TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DControlled Baseline
One Assembly/Test Site, One Fabrication
Site
DExtended Temperature Performance of
40°C to 125°C
DAlso Available in 55°C to 125°C
DEnhanced Diminishing Manufacturing
Sources (DMS) Support
DEnhanced Product-Change Notification
DQualification Pedigree
DSupply Current . . . 300 μA Max
Component qualification in accordance with JEDEC and industry
standards to ensure reliable operation over an extended
temperature range. This includes, but is not limited to, Highly
Accelerated Stress Test (HAST) or biased 85/85, temperature
cycle, autoclave or unbiased HAST, electromigration, bond
intermetallic life, and mold compound life. Such qualification
testing should not be viewed as justifying use of this component
beyond specified performance and environmental limits.
DHigh Unity-Gain Bandwidth...2 MHz Typ
DHigh Slew Rate . . . 0.45 V/μs Min
DSupply-Current Change Over Full Temp
Range ...10 μA Typ at VCC ±=±15 V
DSpecified for Both 5-V Single-Supply and
±15-V Operation
DPhase-Reversal Protection
DHigh Open-Loop Gain...6.5 V/μV
(136 dB) Typ
DLow Offset Voltage . . . 100 μV Max
DOffset Voltage Drift With Time
0.005 μV/mo Typ
DLow Input Bias Current . . . 50 nA Max
DLow Noise Voltage . . . 19 nV/Hz Typ
description
The TLE202x and TLE202xA devices are precision, high-speed, low-power operational amplifiers using a new
Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly
improved slew rate and unity-gain bandwidth.
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic
improvement in unity-gain bandwidth and slew rate over similar devices.
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both
time and temperature. This means that a precision device remains a precision device even with changes in
temperature and over years of use.
This combination of excellent dc performance with a common-mode input voltage range that includes the
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply
rail.
A variety of options are available in small-outline packaging for high-density systems applications.
The Q-suffix devices are characterized for operation over the full automotive temperature range of 40°C to
125°C.
Copyright © 2007 Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
ORDERING INFORMATION
TA
VIOmax
AT 25°CPACKAGEORDERABLE
PART NUMBER
TOP-SIDE
MARKING
300 μVSOIC (D) Tape and reel TLE2021AQDREP 2021AE
500 μVSOIC (D) Tape and reel TLE2021QDREP 2021QE
40°C to 125°C
300 μVSOIC (D) Tape and reel TLE2022AQDREP 2022AE
40°C to 125°C500 μVSOIC (D) Tape and reel TLE2022QDREP 2022QE
750 μVSOP (DW) Tape and reel TLE2024AQDWREP 2024AE
1000 μVSOP (DW) Tape and reel TLE2024QDWREP 2024QE
55°C to 125°C500 μVSOIC (D) Tape and reel TLE2021MDREP 2021ME
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available
at www.ti.com/sc/package.
1
2
3
4
8
7
6
5
OFFSET N1
IN
IN+
VCC /GND
NC
VCC+
OUT
OFFSET N2
TLE2021
D PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VCC /GND
VCC+
2OUT
2IN
2IN+
TLE2022
D PACKAGE
(TOP VIEW)
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
1OUT
1IN
1IN+
VCC +
2IN+
2IN
2OUT
NC
4OUT
4IN
4IN+
VCC /GND
3IN+
3IN
3OUT
NC
TLE2024
DW PACKAGE
(TOP VIEW)
NC No internal connection
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic (each amplifier)
IN
Q23 Q25
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20
Q21
Q22
Q24
Q26
Q27
Q28
Q29
Q30
Q31
Q32
Q33
Q34
Q35
Q36
Q37
Q38
Q39
Q40
D1 D2
D3
D4
IN +
OUT
OFFSET N1
(see Note A)
VCC+
VCC /GND
C1
R1
R2
R3
R4
R5
C2
R6
R7
C4
C3
OFFSET N2
(see Note A)
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLE2021 TLE2022 TLE2024
Transistors 40 80 160
Resistors 7 14 28
Diodes 4 8 16
Capacitors 4 8 16
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC+ (see Note 1) 20 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supply voltage, VCC (see Note 1) 20 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±0.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input, see Note 1) ±VCC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±1 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO (each output): TLE2021 ±20 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE2022 ±30 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE2024 ±40 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VCC+ 80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VCC 80 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: Q suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, RθJA (see Notes 4 and 5): D (8-pin) 97°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . .
DW (16-pin) 57°C/W. . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 3 seconds: D package 300°C. . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC .
2. Differential voltages are at IN+ with respect to IN. Excessive current flows if a differential input voltage in excess of approximately
±600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) TA)/θJA. Selecting the maximum of 150°C can affect reliability.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions
MIN MAX UNIT
Supply voltage, VCC ±2±20 V
Common mode input voltage V
VCC = ± 5 V 0 3.2
V
Common-mode input voltage, VIC VCC ± = ±15 V 15 13.2 V
Operating free air temperature T
Q suffix 40 125
°C
Operating free-air temperature, TAM suffix 55 125 °C
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2021-EP TLE2021A-EP
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 120 600 100 400
V
VIO Input offset voltage Full range 800 550 μV
αVIO
Temperature
coefficient of input
offset voltage
Full range 2 2 μV/°C
Input offset voltage
long-term drift
(see Note 4)
VIC = 0, RS = 50 Ω25°C0.005 0.005 μV/mo
I
Input offset current
25°C 0.2 6 0.2 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 25 70 25 70
nA
IIB Input bias current Full range 90 90 nA
V
Common-mode input
R 50 Ω
25°C
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
V
VICR
Common mode input
voltage range RS = 50 Ω
Full range
0
to
3.2
0
to
3.2
V
V
Hi
g
h-level output 25°C 4 4.3 4 4.3
V
VOH
High level output
voltage
R 10 kΩ
Full range 3.8 3.8 V
V
Low-level output RL = 10 kΩ25°C 0.7 0.8 0.7 0.8
