sensor core to the IFP, each pixel is represented by a
10-bit integer number, which can be considered proportional to the pixel's response to a
one-color light stimulus, red, green, or blue, depending on the pixel's position under the
color filter array. Initial data processing steps, up to and including the defect correction,
preserve the one-color-per-pixel nature of the data stream, but after the defect correc-
tion it must be converted to a three-colors-per-pixel stream appropriate for standard
color processing. The conversion is done by an edge-sensitive color interpolation
module. The module pads the incomplete color information available for each pixel
with information extracted from an appropriate set of neighboring pixels. The algorithm
used to select this set and extract the information seeks the best compromise between
preserving edges and filtering out high frequency noise in flat field areas. The edge
threshold can be set through register settings.
Table 9: PAL
Line Numbers Field Description
1-22 1 Blanking
23-310 1 Active video
311-312 1 Blanking
313-335 2 Blanking
336-623 2 Active video
624-625 2 Blanking
Pcorrected(row,col)=Psensor(row,col)*f(row,col)
MT9V138 DS Rev. D Pub. 5/15 EN 24 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
Color Correction and Aperture Correction
To achieve good color fidelity of the IFP output, interpolated RGB values of all pixels are
subjected to color correction. The IFP multiplies each vector of three pixel colors by a
3 x 3 color correction matrix. The three components of the resulting color vector are all
sums of three 10-bit numbers. Since such sums can have up to 12 significant bits, the bit
width of the image data stream is widened to 12 bits per color (36 bits per pixel). The
color correction matrix can be either programmed by the user or automatically selected
by the auto white balance (AWB) algorithm implemented in the IFP. Color correction
should ideally produce output colors that are corrected for the spectral sensitivity and
color crosstalk characteristics of the image sensor. The optimal values of the color
correction matrix elements depend on those sensor characteristics and on the spectrum
of light incident on the sensor. The color correction variables can be adjusted through
register settings.
To increase image sharpness, a programmable 2D aperture correction (sharpening filter)
is applied to color-corrected image data. The gain and threshold for 2D correction can
be defined through register settings.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
MT9V138 DS Rev. D Pub. 5/15 EN 25 ©Semiconductor Components Industries, LLC,2015.
Gamma Correction
The MT9V138 IFP includes a block for gamma correction that can adjust its shape based
on brightness to enhance the performance under certain lighting conditions. Two
custom gamma correction tables may be uploaded corresponding to a brighter lighting
condition and a darker lighting condition. At power-up, the IFP loads the two tables with
default values. The final gamma correction table used depends on the brightness of the
scene and takes the form of an interpolated version of the two tables.
The gamma correction curve (as shown in Figure 14) is implemented as a piecewise
linear function with 19 knee points, taking 12-bit arguments and mapping them to 8-bit
output. The abscissas of the knee points are fixed at 0, 64, 128, 256, 512, 768, 1024, 1280,
1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4096. The 8-bit ordinates
are programmable through IFP registers.
Figure 14: Gamma Correction Curve
RGB to YUV Conversion
For further processing, the data is converted from RGB color space to YUV color space.
Color Kill
To remove high-or low-light color artifacts, a color kill circuit is included. It affects only
pixels whose luminance exceeds a certain preprogrammed threshold. The U and V
values of those pixels are attenuated proportionally to the difference between their lumi-
nance and the threshold.
YUV Color Filter
As an optional processing step, noise suppression by one-dimensional low-pass filtering
of Y and/or UV signals is possible. A 3- or 5-tap filter can be selected for each signal.
MT9V138 DS Rev. D Pub. 5/15 EN 26 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
YUV-to-RGB/YUV Conversion and Output Formatting
The YUV data stream emerging from the scaling module can either exit the color pipe-
line as-is or be converted before exit to an alternative YUV or RGB data format.
Output Format and Timing
YUV/RGB Data Ordering
The MT9V138 supports swapping YCbCr mode, as illustrated in Table 10.
The RGB output data ordering in default mode is shown in Table 11. The odd and even
bytes are swapped when luma/chroma swap is enabled. R and B channels are bit-wise
swapped when chroma swap is enabled.
Uncompressed 10-Bit Bypass Output
Raw 10-bit Bayer data from the sensor core can be output in bypass mode in two ways:
Using 8 data output signals (DOUT[7:0]) and GPIO[1:0]. The GPIO signals are the least
significant 2 bits of data.
Using only 8 signals (DOUT[7:0]) and a special 8 + 2 data format, shown in Table 12.
Readout Formats
Progressive format is used for raw Bayer output.
Table 10: YCbCr Output Data Ordering
Mode Data Sequence
Default (no swap) CbiYiCriYi+1
Swapped CbCr CriYiCbiYi+1
Swapped YC YiCbiYi+1 Cri
Swapped CbCr, YC YiCriYi+1 Cbi
Table 11: RGB Ordering in Default Mode
Mode (Swap Disabled) Byte D7D6D5D4D3D2D1D0
565RGB Odd R7R6R5R4R3G7G6G5
Even G4G3G2B7B6B5B4B3
555RGB Odd 0 R7R6R5R4R3G7G6
Even G5G4G3B7B6B5B4B3
444xRGB Odd R7R6R5R4G7G6G5G4
Even B7B6B5B4 0 0 0 0
x444RGB Odd 0 0 0 0 R7R6R5R4
Even G7G6G5G4B7B6B5B4
Table 12: 2-Byte Bayer Format
Byte Bits Used Bit Sequence
Odd bytes 8 data bits D9D8D7D6D5D4D3D2
Even bytes 2 data bits + 6 unused bits 0 0 0 0 0 0 D1D0
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Sensor Pixel Array
MT9V138 DS Rev. D Pub. 5/15 EN 27 ©Semiconductor Components Industries, LLC,2015.
Output Formats
ITU-R BT.656 and RGB Output
The MT9V138 can output processed video as a standard ITU-R BT.656 (CCIR656) stream,
an RGB stream, or as unprocessed Bayer data. The ITU-R BT.656 stream contains YCbCr
4:2:2 data with fixed embedded synchronization codes. This output is typically suitable
for subsequent display by standard video equipment or JPEG/MPEG compression.
Colorpipe data (pre-lens correction and overlay) can also be output in YCbCr 4:2:2 and a
variety of RGB formats in 640 by 480 progressive format in conjunction with
LINE_VALID and FRAME_VALID.
The MT9V138 can be configured to output 16-bit RGB (565RGB), 15-bit RGB (555RGB),
and two types of 12-bit RGB (444RGB). Refer to Table 27 and Table 28 on page 56 for
details.
Bayer Output
Unprocessed Bayer data are generated when bypassing the IFP completely—that is, by
simply outputting the sensor Bayer stream as usual, using FRAME_VALID, LINE_VALID,
and PIXCLK to time the data. This mode is called sensor stand-alone mode.
Output Ports
Composite Video Output
The composite video output DAC is external-resistor-programmable and supports both
single-ended and differential output. The DAC is driven by the on-chip video encoder
output.
Parallel Output
Parallel output uses either 8-bit or 10-bit output. Eight-bit output is used for ITU-R
BT.656 and RGB output. Ten-bit output is used for raw Bayer output.
MT9V138 DS Rev. D Pub. 5/15 EN 28 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Usage Modes
Usage Modes
How a camera based on the MT9V138 will be configured depends on what features are
used. In the simplest case, only an MT9V138 plus an external flash memory, or an 8-bit
microcontroller (µC) might be sufficient. Flash sizes vary depending on the data for
registers, firmware, and overlay data—somewhere between 10Kb to 16MB. The two-wire
bus is adequate since only high-level commands are used to invoke overlays, load regis-
ters from memory, or set up lens correction parameters. Overlay data can alternatively
be issued by the external µC if the rate of refreshing data is deemed adequate. If there are
no commands in the Flash image the device can be in auto configuration mode by which
the sensor is set up according to the status of pins FRAME_VALID, LINE_VALID and
DOUT_LSB0. For further information, see “Auto-Configuration” on page 31.
In the simplest case no Flash memory or µC is required, as shown in Figure 15. This is
truly a single chip operation.
Note: Because mandatory patches must be loaded, the Auto-Config mode is not recom-
mended.
Figure 15: Auto-Config Mode
The MT9V138 can be configured by a serial Flash through the SPI Interface.
Figure 16: Flash Mode
Analog Out
Digital Out
Auto-Config Mode
LSB0
Hi = PAL
Lo = NTSC
MT9V138
MT9V138
SPI
Serial
Flash
LSB0
Hi = PAL
Lo = NTSC
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Usage Modes
MT9V138 DS Rev. D Pub. 5/15 EN 29 ©Semiconductor Components Industries, LLC,2015.
