© Semiconductor Components Industries, LLC, 2006
December, 2006 Rev. 4
1Publication Order Number:
MC100EP16F/D
MC100EP16F
3.3V / 5VECL Differential
Receiver/Driver With
Reduced Output Swing
Description
The MC100EP16F is a differential receiver/driver. The device is
functionally equivalent to the EP16 device with higher performance
capabilities. With reduced output swings, rise/fall transition times are
significantly faster than on the EP16. The EP16F is ideally suited for
interfacing with high frequency sources.
The VBB pin, an internally generated voltage supply, is available to
this device only. For singleended input conditions, the unused
differential input is connected to VBB as a switching reference voltage.
VBB may also rebias AC coupled inputs. When used, decouple VBB
and VCC via a 0.01 mF capacitor and limit current sourcing or sinking
to 0.5 mA. When not used, VBB should be left open.
Features
100 ps Typical Rise and Fall Time
Max Frequency >4 GHz Typical
The 100 Series Contains Temperature Compensation
PECL Mode Operating Range: VCC = 3.0 V to 5.5 V
with VEE = 0 V
NECL Mode Operating Range: VCC = 0V
with VEE = 3.0 V to 5.5 V
Open Input Default State
Safety Clamp on Inputs
PbFree Packages are Available
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
M = Date Code
G= PbFree Package
SOIC8
D SUFFIX
CASE 751
MARKING DIAGRAMS*
TSSOP8
DT SUFFIX
CASE 948R
ALYWG
G
KP60
1
8
1
8
http://onsemi.com
*For additional marking information, refer to
Application Note AND8002/D.
See detailed ordering and shipping information in the package
dimensions section on page 7 of this data sheet.
ORDERING INFORMATION
1
8KEP60
ALYW
G
1
8
DFN8
MN SUFFIX
CASE 506AA
3C MG
G
14
(Note: Microdot may be in either location)
MC100EP16F
http://onsemi.com
2
1
2
3
45
6
7
8
Q
VEE
VCC
Figure 1. 8Lead Pinout (Top View) and Logic Diagram
D
Q
D
VBB
NC
Q, Q ECL Data Outputs
ECL Data Inputs
VBB Reference Voltage Output
Table 1. PIN DESCRIPTION
PIN
D*, D**
FUNCTION
VCC Positive Supply
VEE Negative Supply
NC No Connect
* Pins will default LOW when left open.
** Pins will default to VCC/2 when left open.
EP Exposed pad must be connected
to a sufficient thermal conduit.
Electrically connect to the most
negative supply or leave floating
open.
Table 2. ATTRIBUTES
Characteristics Value
Internal Input Pulldown Resistor 75 kW
Internal Input Pullup Resistor 37.5 kW
ESD Protection Human Body Model
Machine Model
Charged Device Model
> 4 kV
> 200 V
> 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Pb Pkg PbFree Pkg
SOIC8
TSSOP8
DFN8
Level 1
Level 1
Level 1
Level 1
Level 3
Level 1
Flammability Rating Oxygen Index: 28 to 34 UL 94 V0 @ 0.125 in
Transistor Count 139
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
MC100EP16F
http://onsemi.com
3
Table 3. MAXIMUM RATINGS
Symbol Parameter Condition 1 Condition 2 Rating Unit
VCC PECL Mode Power Supply VEE = 0 V 6 V
VEE NECL Mode Power Supply VCC = 0 V 6 V
VIPECL Mode Input Voltage
NECL Mode Input Voltage
VEE = 0 V
VCC = 0 V
VI VCC
VI VEE
6
6
V
V
Iout Output Current Continuous
Surge
50
100
mA
mA
IBB VBB Sink/Source ± 0.5 mA
TAOperating Temperature Range 40 to +85 °C
Tstg Storage Temperature Range 65 to +150 °C
qJA Thermal Resistance (JunctiontoAmbient) 0 lfpm
500 lfpm
8 SOIC
8 SOIC
190
130
°C/W
°C/W
qJC Thermal Resistance (JunctiontoCase) Standard Board 8 SOIC 41 to 44 ± 5% °C/W
qJA Thermal Resistance (JunctiontoAmbient) 0 lfpm
500 lfpm
8 TSSOP
8 TSSOP
185
140
°C/W
°C/W
qJC Thermal Resistance (JunctiontoCase) Standard Board 8 TSSOP 41 to 44 ± 5% °C/W
qJA Thermal Resistance (JunctiontoAmbient) 0 lfpm
500 lfpm
DFN8
DFN8
129
84
°C/W
°C/W
Tsol Wave Solder Pb
PbFree
<2 to 3 sec @ 248°C
<2 to 3 sec @ 260°C
265
265
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
MC100EP16F
http://onsemi.com
4
Table 4. DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 2)
40°C 25°C 85°C
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Unit
IEE Power Supply Current 23 28 40 25 33 45 26 33 45 mA
VOH Output HIGH Voltage (Note 3) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV
VOL Output LOW Voltage (Note 3) 1525 1690 1775 1525 1690 1775 1525 1690 1775 mV
VIH Input HIGH Voltage (SingleEnded) 2075 2420 2075 2420 2075 2420 mV
VIL Input LOW Voltage (SingleEnded)
(Note 4)
1355 1675 1355 1675 1355 1675 mV
VBB Output Voltage Reference 1775 1875 1975 1775 1875 1975 1775 1875 1975 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 5)
2.0 3.3 2.0 3.3 2.0 3.3 V
IIH Input HIGH Current 150 150 150 mA
IIL Input LOW Current D
D
0.5
150
0.5
150
0.5
150
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
2. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to 2.2 V.
