1999-09-14
Page 1
BSP 315 P
Preliminary data
SIPMOS Small-Signal-Transistor
Features
P-Channel
Enhancement mode
Avalanche rated
Logic Level
d
v
/d
t
rated
Product Summary
Drain source voltage V
V
DS -60
Drain-Source on-state resistance
R
DS(on) 0.8
Continuous drain current A
I
D-1.17
VPS05163
123
4
Type Package Ordering Code
BSP 315 P SOT-223 Q67042-S4004
Pin 1 Pin2/4 PIN 3
G D S
Maximum Ratings,at
T
j = 25 °C, unless otherwise specified
Parameter Symbol UnitValue
-1.17
-0.94
AContinuous drain current
T
A = 25 °C
T
A = 70 °C
I
D
Pulsed drain current
T
A = 25 °C
I
D puls -4.68
Avalanche energy, single pulse
I
D = -1.17 A ,
V
DD = -25 V,
R
GS = 25 24 mJ
E
AS
Avalanche energy, periodic limited by
T
jmax
E
AR 0.18
d
v
/d
t
6Reverse diode d
v
/d
t
I
S = -1.17 A,
V
DS = -48 V, d
i
/d
t
= 200 A/µs,
T
jmax = 150 °C
kV/µs
Gate source voltage
V
GS ±20 V
Power dissipation
T
A = 25 °C
P
tot 1.8 W
Operating and storage temperature
T
j ,
T
stg -55...+150 °C
IEC climatic category; DIN IEC 68-1 55/150/56
1999-09-14
Page 2
BSP 315 P
Preliminary data
Thermal Characteristics
Parameter Symbol UnitValues
min. max.typ.
Characteristics
Thermal resistance, junction - soldering point
(Pin 4) 25 K/W-
R
thJS -
SMD version, device on PCB:
@ min. footprint
@ 6 cm2 cooling area 1)
R
thJA
-
-
-
-
115
70
K/W
Electrical Characteristics, at
T
j = 25 °C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
Static Characteristics
Drain- source breakdown voltage
V
GS = 0 V,
I
D = -250 µA
V
(BR)DSS -60 - V-
Gate threshold voltage,
V
GS =
V
DS
I
D = -160 µA -1 -1.5 -2
V
GS(th)
Zero gate voltage drain current
V
DS = -60 V,
V
GS = 0 V,
T
j = 25 °C
V
DS = -60 V,
V
GS = 0 V,
T
j = 125 °C
µA
-1
-100
I
DSS
-0.1
-10
-
-
I
GSS - -10 -100Gate-source leakage current
V
GS = -20 V,
V
DS = 0 V nA
Drain-Source on-state resistance
V
GS = -4.5 V,
I
D = -0.89 A
R
DS(on) - 0.8 1.4
Drain-Source on-state resistance
V
GS = -10 V,
I
D = -1.17 A
R
DS(on) - 0.5 0.8
1Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical without blown air.
1999-09-14
Page 3
BSP 315 P
Preliminary data
Electrical Characteristics, at
T
j = 25 °C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
Dynamic Characteristics
Transconductance
V
DS2*
I
D*
R
DS(on)max ,
I
D = -0.89 A 0.7
g
fs S-1.4
Input capacitance
V
GS = 0 V,
V
DS = -25 V,
f
= 1 MHz
C
iss 130 160 pF-
C
oss - 5040Output capacitance
V
GS = 0 V,
V
DS = -25 V,
f
= 1 MHz
Reverse transfer capacitance
V
GS = 0 V,
V
DS = -25 V,
f
= 1 MHz 2117
C
rss -
Turn-on delay time
V
DD = -30 V,
V
GS = -4.5 V,
I
D = -0.89 A,
R
G = 18
- 36 ns24
t
d(on)
Rise time
V
DD = -30 V,
V
GS = -4.5 V,
I
D = -0.89 A,
R
G = 18
t
r- 149
32 48
t
d(off)
Turn-off delay time
V
DD = -30 V,
V
GS = -4.5 V,
I
D = -0.89 A,
R
G = 18
-
Fall time
V
DD = -30 V,
V
GS = -4.5 V,
I
D = -0.89 A,
R
G = 18
t
f- 19 28
1999-09-14
Page 4
BSP 315 P
Preliminary data
Electrical Characteristics, at
T
j = 25 °C, unless otherwise specified
UnitValuesSymbolParameter
min. typ. max.
Dynamic Characteristics
Gate to source charge
V
DD = -48 V,
I
D = -1.17 A -
Q
gs nC1.10.7
Gate to drain charge
V
DD = -48 V,
I
D = -1.17 A
Q
gd 1.8 2.6-
7.8-
Q
g
Gate charge total
V
DD = -48 V,
I
D = -1.17 A,
V
GS = 0 to -10 V 5.2
Gate plateau voltage
V
DD = -48 V,
I
D = -1.17 A
V
(plateau) - -3.14 - V
Parameter Symbol Values Unit
min. typ. max.
Reverse Diode
Inverse diode continuous forward current
T
A = 25 °C
I
S- - -1.17 A
Inverse diode direct current,pulsed
T
A = 25 °C
I
SM - - -4.68
Inverse diode forward voltage
V
GS = 0 V,
I
F = -1.17 A
V
SD - -0.97 -1.3 V
Reverse recovery time
V
R = -30 V,
I
F=
I
S , d
i
F/d
t
= 100 A/µs
t
rr - 30.5 46 ns
Reverse recovery charge
V
R = -30 V,
I
F=
l
S , d
i
F/d
t
= 100 A/µs
Q
rr - 36 54 µC
1999-09-14
Page 5
BSP 315 P
Preliminary data
Drain current
I
D =
f
(
T
A)
parameter :
V
GS≥ −10V
0 20 40 60 80 100 120 °C 160
T
A
0.0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9
-1.0
-1.1
A
-1.3
BSP
315
P
I
D
Power Dissipation
P
tot =
f
(
T
A)
0 20 40 60 80 100 120 °C 160
T
A
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
W
1.9
BSP
315
P
P
tot
Transient thermal impedance
Z
thJC =
f
(
t
p)
parameter :
D
=
t
p/
T
10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 4
s
t
p
-2
10
-1
10
0
10
1
10
2
10
K/W
BSP
315
P
Z
thJC
single pulse 0.01
0.02
0.05
0.10
0.20
D = 0.50
Safe operating area
I
D =
f
(
V
DS )
parameter :
D
= 0 ,
T
A = 25 °C
-10 -1 -10 0 -10 1 -10 2
V
V
DS
-2
-10
-1
-10
0
-10
1
-10
A
BSP
315
P
I
D
R
DS(on)
=
V
DS
/
I
D
DC
10 ms
1 ms
t
p = 280.0µs
1999-09-14
Page 6
BSP 315 P
Preliminary data
Typ. drain-source-on-resistance
R
DS(on) =
f
(
I
D)
parameter:
V
GS
0.0 -0.4 -0.8 -1.2 -1.6 -2.0 A-2.6
I
D
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.6
BSP
315
P
R
DS(on)
a
V
GS [V] =
a
-2.5
b
b
-3.0
c
c
-3.5
d
d
-4.0
e
e
-4.5
f
f
-5.0
g
g
-5.5
h
h
-6.0
i
i
-6.5
j
j
-7.0
kk
-8.0
ll
-10.0
Typ. output characteristics
I
D =
f
(
V
DS)
parameter:
t
p = 80 µs
0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 V-5.0
V
DS
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
-1.2
-1.4
-1.6
-1.8
-2.0
-2.2
-2.4
A
-2.8
BSP
315
P
I
D
V
GS [V]
a
a -2.5
b
b -3.0
c
c -3.5
d
d -4.0
e
e -4.5
f
f -5.0
g
g -5.5
h
h -6.0
i
i -6.5
j
j -7.0
k
k -8.0
l
P
tot = 2W
l -10.0
Typ. transfer characteristics
I
D=
f
(
V
GS )
V
DS 2 x
I
D x
R
DS(on)max
parameter:
t
p = 80 µs
0.0 -1.0 -2.0 -3.0 -4.0 V-6.0
V
GS
0.0
-0.5
-1.0
-1.5
-2.0
A
-3.0
I
D
Typ. forward transconductance
gfs = f(ID); Tj=25°C
parameter:
g
fs
0.0 0.5 1.0 1.5 2.0 A3.0
I
D
0.0
0.5
1.0
1.5
S
2.5
g
fs
1999-09-14
Page 7
BSP 315 P
Preliminary data
Drain-source on-resistance
R
DS(on) =
f
(
T
j)
parameter:
I
D = -1.17 A,
V
GS = -10 V
-60 -20 20 60 100 °C 180
T
j
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.1
BSP
315
P
R
DS(on)
typ
98%
Gate threshold voltage
V
GS(th) =
f
(
T
j)
parameter:
V
GS =
V
DS,
I
D = -160 µA
-60 -20 20 60 100 °C 160
T
j
0.0
-0.5
-1.0
-1.5
-2.0
V
-3.0
V
GS(th)
2%
-60 -20 20 60 100 °C 160
T
j
0.0
-0.5
-1.0
-1.5
-2.0
V
-3.0
V
GS(th)
typ
-60 -20 20 60 100 °C 160
T
j
0.0
-0.5
-1.0
-1.5
-2.0
V
-3.0
V
GS(th)
98%
-60 -20 20 60 100 °C 160
T
j
0.0
-0.5
-1.0
-1.5
-2.0
V
-3.0
V
GS(th)
Typ. capacitances
C = f(VDS)
Parameter:
V
GS=0 V,
f
=1 MHz
0 -5 -10 -15 -20 -25 -30 V-40
V
DS
0
10
1
10
2
10
3
10
pF
C
C
iss
C
oss
C
rss
Forward characteristics of reverse diode
I
F =
f
(VSD)
parameter:
T
j , tp = 80 µs
0.0 -0.4 -0.8 -1.2 -1.6 -2.0 -2.4 V-3.0
V
SD
-2
-10
-1
-10
0
-10
1
-10
A
BSP
315
P
I
F
T
j = 25 °C typ
T
j = 25 °C (98%)
T
j = 150 °C typ
T
j = 150 °C (98%)
1999-09-14
Page 8
BSP 315 P
Preliminary data
Avalanche Energy
E
AS =
f
(
T
j)
parameter:
I
D = -1.17 A ,
V
DD = -25 V
R
GS = 25
25 45 65 85 105 125 °C 165
T
j
0
5
10
15
mJ
25
E
AS
Typ. gate charge
V
GS =
f
(
Q
Gate)
parameter:
I
D = -1.17 A pulsed
0.0 1.0 2.0 3.0 4.0 5.0 6.0 nC 8.0
Q
Gate
0
-2
-4
-6
-8
-10
-12
V
-16
BSP
315
P
V
GS
DS max
V
0,8
DS max
V
0,2
Drain-source breakdown voltage
V
(BR)DSS = f
(
T
j
)
-60 -20 20 60 100 °C 180
T
j
-54
-56
-58
-60
-62
-64
-66
-68
V
-72
BSP
315
P
V
(BR)DSS
1999-09-14
Page 9
BSP 315 P
Preliminary data
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.