In some applications, button or user interface keypad can trigger overlay images being
called by the C as shown in Figure 17
Figure 17: Host Mode with Flash
Overlay information may also be passed by the µC without a need for a Flash memory.
However, because the data transfer rate is limited over the two-wire serial bus, the
update rate may be slower. However, if overlay images are preloaded into the four on-
chip buffers, they may be turned on and off or move location at the frame rate as shown
in Figure 18.
Figure 18: Host Mode
MT9V138
SPI
8/16bit μC Serial
Flash
two-wire
Button or
user interface
keypad
LSB0
Hi = PAL
Lo = NTSC
MT9V138
8/16bit μC
two-wire
Button
or user interface
keypad
LSB0
Hi = PAL
Lo = NTSC
MT9V138 DS Rev. D Pub. 5/15 EN 30 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
External Signal Processing
External Signal Processing
An external signal processor can take data from ITU656 or raw Bayer output format and
post-process or compress the data in various formats.
Figure 19: External Signal Processing Block Diagram
Device Configuration
After power is applied and the device is out of reset by de-asserting the RESET_BAR pin,
it will enter a boot sequence to configure its operating mode. There are essentially four
modes, two when Flash is present and two when Flash is not present. Figure 20: “Power-
Up Sequence – Configuration Options Flow Chart,” on page 32 contains more details on
the configuration options.
If Flash is present and:
A valid Flash device identifier is detected AND the Flash device contains valid config-
uration records, then
Disable Auto-Config
Parse Flash Content
Load Flash Configuration ->Flash Configuration Mode
A valid Flash device identifier is detected BUT the Flash device DOES NOT contain
valid configuration records, then
Enter Auto Configuration.
If Flash is not present and:
SPI_SDI == 0, then
Enter Host Configuration.
SPI_SDI != 0, then
Enter Auto Configuration
SPI
Serial data
Flash
10Kb to 16MB
27 MHz
VIDEO_P
CVBS
PAL/NTSC
EXTCLK
VIDEO_N
DOUT [7:0]
PIXCLK
Signal processor
LSB0
Hi = PAL
Lo = NTSC
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
External Signal Processing
MT9V138 DS Rev. D Pub. 5/15 EN 31 ©Semiconductor Components Industries, LLC,2015.
Auto-Configuration
The device supports an auto-configuration feature. During system start-up, the device
first detects whether an SPI Flash device is attached to the MT9V138. If not, it will then
sample the state of a number of GPI inputs including FRAME_VALID, LINE_VALID and
DOUT_LSB0. For more information, see Table 15, “GPIO Bit Descriptions,” on page 33.
The state of these inputs then determines the configuration of a number of subsystems
of the device such as readout mode, pedestal and video format, respectively.
The auto-configuration feature can be disabled by grounding the SPI_DIN pin. The
device samples the state of this pin during the Flash device detection process. If no SPI
Flash device is detected (read device ID of 0x00 or 0xFF), OR the SPI_DIN pin is
grounded, then auto-configuration is disabled.
Flash Configuration Mode
If a valid Flash is detected (by reading device ID other than 0x00 or 0xFF) and the flash
device contains valid configuration records, then these configuration records are
processed.
Host Configuration
This mode is entered if the SPI_DIN pin is grounded. The SOC performs no configura-
tion, and remains idle waiting for configuration and instruction from the host.
MT9V138 DS Rev. D Pub. 5/15 EN 32 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
External Signal Processing
Power Sequence
In power-up, the core voltage (1.8V) must trail the IO (2.8V) by a positive number. All
2.8V rails can be turned on at the same time or follow the power-up sequence in Figure
46: “Power Up Sequence,” on page 62.
In power down, the sequence is reversed. The core voltage (1.8V) must be turned off
before any 2.8V. Refer to Figure 47: “Power Down Sequence,” on page 63 for details.
Figure 20: Power-Up Sequence – Configuration Options Flow Chart
Supported SPI Devices
Table 13 lists supported Flash devices. Devices not compatible will require a firmware
patch. Contact ON Semiconductor for additional support.
Table 13: SPI Flash Devices
Type Density Manufacturer Device Speed
(MHz) Standard Temp Range
(°F) Supported
Flash 8 MB Atmel AT26DF081A 70 JEDEC/Device
ID
–20 to +85 Yes
Flash 1 MB ST M25P10-AVMB3 50 –40 to +125 Yes
Power Up
/RESET
Flash
Header?
Auto Configuration:
FRAME_VALID,
LINE_VALID,
D
OUT
_LSB0
SPI _SDI = 0?
Wait for Host
Command
Wait for Host
Command
Disable Auto -Config
Parse Flash Content
Wait for Host
Command
yes
no
yes
FRAME_VALID
LINE_VALID
D
OUT
_LSB0
0:
Normal
1: Horizontal Mirror
0 No Pedestal
1: Pedestal
0: NTSC
1: PAL
Disable Auto-Config
no
Flash
Configuration:
Host
Configuration :
Host
Configuration:
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
External Signal Processing
MT9V138 DS Rev. D Pub. 5/15 EN 33 ©Semiconductor Components Industries, LLC,2015.
Supported SPI Commands
The SPI commands shown in Table 14 are supported by the MT9V138.
Table 14: SPI Commands Supported
Command Value
Read Array 0x03
Block Erase 0xD8
Chip Erase 0xC7
Read Status 0x05
Write status 0x01
Byte Page Program 0x02
Write Enable 0x06
Write Disable 0x04
Read Manufacturer and Device
ID
0x9F
(Fast) Read Array 0x0B
Table 15: GPIO Bit Descriptions
GPI[2]
(DOUT_LSB0) GPI[1]
(FRAME_VALID) GPI[0]
(LINE_VALID)
Low (“0”) NTSC Normal No pedestal
High (“1”) PAL Horizontal mirror Pedestal
MT9V138 DS Rev. D Pub. 5/15 EN 34 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
External Signal Processing
Host Command Interface
ON Semiconductors sensors and SOCs contain numerous registers that are accessed
through a two-wire interface with speeds up to 400 kHz.
The MT9V138, in addition to writing or reading straight to/from registers or firmware
variables, has a mechanism to write higher level commands, the Host Command Inter-
face (HCI). Once a command has been written through the HCI, it will be executed by on
chip firmware and the results are reported back. In general, registers shall not be
accessed with the exception of registers that are marked for “User Access.
Flash memory is also available to store commands for later execution. Under DMA
control, a command is written into the SOC and executed.
For a complete spec on host commands, refer to the MT9V138 Host Command Interface
Specification.
Figure 21: Interface Structure
Host Command to FW
Response from FW
15 0bit
1
0
``
command register
Addr 0x40
Addr 0xFC00
`
`
`
`
`
`
`
`
Addr 0xFC0E
Addr 0xFC02
Addr 0xFC04
Addr 0xFC06
Addr 0xFC08
Addr 0xFC0A
Addr 0xFC0C
14
door bell
15 0bit
Parameter 0
Parameter 7
cmd_handler_params_pool_0
cmd_handler_params_pool_1
cmd_handler_params_pool_2
cmd_handler_params_pool_3
cmd_handler_params_pool_4
cmd_handler_params_pool_5
cmd_handler_params_pool_6
cmd_handler_params_pool_7
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
External Signal Processing
MT9V138 DS Rev. D Pub. 5/15 EN 35 ©Semiconductor Components Industries, LLC,2015.
Host Command Process Flow
Command Flow
The host issues a command by writing (through a two-wire interface bus) to the
command register. All commands are encoded with bit 15 set, which automatically
generates the host command (doorbell) interrupt to the microprocessor.
Assuming initial conditions, the host first writes the command parameters (if any) to the
parameters pool (in the command handler's logical page), then writes the command to
command register. The interrupt handler then signals the command handler task to
process the command.
If the host wishes to determine the outcome of the command, it must poll the command
register waiting for the doorbell bit to be cleared. This indicates that the firmware
completed processing the command. The contents of the command register indicate the
command's result status. If the command generated response parameters, the host can
now retrieve these from the parameters pool.
Read Command
register
Doorb e ll
bit clear ?
No
Command has
para meters?
Yes
Write parameters
to
Parameter Pool
Yes
Write co mmand
to
Command registe r
No
Issue
Command
Host could insert an
optional delay here
Host could insert an
optional delay here
Wait f o r a
response?
Read Command
registe r
Doorbell bit
cle ar?
Yes
No
Command
has response
parameters ?