3. All loading with 50 W to VCC 2.0 V.
4. Not recommended for SingleEnded operation when using an EP16F to drive another EP16F. VOL has reduced output swing and may not
meet the VIL specification over temperature.
5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 5. DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6)
40°C 25°C 85°C
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Unit
IEE Power Supply Current 23 28 40 25 35 45 26 33 45 mA
VOH Output HIGH Voltage (Note 7) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV
VOL Output LOW Voltage (Note 7) 3225 3390 3475 3225 3390 3475 3225 3390 3475 mV
VIH Input HIGH Voltage (SingleEnded) 3775 4120 3775 4120 3775 4120 mV
VIL Input LOW Voltage (SingleEnded)
(Note 8)
3055 3375 3055 3375 3055 3375 mV
VBB Output Voltage Reference 3475 3575 3675 3475 3575 3675 3475 3575 3675 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 9)
2.0 5.0 2.0 5.0 2.0 5.0 V
IIH Input HIGH Current 150 150 150 mA
IIL Input LOW Current D
D
0.5
150
0.5
150
0.5
150
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to 0.5 V.
7. All loading with 50 W to VCC 2.0 V.
8. Not recommended for SingleEnded operation when using an EP16F to drive another EP16F. VOL has reduced output swing and may not
meet the VIL specification over temperature.
9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
MC100EP16F
http://onsemi.com
5
Table 6. DC CHARACTERISTICS, NECL VCC = 0 V; VEE = 5.5 V to 3.0 V (Note 10)
40°C 25°C 85°C
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Unit
IEE Power Supply Current 23 28 40 25 34 45 26 33 45 mA
VOH Output HIGH Voltage (Note 11) 1145 1020 895 1145 1020 895 1145 1020 895 mV
VOL Output LOW Voltage (Note 11) 1775 1610 1525 1775 1610 1525 1775 1610 1525 mV
VIH Input HIGH Voltage (SingleEnded) 1225 880 1225 880 1225 880 mV
VIL Input LOW Voltage (SingleEnded)
(Note 12)
1810 1625 1810 1625 1810 1625 mV
VBB Output Voltage Reference 1525 1425 1325 1525 1425 1325 1525 1425 1325 mV
VIHCMR Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 13)
VEE+2.0 0.0 VEE+2.0 0.0 VEE+2.0 0.0 V
IIH Input HIGH Current 150 150 150 mA
IIL Input LOW Current D
D
0.5
150
0.5
150
0.5
150
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
10.Input and output parameters vary 1:1 with VCC.
11. All loading with 50 W to VCC 2.0 V.
12. Not recommended for SingleEnded operation when using an EP16F to drive another EP16F. VOL has reduced output swing and may not
meet the VIL specification over temperature.
13.VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 7. AC CHARACTERISTICS VCC = 0 V; VEE = 3.0 V to 5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 14)
40°C 25°C 85°C
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Unit
fmax Maximum Toggle Frequency
(See Figure 2. Fmax/JITTER)
> 4 > 4 > 4 GHz
tPLH,
tPHL
Propagation Delay to Output
Differential
170 210 250 180 220 260 200 250 300 ps
tSKEW Duty Cycle Skew 5.0 20 5.0 20 5.0 20 ps
tJITTER CycletoCycle Jitter (RMS)
(See Figure 2. Fmax/JITTER)
0.2 < 1 0.2 < 1 0.2 < 1 ps
VPP Input Voltage Swing
(Differential Configuration)
150 800 1200 150 800 1200 150 800 1200 mV
tr
tf
Output Rise/Fall Times Q
(20% 80%)
70 85 110 80 100 120 90 110 130 ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
14.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC2.0 V.
MC100EP16F
http://onsemi.com
6
0
100
200
300
400
500
600
700
800
0 1000 2000 3000 4000 5000 6000
Figure 2. Fmax/JITTER
FREQUENCY (MHz)
Measured
Simulated
1
2
3
4
5
6
7
8
(JITTER)
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
VOUTpp (mV)
JITTEROUT ps (RMS)
É
É
Figure 3. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D Termination of ECL Logic Devices.)