V
VOL
Low level output
voltage Full range 0.95 0.95 V
A
Large-signal
differential
V 1 4 V to 4 V
25°C 0.3 1.5 0.3 1.5
V/ V
AVD differential
voltage amplification
VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.1 0.1 V/μV
CMRR
Common-mode
V V min
25°C 85 110 85 110
dB
CMRR
Common mode
rejection ratio VIC = VICRmin, RS = 50 ΩFull range 80 80 dB
k
Supply-voltage
rejection ratio
V 5 V to 30 V
25°C 105 120 105 120
dB
kSVR rejection ratio
(ΔVCC ±/ΔVIO)
VCC = 5 V to 30 V Full range 100 100 dB
I
Supply current
25°C 170 300 170 300
A
ICC Supply current Full range 300 300 μA
ΔICC
Supply current
change over operating
temperature range
VO = 2.5 V, No load
Full range 9 9 μA
Full range is 40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2021MDREP
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX UNIT
25
°
C
120
600
V
I t ff t lt
2
5°
C
120
600
V
VIO
Input offset voltage
25 C
120
600
μV
V
IO
I
npu
t
o
ff
se
t
vo
lt
age
Full range 850
μ
V
αVIO Temperature coefficient of input offset voltage Full range 2μV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0 RS = 50 Ω
25°C 0.005 μV/mo
I
Input offset current
V
IC
=
0
,
R
S
=
50 Ω
25°C 0.2 6
nA
IIO Input offset current Full range 10 nA
I
Input bias current
25°C 25 70
nA
IIB Input bias current Full range 90 nA
V
Common mode input voltage range
R 50 Ω
25°C
0
to
3.5
0.3
to
4
V
VICR Common-mode input voltage range RS = 50 Ω
Full range
0
to
3.2
V
V
High level output voltage
25°C 4 4.3
V
VOH High-level output voltage
R 10 kΩ
Full range 3.8 V
V
Low level output voltage
RL = 10 kΩ25°C 0.7 0.8
V
VOL Low-level output voltage Full range 0.95 V
A
Large signal differential voltage amplification
V 1 4 V to 4 V
25°C 0.3 1.5
V/ V
AVD Large-signal differential voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.1 V/μV
CMRR
Common mode rejection ratio
V V min
25°C 85 110
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 80 dB
k
Supply voltage rejection ratio (ΔV /ΔV )
V 5 V to 30 V
25°C 105 120
dB
kSVR Supply-voltage rejection ratio (ΔVCC ±/ΔVIO)V
CC = 5 V to 30 V Full range 100 dB
I
Supply current
25°C 170 300
A
ICC Supply current
VO = 2 5 V
Full range 300 μA
ΔICC Supply current change over operating
temperature range
V
O
=
2
.5
V
,
o
oa
Full range 9μA
Full range is 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2021-EP TLE2021A-EP
UNIT
PARAMETER TEST CONDITIONS TA
MIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 120 500 80 300
V
VIO Input offset voltage Full range 700 450 μV
αVIO
Temperature
coefficient of input
offset voltage
Full range 2 2 μV/°C
Input offset voltage
long-term drift
(see Note 4)
VIC = 0, RS = 50 Ω25°C0.006 0.006 μV/mo
I
Input offset current
25°C 0.2 6 0.2 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 25 70 25 70
nA
IIB Input bias current Full range 90 90 nA
V
Common-mode input
R 50 Ω
25°C
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
V
VICR
Common mode input
voltage range RS = 50 Ω
Full range
15
to
13.2
15
to
13.2
V
V
Maximum positive
peak output voltage
25°C 14 14.3 14 14.3
V
VOM + peak output voltage
swing
R 10 kΩ
Full range 13.8 13.8 V
V
Maximum negative
peak output voltage
RL = 10 kΩ25°C13.7 14.1 13.7 14.1
V
VOM peak output voltage
swing Full range 13.6 13.6 V
A
Large-signal
differential voltage
V ±0 V
25°C 1 6.5 1 6.5
V/ V
AVD differential voltage
amplification
VO = ±0 V, RL = 10 kΩFull range 0.5 0.5 V/μV
CMRR
Common-mode
V V min
25°C 100 115 100 115
dB
CMRR
Common mode
rejection ratio VIC = VICRmin, RS = 50 ΩFull range 96 96 dB
k
Supply-voltage
rejection ratio
V ± 2 5 V to ±15 V
25°C 105 120 105 120
dB
kSVR rejection ratio
(ΔVCC ±/ΔVIO)
VCC ± = ± 2.5 V to ±15 V
Full range 100 100
dB
I
Supply current
25°C 200 350 200 350
A
ICC Supply current Full range 350 350 μA
ΔICC
Supply current
change over
operating temperature
range
VO = 0, No load
Full range 10 10 μA
Full range is 40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2021MDREP
PARAMETER TEST CONDITIONS TA
MIN TYP MAX UNIT
25
°
C
120
500
V
I t ff t lt
2
5°
C
120
5
00
V
VIO
Input offset voltage
25 C
120
500
μV
V
IO
I
npu
t
o
ff
se
t
vo
lt
age
Full range 800
μ
V
αVIO Temperature coefficient of input offset voltage Full range 2μV/°C
Input offset voltage long-term drift (see Note 4)
VIC = 0 RS = 50 Ω
25°C 0.006 μV/mo
I
Input offset current
V
IC
=
0
,
R
S
=
50 Ω
25°C 0.2 6
nA
IIO Input offset current Full range 10 nA
I
Input bias current
25°C 25 70
nA
IIB Input bias current Full range 90 nA
V
Common mode input voltage range
R 50 Ω
25°C
15
to
13.5
15.3
to
14
V
VICR Common-mode input voltage range RS = 50 Ω
Full range
15
to
13.5
V
V
Maximum positive peak output voltage swing
25°C 14 14.3
V
VOM+ Maximum positive peak output voltage swing
R 10 kΩ
Full range 13.8 V
V
Maximum negative peak output voltage swing
RL = 10 kΩ25°C13.7 14.1
V
VOMMaximum negative peak output voltage swing Full range 13.6 V
A
Large signal differential voltage amplification
V ±0 V
25°C 1 6.5
V/ V
AVD Large-signal differential voltage amplification VO = ±0 V, RL = 10 kΩFull range 0.5 V/μV
CMRR
Common mode rejection ratio
V V min
25°C 100 115
dB
CMRR Common-mode rejection ratio VIC = VICRmin, RS = 50 ΩFull range 96 dB
k
Supply voltage rejection ratio (ΔV /ΔV )
V± 2 5 V to ±ℑ° V
25°C 105 120
dB
kSVR Supply-voltage rejection ratio (ΔVCC ±/ΔVIO)V
CC± = 2.5 V to ±ℑ° V Full range 100 dB
I
Supply current
25°C 200 350
A
ICC Supply current
VO = 0
Full range 350 μA
ΔICC Supply current change over operating
temperature range
V
O
=
0
,
o
oa
Full range 10 μA
Full range is 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2022-EP TLE2022A-EP
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 600 400
V
VIO Input offset voltage Full range 800 550 μV
Temperature coefficient of
Full range
2
2
V/°C
αVIO
Temperature coefficient of
input offset voltage Full range 2 2 μV/°C
Input offset volta
g
e
V 0
R 50 Ω
25°C
0 005
0 005
V/mo
Input offset voltage
long-term drift (see Note 4) VIC = 0, RS = 50 Ω25°C0.005 0.005 μV/mo
I
Input offset current
25°C 0.5 6 0.4 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 35 70 33 70
nA
IIB Input bias current Full range 90 90 nA
00.3 0 0.3
25°C
0
to
0
.
3
to
0
to
0
.