Yes
Read response
parameters from
Parameter Pool
Yes
At th is point
Command Registe r
contains response code
Done
No
No
No
MT9V138 DS Rev. D Pub. 5/15 EN 36 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
External Signal Processing
Note: The host must not write to the parameters pool, nor issue another command, until
the previous command completes. This is true even if the host does not care about the
result of the previous command. Therefore, the host must always poll the command
register to determine the state of the doorbell bit, and ensure the bit is cleared before
issuing a command.
For a complete command list and further information consult the Host Command Inter-
face Specification.
An example of how (using DevWare) a command may be initiated in the form of a
“Preset” follows.
Set Parallel Mode - Normal (Overlay i656)
All DevWare presets supplied by ON Semiconductor poll and test the doorbell bit after
issuing the command. Therefore there is no need to check if the doorbell bit is clear
before issuing the next command.
REG= 0xFC00, 0x1000 // CMD_HANDLER_PARAMS_POOL_0
REG= 0x0040, 0x8801 // issue command
// POLL COMMAND_REGISTER::DOORBELL => 0x0
Summary of Host Commands
Table 16 on page 36 through Table 21 on page 38 show summaries of the host
commands. The commands are divided into the following sections:
System Manager
–Overlay
–GPIO Host interface
Flash Manager Host
Patch Loader Interface
TX Manager
Following is a summary of the Host Interface commands. The description gives a quick
orientation. The “Type” column shows if it is an asynchronous or synchronous
command. For a complete list of all commands including parameters, consult the Host
Command Interface Specification document.
Table 16: System Manager Commands
System Manager
Host Command Value Type Description
Set State 0x8100 Asynchronous Request the system enter a new state
Get State 0x8101 Synchronous Get the current state of the system
Table 17: Overlay Host Commands
Overlay Host Command Value Type Description
Enable Overlay 0x8200 Synchronous Enable or disable the overlay subsystem
Get Overlay State 0x8201 Synchronous Retrieve the state of the overlay subsystem
Set Calibration 0x8202 Synchronous Set the calibration offset
Set Bitmap Property 0x8203 Synchronous Set a property of a bitmap
Get Bitmap Property 0x8204 Synchronous Get a property of a bitmap
Set String Property 0x8205 Synchronous Set a property of a character string
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
External Signal Processing
MT9V138 DS Rev. D Pub. 5/15 EN 37 ©Semiconductor Components Industries, LLC,2015.
Load Buffer 0x8206 Asynchronous Load an overlay buffer with a bitmap (from Flash)
Load Status 0x8207 Synchronous Retrieve status of an active load buffer operation
Write Buffer 0x8208 Synchronous Write directly to an overlay buffer
Read Buffer 0x8209 Synchronous Read directly from an overlay buffer
Enable Layer 0x820A Synchronous Enable or disable an overlay layer
Get Layer Status 0x820B Synchronous Retrieve the status of an overlay layer
Set String 0x820C Synchronous Set the character string
Load String 0x820E Asynchronous Load a character string (from Flash)
Table 18: GPIO Host Commands
GPIO Host Command Value Type Description
Set GPIO Property 0x8400 Synchronous Set a property of one or more GPIO pins
Get GPIO Property 0x8401 Synchronous Retrieve a property of a GPIO pin
Set GPO State 0x8402 Synchronous Set the state of a GPO pin or pins
Get GPIO State 0x8403 Synchronous Get the state of a GPI pin or pins
Set GPI Association 0x8404 Synchronous Associate a GPI pin state with a Command Sequence stored in SPI Flash
Table 19: Flash Manager Host Commands
Flash Manager
Host Command Value Type Description
Get Lock 0x8500 Asynchronous Request the Flash Manager access lock
Lock Status 0x8501 Synchronous Retrieve the status of the access lock request
Release Lock 0x8502 Synchronous Release the Flash Manager access lock
Config 0x8503 Synchronous Configure the Flash Manager and underlying SPI Flash subsystem
Read 0x8504 Asynchronous Read data from the SPI Flash
Write 0x8505 Asynchronous Write data to the SPI Flash
Erase Block 0x8506 Asynchronous Erase a block of data from the SPI Flash
Erase Device 0x8507 Asynchronous Erase the SPI Flash device
Query Device 0x8508 Asynchronous Query device-specific information
Status 0x8509 Synchronous Obtain status of current asynchronous operation
Table 20: Sequencer Host Commands
Sequencer Host
Command Value Type Description
Set Encoding Mode 0x8603 Synchronous Set the encoding mode
Enable Horizontal Flip 0x8604 Synchronous Enable or disable horizontal flip
Set Flicker Frequency 0x8605 Synchronous Set the flicker frequency
Refresh Mode 0x8606 Synchronous Refresh the Sequencer mode/context
Table 17: Overlay Host Commands
Overlay Host Command Value Type Description
MT9V138 DS Rev. D Pub. 5/15 EN 38 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
External Signal Processing
Table 21: TX Manager Host Commands
TX Manager Host
Command Value Type Description
Config DAC 0x8800 Synchronous Configure the Video DAC
Set Parallel Mode 0x8801 Synchronous Configure the Parallel output port
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Slave Two-Wire Serial Interface
MT9V138 DS Rev. D Pub. 5/15 EN 39 ©Semiconductor Components Industries, LLC,2015.
Slave Two-Wire Serial Interface
The two-wire serial interface bus enables read/write access to control and status regis-
ters within the MT9V138. This interface is designed to be compatible with the MIPI Alli-
ance Standard for Camera Serial Interface 2 (CSI-2) 1.0, which uses the electrical
characteristics and transfer protocols of the two-wire serial interface specification.
The interface protocol uses a master/slave model in which a master controls one or
more slave devices. The sensor acts as a slave device. The master generates a clock
(SCLK) that is an input to the sensor and used to synchronize transfers.
Data is transferred between the master and the slave on a bidirectional signal (SDATA).
SDATA is pulled up to VDD_IO off-chip by a pull-up resistor in the range of 1.5 to 4.7k
resistor.
Protocol
Data transfers on the two-wire serial interface bus are performed by a sequence of low-
level protocol elements, as follows:
a start or restart condition
a slave address/data direction byte
a 16-bit register address
an acknowledge or a no-acknowledge bit
•data bytes
a stop condition
The bus is idle when both SCLK and SDATA are HIGH. Control of the bus is initiated with
a start condition, and the bus is released with a stop condition. Only the master can gen-
erate the start and stop conditions.
The SADDR pin is used to select between two different addresses in case of conflict with
another device. If SADDR is LOW, the slave address is 0x90; if SADDR is HIGH, the slave
address is 0xBA. See Table 22 below.
Start Condition
A start condition is defined as a HIGH-to-LOW transition on SDATA while SCLK is HIGH.
At the end of a transfer, the master can generate a start condition without previously
generating a stop condition; this is known as a “repeated start” or “restart” condition.
Data Transfer
Data is transferred serially, 8 bits at a time, with the MSB transmitted first. Each byte of
data is followed by an acknowledge bit or a no-acknowledge bit. This data transfer
mechanism is used for the slave address/data direction byte and for message bytes.
One data bit is transferred during each SCLK clock period. SDATA can change when SCLK
is low and must be stable while SCLK is HIGH.
Table 22: Two-Wire Interface ID Address Switching
SADDR Two-Wire Interface Address ID
00x90
10xBA
MT9V138 DS Rev. D Pub. 5/15 EN 40 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Slave Two-Wire Serial Interface
Slave Address/Data Direction Byte
Bits [7:1] of this byte represent the device slave address and bit [0] indicates the data
transfer direction. A “0” in bit [0] indicates a write, and a “1” indicates a read. The default
slave addresses used by the MT9V138 are 0x90 (write address) and 0x91 (read address).
Alternate slave addresses of 0xBA (write address) and 0xBB (read address) can be
selected by asserting the SADDR input signal.
Message Byte
Message bytes are used for sending register addresses and register write data to the slave
device and for retrieving register read data. The protocol used is outside the scope of the
two-wire serial interface specification.
Acknowledge Bit
Each 8-bit data transfer is followed by an acknowledge bit or a no-acknowledge bit in the
SCLK clock period following the data transfer. The transmitter (which is the master when
writing, or the slave when reading) releases SDATA. The receiver indicates an acknowl-
edge bit by driving SDATA LOW. As for data transfers, SDATA can change when SCLK is
LOW and must be stable while SCLK is HIGH.
No-Acknowledge Bit
The no-acknowledge bit is generated when the receiver does not drive SDATA low during
the SCLK clock period following a data transfer. A no-acknowledge bit is used to termi-
nate a read sequence.
Stop Condition
A stop condition is defined as a LOW-to-HIGH transition on SDATA while SCLK is HIGH.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Slave Two-Wire Serial Interface
MT9V138 DS Rev. D Pub. 5/15 EN 41 ©Semiconductor Components Industries, LLC,2015.
Typical Operation
A typical READ or WRITE sequence begins by the master generating a start condition on
the bus. After the start condition, the master sends the 8-bit slave address/data direction
byte. The last bit indicates whether the request is for a READ or a WRITE, where a “0”
indicates a WRITE and a “1” indicates a READ. If the address matches the address of the
slave device, the slave device acknowledges receipt of the address by generating an
acknowledge bit on the bus.
If the request was a WRITE, the master then transfers the 16-bit register address to which
a WRITE will take place. This transfer takes place as two 8-bit sequences and the slave
sends an acknowledge bit after each sequence to indicate that the byte has been
received. The master will then transfer the 16-bit data, as two 8-bit sequences and the
slave sends an acknowledge bit after each sequence to indicate that the byte has been
received. The master stops writing by generating a (re)start or stop condition. If the
request was a READ, the master sends the 8-bit write slave address/data direction byte
and 16-bit register address, just as in the write request. The master then generates a
(re)start condition and the 8-bit read slave address/data direction byte, and clocks out
the register data, 8 bits at a time. The master generates an acknowledge bit after each 8-
bit transfer. The data transfer is stopped when the master sends a no-acknowledge bit.
Single READ from Random Location
Figure 22 shows the typical READ cycle of the host to MT9V138. The first two bytes sent
by the host are an internal 16-bit register address. The following 2-byte READ cycle sends
the contents of the registers to host.
Figure 22: Single READ from Random Location
Single READ from Current Location
Figure 23 shows the single READ cycle without writing the address. The internal address
will use the previous address value written to the register.
Figure 23: Single Read from Current Location
S = start condition
P = stop condition
Sr = restart condition
A = acknowledge
A = no-acknowledge
slave to master
master to slave
Slave Address 0
S A Reg Address[15:8] A Reg Address[7:0] Slave Address A
A 1Sr Read Data
[15:8] P
Previous Reg Address, N Reg Address, M M+1
A
Read Data
[7:0]
A
Slave Address 1S A Read Data
[15:8] Slave Address A1SP Read Data
[15:8] P
Previous Reg Address, N Reg Address, N+1 N+2
AA
Read Data
[7:0]
ARead Data
[7:0]
A
MT9V138 DS Rev. D Pub. 5/15 EN 42 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Slave Two-Wire Serial Interface
Sequential READ, Start from Random Location
This sequence (Figure 24) starts in the same way as the single READ from random loca-
tion (Figure 22 on page 41). Instead of generating a no-acknowledge bit after the first
byte of data has been transferred, the master generates an acknowledge bit and
continues to perform byte READs until “L” bytes have been read.
Figure 24: Sequential READ, Start from Random Location
Sequential READ, Start from Current Location
This sequence (Figure 25) starts in the same way as the single READ from current loca-
tion (Figure 23). Instead of generating a no-acknowledge bit after the first byte of data
has been transferred, the master generates an acknowledge bit and continues to
perform byte reads until “L” bytes have been read.
Figure 25: Sequential READ, Start from Current Location
Single Write to Random Location
Figure 26 shows the typical WRITE cycle from the host to the MT9V138. The first 2 bytes
indicate a 16-bit address of the internal registers with most-significant byte first. The
following 2 bytes indicate the 16-bit data.
Figure 26: Single WRITE to Random Location
Read Data
(15:8)
A
A
Read Data
(15:8)
A
Read Data
(7:0)
A
Slave Address 0
S Sr
AReg Address[15:8] AReg Address[7:0] ARead Data
Slave Address
Previous Reg Address, N Reg Address, M
M+1 M+2
M+1
M+3
A
1
M+L-2 M+L-1 M+L
A P
A
Read Data
(15:8)
A
Read Data
(7:0)
A
Read Data
(15:8)
A
Read Data
(7:0)
A
Read Data
(7:0)
ARead Data Read Data
Previous Reg Address, N N+1 N+2 N+L-1 N+L
A
Read DataSlave Address AA1 AS
P
Read Data
(15:8)
A
Read Data
(7:0) ARead Data
(15:8)
A
Read Data
(7:0) ARead Data
(15:8)
A
Read Data
(7:0)
A
Read Data
Read Data
(15:8)
A
Read Data
(7:0)
Slave Address 0
SAReg Address[15:8] AReg Address[7:0] AP
Pre vious Reg Address, N Reg Address, M M+1
A
A
Write Dat a
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Slave Two-Wire Serial Interface
MT9V138 DS Rev. D Pub. 5/15 EN 43 ©Semiconductor Components Industries, LLC,2015.
Sequential WRITE, Start at Random Location
This sequence (Figure 27) starts in the same way as the single WRITE to random location
(Figure 26). Instead of generating a no-acknowledge bit after the first byte of data has
been transferred, the master generates an acknowledge bit and continues to perform
byte writes until “L” bytes have been written. The WRITE is terminated by the master
generating a stop condition.
Figure 27: Sequential WRITE, Start at Random Location
Slave Address 0
SAReg Address[15:8]
Write Data
AReg Address[7:0] AWrite Data
Previous Reg Address, N Reg Address, M
M+1 M+2
M+1
M+3
A
AA
Write Data Write Data
M+L-2 M+L-1 M+L
A
AP
Write Data
(15:8)
Write Data
(7:0)
Write Data
(15:8)
A
Write Data
(7:0)
AA
AA
Write Data A
Write Data
(15:8)
A
Write Data
(7:0)
A
Write Data
Write Data
(15:8)
A
Write Data
(7:0)
MT9V138 DS Rev. D Pub. 5/15 EN 44 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Overlay Capability
Overlay Capability
Figure 28 highlights the graphical overlay data flow of the MT9V138. The images are
separated to fit into 2KB blocks of memory after compression.
Up to four overlays may be blended simultaneously
Overlay size 360 x 480 pixels rendered into a display area of 720 x 480 pixels
Selectable readout: rotating order is user programmable
Dynamic movement through predefined overlay images
Palette of 32 colors out of 64,000 with eight colors per bitmap
Blend factors may be changed dynamically to achieve smooth transitions
The host commands allow a bitmap to be written piecemeal to a memory buffer through
the I2C, and through the DMA direct from SPI Flash memory. Multiple encoding passes
may be required to fit an image into a 2KB block of memory; alternatively, the image can
be divided into two or more blocks to make the image fit. Every graphic image may be
positioned in an x/y direction and overlap with other graphic images.
The host may load an image at any time. Under control of DMA assist, data are trans-
ferred to the off-screen buffer in compressed form. This assures that no display data are
corrupted during the replenishment of the four active overlay buffers.
Figure 28: Overlay Data Flow
Note: These images are not actually rendered, but show conceptual objects and object blending.
Off-screen
buffer
Overlay buffers: 2KB each
Decompress
Blend and Overlay
Flash
Bitmaps - compressed
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Serial Memory Partition
MT9V138 DS Rev. D Pub. 5/15 EN 45 ©Semiconductor Components Industries, LLC,2015.
Serial Memory Partition
The contents of the Flash/EEPROM memory partition logically into three blocks (see
Figure 29):
Memory for overlay data and descriptors
Memory for register settings, which may be loaded at boot-up
Firmware extensions or software patches; in addition to the on-chip firmware, exten-
sions reside in this block of memory
These blocks are not necessarily contiguous.
Figure 29: Memory Partitioning
For a complete description of memory organization, refer to the MT9V138 SPI Flash
Contents Encoding Specification.
External Memory Speed Requirement
For a 2KB block of overlay to be transferred within a frame time to achieve maximum
update rate, the serial memory has to be a certain speed.
Table 23: Transfer Time Estimate
Frame Time SPI Clock Transfer Time to 2KB
33.3ms 4.5 MHz 1ms
S/W Patch
Alterna te Reg.
Setting
Overlay Data
Flash
Partitioning Fixed Size
Overla
y
s-RLE
12Byte Header
RLE Encoded
Data
2kByte
Fixed Size
Overla
y
s-RLE
Lens Correction
Parameter
Fixed-size
Overlays – RLE
Fixed-size
Overlays – RLE
Flash
Partitioning
Overlay
Data
Software Patch
12-byte Header
RLE Encoded
Data
2KB
Lens Shading
Correction
Parameter
Alternate
Register Setting
MT9V138 DS Rev. D Pub. 5/15 EN 46 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Overlay Adjustment
Overlay Adjustment
To ensure a correct position of the overlay to compensate for assembly deviation, the
overlay can be adjusted with assistance from the overlay statistics engine:
The overlay statistics engine supports a windowed 8-bin luma histogram, either row-
wise (vertical) or column-wise (horizontal).
The example calibration statistics firmware patch can be used to perform an auto-
matic successive-approximation search of a cross-hair target within the scene.
On the first frame, the firmware performs a coarse horizontal search, followed by a
coarse vertical search in the second frame.
In subsequent frames, the firmware reduces the region-of-interest of the search to the
histogram bins containing the greatest accumulator values, thereby refining the
search.
The resultant X, Y location of the cross-hair target can be used to assign a calibration
value of offset selected overlay graphic image positions within the output image.
The calibration statistics patch also supports a manual mode, which allows the host
to access the raw accumulator values directly.
Note: For the overlay calibration feature to work, load the appropriate patch. See Statistics
Engine document.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Overlay Adjustment
MT9V138 DS Rev. D Pub. 5/15 EN 47 ©Semiconductor Components Industries, LLC,2015.
Figure 30: Overlay Calibration
The position of the target will be used to determine the calibration value that shifts the
X,Y position of adjustable overlay graphics.
The overlay calibration is intended to be applied on a device by device basis “in system,
which means after the camera has been installed. ON Semiconductor provides basic
programming scripts that may reside in the SPI Flash memory to assist in this effort.
MT9V138 DS Rev. D Pub. 5/15 EN 48 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Overlay Character Generator
Overlay Character Generator
In addition to the four overlay layers, a fifth layer exists for a character generator overlay
string.
There are a total of:
16 alphanumeric characters available
22 characters maximum per line
16 x 32 pixels with 1-bit color depth
Any update to the character generator string requires the string to be passed in its
entirety with the Host Command. Character strings have their own control properties
aside from the Overlay bitmap properties.
Figure 31: Internal Block Diagram Overlay
Overlay
Layer0
Layer1
Layer2
Layer3
BT656
Number
Generator
BT656
Tim in g control
User R egisters
D ata Bu s
DMA/CPU
Register Bus
ROM
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Overlay Character Generator
MT9V138 DS Rev. D Pub. 5/15 EN 49 ©Semiconductor Components Industries, LLC,2015.
Character Generator
The character generator can be seen as the fifth top layer, but instead of getting the
source from RLE data in the memory buffers, it has a predefined 16 characters stored in
ROM.
All the characters are 1-bit depth color and are sharing the same YCbCr look up table.
Figure 32: Example of Character Descriptor 0 Stored in ROM
It can show a row of up to 22 characters of 16 x 32 pixels resolution (32 x 32 pixels when
blended with the BT 656 data).
ROM 151413121110 9 8 7 6 5 4 3 2 1 0
0x00 0000000000000000
0x02 0000000000000000
0x04 0000001111000000
0x06 0000011111100000
0x08 0000111111110000
0x0a 0001111001111000
0x0c 0001110000111100
0x0e 0011110000011100
0x10 0011100000011100
0x12 0011100000011110
0x14 0111100000001110
0x16 0111000000001110
0x18 0111000000001110
0x1a 0111000000001110
0x1c 0111000000001110
0x1e 0111000000001110
0x20 0111000000001110
0x22 0111000000001110
0x24 0111000000001110
0x26 0111000000001110
0x28 0011100000001110
0x2a 0011100000011110
0x2c 0011100000011100
0x2e 0011110000011100
0x30 0001110000111000
0x32 0001111001111000
0x34 0000111111110000
0x36 0000011111100000
0x38 0000001111000000
0x3a 0000000000000000
0x3c 0000000000000000
0x3e 0000000000000000
MT9V138 DS Rev. D Pub. 5/15 EN 50 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Overlay Character Generator
Character Generator Details
Table 24 shows the characters that can be generated.
It is the responsibility of the user to set up proper values in the character positioning to
fit them in the same row (that is one of the reasons that 22 is the maximum number of
characters).
Note: No error is generated if the character row overruns the horizontal or vertical limits of
the frame.
Full Character Set for Overlay
Figure 33 shows all of the characters that can be generated by the MT9V138.
Figure 33: Full Character Set for Overlay
Table 24: Character Generator Details
Item Quantity Description
16-bit character 22 Coder for one of these characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, /, (space), :, –, (comma), (period)
1 bpp color 1 Depth of the bit map is 1 bpp
0x0 0x4 0x80xC
0x10x5 0x9
0x2
0x3
0x6
0x7
0xA
0xB
0xD
0xE
0xF
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
MT9V138 DS Rev. D Pub. 5/15 EN 51 ©Semiconductor Components Industries, LLC,2015.
Modes and Timing
This section provides an overview of the typical usage modes and related timing infor-
mation for the MT9V138.
Composite Video Output
The external pin DOUT_LSB0 must be used to configure the device for default NTSC or
PAL operation. This and other video configuration settings are available as register
settings accessible through the serial interface.
NTSC
Both differential and single-ended connections of the full NTSC format are supported.
The differential connection that uses two output lines is used for low noise or long
distance applications. The single-ended connection is used for PCB tracks and screened
cable where noise is not a concern. The NTSC format has three black lines at the bottom
of each image for padding (which most LCDs do not display).
PAL
The PAL format is supported with 576 active image rows.
Single-Ended and Differential Composite Output
The composite output can be operated in a single-ended or differential mode by simply
changing the external resistor configuration. For single-ended termination, see
Figure 34 on page 51. The differential schematic is shown in Figure 35 on page 52.
Figure 34: Single-Ended Termination
V
DD
75Ω 75Ω
Chip
Boundary
i = IPLUSi = IMINUS
Single-Ended
R1=75
Ω
Single-ended
e.g. PCB Track
e.g. 75Ω COAX Single-ended
L=1uH L = 1uH
C = 330
C0 C1
C = 330
L0 L1 L2
Typical Values for LC
75Ω Terminated Receiver
L = 2.2μH
pF
pF
75Ω
MT9V138 DS Rev. D Pub. 5/15 EN 52 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
Figure 35: Differential Connection—Grounded Termination
Parallel Output (DOUT)
The DOUT[7:0] port supports both progressive and Interlaced mode. Progressive mode
(with FV and LV signal) include raw bayer(8 or 10 bit), YCbCr, RGB. Interlaced mode is
CCIR656 compliant.
Figure 36 shows the data that is output on the parallel port for CCIR656. Both NTSC and
PAL formats are displayed. The blue values in Figure 36 represent NTSC (525/60). The
red values represent PAL (625/50).
Figure 36: CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems
Figure 37 on page 53 shows detailed vertical blanking information for NTSC timing. See
Table 25 on page 53 for data on field, vertical blanking, EAV, and SAV states.
F
F
0
0
0
0
X
Y
8
0
1
0
8
0
1
0
8
0
1
0
F
F
0
0
0
0
X
Y
C
B Y C
R Y C
B Y C
R Y C
R Y F
F
4
4
268
280
4
4
1440
1440
1716
1728
EAV CODE BLANKING SAV CODE CO - SITED _ CO - SITED _
Start of digital line Start of digital active line Next line
Digital
video
stream
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
MT9V138 DS Rev. D Pub. 5/15 EN 53 ©Semiconductor Components Industries, LLC,2015.
Figure 37: Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System
Figure 38 shows detailed vertical blanking information for PAL timing. See Table 26 on
page 54 for data on field, vertical blanking, EAV, and SAV states.
Table 25: Field, Vertical Blanking, EAV, and SAV States 525/60 Video System
Line Number F V H
(EAV) H
(SAV)
1–3 1 1 1 0
4–9 0 1 1 0
20–263 0 0 1 0
264–265 0 1 1 0
266–282 1 1 1 0
283–525 1 0 1 0
Blanking
Field 1 Active Video
Blanking
Field 2 Active Video
Line 4
266
Field 1
(F = 0)
Odd
Field 2
(F = 1)
Even
EAV SAV
Line 1 (V = 1)
Line 20 (V = 0)
Line 264 (V = 1)
Line 283 (V = 0)
Line 525 (V = 0)
H = 1H = 0
MT9V138 DS Rev. D Pub. 5/15 EN 54 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
Figure 38: Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System
Table 26: Field, Vertical Blanking, EAV, and SAV States for 625/50 Video System
Line Number F V H
(EAV) H
(SAV)
122 0110
23310 0010
311312 0110
313335 1110
336623 1010
624625 1110
Blanking
Field 1 Active Video
Blanking
Field 2 Active Video
Field 1
(F = 0)
Odd
Field 2
(F = 1)
Even
H = 1
EAV
H = 0
SAV
Blanking
Line 1 (V = 1)
Line 23 (V = 0)
Line 311 (V = 1)
Line 336 (V = 0)
Line 625 (V = 1)
Line 624 (V = 1)
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
MT9V138 DS Rev. D Pub. 5/15 EN 55 ©Semiconductor Components Industries, LLC,2015.
Reset and Clocks
Reset
Power-up reset is asserted or de-asserted with the RESET_BAR pin, which is active LOW.
In the reset state, all control registers are set to default values. See “Device Configura-
tion” on page 30 for more details on Auto, Host, and Flash configurations.
Soft reset is asserted or de-asserted by the two-wire serial interface program. In soft-
reset mode, the two-wire serial interface and the register bus are still running. All control
registers are reset using default values.
Clocks
The MT9V138 has two primary clocks:
A master clock coming from the EXTCLK signal.
In default mode, a pixel clock (PIXCLK) running at 2 * EXTCLK. In raw Bayer bypass
mode, PIXCLK runs at the same frequency as EXTCLK.
When the MT9V138 operates in sensor stand-alone mode, the image flow pipeline
clocks can be shut off to conserve power.
The sensor core is a master in the system. The sensor core frame rate defines the overall
image flow pipeline frame rate. Horizontal blanking and vertical blanking are influenced
by the sensor configuration, and are also a function of certain image flow pipeline func-
tions. The relationship of the primary clocks is depicted in Figure 39.
The image flow pipeline typically generates up to 16 bits per pixel—for example, YCbCr
or 565RGB—but has only an 8-bit port through which to communicate this pixel data.
To generate NTSC or PAL format images, the sensor core requires a 27 MHz clock.
Figure 39: Primary Clock Relationships
10 bits/pixel
1 pixel/clock
16 bits/pixel
1 pixel/clock
16 bits/pixel (TYP)
0.5 pixel/clock
Colorpipe
Output Interface
Sensor
Pixel Clock
Sensor
Master Clock
EXTCLK Sensor Core
MT9V138 DS Rev. D Pub. 5/15 EN 56 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
Floating Inputs
The following MT9V138 pins cannot be floated:
•S
DATA–This pin is bidirectional and should not be floated
•TRST_N
Output Data Ordering
Note: PIXCLK is 54 MHz when EXTCLK is 27 MHz.
Note: PIXCLK is 27 MHz when EXTCLK is 27 MHz.
Table 27: Output Data Ordering in DOUT RGB Mode
Mode
(Swap Disabled) Byte D7 D6 D5 D4 D3 D2 D1 D0
565RGB First R7R6R5R4R3G7G6G5
Second G4 G3 G2 B7 B6 B5 B4 B3
555RGB First 0 R7 R6 R5 R4 R3 G7 G6
Second G5 G4 G3 B7 B6 B5 B4 B3
444xRGB First R7R6R5R4G7G6G5G4
Second B7 B6 B5 B4 0 0 0 0
x444RGB First 0000R7R6R5R4
Second G7 G6 G5 G4 B7 B6 B5 B4
Table 28: Output Data Ordering in Sensor Stand-Alone Mode
Mode D7 D6 D5 D4 D3 D2 D1 D0 DOUT_LSB1 DOUT_LSB0
10-bit Output B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
MT9V138 DS Rev. D Pub. 5/15 EN 57 ©Semiconductor Components Industries, LLC,2015.
I/O Circuitry
Figure 40 illustrates typical circuitry used for each input, output, or I/O pad.
Figure 40: Typical I/O Equivalent Circuits
Note: All I/O circuitry shown above is for reference only. The actual implementation may be different.
V
DD
_IO
Receiver
Input Pad
Pad
GND
V
DD
_IO
Receiver
SPI_SDI and RESET_BAR
Input Pad
Pad
GND
Receiver
GND
V
DD
_IO
Pad
I/O Pad
Slew
Rate
Control
V
DD
_IO
Receiver
SCLK and XTAL_IN
Input Pad
Pad
GND
GND
XTAL
Output Pad
Pad
V
DD
_IO
MT9V138 DS Rev. D Pub. 5/15 EN 58 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
Figure 41: NTSC Block
Note: All I/O circuitry shown above is for reference only. The actual implementation may be different.
Figure 42: Serial Interface
Pad
VDD_DAC
GND
Pad
Pad
ESD
ESD
DAC_REF
ESD
DAC_POS
DAC_NEG
NTSC Block
Resistor
4.7kΩ/2.35kΩ
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
MT9V138 DS Rev. D Pub. 5/15 EN 59 ©Semiconductor Components Industries, LLC,2015.
I/O Timing
Digital Output
By default, the MT9V138 launches pixel data, FV, and LV synchronously with the falling
edge of PIXCLK. The expectation is that the user captures data, FV, and LV using the
rising edge of PIXCLK. The timing diagram is shown in Figure 43.
As an option, the polarity of the PIXCLK can be inverted from the default by program-
ming R0x0016[14].
Figure 43: Digital Output I/O Timing
Note: PIXCLK can be inverted from the default by programming R0x0016[14].
Table 29: Parallel Digital Output I/O Timing
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;
VDD_PLL = 2.8V; VDD_DAC = 2.8V; Default slew rate
Signal Parameter Conditions Min Typ Max Unit
EXTCLK
fextclk max ±100 ppm 27 MHz
textclk_period 37 ns
Duty cycle 45 50 55 %
PIXCLK1
fpixclk –27–MHz
tpixclk_period 37 ns
Duty cycle 45 50 55 %
DATA[7:0]
tpixclkf_dout –2 0 2 ns
tdout_su 8 18.5 ns
tdout_ho 8 18.5 ns
FV/LV
tpixclkf_fvlv –2 0 2 ns
tfvlv_su 8 18.5 ns
tfvlv_ho 8 18.5 ns
EXT
CLK
PIXCLK
D
OUT
[7 :0]
FRAME_VALID
LINE_VALID
t
pixclkf_dout
t
pixclkf_fvlv
Input
Output
Output
Output
t
fvlv_su
t
fvlv_ho
t
dout_ho
t
dout_su
t
extclk_period
MT9V138 DS Rev. D Pub. 5/15 EN 60 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
Slew Rate
Figure 44: Slew Rate Timing
Table 30: Slew Rate for PIXCLK and DOUT
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; V_PIX = 2.8V;
VDD_PLL = 2.8V; VDD_DAC = 2.8V; T = 25°C; CLOAD = 40 pF
PIXCLK DOUT[7:0]
UnitR0x30 [10:8] Typical
Rise Time Typical
Fall Time R0x30 [2:0] Typical
Rise Time Typical
Fall Time
000 6.5 6.3 000 6.5 6.3 ns
001 4.8 4.6 001 4.8 4.6 ns
010 3.9 3.8 010 3.9 3.8 ns
011 3.7 3.7 011 3.7 3.7 ns
100 3.6 3.6 100 3.6 3.6 ns
101 3.5 3.5 101 3.5 3.5 ns
110 3.4 3.4 110 3.4 3.4 ns
111 3.3 3.3 111 3.3 3.3 ns
90%
10%
t
rise
t
fa ll
PIXCLK
D
OUT
t
rise
t
fa ll
90%
10%
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
MT9V138 DS Rev. D Pub. 5/15 EN 61 ©Semiconductor Components Industries, LLC,2015.
Configuration Timing
During start-up, the Dout_LSB0, LV and FV are sampled. Setup and hold timing for the
RESET_BAR signal with respect to DOUT_LSB0, LV, and FV are shown in Figure 45 and
Table 31. These signals are sampled once by the on-chip firmware, which yields a long
tHold time.
Figure 45: Configuration Timing
Table 31: Configuration Timing
Signal Parameter Min Typ Max Unit
DOUT_LSB0, FRAME_VALID, LINE_VALID
tSETUP 0s
tHOLD 50 s
tSETUP tHOLD
Valid Data
RESET_BAR
DOUT_LSB0
FRAME_VALID
LINE_VALID
MT9V138 DS Rev. D Pub. 5/15 EN 62 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
Figure 46: Power Up Sequence
Notes: 1. RESET_BAR may not exceed VDD_IO + 0.3V.
2. The 2.8V plane (VAA, VAA_PIX, VDD_PLL, VDD_DAC, VDD_IO) must remain at a higher voltage than
the 1.8V core voltage at all times.
Notes: 1. Xtal settling time is component-dependent (Xtal, Oscillator, etc) and usually takes about 10mS
~100mS.
2. Hard reset time is the minimum time required after power rails are settled. Ten clock cycles are
required for the sensor itself, assuming all power rails are settled. In a circuit where Hard reset is
performed by the RC circuit, then the RC time must include the all power rail settle time and Xtal
3. This is required to load necessary patches via Flash mode (SPI) or Host mode (two-wire serial inter-
face). Loading time varies depending on the number of patches and bus speed.
Table 32: Power Up Sequence
Definition Symbol Minimum Typical Maximum Unit
VDD_PLL to VAA/VAA_PIX t0 0 S
VAA/VAA_PIX to VDD_IO t1 0 S
VDD_IO to VDD t2 0 S
Xtal settle time tx 301–mS
Hard Reset t3 102––Clock cycle
Internal Initialization t4 50 mS
Patch Load (SPI or I2C) t5 4003–mS
VDD (1.8)
VAA_PIX
VAA (2.8)
VDD_PLL
VDD_DAC (2.8)
EXTCLK
RESET_BAR
VDD_IO (2.8)
t3 t4 t5
t0
t1
Hard Reset Internal
(NTSC/PAL)
Initialization
Patch Config
SPI or Host Streaming
t2
tx
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
MT9V138 DS Rev. D Pub. 5/15 EN 63 ©Semiconductor Components Industries, LLC,2015.
Figure 47: Power Down Sequence
(1) t3 is required between power down and next power up time, all decoupling caps from
regulators must completely discharged before next power up.
Figure 48: Reset to SPI Access Delay
Table 33: Power Down Sequence
Definition Symbol Minimum Typical Maximum Unit
VDD to VDD_IO t0 0––S
VDD_IO to VAA/VAA_PIX t10––S
VAA/VAA_PIX to VDD_PLL/DAC t20––S
Power Down until Next Power Up Time t3 1001––ms
VDD (1.8)
VAA_PIX
VAA (2.8)
VDD_PLL
VDD_DAC (2.8)
EXTCLK
VDD_IO (2.8)
t3
t0
t2
t1
Power Down until next Power Up Cycle
R ESET_BAR
tRSTH_CSL
SPI_CS_N
MT9V138 DS Rev. D Pub. 5/15 EN 64 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Modes and Timing
Figure 49: Reset to Serial Access Delay
Figure 50: Reset to AE/AWB Image
Table 34: RESET_BAR Delay Parameters
Parameter Name Condition Min Typ Max Unit
Power up delay 2.8V to 1.8V 0.1 ms
RESET_BAR HIGH to SPI_CS_N LOW tRSTH_CSL 18 ms
RESET_BAR HIGH to SDATA LOW tRSTH_SDATAL 1.8 ms
RESET_BAR HIGH to FRAME_VALID tRSTH_FVL 235 ms
RESET_BAR HIGH to first Overlay tRSTH_OVL 235 ms
RESET_BAR HIGH to AE/AWB settled tRSTH_AEAWB 400 ms
RESET_BAR
SDATA
tRSTH_SDATAL
First Frame Overlay from
Flash
RESET_BAR
VIDEO
tRSTH_FVL
tRSTH_OVL
tRSTH_AEAWB
AE/AWB settled
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Electrical Specifications
MT9V138 DS Rev. D Pub. 5/15 EN 65 ©Semiconductor Components Industries, LLC,2015.
Electrical Specifications
Figure 51: SPI Output Timing
Table 35: SPI Data Setup and Hold Timing
Parameter Description Min Typ Max Units
fSPI_SCLK SPI_SCLK Frequency 1.6875 4.5 18 MHz
tsu Setup time 110 ns
tSCLK_SDO Hold time 110 ns
tCS_SCLK Delay from falling edge of SPI_CS_N to rising edge of SPI_SCLK 230 ns
t
su
SPI_CS_N
SPI_SCLK
SPI_SDI
SPI_SDO
tCS_SCLK
tSCLK_SDO
MT9V138 DS Rev. D Pub. 5/15 EN 66 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Electrical Specifications
Caution Stresses greater than those listed in Table 36 may cause permanent damage to the device.
This is a stress rating only, and functional operation of the device at these or any other con-
ditions above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliabil-
ity.
Notes: 1. VAA and VAA_PIX must all be at the same potential to avoid excessive current draw. Care must be
taken to avoid excessive noise injection in the analog supplies if all three supplies are tied together.
Table 36: Absolute Maximum Ratings
Symbol Parameter
Rating
UnitMin Max
VDD Digital power (1.8V) -0.3 2.4 V
VDD_IO I/O power (2.8v) -0.3 4 V
VAA VAA Analog power (2.8V) -0.3 4 V
VAA_PIX Pixel array power (2.8v) -0.3 4 V
VDD_PLL PLL power (2.8V) -0.3 4 V
VDD_DAC DAC power (2.8V) -0.3 4 V
VIN DC Input Voltage -0.3 VDD_IO+0.3 V
VOUT DC Output Voltage -0.3 VDD_IO+0.3 V
TSTG Storage temperature -50 150 °C
Table 37: Electrical Characteristics and Operating Conditions
Parameter1Condition Min Typ Max Unit
Core digital voltage (VDD) 1.7 1.8 1.9 V
IO digital voltage (VDD_IO) 2.66 2.8 2.94 V
Video DAC voltage (VDD_DAC) 2.66 2.8 2.94 V
PLL Voltage (VDD_PLL) 2.66 2.8 2.94 V
Analog voltage (VAA) 2.66 2.8 2.94 V
Pixel supply voltage (VAA_PIX) 2.66 2.8 2.94 V
Leakage current EXTCLK: HIGH or LOW 10 A
Imager operating temperature –30 +70 °C
Storage temperature –50 +150 °C
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Electrical Specifications
MT9V138 DS Rev. D Pub. 5/15 EN 67 ©Semiconductor Components Industries, LLC,2015.
Table 38: Video DAC Electrical Characteristics–Single-Ended Mode
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;
VDD_PLL = 2.8V; VDD_DAC = 2.8V
Parameter Condition Min Typ Max Unit
Resolution 10 - bits
DNL 0.2 0.4 bits
INL 0.7 3.5 bits
Output local load Output pad (DAC_POS) 75 -
Unused output (DAC_NEG) 0 -
Output voltage Single-ended mode, code 000h .02 - V
Single-ended mode, code 3FFh 1.30 - V
Output current Single-ended mode, code 000h 0.26 - mA
Single-ended mode, code 3FFh 17.33 - mA
Supply current Estimate - 25.0 mA
DAC_REF DAC Reference 1.15 +/-0.2 - V
R DAC_REF DAC Reference 4.7 - K
Table 39: Video DAC Electrical Characteristics–Differential Mode
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;
VDD_PLL = 2.8V; VDD_DAC = 2.8V
Parameter Condition Min Typ Max Unit
DNL 0.2 0.25 Bits
INL 0.8 2.5 Bits
Output local load Differential mode per pad
(DAC_POS and DAC_NEG)
37.5
Output voltage Differential mode, code 000h, pad dacp .02 V
Differential mode, code 000h, pad dacn 1.30 V
Differential mode, code 3FFh, pad dacp 1.30 V
Differential mode, code 3FFH, pad dacn .02 V
Output current Differential mode, code 000h, pad dacp .53 mA
Differential mode, code 000h, pad dacn 34.7 mA
Differential mode, code 3FFh, pad dacp 34.7 mA
Differential mode, code 3FFH, pad dacn .53 mA
Differential output,
midlevel
–0.65V
Supply current Estimate 50 mA
DAC_REF DAC Reference 1.15 +/-0.2 V
R DAC_REF DAC Reference 2.35 K
MT9V138 DS Rev. D Pub. 5/15 EN 68 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Electrical Specifications
Notes: 1. All inputs are protected and may be active when All supplies (2.8V and 1.8V) are turned off.
Table 40: Digital I/O Parameters
TA = Ambient = 25°C; All supplies at 2.8V
Signal Parameter Definitions Condition Min Typ Max Unit
All
Outputs
Load capacitance 1 30 pF
Output signal slew 2.8V, 30pF load V/ns
2.8V, 5pF load V/ns
VOH Output high voltage VDD_IO V
VOL Output low voltage –0.3 V
IOH Output high current VDD = 2.8V, VOH
= 2.4V
–– 8mA
IOL Output low current VDD = 2.8V, VOL
= 0.4V
–– 8mA
All
Inputs
VIH Input high voltage VDD = 2.8V 0.7 * VDD_IO VDD_IO + 0.3 V
VIL Input low voltage VDD = 2.8V –0.3 0.3 * VDD_IO V
IIN Input leakage current –2 2 A
Signal CAP Input signal
capacitance
–3.5 pF
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Electrical Specifications
MT9V138 DS Rev. D Pub. 5/15 EN 69 ©Semiconductor Components Industries, LLC,2015.
Power Consumption, Operating Mode
Analog output uses single-ended mode: DAC_Pos = 75, DAC_Neg = open, parallel
output is disabled.
Analog output uses single-ended mode: DAC_Pos = 75, DAC_Neg = open, parallel
output is enabled.
Table 41: Power Consumption – Condition 1
fEXTCLK = 27 MHz; VDD = 1.8V; VDD _IO = 2.8V; VAA =2.8V;VAA_PIX=2.8V;
VDD _PLL = 2.8V; VDD _DAC = 2.8V
Power Plane Supply Condition 1 Typ Power Max Power Unit
VDD 1.8 140.4 162 mW
VDD_IO 2.8 Parallel off 4.2 8.4 mW
VAA 2.8 89.6 112 mW
VAA_PIX 2.8 1.96 5.04 mW
VDD_DAC 2.8 Single 75(1) 39.2 44.8 mW
VDD_PLL 2.8 13.44 16.8 mW
Total 288.8 349.04 mW
Table 42: Power Consumption – Condition 2
fEXTCLK = 27 MHz; VDD = 1.8V; VDD _IO = 2.8V; VAA =2.8V;VAA_PIX=2.8V;
VDD _PLL = 2.8V; VDD _DAC = 2.8V
Power Plane Supply Condition 2 Typ Power Max Power Unit
VDD 1.8 140.4 162 mW
VDD_IO 2.8 Parallel on 42 50.4 mW
VAA 2.8 89.6 112 mW
VAA_PIX 2.8 1.96 5.04 mW
VDD_DAC 2.8 Single 75(1) 39.2 44.8 mW
VDD_PLL 2.8 13.44 16.8 mW
Total 326.6 391.04 mW
MT9V138 DS Rev. D Pub. 5/15 EN 70 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Electrical Specifications
NTSC Signal Parameters
Notes: 1. Black and white levels are referenced to the blanking level.
2. NTSC convention standardized by the IRE (1 IRE = 7.14mV).
3. Encoder contrast setting R0x011 = R0x001 = 0.
4. DAC ref = 2.35k, load = 37.5
Table 43: NTSC Signal Parameters
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;
VDD_PLL = 2.8V; VDD_DAC = 2.8V
Parameter Conditions Min Typ Max Units Notes
Line Frequency 15734.25 15734.27 15734.28 Hz
Field Frequency 59.94 59.94 59.94 Hz
Sync Rise Time 148 148 148 ns
Sync Fall Time 148 148 148 ns
Sync Width 4.74 4.74 4.74 s
Sync Level 38 40 42 IRE 2, 4
Burst Level 38 40 42 IRE 2, 4
Sync to Setup
(with pedestal off)
9.44 9.44 9.44 s
Sync to Burst Start 5.33 5.33 5.33 s
Front Porch 1.33 1.33 1.33 s
Black Level 7.5 IRE 1, 2, 4
White Level 100 IRE 1, 2, 3, 4
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Electrical Specifications
MT9V138 DS Rev. D Pub. 5/15 EN 71 ©Semiconductor Components Industries, LLC,2015.
Figure 52: Video Timing
Table 44: Video Timing
Signal NTSC
27 MHz PAL
27 MHz Units
A H Period 1716 1728 Clocks
B Hsync to burst 144 153 Clocks
C burst 63 66 Clocks
D Hsync to Signal 255 279 Clocks
E Video Signal 1423 1413 Clocks
FFront 3639Clocks
G Hsync Period 128 128 Clocks
H Sync rising/falling edge 4 4 Clocks
J Back overscan (BOS) 9 14 Clocks
K Front overscan (FOS) 8 13 Clocks
H
F
A
H
DE
BC
G
J
K
MT9V138 DS Rev. D Pub. 5/15 EN 72 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Electrical Specifications
Figure 53: Equivalent Pulse
Table 45: Equivalent Pulse
Signal NTSC
27 MHz PAL
27 MHz Units
I H/2 Period 858 864 Clocks
J Pulse width 64 64 Clocks
K Pulse rising/falling edge 4 4 Clocks
L Signal to pulse 38 41 Clocks
L
JI
KK
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Electrical Specifications
MT9V138 DS Rev. D Pub. 5/15 EN 73 ©Semiconductor Components Industries, LLC,2015.
Figure 54: V Pulse
Table 46: V Pulse
Signal NTSC
27 MHz PAL
27 MHz Units
M H/2 Period 858 864 Clocks
N Pulse width 730 736 Clocks
O V pulse interval 128 128 Clocks
P Pulse rising/falling edge 4 4 Clocks
N
M
O
PP
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Electrical Specifications
MT9V138 DS Rev. D Pub. 5/15 EN 74 ©Semiconductor Components Industries, LLC,2015.
Two-Wire Serial Bus Timing
Figure 55 and Table 47 describe the timing for the two-wire serial interface.
Figure 55: Two-Wire Serial Bus Timing Parameters
Notes: 1. This table is based on I2C standard (v2.1 January 2000). Philips Semiconductor.
2. Two-wire control is I2C-compatible.
3. All values referred to VIHmin = 0.9 VDD and VILmax = 0.1VDD levels. Sensor EXCLK = 27 MHz.
4. A device must internally provide a hold time of at least 300 ns for the SDATA signal to bridge the
undefined region of the falling edge of SCLK.
5. The maximum tHD;DAT has only to be met if the device does not stretch the LOW period (tLOW) of
the SCLK signal.
Table 47: Two-Wire Serial Bus Characteristics
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;
VDD_PLL = 2.8V; VDD_DAC = 2.8V; TA = 25°C
Parameter Symbol
Standard-Mode Fast-Mode
UnitMin Max Min Max
SCLK Clock Frequency fSCL 0 100 0 400 KHz
Hold time (repeated) START condition.
After this period, the first clock pulse is
generated
tHD;STA 4.0 - 0.6 - S
LOW period of the SCLK clock tLOW 4.7 - 1.3 - S
HIGH period of the SCLK clock tHIGH 4.0 - 0.6 - S
Set-up time for a repeated START
condition
tSU;STA 4.7 - 0.6 - S
Data hold time: tHD;DAT 043.455060.95S
Data set-up time tSU;DAT 250 - 1006-nS
Rise time of both SDATA and SCLK signals tr - 1000 20 + 0.1Cb7300 nS
Fall time of both SDATA and SCLK signals tf - 300 20 + 0.1Cb7300 nS
Set-up time for STOP condition tSU;STO 4.0 - 0.6 - S
Bus free time between a STOP and START
condition
tBUF 4.7 - 1.3 - S
Capacitive load for each bus line Cb - 400 - 400 pF
Serial interface input pin capacitance CIN_SI - 3.3 - 3.3 pF
SDATA max load capacitance CLOAD_SD - 30 - 30 pF
SDATA pull-up resistor RSD 1.5 4.7 1.5 4.7 K
SSr
tSU;STO
tSU;STA
tHD;STA tHIGH
tLOW tSU;DAT
tHD;DAT
tf
S
DATA
S
CLK
PS
tBUF
tr
tf
trtHD;STA
MT9V138 DS Rev. D Pub. 5/15 EN 75 ©Semiconductor Components Industries, LLC,2015.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Spectral Characteristics
6. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement
tSU;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch
the LOW period of the SCLK signal. If such a device does stretch the LOW period of the SCLK signal, it
must output the next data bit to the SDATA line tr max + tSU;DAT = 1000 + 250 = 1250 ns (according
to the Standard-mode I2C-bus specification) before the SCLK line is released.
7. Cb = total capacitance of one bus line in pF.
Spectral Characteristics
Figure 56: Quantum Efficiency
0
10
20
30
40
50
60
70
80
350 450 550 650 750 850 950 1050 1150
Blue
Green (B)
Green (R)
Red
Quantum Efficiency (%)
Wavelength (nm)
MT9V138 DS Rev. D Pub. 5/15 EN 76 ©Semiconductor Components Industries, LLC,2015
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Spectral Characteristics
Package and Die Dimensions
Figure 57: 48-Pin CLCC Package Outline Drawing
ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the
rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/
Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey
any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur.
Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
This literature is subject to all applicable copyright laws and is not for resale in any manner.
MT9V138: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor
Revision History
MT9V138 DS Rev. D Pub. 5/15 EN 77 ©Semiconductor Components Industries, LLC,2015 .
Revision History
Rev. D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5/29/15
Converted to ON Semiconductor template
Updated “Ordering Information” on page 3
Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6/22/10
Updated capacitor value in “Crystal Usage” on page 11
Updated Note 4 in Table 43, “NTSC Signal Parameters,” on page 70
Updated Figure 55: “Two-Wire Serial Bus Timing Parameters,” on page 74
Updated Table 47, “Two-Wire Serial Bus Characteristics,” on page 74
Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5/25/10
Updated to Production
Updated Package pitch number
Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4/5/10
•Initial release