Driver
Device
Receiver
Device
QD
Q D
Zo = 50 W
Zo = 50 W
50 W50 W
VTT
VTT = VCC 2.0 V
MC100EP16F
http://onsemi.com
7
ORDERING INFORMATION
Device Package Shipping
MC100EP16FD SOIC898 Units / Rail
MC100EP16FDG SOIC8
(PbFree)
98 Units / Rail
MC100EP16FDR2 SOIC82500 / Tape & Reel
MC100EP16FDR2G SOIC8
(PbFree)
2500 / Tape & Reel
MC100EP16FDT TSSOP8100 Units / Rail
MC100EP16FDTG TSSOP8
(PbFree)
100 Units / Rail
MC100EP16FDTR2 TSSOP82500 / Tape & Reel
MC100EP16FDTR2G TSSOP8
(PbFree)
2500 / Tape & Reel
MC100EP16FMNR4 DFN8 1000 / Tape & Reel
MC100EP16FMNR4G DFN8
(PbFree)
1000 / Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D ECL Clock Distribution Techniques
AN1406/D Designing with PECL (ECL at +5.0 V)
AN1503/D ECLinPSt I/O SPiCE Modeling Kit
AN1504/D Metastability and the ECLinPS Family
AN1568/D Interfacing Between LVDS and ECL
AN1672/D The ECL Translator Guide
AND8001/D Odd Number Counters Design
AND8002/D Marking and Date Codes
AND8020/D Termination of ECL Logic Devices
AND8066/D Interfacing with ECLinPS
AND8090/D AC Characteristics of ECL Devices
MC100EP16F
http://onsemi.com
8
PACKAGE DIMENSIONS
SOIC8 NB
CASE 75107
ISSUE AH
SEATING
PLANE
1
4
58
N
J
X 45 _
K
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 75101 THRU 75106 ARE OBSOLETE. NEW
STANDARD IS 75107.
A
BS
D
H
C
0.10 (0.004)
DIM
A
MIN MAX MIN MAX
INCHES
4.80 5.00 0.189 0.197
MILLIMETERS
B3.80 4.00 0.150 0.157
C1.35 1.75 0.053 0.069
D0.33 0.51 0.013 0.020
G1.27 BSC 0.050 BSC
H0.10 0.25 0.004 0.010
J0.19 0.25 0.007 0.010
K0.40 1.27 0.016 0.050
M0 8 0 8
N0.25 0.50 0.010 0.020
S5.80 6.20 0.228 0.244
X
Y
G
M
Y
M
0.25 (0.010)
Z
Y
M
0.25 (0.010) ZSXS
M
____
1.52
0.060
7.0
0.275
0.6
0.024
1.270
0.050
4.0
0.155
ǒmm
inchesǓ
SCALE 6:1
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
MC100EP16F
http://onsemi.com
9
PACKAGE DIMENSIONS
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A2.90 3.10 0.114 0.122
B2.90 3.10 0.114 0.122
C0.80 1.10 0.031 0.043
D0.05 0.15 0.002 0.006
F0.40 0.70 0.016 0.028
G0.65 BSC 0.026 BSC
L4.90 BSC 0.193 BSC
M0 6 0 6
____
SEATING
PLANE
PIN 1
14
85
DETAIL E
B
C
D
A
G
DETAIL E
F
M
L
2X L/2
U
S
U0.15 (0.006) T
S
U0.15 (0.006) T
S
U
M
0.10 (0.004) V S
T
0.10 (0.004)
T
V
W
0.25 (0.010)
8x REFK
IDENT
K0.25 0.40 0.010 0.016
TSSOP8
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948R02
ISSUE A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE −W−.
MC100EP16F
http://onsemi.com
10
PACKAGE DIMENSIONS
DFN8
CASE 506AA01
ISSUE D
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994 .
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
A
D
E
B
C0.10
PIN ONE
2 X
REFERENCE
2 X
TOP VIEW
SIDE VIEW
BOTTOM VIEW
A
L
(A3)
D2
E2
C
C0.10
C0.10
C0.08
8 X
A1
SEATING
PLANE
e/2 e
8 X
K
NOTE 3
b
8 X 0.10 C
0.05 C
ABB
DIM MIN MAX
MILLIMETERS
A0.80 1.00
A1 0.00 0.05
A3 0.20 REF
b0.20 0.30
D2.00 BSC
D2 1.10 1.30
E2.00 BSC
E2 0.70 0.90
e0.50 BSC
K0.20 −−−
L0.25 0.35
1
14
85
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81357733850
MC100EP16F/D
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative