MC100EP16F 3.3V / 5VECL Differential Receiver/Driver With Reduced Output Swing Description The MC100EP16F is a differential receiver/driver. The device is functionally equivalent to the EP16 device with higher performance capabilities. With reduced output swings, rise/fall transition times are significantly faster than on the EP16. The EP16F is ideally suited for interfacing with high frequency sources. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 mF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. * * * 8 8 1 SOIC-8 D SUFFIX CASE 751 1 8 1 100 ps Typical Rise and Fall Time Max Frequency >4 GHz Typical The 100 Series Contains Temperature Compensation PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0V with VEE = -3.0 V to -5.5 V Open Input Default State Safety Clamp on Inputs Pb-Free Packages are Available KEP60 ALYW G TSSOP-8 DT SUFFIX CASE 948R 1 KP60 ALYWG G 3C MG G * MARKING DIAGRAMS* 8 Features * * * * http://onsemi.com DFN8 MN SUFFIX CASE 506AA A L Y W M G 1 4 = Assembly Location = Wafer Lot = Year = Work Week = Date Code = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. (c) Semiconductor Components Industries, LLC, 2006 December, 2006 - Rev. 4 1 Publication Order Number: MC100EP16F/D MC100EP16F Table 1. PIN DESCRIPTION NC D D VBB 1 8 2 7 3 6 4 5 VCC Q Q PIN FUNCTION D*, D** ECL Data Inputs Q, Q ECL Data Outputs VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply NC No Connect EP Exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply or leave floating open. VEE Figure 1. 8-Lead Pinout (Top View) and Logic Diagram * Pins will default LOW when left open. ** Pins will default to VCC/2 when left open. Table 2. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 kW Internal Input Pullup Resistor ESD Protection 37.5 kW Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) SOIC-8 TSSOP-8 DFN8 Flammability Rating Oxygen Index: 28 to 34 Transistor Count > 4 kV > 200 V > 2 kV Pb Pkg Pb-Free Pkg Level 1 Level 1 Level 1 Level 1 Level 3 Level 1 UL 94 V-0 @ 0.125 in 139 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 2 MC100EP16F Table 3. MAXIMUM RATINGS Rating Unit VCC Symbol PECL Mode Power Supply Parameter VEE = 0 V Condition 1 6 V VEE NECL Mode Power Supply VCC = 0 V -6 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source 0.5 mA TA Operating Temperature Range -40 to +85 C Tstg Storage Temperature Range -65 to +150 C qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm 8 SOIC 8 SOIC 190 130 C/W C/W qJC Thermal Resistance (Junction-to-Case) Standard Board 8 SOIC 41 to 44 5% C/W qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm 8 TSSOP 8 TSSOP 185 140 C/W C/W qJC Thermal Resistance (Junction-to-Case) Standard Board 8 TSSOP 41 to 44 5% C/W qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm DFN8 DFN8 129 84 C/W C/W Tsol Wave Solder <2 to 3 sec @ 248C <2 to 3 sec @ 260C 265 265 C Pb Pb-Free Condition 2 VI VCC VI VEE Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. http://onsemi.com 3 MC100EP16F Table 4. DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 2) -40C Symbol Characteristic 25C 85C Min Typ Max Min Typ Max Min Typ Max Unit 23 28 40 25 33 45 26 33 45 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 3) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 3) 1525 1690 1775 1525 1690 1775 1525 1690 1775 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) (Note 4) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 mA IIL Input LOW Current 1875 2.0 1875 150 D D 0.5 -150 1875 150 0.5 -150 0.5 -150 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 2. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to -2.2 V. 3. All loading with 50 W to VCC - 2.0 V. 4. Not recommended for Single-Ended operation when using an EP16F to drive another EP16F. VOL has reduced output swing and may not meet the VIL specification over temperature. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 5. DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) -40C Symbol Characteristic 25C 85C Min Typ Max Min Typ Max Min Typ Max Unit 23 28 40 25 35 45 26 33 45 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 7) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 7) 3225 3390 3475 3225 3390 3475 3225 3390 3475 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) (Note 8) 3055 3375 3055 3375 3055 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 mA IIL Input LOW Current 3575 2.0 150 D D 0.5 -150 3575 150 0.5 -150 0.5 -150 3575 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 7. All loading with 50 W to VCC - 2.0 V. 8. Not recommended for Single-Ended operation when using an EP16F to drive another EP16F. VOL has reduced output swing and may not meet the VIL specification over temperature. 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 4 MC100EP16F Table 6. DC CHARACTERISTICS, NECL VCC = 0 V; VEE = -5.5 V to -3.0 V (Note 10) -40C Symbol Characteristic 25C 85C Min Typ Max Min Typ Max Min Typ Max Unit 23 28 40 25 34 45 26 33 45 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 11) -1145 -1020 -895 -1145 -1020 -895 -1145 -1020 -895 mV VOL Output LOW Voltage (Note 11) -1775 -1610 -1525 -1775 -1610 -1525 -1775 -1610 -1525 mV VIH Input HIGH Voltage (Single-Ended) -1225 -880 -1225 -880 -1225 -880 mV VIL Input LOW Voltage (Single-Ended) (Note 12) -1810 -1625 -1810 -1625 -1810 -1625 mV VBB Output Voltage Reference -1525 -1325 -1525 -1325 -1525 -1325 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13) 0.0 V IIH Input HIGH Current 150 mA IIL Input LOW Current -1425 VEE+2.0 0.0 -1425 VEE+2.0 150 D D 0.5 -150 0.0 -1425 VEE+2.0 150 0.5 -150 0.5 -150 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 10. Input and output parameters vary 1:1 with VCC. 11. All loading with 50 W to VCC - 2.0 V. 12. Not recommended for Single-Ended operation when using an EP16F to drive another EP16F. VOL has reduced output swing and may not meet the VIL specification over temperature. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 7. AC CHARACTERISTICS VCC = 0 V; VEE = -3.0 V to -5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 14) -40C Symbol Characteristic fmax Maximum Toggle Frequency (See Figure 2. Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Min Typ 25C Max Min >4 170 Max Min >4 210 250 Duty Cycle Skew 5.0 tJITTER Cycle-to-Cycle Jitter (RMS) (See Figure 2. Fmax/JITTER) VPP Input Voltage Swing (Differential Configuration) tr tf Output Rise/Fall Times (20% - 80%) Q Typ 85C 180 Typ Max >4 220 260 20 5.0 0.2 <1 150 800 1200 70 85 110 200 Unit GHz 250 300 ps 20 5.0 20 ps 0.2 <1 0.2 <1 ps 150 800 1200 150 800 1200 mV 80 100 120 90 110 130 ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC-2.0 V. http://onsemi.com 5 MC100EP16F 800 VOUTpp (mV) 700 Measured Simulated 600 7 6 500 5 400 4 300 3 200 2 EEEEEEEE EEEEEEEE EEEEEEEE 100 0 0 1000 2000 1 (JITTER) 3000 4000 5000 JITTEROUT ps (RMS) 8 E E 6000 FREQUENCY (MHz) Figure 2. Fmax/JITTER Q Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC - 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.) http://onsemi.com 6 MC100EP16F ORDERING INFORMATION Package Shipping SOIC-8 98 Units / Rail MC100EP16FDG SOIC-8 (Pb-Free) 98 Units / Rail MC100EP16FDR2 SOIC-8 2500 / Tape & Reel MC100EP16FDR2G SOIC-8 (Pb-Free) 2500 / Tape & Reel MC100EP16FDT TSSOP-8 100 Units / Rail MC100EP16FDTG TSSOP-8 (Pb-Free) 100 Units / Rail MC100EP16FDTR2 TSSOP-8 2500 / Tape & Reel MC100EP16FDTR2G TSSOP-8 (Pb-Free) 2500 / Tape & Reel MC100EP16FMNR4 DFN8 1000 / Tape & Reel DFN8 (Pb-Free) 1000 / Tape & Reel Device MC100EP16FD MC100EP16FMNR4G For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Resource Reference of Application Notes AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPSt I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AN1672/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices http://onsemi.com 7 MC100EP16F PACKAGE DIMENSIONS SOIC-8 NB CASE 751-07 ISSUE AH -X- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. A 8 5 S B 1 0.25 (0.010) M Y M 4 -Y- K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE -Z- H 0.10 (0.004) D 0.25 (0.010) M Z Y S X M J S SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 8 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 MC100EP16F PACKAGE DIMENSIONS TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 ISSUE A 8x 0.15 (0.006) T U 0.10 (0.004) S 2X L/2 L 8 5 1 PIN 1 IDENT 0.15 (0.006) T U K REF S M T U V S 0.25 (0.010) B -U- 4 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S M A -V- F DETAIL E C 0.10 (0.004) -T- SEATING PLANE D -W- G DETAIL E http://onsemi.com 9 DIM A B C D F G K L M MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 0.80 1.10 0.05 0.15 0.40 0.70 0.65 BSC 0.25 0.40 4.90 BSC 0_ 6_ INCHES MIN MAX 0.114 0.122 0.114 0.122 0.031 0.043 0.002 0.006 0.016 0.028 0.026 BSC 0.010 0.016 0.193 BSC 0_ 6_ MC100EP16F PACKAGE DIMENSIONS DFN8 CASE 506AA-01 ISSUE D 1 D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 . 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. A B PIN ONE REFERENCE 2X 0.10 C 2X 0.10 C CCC CCC CCC CCC TOP VIEW 0.08 C SEATING PLANE MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.20 REF 0.20 0.30 2.00 BSC 1.10 1.30 2.00 BSC 0.70 0.90 0.50 BSC 0.20 --- 0.25 0.35 A 0.10 C 8X DIM A A1 A3 b D D2 E E2 e K L E (A3) SIDE VIEW A1 C D2 e e/2 4 1 8X L E2 K 8 5 8X b 0.10 C A B 0.05 C NOTE 3 BOTTOM VIEW ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 http://onsemi.com 10 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC100EP16F/D