3
to
V
Common-mode input
R 50 Ω
25 C
to
3.5
to
4
to
3.5
to
4
V
VICR
Common mode input
voltage range RS = 50 Ω0 0 V
voltage range
Full ran
g
e
0
to
0
to
Full range
to
3.2
to
3.2
V
High level output voltage
25°C 4 4.3 4 4.3
V
VOH High-level output voltage
R 10 kΩ
Full range 3.8 3.8 V
V
Low level output voltage
RL = 10 kΩ25°C 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.95 0.95 V
A
Lar
g
e-si
g
nal differential
V 1 4 V to 4 V
R 10 kΩ
25°C 0.3 1.5 0.4 1.5
V/ V
AVD
Large signal differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.1 0.1 V/μV
CMRR
Common-mode re
j
ection
V V min
R 50 Ω
25°C 85 100 87 102
dB
CMRR
Common mode rejection
ratio VIC = VICRmin, RS = 50 ΩFull range 80 82 dB
k
Suppl
y
-volta
g
e re
j
ection
V 5 V to 30 V
25°C 100 115 103 118
dB
kSVR
Supply voltage rejection
ratio (ΔVCC ±/ΔVIO)VCC = 5 V to 30 V Full range 95 98 dB
I
Supply current
25°C 450 600 450 600
A
ICC Supply current Full range 600 600 μA
ΔI
Supply current change over
operating temperature
VO = 2.5 V, No load
Full range
37
37
μA
ΔICC operating temperature
range
Full range 37 37 μA
Full range is 40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2022-EP TLE2022A-EP
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 150 500 120 300
V
VIO Input offset voltage Full range 700 450 μV
αVIO
Temperature coefficient
Full range
2
2
V/°C
αVIO
Temperature coefficient
of input offset voltage Full range 2 2 μV/°C
Input offset voltage
long term drift
V 0
R 50 Ω
25°C
0 006
0 006
V/mo
long-term drift
(see Note 4)
VIC = 0, RS = 50 Ω25°C0.006 0.006 μV/mo
I
Input offset current
25°C 0.5 6 0.4 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 35 70 33 70
nA
IIB Input bias current Full range 90 90 nA
15 15.3 15 15.3
25°C
15
to
15
.
3
to
15
to
15
.
3
to
V
Common-mode input
R 50 Ω
25 C
to
13.5
to
14
to
13.5
to
14
V
VICR
Common mode input
voltage range RS = 50 Ω15 15 V
voltage range
Full ran
g
e
15
to
15
to
Full range
to
13.2
to
13.2
V
Maximum positive peak 25°C 14 14.3 14 14.3
V
VOM +
Maximum positive peak
output voltage swing
R 10 kΩ
Full range 13.8 13.8 V
V
Maximum ne
g
ative peak RL = 10 kΩ25°C13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak
output voltage swing Full range 13.6 13.6 V
A
Lar
g
e-si
g
nal differential
V ±10 V
R 10 kΩ
25°C 0.8 4 1 7
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 10 kΩFull range 0.8 1 V/μV
CMRR
Common-mode re
j
ection
V V min
R 50 Ω
25°C 95 106 97 109
dB
CMRR
Common mode rejection
ratio VIC = VICRmin, RS = 50 ΩFull range 91 93 dB
k
Supply-voltage rejection
V ±2 5 V to ±15 V
25°C 100 115 103 118
dB
kSVR
Supply voltage rejection
ratio (ΔVCC ±/ΔVIO)VCC ± = ±2.5 V to ±15 V Full range 95 98 dB
I
Supply current
25°C 550 700 550 700
A
ICC Supply current Full range 700 700 μA
ΔI
Supply current change
over operating
VO = 0, No load
Full range
60
60
μA
ΔICC over operating
temperature range
Full range 60 60 μA
Full range is 40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2024-EP TLE2024A-EP
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 1100 850
V
VIO Input offset voltage Full range 1300 1050 μV
αVIO Temperature coefficient
of input offset voltage Full range 2 2 μV/°C
Input offset voltage
long-term drift
(see Note 4) VIC = 0, RS = 50 Ω25°C0.005 0.005 μV/mo
I
Input offset current
25°C 0.6 6 0.5 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 45 70 40 70
nA
IIB Input bias current Full range 90 90 nA
V
Common-mode input
R 50 Ω
25°C
0
to
3.5
0.3
to
4
0
to
3.5
0.3
to
4
V
VICR
Common mode input
voltage range RS = 50 Ω
Full range
0
to
3.2
0
to
3.2
V
V
High level output voltage
25°C 3.9 4.2 3.9 4.2
V
VOH High-level output voltage
R 10 kΩ
Full range 3.7 3.7 V
V
Low level output voltage
RL = 10 kΩ25°C 0.7 0.8 0.7 0.8
V
VOL Low-level output voltage Full range 0.95 0.95 V
A
Lar
g
e-si
g
nal differential
V 1 4 V to 4 V
R 10 kΩ
25°C 0.2 1.5 0.3 1.5
V/ V
AVD
Large signal differential
voltage amplification VO = 1.4 V to 4 V, RL = 10 kΩFull range 0.1 0.1 V/μV
CMRR
Common-mode re
j
ection
V V min
R 50 Ω
25°C 80 90 82 92
dB
CMRR
Common mode rejection
ratio VIC = VICRmin, RS = 50 ΩFull range 80 82 dB
kSVR
Suppl
y
-volta
g
e re
j
ection
V ±2 5 V to ±15 V
25°C 98 112 100 115
dB
kSVR
Supply voltage rejection
ratio (ΔVCC±/ΔVIO)VCC ± = ±2.5 V to ±15 V Full range 93 95 dB
I
Supply current
25°C 800 1200 800 1200
A
ICC Supply current Full range 1200 1200 μA
ΔICC
Supply current change
over operating
temperature range
VO = 0, No load
Full range 50 50 μA
Full range is 40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2024 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
T
TLE2024-EP TLE2024A-EP
UNIT
PARAMETER TEST CONDITIONS TAMIN TYP MAX MIN TYP MAX UNIT
V
Input offset voltage
25°C 1000 750
V
VIO Input offset voltage Full range 1200 950 μV
αVIO Temperature coefficient
of input offset voltage Full range 2 2 μV/°C
Input offset voltage
long-term drift
(see Note 4) VIC = 0, RS = 50 Ω25°C0.006 0.006 μV/mo
I
Input offset current
25°C 0.6 6 0.2 6
nA
IIO Input offset current Full range 10 10 nA
I
Input bias current
25°C 50 70 45 70
nA
IIB Input bias current Full range 90 90 nA
V
Common-mode input
R 50 Ω
25°C
15
to
13.5
15.3
to
14
15
to
13.5
15.3
to
14
V
VICR
Common mode input
voltage range RS = 50 Ω
Full range
15
to
13.2
15
to
13.2
V
V
Maximum positive peak 25°C 13.8 14.1 13.8 14.2
V
VOM +
Maximum positive peak
output voltage swing
R 10 kΩ
Full range 13.7 13.7 V
V
Maximum ne
g
ative peak RL = 10 kΩ25°C13.7 14.1 13.7 14.1
V
VOM
Maximum negative peak
output voltage swing Full range 13.6 13.6 V
A
Lar
g
e-si
g
nal differential
V ±10 V
R 10 kΩ
25°C 0.4 2 0.8 4
V/ V
AVD
Large signal differential
voltage amplification VO = ±10 V, RL = 10 kΩFull range 0.4 0.8 V/μV
CMRR
Common-mode re
j
ection
V V min
R 50 Ω
25°C 92 102 94 105
dB
CMRR
Common mode rejection
ratio VIC = VICRmin, RS = 50 ΩFull range 88 90 dB
k
Suppl
y
-volta
g
e re
j
ection
V ±2 5 V to ±15 V
25°C 98 112 100 115
dB
kSVR
Supply voltage rejection
ratio (ΔVCC ±/ΔVIO)VCC ± = ±2.5 V to ±15 V Full range 93 95 dB
I
Supply current
25°C 1050 1400 1050 1400
A
ICC Supply current Full range 1400 1400 μA
ΔI
Supply current change
over operating
VO = 0, No load
Full range
85
85
μA
Δ
ICC over operating
temperature range
Full range 85 85 μA
Full range is 40°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2021 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 25°C 0.5 V/μs
V
Equivalent input noise voltage f = 10 Hz 25°C 21
nV/Hz
Vn
Equivalent input noise voltage
(see Figure 2) f = 1 kHz 25°C 17 nV/Hz
V
Peak-to-peak equivalent input f = 0.1 to 1 Hz 25°C 0.16
V
VN(PP)
Peak to peak equivalent input
noise voltage f = 0.1 to 10 Hz 25°C 0.47 μV
InEquivalent input noise current 25°C 0.9 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 1.2 MHz
φmPhase margin at unity gain See Figure 3 25°C 42°
TLE2021 operating characteristics at specified free-air temperature, VCC = ±15 V
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
SR
Slew rate at unity gain
V ±10 V
See Figure 1
25°C 0.45 0.65
V/ s
SR Slew rate at unity gain VO = ±10 V, See Figure 1 Full range 0.4 V/μs
V
Equivalent input noise volta
g
ef = 10 Hz 25°C 19
nV/Hz
Vn
Equivalent input noise voltage
(see Figure 2) f = 1 kHz 25°C 15 nV/Hz
V
Peak-to-peak equivalent input f = 0.1 to 1 Hz 25°C 0.16
V
VN(PP)
Peak to peak equivalent input
noise voltage f = 0.1 to 10 Hz 25°C 0.47 μV
InEquivalent input noise current 25°C 0.09 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 2 MHz
φmPhase margin at unity gain See Figure 3 25°C 46°
Full range is 40°C to 125°C for the Q-suffix devices.
TLE2022 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 V/μs
V
Equivalent input noise volta
g
ef = 10 Hz 21
nV/Hz
Vn
Equivalent input noise voltage
(see Figure 2) f = 1 kHz 17 nV/
Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 0.47 μV
InEquivalent input noise current 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 1.7 MHz
φmPhase margin at unity gain See Figure 3 47°
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLE2022 operating characteristics at specified free-air temperature, VCC = ±15 V
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
SR
Slew rate at unity gain
V ±10 V
See Figure 1
25°C 0.45 0.65
V/ s
SR Slew rate at unity gain VO = ±10 V, See Figure 1 Full range 0.4 V/μs
V
Equivalent input noise f = 10 Hz 25°C 19
nV/Hz
Vn
Equivalent input noise
voltage (see Figure 2) f = 1 kHz 25°C 15 nV/
Hz
V
Peak-to-peak equivalent f = 0.1 to 1 Hz 25°C 0.16
V
VN(PP)
Peak to peak equivalent
input noise voltage f = 0.1 to 10 Hz 25°C 0.47 μV
InEquivalent input noise current 25°C 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 2.8 MHz
φmPhase margin at unity gain See Figure 3 25°C 52°
Full range is 40°C to 125°C.
TLE2024 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate at unity gain VO = 1 V to 3 V, See Figure 1 0.5 V/μs
V
Equivalent input noise voltage (see Figure 2)
f = 10 Hz 21
nV/Hz
VnEquivalent input noise voltage (see Figure 2) f = 1 kHz 17 nV/
Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 0.47 μV
InEquivalent input noise current 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 1.7 MHz
φmPhase margin at unity gain See Figure 3 47°
TLE2024 operating characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise
noted)
PARAMETER TEST CONDITIONS TAMIN TYP MAX UNIT
SR
Slew rate at unity gain
V ±10 V
See Figure 1
25°C 0.45 0.7
V/ s
SR Slew rate at unity gain VO = ±10 V, See Figure 1 Full range 0.4 V/μs
V
Equivalent input noise volta
g
e f = 10 Hz 25°C 19
nV/Hz
Vn
Equivalent input noise voltage
(see Figure 2) f = 1 kHz 25°C 15 nV/
Hz
V
Peak to peak equivalent input noise voltage
f = 0.1 to 1 Hz 25°C 0.16
V
VN(PP) Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 25°C 0.47 μV
InEquivalent input noise current 25°C 0.1 pA/Hz
B1Unity-gain bandwidth See Figure 3 25°C 2.8 MHz
φmPhase margin at unity gain See Figure 3 25°C 52°
Full range is 40°C to 125°C.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
15 V
15 V
20 kΩ
VI
20 kΩ
VO
20 kΩ
VI
30 pF
(see Note A)
VO
5 V
20 kΩ
+
+
(a) SINGLE SUPPLY
NOTE A: CL includes fixture capacitance.
(b) SPLIT SUPPLY
30 pF
(see Note A)
Figure 1. Slew-Rate Test Circuit
2.5 V
5 V
VO
2 kΩ
20 Ω
20 Ω
20 Ω
20Ω
VO
15 V
15 V
2 kΩ
+
+
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 2. Noise-Voltage Test Circuit
2.5 V
+
+
VO
10 kΩ
15 V
15 V
10 kΩ
100Ω
VI
VI
10 kΩ
VO
100 Ω
10 kΩ
5 V
(a) SINGLE SUPPLY
NOTE A: CL includes fixture capacitance.
(b) SPLIT SUPPLY
30 pF
(see Note A)
30 pF
(see Note A)
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
10 kΩ
0.1 μF
10 kΩ
+
VO
10 kΩ
VI
5 V
+
VO
10 kΩ
VI
15 V
15 V
(a) SINGLE SUPPLY
NOTE A: CL includes fixture capacitance.
(b) SPLIT SUPPLY
30 pF
(see Note A)
30 pF
(see Note A)
Figure 4. Small-Signal Pulse-Response Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO Input offset voltage Distribution 5, 6, 7
IIB Input bias current vs Common-mode input voltage
vs Free-air temperature
8, 9, 10
11, 12, 13
IIInput current vs Differential input voltage 14
VOM Maximum peak output voltage vs Output current
vs Free-air temperature
15, 16, 17
18
VOH High-level output voltage vs High-level output current
vs Free-air temperature
19, 20
21
VOL Low-level output voltage vs Low-level output current
vs Free-air temperature
22
23
VO(PP) Maximum peak-to-peak output voltage vs Frequency 24, 25
AVD Large-signal differential voltage amplification vs Frequency
vs Free-air temperature
26
27, 28, 29
IOS Short-circuit output current vs Supply voltage
vs Free-air temperature
30 33
34 37
ICC Supply current vs Supply voltage
vs Free-air temperature
38, 39, 40
41, 42, 43
CMRR Common-mode rejection ratio vs Frequency 44, 45, 46
SR Slew rate vs Free-air temperature 47, 48, 49
Voltage-follower small-signal pulse response 50, 51
Voltage-follower large-signal pulse response 52 57
VN(PP) Peak-to-peak equivalent input noise voltage 0.1 to 1 Hz
0.1 to 10 Hz
58
59
VnEquivalent input noise voltage vs Frequency 60
B1Unity-gain bandwidth vs Supply voltage
vs Free-air temperature
61, 62
63, 64
φmPhase margin
vs Supply voltage
vs Load capacitance
vs Free-air temperature
65, 66
67, 68
69, 70
Phase shift vs Frequency 26
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 5
16
12
8
4
3000300
0600
20
VIO Input Offset Voltage μV
Percentage of Units %
600
ÎÎÎÎ
P Package
VCC ± = ±15 V
231 Units Tested From 1 Wafer Lot
DISTRIBUTION OF TLE2021
INPUT OFFSET VOLTAGE
TA = 25°C
450 150 150 450
Figure 6
600
Percentage of Units %
VIO Input Offset Voltage μV
20
200
0
400 200 0
4
8
12
16
400 600
DISTRIBUTION OF TLE2022
INPUT OFFSET VOLTAGE
ÎÎÎÎÎÎÎÎÎÎÎ
398 Amplifiers Tested From 1 Wafer Lot
VCC ± = ±15 V
TA = 25°C
P Package
Figure 7
1
Percentage of Units %
VIO Input Offset Voltage mV
16
1
0
0.5 0 0.5
796 Amplifiers Tested From 1 Wafer Lot
VCC ± = ±15 V
TA = 25°C
N Package
4
8
12
DISTRIBUTION OF TLE2024
INPUT OFFSET VOLTAGE
Figure 8
TA = 25°C
VCC ± = ±15 V
35
30
25
20
15
10
5
1050510
0
15
40
VIC Common-Mode Input Voltage V
IIB Input Bias Current nA
15
IB
I
TLE2021
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 9
15
IIB Input Bias Current nA
VIC Common-Mode Input Voltage V
50
15
10 5 0 5 10
20
25
30
35
40
45
VCC ± = ±15 V
TA = 25°C
IB
I
TLE2022
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
Figure 10
15
IIB Input Bias Current nA
VIC Common-Mode Input Voltage V
60
15
20
10 50510
30
40
50
VCC ± = ±15 V
TA = 25°C
ÁÁ
ÁÁ
IIB
TLE2024
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
Figure 11
30
25
20
15
10
5
10075502502550
0125
35
TA Free-Air Temperature °C
IIB Input Bias Current nA
75
IB
I
TLE2021
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
VCC ± = ±15 V
VO = 0
VIC = 0
Figure 12
75
IIB Input Bias Current nA
TA Free-Air Temperature °C
50
125
50 25 0 25 50 75 100
20
25
30
35
40
45
VCC ± = ±15 V
VO = 0
VIC = 0
IB
I
TLE2022
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 13
TA Free-Air Temperature °C
75
IIB Input Bias Current nA
60
20
50 25 0 25 50 75 100
50
30
40
125
ÁÁ
ÁÁ
IIB
ÎÎÎ
ÎÎÎ
ÎÎÎ
VO = 0
VIC = 0
ÎÎÎÎÎ
VCC± = ±15 V
TLE2024
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
Figure 14
TA = 25°C
VIC = 0
VCC± = ±15 V
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.90.80.70.60.50.40.30.20.1
01
1
|VID| Differential Input Voltage V
II Input Current mA
0
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
II
Figure 15
0
VOM Maximum Peak Output Voltage V
IO Output Current mA
16
10
02 4 6 8
2
4
6
8
10
12
14
VCC ± = ±15 V
TA = 25°C
ÁÁÁ
ÁÁÁ
ÁÁÁ
V
OM
ÎÎÎÎ
ÎÎÎÎ
VOM
ÎÎÎÎ
ÎÎÎÎ
VOM+
TLE2021
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
Figure 16
0
VOM| Maximum Peak Output Voltage V
|IO| Output Current mA
16
14
0246
2
4
6
8
10
12
14 TA = 25°C
81012
ÁÁ
ÁÁ
|VOM
ÎÎÎ
ÎÎÎ
VOM+
ÎÎÎÎ
ÎÎÎÎ
VOM
VCC ± = ±15 V
TLE2022
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 17
IO Output Current mA
0
VOM Maximum Peak Output Voltage V
16
0246
2
4
6
8
10
12
14
81012
ÎÎÎ
ÎÎÎ
VOM
14
VCC ± = ±5 V
ÎÎÎ
VOM +
ÁÁ
ÁÁ
ÁÁ
VOM
ÎÎÎÎ
TA = 25°C
TLE2024
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
Figure 18
75
TA Free-Air Temperature °C
15
125
12
50 25 0 25 50 75 100
12.5
13
13.5
14
14.5
VOM
VOM +
VCC ± = ±15 V
TA = 25°C
RL = 10 kΩ
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOM| Maximum Peak Output Voltage V
ÁÁÁ
ÁÁÁ
ÁÁÁ
|VOM
Figure 19
0
VOH High-Level Output Voltage V
IOH High-Level Output Current mA
5
7
0
123456
1
2
3
4
TA = 25°C
VCC = 5 V
ÁÁ
ÁÁ
V
OH
TLE2021
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
Figure 20
IOH High-Level Output Current mA
0
VOH High-Level Output Voltage V
5
0
2468
1
2
3
4
TA = 25°C
VCC = 5 V
ÁÁ
ÁÁ
V
OH
10
TLE2022 AND TLE2024
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 21
75
TA Free-Air Temperature °C
5
125
4
50 25 0 25 50 75 100
4.2
4.6
4.8
VOH High-Level Output Voltage V
VCC = 5 V
RL = 10 kΩ
No Load
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
V
OH
4.4
Figure 22
0
VOL Low-Level Output Voltage V
IOL Low-Level Output Current mA
5
3
00.5 1 1.5 2 2.5
1
2
3
4
VCC = 5 V
TA = 25°C
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
ÁÁ
VOL
Figure 23
75
TA Free-Air Temperature °C
1
125
0
50 25 0 25 50 75 100
0.25
0.5
0.75
IOL = 1 mA
IOL = 0
VCC ± = ±5 V
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOL Low-Level Output Voltage V
ÁÁÁ
ÁÁÁ
VOL
Figure 24
100
VOPP Maximum Peak-to-Peak Output Voltage V
f Frequency Hz
5
1 M
0
1
2
3
4
1 k 10 k 100 k
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
VCC =5 V
RL = 10 kΩ
ÁÁ
ÁÁ
ÁÁ
VO(PP)
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 25
100
f Frequency Hz
30
1 M
0
5
10
15
20
25
1 k 10 k 100 k
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
TA = 25°C
VCC ± = ±15 V
RL = 10 kΩ
VOPP Maximum Peak-to-Peak Output Voltage V
ÁÁ
ÁÁ
ÁÁ
ÁÁ
VO(PP)
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
Phase Shift
AVD
180°
60°
200°
160°
140°
120°
100°
80°
100
80
60
40
20
0
1 M100 k10 k1 k100
20 10 M
120
f Frequency Hz
10
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÎÎÎÎÎ
ÎÎÎÎÎ
Phase Shift
VCC = 5 V
Large-Signal Differential
AVD
Voltage Amplification dB
Figure 26
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 27
RL = 10 kΩ
ÎÎÎÎ
ÎÎÎÎ
VCC = 5 V
6
4
2
10075502502550
0125
10
TA Free-Air Temperature °C
75
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
Vμ
V/
Voltage Amplification
8
Large-Signal Differential
AVD
TLE2021
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 28
75
TA Free-Air Temperature °C
125
0
50 25 0 25 50 75 100
1
VCC = 5 V
VCC ± = ±15 V
RL = 10 kΩ
2
3
4
5
6
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
Voltage Amplification V/μV
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 29
VCC ± = ±5 V
6
4
2
10075502502550
0125
10
TA Free-Air Temperature °C
75
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 10 kΩ
Vμ
V/
Voltage Amplification
8
A Large-Signal Differential
VD
TLE2024
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 30
ÎÎÎÎÎ
VID = 100 mV
TA = 25°C
VID = 100 mV
VO = 0
8
6
4
2
0
2
4
6
8
1412108642
10 16
10
|VCC ±| Supply Voltage V
IOS Short-Circuit Output Current mA
0
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 31
0
IOS Short-Circuit Output Current mA
|VCC ±| Supply Voltage V
15
16
15 2 4 6 8101214
VO = 0
TA = 25°C
VID = 100 mV
10
5
0
5
10
IOS
ÎÎÎÎÎ
VID = 100 mV
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Figure 32
VO = VCC
TA = 25°C
VID = 100 mV
VID = 100 mV
VO = 0
8
4
0
4
8
252015105
12 30
12
VCC Supply Voltage V
0
IOS Short-Circuit Output Current mA
ÁÁ
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Figure 33
0
IOS Short-Circuit Output CUrrent mA
VCC Supply Voltage V
15
30
15
10
5
0
5
10
ÎÎÎÎ
ÎÎÎÎ
TA = 25°C
VID = 100 mV
VID = 100 mV
252015105
VO = VCC
VO = 0
IOS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Figure 34
75
8
125
8
50 25 02550 75 100
6
4
2
0
2
4
6
VID = 100 mV
VCC =5 V
VID = 100 mV
VO = 0
VO = 5 V
TA Free-Air Temperature °C
IOS Short-Circuit Output Current mA
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 35
75
6
125
10
50 25 0255075100
8
6
4
2
0
2
4
VID = 100 mV
VCC = 5 V
VO = 5 V
TA Free-Air Temperature °C
IOS Short-Circuit Output Current mA
IOS
ÎÎÎÎÎ
VID = 100 mV
ÎÎÎ
ÎÎÎ
VO = 0
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Figure 36
75
IOS Short-Circuit Output Current mA
TA Free-Air Temperature °C
12
125
12
50 25 0 25 50 75 100
8
4
0
4
8VO = 0
VCC ± = ±15 V
VID = 100 mV
VID = 100 mV
ÁÁ
ÁÁ
OS
I
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Figure 37
75
TA Free-Air Temperature °C
15
125
15
10
5
0
5
10
VO = 0
VID = 100 mV
VID = 100 mV
VCC ± = ±15 V
IOS Short-Circuit Output Current mA
50 25 0 25 50 75 100
IOS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Figure 38
0
ICC Supply Current ua
|VCC ±| Supply Voltage V
250
16
0
50
100
150
200
2 4 6 8 10 12 14
VO = 0
No Load
ÁÁ
ÁÁ
CC
IAμ
ÎÎÎÎ
ÎÎÎÎ
TA = 25°C
ÎÎÎÎ
ÎÎÎÎ
TA = 125°C
ÎÎÎÎ
ÎÎÎÎ
TA = 55°C
TLE2021
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 39
0
ICC Supply Current ua
|VCC ±| Supply Voltage V
16
2 4 6 8 10 12 14
VO = 0
No Load
TA = 25°C
TA = 125°C
TA = 55°C
100
200
300
400
0
500
ÁÁ
ÁÁ
ÁÁ
CC
IAμ
TLE2022
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Figure 40
0
|VCC ±| Supply Voltage V
16
2 4 6 8 10 12 14
VO = 0
No Load
200
400
600
800
0
1000
TA = 25°C
ÎÎÎÎ
TA = 125°C
TA = 55°C
Supply Current μAICC
TLE2024
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
Figure 41
75
225
125
0
25
50
75
100
125
150
175
200
50 25 0 25 50 75 100
TA Free-Air Temperature °C
No Load
VO = 0
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±2.5 V
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ICC Supply Current ua
ÁÁ
ÁÁ
CC
IAμ
TLE2021
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Figure 42
75
500
125
0
50 25 0 25 50 75 100
VCC ±= ±15 V
VCC ± = ±2.5 V
TA Free-Air Temperature °C
No Load
VO = 0
400
300
200
100
ICC Supply Current ua
ÁÁ
ÁÁ
CC
IAμ
TLE2022
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 43
75 12550 25 0 25 50 75 100
TA Free-Air Temperature °C
1000
0
800
600
400
200
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ÎÎÎÎÎ
VCC ± = ±2.5 V
VO = 0
No Load
Supply Current μAICC
TLE2024
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
Figure 44
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC = 5 V
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
100
80
60
40
20
1 M100 k10 k1 k100
0
10 M
120
f Frequency Hz
CMRR Common-Mode Rejection Ratio dB
10
TLE2021
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Figure 45
10
CMRR Common-Mode Rehection Ratio dB
f Frequency Hz
120
10 M
0100 1 k 10 k 100 k 1 M
20
40
60
80
100
VCC ± = ±15 V
VCC = 5 V
ÎÎÎÎÎ
TA = 25°C
TLE2022
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Figure 46
10
CMRR Common-Mode Rejection Ratio dB
f Frequency Hz
120
10 M
0100 1 k 10 k 100 k 1 M
20
40
60
80
100
ÎÎÎÎ
ÎÎÎÎ
VCC = 5 V
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
TLE2024
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 47
See Figure 1
RL = 20 kΩ
CL = 30 pF
0.8
0.6
0.4
0.2
10075502502550
0125
1
TA Free-Air Temperature °C
SR Slew Rate V/us
75
sμ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
ÎÎÎÎ
ÎÎÎÎ
VCC = 5 V
TLE2021
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 48
75
SR Slew Rate V/ us
TA Free-Air Temperature °C
1
125
0
50 25 0 25 50 75 100
0.2
0.4
0.6
0.8
VCC ± = ±15 V
VCC = 5 V
CL = 30 pF
RL = 20 kΩ
See Figure 1
sμ
TLE2022
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 49
75
SR Slew Rate V/s
TA Free-Air Temperature °C
1
125
0
50 25 0 25 50 75 100
0.2
0.4
0.6
0.8
CL = 30 pF
RL = 20 kΩ
See Figure 1
ÎÎÎÎÎ
VCC ± = ±15 V
VCC = 5 V
sμ
V/
TLE2024
SLEW RATE
vs
FREE-AIR TEMPERATURE
Figure 50
ÎÎÎÎÎ
ÎÎÎÎÎ
See Figure 4
TA = 25°C
CL = 30 pF
RL = 10 kΩ
VCC ± = ±15 V
50
0
50
60
40200
100 80
100
t Time μs
VO Output Voltage mV
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
ÁÁ
ÁÁ
VO
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 51
TA = 25°C
CL = 30 pF
ÎÎÎÎÎ
See Figure 4
RL = 10 kΩ
t Time μs
VCC = 5 V
2.5
6040200
2.4 80
2.6
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VO Output Voltage V
ÁÁÁ
ÁÁÁ
VO
2.55
2.45
Figure 52
t Time μs
4
80
00 20 40 60
1
2
3
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
See Figure 1
VO Output Voltage V
ÁÁ
ÁÁ
VO
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 53
t Time μs
4
80
00 20 40 60
1
2
3
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
VO Output Voltage V
ÁÁÁ
ÁÁÁ
VO
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 54
t Time μs
4
80
00 20 40 60
1
2
3
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
VO Output Voltage V
V
O
TLE2024
VOLTAGE-FOLLOWER LARGE-SCALE
PULSE RESPONSE
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 55
VO Output Voltage V
t Time μs
15
80
15 020 40 60
10
5
0
5
10
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
ÁÁ
ÁÁ
VO
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 56
VO Output Voltage V
t Time μs
15
80
15 0 20 40 60
10
5
0
5
10
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
ÁÁ
ÁÁ
VO
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 57
VO Output Voltage V
t Time μs
15
80
15 020 40 60
10
5
0
5
10
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
V
O
TLE2024
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
Figure 58
0
0.5
10
0.5 123456789
0.4
0.3
0.2
0.1
0
0.1
0.2
0.3
0.4
t Time s
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
TA = 25°C
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 1 Hz
VNPP Peak-to-Peak Equivalent Input Noise Voltage uV
Vμ
ÁÁ
ÁÁ
ÁÁ
VN(PP)
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 59
t Time s
0.4
0.3
0.2
0.1
0
0.1
0.2
0.3
0.4
0.5
0.5
987654321100
VCC ± = ±15 V
TA = 25°C
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
VNPP Peak-to-Peak Equivalent Input Noise Voltage uV
Vμ
ÁÁÁ
ÁÁÁ
ÁÁÁ
VN(PP)
Figure 60
1
Vn Equivalent Input Noise Voltage nVHz
f Frequency Hz
200
10 k
0
40
80
120
160
10 100 1 k
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
Vn
ÁÁ
ÁÁ
ÁÁ
nV/ Hz
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ±15 V
RS = 20 Ω
ÎÎÎÎ
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
See Figure 2
Figure 61
0
B1 Unity-Gain Bandwidth MHz
4
16
02 4 6 8 10 12 14
1
2
3See Figure 3
TA = 25°C
CL = 30 pF
RL = 10 kΩ
B1
|VCC±| Supply Voltage V
TLE2021
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
Figure 62
3
2
1
1412108642
016
4
|VCC±| Supply Voltage V
B1 Unity-Gain Bandwidth MHz
0
B1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 63
75
B1 Unity-Gain Bandwidth MHz
TA Free-Air Temperature °C
4
125
0
50 25 0 25 50 75 100
1
2
3
See Figure 3
CL = 30 pF
RL = 10 kΩ
VCC ± = ±15 V
ÎÎÎÎÎ
VCC = 5 V
B1
TLE2021
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
Figure 64
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC = 5 V
3
2
1
10075502502550
0125
4
TA Free-Air Temperature °C
75
RL = 10 kΩ
CL = 30 pF
See Figure 3
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VCC ± = ±15 V
B1 Unity-Gain Bandwidth MHz
B1
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
Figure 65
0
m Phase Margin
50°
16
40°2 4 6 8 10 12 14
42°
44°
46°
48°
|VCC ±| Supply Voltage V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
ÁÁ
ÁÁ
m
φ
TLE2021
PHASE MARGIN
vs
SUPPLY VOLTAGE
Figure 66
53°
51°
49°
47°
1412108642
45°16
55°
m Phase Margin
0
|VCC±| Supply Voltage V
ÁÁ
ÁÁ
m
φ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
See Figure 3
TA = 25°C
CL = 30 pF
RL = 10 kΩ
TLE2022 AND TLE2024
PHASE MARGIN
vs
SUPPLY VOLTAGE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 67
0
CL Load Capacitance pF
60°
100
020 40 60 80
10°
20°
30°
40°
50°
RL = 10 kΩ
TA = 30 pF
See Figure 3
VCC ± = ±15 V
VCC = 5 V
m Phase Margin
ÁÁ
ÁÁ
ÁÁ
m
φ
TLE2021
PHASE MARGIN
vs
LOAD CAPACITANCE
Figure 68
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
80604020
VCC = 5 V
See Figure 3
TA = 25°C
RL = 10 kΩ
60°
50°
40°
30°
20°
10°
0°100
70°
CL Load Capacitance pF
m Phase Margin
0
ÁÁ
ÁÁ
m
φ
VCC ± = ±15 V
TLE2022 AND TLE2024
PHASE MARGIN
vs
LOAD CAPACITANCE
Figure 69
75
m Phase Margin
TA Free-Air Temperature °C
50°
125
36°
50 25 0 25 50 75 100
38°
40°
42°
44°
46°
48°
RL = 10 kΩ
CL = 30 pF
See Figure 3
VCC ± = ±15 V
VCC = 5 V
Á
Á
m
φ
TLE2021
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Figure 70
42°
10075502502550
VCC = 5 V
VCC ± = ±15 V
52°
50°
48°
46°
44°
40°125
54°
TA Free-Air Temperature °C
75
m Phase Margin
ÁÁ
ÁÁ
m
φ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
See Figure 3
CL = 30 pF
RL = 10 kΩ
TLE2022 AND TLE2024
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
voltage-follower applications
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For
feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).
CF = 20 pF to 50 pF
IF 1 mA
RF
VCC +
VCC
VO
VI
+
Figure 71. Voltage Follower
Input offset voltage nulling
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null
pins may be left disconnected.
1 kΩ GND (single supply)
VCC (split supply)
5 kΩ
OFFSET N2
+
OFFSET N1
IN
IN +
Figure 72. Input Offset Voltage Null Circuit
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
36 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and
Figure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
DUnity-gain frequency
DCommon-mode rejection ratio
DPhase margin
DDC output resistance
DAC output resistance
DShort-circuit output current limit
DMaximum positive output voltage swing
DMaximum negative output voltage swing
DSlew rate
DQuiescent power dissipation
DInput bias current
DOpen-loop voltage amplification
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
OUT
+
+
+
+
+
+
+
+
VCC +
rp
IN
2
IN+
1
VCC
rc1
11
Q1 Q2
13
cee Iee
3
12
rc2
ve
54 de
dp
vc
dc
4
C1
53
r2
6
9
egnd
vb
fb
C2
gcm ga vlim
8
5ro1
ro2
hlim
90
dip
91
din
92
vinvip
99
7
ree
14
re1 re2
Figure 73. Boyle Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
TLE202x-EP, TLE202xA-EP
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SGLS235D FEBRUARY 2004 REVISED SEPTEMBER 2010
37
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
.SUBCKT TLE2021 1 2 3 4 5
*
c1 11 12 6.244E12
c2 6 7 13.4E12
c3 87 0 10.64E9
cpsr 85 86 15.9E9
dcm+ 81 82 dx
dcm83 81 dx
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
ecmr 84 99 (2 99) 1
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
epsr 85 0 poly(1) (3,4) 60E6 2.0E6
ense 89 2 poly(1) (88,0) 120E6 1
fb 7 99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6
+ 50E7 50E7 50E7 50E7 547E6
ga 6 0 11 12 188.5E6
gcm 0 6 10 99 335.2E12
gpsr 85 86 (85,86) 100E6
grc1 4 11 (4,11) 1.885E4
grc2 4 12 (4,12) 1.885E4
gre1 13 10 (13,10) 6.82E4
gre2 14 10 (14,10) 6.82E4
hlim 90 0 vlim 1k
hcmr 80 1 poly(2) vcm+ vcm 0 1E2 1E2
irp 3 4 185E6
iee 3 10 dc 15.67E6
iio 2 0 2E9
i1 88 0 1E21
q1 11 89 13 qx
q2 12 80 14 qx
R2 6 9 100.0E3
rcm 84 81 1K
ree 10 99 14.76E6
rn1 87 0 2.55E8
rn2 87 88 11.67E3
ro1 8 5 62
ro2 7 99 63
vcm+ 82 99 13.3
vcm83 99 14.6
vb 9 0 dc 0
vc 3 53 dc 1.300
ve 54 4 dc 1.500
vlim 7 8 dc 0
vlp 91 0 dc 3.600
vln 0 92 dc 3.600
vpsr 0 86 dc 0
.model dx d(is=800.0E18)
.model qx pnp(is=800.0E18 bf=270)
.ends
Figure 74. Boyle Macromodel for the TLE2021
.SUBCKT TLE2022 1 2 3 4 5
*
c1 11 12 6.814E12
c2 6 7 20.00E12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0
+ 45.47E6 50E6 50E6 50E6 50E6
ga 6 0 11 12 377.9E6
gcm 0 6 10 99 7.84E10
iee 3 10 DC 18.07E6
hlim 90 0 vlim 1k
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 4 11 2.842E3
rc2 4 12 2.842E3
ge1 13 10 (10,13) 31.299E3
ge2 14 10 (10,14) 31.299E3
ree 10 99 11.07E6
ro1 8 5 250
ro2 7 99 250
rp 3 4 137.2E3
vb 9 0 dc 0
vc 3 53 dc 1.300
ve 54 4 dc 1.500
vlim 7 8 dc 0
vlp 91 0 dc 3
vln 0 92 dc 3
.model dx d(is=800.0E18)
.model qx pnp(is=800.0E18 bf=257.1)
.ends
Figure 75. Boyle Macromodel for the TLE2022
PACKAGE OPTION ADDENDUM
www.ti.com 31-Jan-2011
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLE2021AQDREP ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021MDREP ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2021QDREP ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022AQDREP ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2022QDREP ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024AQDWREP ACTIVE SOIC DW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLE2024QDWREP ACTIVE SOIC DW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
V62/04755-01XE ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
V62/04755-02XE ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
V62/04755-03XE ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
V62/04755-04XE ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
V62/04755-05YE ACTIVE SOIC DW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
V62/04755-06YE ACTIVE SOIC DW 16 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
V62/04755-07XE ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
PACKAGE OPTION ADDENDUM
www.ti.com 31-Jan-2011
Addendum-Page 2
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLE2021-EP, TLE2021A-EP, TLE2022-EP, TLE2022A-EP, TLE2024-EP, TLE2024A-EP :
Catalog: TLE2021, TLE2021A, TLE2022, TLE2022A, TLE2024, TLE2024A
Automotive: TLE2021-Q1, TLE2021A-Q1, TLE2022-Q1, TLE2022A-Q1, TLE2024-Q1, TLE2024A-Q1
Military: TLE2021M, TLE2021AM, TLE2022M, TLE2022AM, TLE2024M, TLE2024AM
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TLE2021AQDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2021MDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2021QDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2022AQDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2022QDREP SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLE2024AQDWREP SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1
TLE2024QDWREP SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TLE2021AQDREP SOIC D 8 2500 367.0 367.0 35.0
TLE2021MDREP SOIC D 8 2500 340.5 338.1 20.6
TLE2021QDREP SOIC D 8 2500 367.0 367.0 35.0
TLE2022AQDREP SOIC D 8 2500 367.0 367.0 35.0
TLE2022QDREP SOIC D 8 2500 367.0 367.0 35.0
TLE2024AQDWREP SOIC DW 16 2000 367.0 367.0 38.0
TLE2024QDWREP SOIC DW 16 2000 367.0 367.0 38.0
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated