December 2009 Doc ID 12733 Rev 3 1/33
1
TDA7563B
4 x 50W multifunction quad power amplifier
with built-in diagnostics feature
Features
Multipower BCD technology
MOSFET output power stage
DMOS power output
New high efficiency (class SB)
High output power capability 4 x 28 W/4 Ω @
14.4 V, 1 kHz 10% THD, 4 x 50 W max, power
Max. output power 4 x 72 W /2 Ω
Full I
2
C bus driving:
Standby
Independent front/rear soft play/mute
Selectable gain 30 dB /16 dB (for low noise
line output function)
High efficiency enable/disable
–I
2
C bus digital diagnostics (including DC
bus AC load detection)
Full fault protection
DC offset detection
Four independent short circuit protection
Clipping detector pin with selectable threshold
(2 % / 10 %)
Standby/mute pin
Linear thermal shutdown with multiple thermal
warning
ESD protection
Description
The TDA7563B is a new BCD technology quad
bridge type of car radio amplifier in Flexiwatt27
package specially intended for car radio
applications.
Thanks to the DMOS output stage the TDA7563B
has a very low distortion allowing a clear powerful
sound. Among the features, its superior efficiency
performance coming from the internal exclusive
structure, makes it the most suitable device to
simplify the thermal management in high power
sets.
The dissipated output power under average
listening condition is in fact reduced up to 50 %
when compared to the level provided by
conventional class AB solutions.
This device is equipped with a full diagnostics
array that communicates the status of each
speaker through the I2C bus.
Flexiwatt27 PowerSO36 Flexiwatt27
(Horizontal) (Vertical)
(Slug up)
Table 1. Device summary
Order code Package Packing
TDA7563B Flexiwatt27 (vertical) Tube
TDA7563BH Flexiwatt27 (horizontal) Tube
TDA7563BPD PowerSO36 Tube
TDA7563BPDTR PowerSO36 Tape and reel
www.st.com
Contents TDA7563B
2/33 Doc ID 12733 Rev 3
Contents
1 Block diagram and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1 Fast muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7I
2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.1 I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2.1 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2.2 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2.3 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2.4 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8 Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9 Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
TDA7563B Contents
Doc ID 12733 Rev 3 3/33
10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
List of tables TDA7563B
4/33 Doc ID 12733 Rev 3
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. Double fault table for turn on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 7. IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8. DB1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 9. DB2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 10. DB3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 11. DB4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 12. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
TDA7563B List of figures
Doc ID 12733 Rev 3 5/33
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Pins connection diagram of the Flexiwatt27 (top of view). . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. Pins connection diagram of the PowerSO36 slug up (top of view) . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Output power vs. supply voltage (4W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 7. Output power vs. supply voltage (2W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 8. Distortion vs. output power (4W, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 9. Distortion vs. output power (4Ω, HI-EFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 10. Distortion vs. output power (2Ω, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. Distortion vs. frequency (4W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. Distortion vs. frequency (2W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 13. Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 14. Supply voltage rejection vs. freq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 15. Power dissipation and efficiency vs. output power (4W, STD, SINE) . . . . . . . . . . . . . . . . . 13
Figure 16. Power dissipation and efficiency vs. output power (4W, HI-EFF, SINE). . . . . . . . . . . . . . . 13
Figure 17. Power dissipation vs. average output power (audio program simulation, 4W) . . . . . . . . . . 13
Figure 18. Power dissipation vs. average output power (audio program simulation, 2W) . . . . . . . . . . 13
Figure 19. Turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 20. SVR and output behavior (Case 1: without turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . . 14
Figure 21. SVR and output pin behavior (Case 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . . 15
Figure 22. Short circuit detection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 23. Load detection thresholds - high gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 24. Load detection threshold - low gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 25. Restart timing without diagnostic enable (permanent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 26. Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 27. Current detection: load impedance |Z| vs. output peak voltage . . . . . . . . . . . . . . . . . . . . . 18
Figure 28. Thermal foldback diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 29. Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 30. Timing diagram on the I2C bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 31. Acknowledge on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 32. Flexiwatt27 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 29
Figure 33. Flexiwatt27 (vertical) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . . . 30
Figure 34. PowerSO36 (slug up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 31
Block diagram and application circuit TDA7563B
6/33 Doc ID 12733 Rev 3
1 Block diagram and application circuit
Figure 1. Block diagram
Figure 2. Application circuit
Short Circuit
Protection &
Diagnostic
I2CBUS
Mute1 Mute2
Thermal
Protection
& Dump
Clip
Detector
IN LF
IN RR
IN RF
IN LR
VCC1 VCC2
CD_OUT
OUT RF+
OUT RF-
OUT RR+
OUT RR-
OUT LF+
OUT LF-
OUT LR+
OUT LR-
Short Circuit
Protection &
Diagnostic
Short Circuit
Protection &
Diagnostic
Short Circuit
Protection &
Diagnostic
16/30dB
Reference
CLK DATA
SVR AC_GND TAB S_GND
PW_GND
F
F
R
R
RF RR LF LR
ST-BY/MUTE
16/30dB
16/30dB
16/30dB
IN RF
C1 0.22μF
IN RR
C2 0.22μF
OUT RF
OUT RR
IN LF
C3 0.22μF
IN LR
C4 0.22μF
OUT LF
OUT LR
D00AU1231A
C5
1μF
C6
10μF
TAB
47K
-
+
-
+
-
+
-
+
Vcc1 Vcc2
C8
0.1μF
V(4V .. V
CC
)
C7
3300μF
DATA
I2C BUS
CLK
13
12
15
16
23
26
2
14
S-GND 17 11 5
CD OUT
V
721
18
19
20
22
25
24
10
9
8
6
3
4
1, 27
TDA7563B Pins description
Doc ID 12733 Rev 3 7/33
2 Pins description
Figure 3. Pins connection diagram of the Flexiwatt27 (top of view)
Figure 4. Pins connection diagram of the PowerSO36 slug up (top of view)
D00AU1230mo
d
TAB
STBY
PW_GND LR
OUT LR-
CD-OUT
OUT LR+
V
CC1
OUT LF-
PW_GND LF
OUT LF+
SVR
IN LF
IN LR
S_GND
IN RR
IN RF
AC GND
OUT RF+
PW_GND RF
OUT RF-
V
CC2
CK
OUT RR-
OUT RR+
PW_GND RR
DATA
ADSEL/I2CDIS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
25
26
22
21
23
24
27
D00AU141
6
TAB
STBY
PW_GND LR
OUT LR-
CD-OUT
OUT LR+
V
CC1
OUT LF-
PW_GND LF
OUT LF+
SVR
IN LF
IN LR
S_GND
IN RR
IN RF
AC GND
OUT RF+
PW_GND RF
OUT RF-
V
CC2
CK
OUT RR-
OUT RR+
PW_GND RR
DATA
TAB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
25
26
22
21
23
24
27
Flexiwatt27 (vertical) Flexiwatt27 (horizontal)
CD
N.C.
N.C.
OUT2+
PWGND
OUT4+
N.C.
N.C.
CK
OUT3-
N.C.
N.C.
OUT3+
PWGND
PWGND
N.C.
OUT1-
VCC 18
16
17
15
6
5
4
3
2
21
22
31
32
33
35
34
36
20
1
19
TAB
VCC
D04AU1547A
OUT4-
VCC
DATA
ACGND
IN4
IN3
9
8
7
28
29
30
OUT2-
SGND 1027
N.C.
STBY
VCC
IN2
OUT1+
IN1
14
12
11
23
25
26
PWGND
SVR 1324
Electrical specifications TDA7563B
8/33 Doc ID 12733 Rev 3
3 Electrical specifications
3.1 Absolute maximum ratings
3.2 Thermal data
3.3 Electrical characteristics
Refer to the test circuit, V
S
= 14.4 V; R
L
= 4
Ω
; f = 1 kHz; G
V
= 30 dB; T
amb
= 25 °C; unless
otherwise specified.
Table 2. Absolute maximum ratings
Symbol Parameter Value Unit
V
op
Operating supply voltage 18 V
V
S
DC supply voltage 28 V
V
peak
Peak supply voltage (for t = 50ms) 50 V
V
CK
CK pin voltage 6 V
V
DATA
Data pin voltage 6 V
I
O
Output peak current (not repetitive t = 100ms) 8 A
I
O
Output peak current (repetitive f > 10Hz) 6 A
P
tot
Power dissipation T
case
= 70°C 85 W
T
stg
, T
j
Storage and junction temperature -55 to 150 °C
Table 3. Thermal data
Symbol Parameter PowerSO Flexiwatt Unit
R
th j-case
Thermal resistance junction-to-case
Max.
11°C/W
Table 4. Electrical characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
Power amplifier
V
S
Supply voltage range - 8 - 18 V
I
d
Total quiescent drain current - - 170 300 mA
P
O
Output power
Max. power (V
S
= 15.2 V, square
wave input (2Vrms)) -50-W
THD = 10%
THD = 1%
25
20
28
22 -W
TDA7563B Electrical specifications
Doc ID 12733 Rev 3 9/33
P
O
Output power
R
L
= 2 Ω; EIAJ (V
S
= 13.7 V)
R
L
= 2 Ω; THD 10 %
R
L
= 2 Ω; THD 1 %
R
L
= 2 Ω; max power
55
40
32
60
68
50
40
75
-W
THD Total harmonic distortion
P
O
= 1 W to 10 W; STD mode
HE mode; P
O
= 1.5 W
HE mode; P
O
= 8 W
-
0.03
0.02
0.15
0.1
0.1
0.5
%
P
O
= 1-10 W, f = 10 kHz - 0.2 0.5 %
G
V
= 16d B; STD mode
V
O
= 0.1 to 5 VRMS
- 0.02 0.05 %
C
T
Cross talk f = 1 kHz to 10 kHz, R
g
= 600 Ω50 60 - dB
R
IN
Input impedance - 60 100 130 kΩ
G
V1
Voltage gain 1 - 29.5 30 30.5 dB
ΔG
V1
Voltage gain match 1 - -1 - 1 dB
G
V2
Voltage gain 2 - 15.5 16 16.5 dB
ΔG
V2
Voltage gain match 2 - -1 - 1 dB
E
IN1
Output noise voltage 1 R
g
= 600 Ω 20 Hz to 22 kHz - 50 100 µV
E
IN2
Output noise voltage 2 R
g
= 600 Ω; GV = 16 dB
20 Hz to 22 kHz -1530µV
SVR Supply voltage rejection f = 100 Hz to 10 kHz; V
r
= 1 Vpk;
R
g
= 600 Ω50 60 - dB
BW Power bandwidth - 100 - - kHz
A
SB
Standby attenuation - 90 110 - dB
I
SB
Standby current Vst-by = 0 - 1 10 µA
A
M
Mute attenuation - 80 100 - dB
V
OS
Offset voltage Mute and play -100 0 100 mV
V
AM
Min. supply mute threshold - 7 7.5 8 V
T
ON
Turn on delay D2/D1 (IB1) 0 to 1 - 5 20 ms
T
OFF
Turn off delay D2/D1 (IB1) 1 to 0 - 5 20 ms
V
SBY
Standby/mute pin for st-by - 0 - 1.5 V
V
MU
Standby/mute pin for mute - 3.5 - 5 V
CMRR Input CMRR VCM = 1 Vpk-pk; Rg = 0 Ω-55-dB
V
OP
Standby/mute pin for operating - 7 - V
S
V
I
MU
Standby/mute pin current V
st-by/mute
= 8.5 V - 20 40 µA
V
st-by/mute
< 1.5 V - 0 5 µA
CD
LK
Clip det high leakage current CD off / VCD = 6 V - 0 5 µA
CD
SAT
Clip det sat. voltage CD on; I
CD
= 1 mA - - 300 mV
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
Electrical specifications TDA7563B
10/33 Doc ID 12733 Rev 3
CD
THD
Clip det THD level D0 (IB1) = 1 5 10 15 %
D0 (IB1) = 0 1 2 3 %
Turn on diagnostics 1 (Power amplifier mode)
Pgnd
Short to GND det. (below this
limit, the Output is considered in
short circuit to GND)
Power amplifier in standby
--1.2V
Pvs
Short to Vs det. (above this limit,
the output is considered in short
circuit to Vs)
Vs -1.2 - - V
Pnop
Normal operation thresholds.
(within these limits, the output is
considered without faults).
1.8 - Vs -1.8 V
Lsc Shorted load det. - - 0.5 Ω
Lop Open load det. 130 - Ω
Lnop Normal load det. 1.5 - 70 Ω
Turn on diagnostics 2 (Line driver mode)
Pgnd
Short to GND det. (below this
limit, the output is considered in
short circuit to GND)
Power amplifier in standby
--1.2V
Pvs
Short to Vs det. (above this limit,
the output is considered in short
circuit to Vs)
Vs -1.2 - - V
Pnop
Normal operation thresholds.
(within these limits, the output is
considered without faults).
1.8 - Vs -1.8 V
Lsc Shorted load det. - - 1.5 Ω
Lop Open Load det. 400 - Ω
Lnop Normal Load det. 4.5 - 200 Ω
Permanent diagnostics 2 (Power amplifier mode or line driver mode)
Pgnd
Short to GND det. (below this
limit, the output is considered in
short circuit to GND)
Power amplifier in mute or play,
one or more short circuits
protection activated
--1.2V
Pvs
Short to Vs det. (above this limit,
the output is considered in short
circuit to Vs)
Vs -1.2 - - V
Pnop
Normal operation thresholds.
(within these limits, the output is
considered without faults).
1.8 - Vs -1.8 V
L
SC
Shorted load det. Power amplifier mode - - 0.5 Ω
Line driver mode - - 1.5 Ω
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
TDA7563B Electrical specifications
Doc ID 12733 Rev 3 11/33
3.4 Electrical characteristics curves
V
O
Offset detection Power amplifier in play,
AC input signals = 0 ±1.5 ±2 ±2.5 V
I
NL
Normal load current detection V
O
< (V
S
-5)pk 500 - - mA
I
OL
Open load current detection - - 250 mA
I
2
C bus interface
S
CL
Clock frequency - - - 400 kHz
V
IL
Input low voltage - - - 1.5 V
V
IH
Input high voltage - 2.3 - - V
Figure 5. Quiescent current vs. supply voltage Figure 6. Output power vs. supply voltage (4
Ω
)
Figure 7. Output power vs. supply voltage (2
Ω
) Figure 8. Distortion vs. output power (4
Ω
, STD)
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
8 1012141618
Vs (V)
70
90
110
130
150
170
190
210
230
250
Id (mA)
Vin = 0
NO LOADS
Vs
(
V
)
8 9 10 11 12 13 14 15 16 17 18
5
10
15
20
25
30
35
40
45
50
55
60
65
70
Po (W)
RL = 4 Ohm
f = 1 KHz
THD = 10 %
Po-max
THD = 1 %
8 9 10 11 12 13 14 15 16
Vs
(
V
)
10
20
30
40
50
60
70
80
90
100
Po (W)
RL = 2 Ohm
f = 1 KHz
THD = 10 %
Po-max
THD = 1 %
0.1 1 10
Po
(
W
)
0.01
0.1
1
10
THD (%)
f = 10 KHz
STANDARD MODE
Vs = 14.4 V
RL = 4 Ohm
f = 1 KHz
Electrical specifications TDA7563B
12/33 Doc ID 12733 Rev 3
Figure 9. Distortion vs. output power (4Ω, HI-
EFF)
Figure 10. Distortion vs. output power (2Ω,
STD)
Figure 11. Distortion vs. frequency (4Ω) Figure 12. Distortion vs. frequency (2Ω)
Figure 13. Crosstalk vs. frequency Figure 14. Supply voltage rejection vs. freq.
0.1 1 10
Po
(
W
)
0.001
0.01
0.1
1
10
THD (%)
f = 10 KHz
HI-EFF MODE
Vs = 14.4 V
RL = 4 Ohm
f = 1 KHz
0.1 1 10
Po
(
W
)
0.01
0.1
1
10
THD (%)
f = 10 KHz
HI-EFF MODE
Vs = 14.4 V
RL = 2 Ohm
f = 1 KHz
10 100 1000 10000
f
Hz
0.01
0.1
1
10
THD (%)
STANDARD MODE
Vs = 14.4 V
RL = 4 Ohm
Po = 4 W
10 100 1000 10000
f
Hz
0.01
0.1
1
10
THD (%)
STANDARD MODE
Vs = 14.4 V
RL = 2 Ohm
Po = 4 W
10 100 1000 10000
f
(
Hz
)
20
30
40
50
60
70
80
90
CROSSTALK (dB)
STANDARD MODE
RL = 4 Ohm
Po = 4 W
Rg = 600 Ohm
10 100 1000 10000
f
Hz
20
30
40
50
60
70
80
90
SVR (dB)
STD & HE MODE
Rg = 600 Ohm
Vripple = 1 Vpk
TDA7563B Electrical specifications
Doc ID 12733 Rev 3 13/33
Figure 15. Power dissipation and efficiency vs.
output power (4Ω, STD, SINE)
Figure 16. Power dissipation and efficiency vs.
output power (4W, HI-EFF, SINE)
Figure 17. Power dissipation vs. average
output power (audio program
simulation, 4Ω)
Figure 18. Power dissipation vs. average
output power (audio program
simulation, 2Ω)
0 2 4 6 8 1012141618202224262830
Po
(
W
)
0
10
20
30
40
50
60
70
80
90
Ptot (W)
0
10
20
30
40
50
60
70
80
90
n (%)
Ptot
STANDARD MODE
Vs = 14.4 V
RL = 4 x 4 Ohm
f = 1 KHz SINE
n
Po
(
W
)
0.1 1 10
0
10
20
30
40
50
60
70
80
90
Ptot (W)
0
10
20
30
40
50
60
70
80
90
n (%)
n
Ptot
HI-EFF MODE
Vs = 14.4 V
RL = 4 x 4 Ohm
f = 1 KHz SINE
012345
Po
(
W
)
0
5
10
15
20
25
30
35
40
45
Ptot (W)
Vs = 14 V
RL = 4 x 4 Ohm
GAUSSIAN NOISE
STD MODE
HI-EFF MODE
CLIP
START
0123456789
Po
(
W
)
0
10
20
30
40
50
60
70
80
90
Ptot (W)
Vs = 14 V
RL = 4 x 2 Ohm
GAUSSIAN NOISE STD MODE
HI-EFF MODE
CLIP
START
Diagnostics functional description TDA7563B
14/33 Doc ID 12733 Rev 3
4 Diagnostics functional description
4.1 Turn-on diagnostic
It is activated at the turn-on (standby out) under I2C bus request. Detectable output faults
are:
Short to GND
Short to Vs
Short across the speaker
Open speaker
To verify if any of the above misconnections are in place, a subsonic (inaudible) current
pulse (Figure 19) is internally generated, sent through the speaker(s) and sunk back. The
turn on diagnostic status is internally stored until a successive diagnostic pulse is requested
(after a I2C reading).
If the "standby out" and "diag. enable" commands are both given through a single
programming step, the pulse takes place first (power stage still in standby mode, low,
outputs= high impedance).
Afterwards, when the amplifier is biased, the permanent diagnostic takes place. The
previous turn on state is kept until a short appears at the outputs.
Figure 19. Turn-on diagnostic: working principle
Figure 20 and 21 show SVR and output waveforms at the turn-on (standby out) with and
without turn-on diagnostic.
Figure 20. SVR and output behavior (Case 1: without turn-on diagnostic)
CH-
CH+
Isource
Vs~5V
Isink t (ms)
I (mA)
Isink
Isource
~100mS
Measure time
Bias (power amp turn-on) t
Diagnostic Enable
(Permanent)
Permanent diagnostic
acquisition time (100mS Typ)
Permanent Diagnostics data (output)
permitted time
I2CB DATA
Vsvr
Out
FAULT
event Read Data
TDA7563B Diagnostics functional description
Doc ID 12733 Rev 3 15/33
Figure 21. SVR and output pin behavior (Case 2: with turn-on diagnostic)
The information related to the outputs status is read and memorized at the end of the
current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the
process. As for short to GND / Vs the fault-detection thresholds remain unchanged from 30
dB to 16 dB gain setting. They are as follows:
Figure 22. Short circuit detection thresholds
Concerning short across the speaker / open speaker, the threshold varies from 30 dB to 16
dB gain setting, since different loads are expected (either normal speaker's impedance or
high impedance). The values in case of 30 dB gain are as follows:
Figure 23. Load detection thresholds - high gain setting
If the line-driver mode (Gv= 16 dB and line driver mode diagnostic = 1) is selected, the same
thresholds will change as follows:
Figure 24. Load detection threshold - low gain setting
Bias (power amp turn-on)
permitted time
Turn-on diagnostic
acquisition time (100mS Typ)
t
Read Data
Permanent diagnostic
acquisition time (100mS Typ)
Permanent Diagnostics data (output)
permitted time
Diagnostic Enable
(Turn-on)
Turn-on Diagnostics data (output)
permitted time
I2CB DATA
Vsvr
Out
Diagnostic Enable
(Permanent)
FAULT
event
D01AU1253
S.C. to GND x S.C. to Vs
0V 1.8V VS-1.8V VS
xNormal Operation
1.2V VS-1.2V
S.C. across Load x Open Load
0V 1.5Ω70ΩInfinite
xNormal Operation
0.5Ω130Ω
D01AU1254
D01AU1252mod
S.C. across Load x Open Load
0Ω7Ω180Ωinfinite
xNormal Operation
1.5Ω330Ω
Diagnostics functional description TDA7563B
16/33 Doc ID 12733 Rev 3
4.2 Permanent diagnostics
Detectable conventional faults are:
Short to GND
–Short to Vs
Short across the speaker
The following additional features are provided:
Output offset detection
The TDA7563B has 2 operating statuses:
1. Restart mode. The diagnostic is not enabled. Each audio channel operates
independently from each other. If any of the a.m. faults occurs, only the channel(s)
interested is shut down. A check of the output status is made every 1 ms (Figure 25).
Restart takes place when the overload is removed.
2. Diagnostic mode. It is enabled via I
2
C bus and self activates if an output overload (such
to cause the intervention of the short-circuit protection) occurs to the speakers outputs.
Once activated, the diagnostics procedure develops as follows (Figure 26):
To avoid momentary re-circulation spikes from giving erroneous diagnostics, a
check of the output status is made after 1ms: if normal situation (no overloads) is
detected, the diagnostic is not performed and the channel returns back active.
Instead, if an overload is detected during the check after 1 ms, then a diagnostic
cycle having a duration of about 100 ms is started.
After a diagnostic cycle, the audio channel interested by the fault is switched to
restart mode. The relevant data are stored inside the device and can be read by
the microprocessor. When one cycle has terminated, the next one is activated by
an I
2
C reading. This is to ensure continuous diagnostics throughout the car-radio
operating time.
To check the status of the device a sampling system is needed. The timing is
chosen at microprocessor level (over half a second is recommended).
Figure 25. Restart timing without diagnostic enable (permanent) - Each 1mS time, a
sampling of the fault is done
Figure 26. Restart timing with diagnostic enable (permanent)
t
1-2mS 1mS 1mS 1mS 1mS
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
Short circuit removed
Out
t
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
Short circuit removed
1-2mS 100/200mS 1mS1mS
TDA7563B Diagnostics functional description
Doc ID 12733 Rev 3 17/33
4.3 Output DC offset detection
Any DC output offset exceeding ±2 V are signalled out. This inconvenient might occur as a
consequence of initially defective or aged and worn-out input capacitors feeding a DC
component to the inputs, so putting the speakers at risk of overheating.
This diagnostic has to be performed with low-level output AC signal (or Vin = 0).
The test is run with selectable time duration by microprocessor (from a "start" to a "stop"
command):
Start = Last reading operation or setting IB1 - D5 - (offset enable) to 1
Stop = Actual reading operation
Excess offset is signalled out if persistent throughout the assigned testing time. This feature
is disabled if any overloads leading to activation of the short-circuit protection occurs in the
process.
4.4 AC diagnostic
It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more
in general, presence of capacitively (AC) coupled loads.
This diagnostic is based on the notion that the overall speaker's impedance (woofer +
parallel tweeter) will tend to increase towards high frequencies if the tweeter gets
disconnected, because the remaining speaker (woofer) would be out of its operating range
(high impedance). The diagnostic decision is made according to peak output current
thresholds, as follows:
Iout > 500 mApk = normal status
Iout < 250 mApk = open tweeter
To correctly implement this feature, it is necessary to briefly provide a signal tone (with the
amplifier in "play") whose frequency and magnitude are such to determine an output current
higher than 500 mApk with in normal conditions and lower than 250 mApk should the
parallel tweeter be missing.
The test has to last for a minimum number of 3 sine cycles starting from the activation of the
AC diagnostic function IB2 < D2 > 0 up to the I2C reading of the results (measuring period).
To confirm presence of tweeter, it is necessary to find at least 3 current pulses over 500 mA
over all the measuring period, else an "open tweeter" message will be issued.
The frequency / magnitude setting of the test tone depends on the impedance
characteristics of each specific speaker being used, with or without the tweeter connected
(to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals
are recommended for their negligible acoustic impact and also to maximize the impedance
module's ratio between with tweeter-on and tweeter-off.
Figure 27 shows the load impedance as a function of the peak output voltage and the
relevant diagnostic fields.
This feature is disabled if any overloads leading to activation of the short-circuit protection
occurs in the process.
Diagnostics functional description TDA7563B
18/33 Doc ID 12733 Rev 3
Figure 27. Current detection: load impedance |Z| vs. output peak voltage
12345678
1
2
3
5
10
20
30
50
Vout (Peak)
Load |z| (Ohm)
Iout (peak) <250mA
Iout (peak) >500mA
Low current detection area
(Open load)
D5 = 1 of the DBx byres
High current detection area
(Normal load)
D5 = 0 of the DBx bytes
TDA7563B Multiple faults
Doc ID 12733 Rev 3 19/33
5 Multiple faults
When more misconnections are simultaneously in place at the audio outputs, it is
guaranteed that at least one of them is initially read out. The others are notified after
successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled.
This is true for both kinds of diagnostic (Turn on and Permanent).
The table below shows all the couples of double-fault possible. It should be taken into
account that a short circuit with the 4 ohm speaker unconnected is considered as double
fault.
S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2
outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More
precisely, in Channels LF and RR, so = CH+, sk = CH-; in Channels LR and RF, so = CH-, sk
= CH+.
In permanent diagnostic the table is the same, with only a difference concerning open load
(*), which is not among the recognizable faults. Should an open load be present during the
device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e.
at the successive car radio turn-on).
5.1 Faults availability
All the results coming from I2C bus, by read operations, are the consequence of
measurements inside a defined period of time. If the fault is stable throughout the whole
period, it will be sent out.
To guarantee always resident functions, every kind of diagnostic cycles (turn-on, permanent,
offset) will be reactivate after any I2C reading operation. So, when the micro reads the I2C, a
new cycle will be able to start, but the read data will come from the previous diag. cycle (i.e.
The device is in turn-on state, with a short to GND, then the short is removed and micro
reads I2C. The short to GND is still present in bytes, because it is the result of the previous
cycle. If another I2C reading operation occurs, the bytes do not show the short). In general
to observe a change in diagnostic bytes, two I2C reading operations are necessary.
Table 5. Double fault table for turn on diagnostic
- S. GND (so) S. GND (sk) S. Vs S. Across L. Open L.
S. GND (so) S. GND S. GND S. Vs + S.
GND S. GND S. GND
S. GND (sk) / S. GND S. Vs S. GND Open L. (*)
S. Vs / / S. Vs S. Vs S. Vs
S. Across L. / / / S. Across L. N.A.
Open L. / / / / Open L. (*)
Thermal protection TDA7563B
20/33 Doc ID 12733 Rev 3
6 Thermal protection
Thermal protection is implemented through thermal foldback (Figure 28).
Thermal foldback begins limiting the audio input to the amplifier stage as the junction
temperatures rise above the normal operating range. This effectively limits the output power
capability of the device thus reducing the temperature to acceptable levels without totally
interrupting the operation of the device.
The output power will decrease to the point at which thermal equilibrium is reached.
Thermal equilibrium will be reached when the reduction in output power reduces the
dissipated power such that the die temperature falls below the thermal foldback threshold.
Should the device cool, the audio level will increase until a new thermal equilibrium is
reached or the amplifier reaches full power. Thermal foldback will reduce the audio output
level in a linear manner.
Three thermal warning are available through the I2C bus data.
Figure 28. Thermal foldback diagram
6.1 Fast muting
The muting time can be shortened to less than 1.5 ms by setting (IB2) D5 = 1. This option
can be useful in transient battery situations (i.e. during car engine cranking) to quickly
turnoff the amplifier for avoiding any audible effects caused by noise/transients being
injected by preamp stages. The bit must be set back to “0” shortly after the mute transition.
Tj ( °C)
TH. SH.
START
TH. SH.
END
Vout TH. WARN.
ON
Tj ( °C)
Vout
Tj ( °C)
SD (with same input
signal)
< T
SD
CD out
TH. WARN.
ON
TH. WARN.
ON
125°
140°
155°
> T
TDA7563B I2C bus
Doc ID 12733 Rev 3 21/33
7 I2C bus
7.1 I2C programming/reading sequences
A correct turn on/off sequence respectful of the diagnostic timings and producing no audible
noises could be as follows (after battery connection):
TURN-ON: PIN2 > 7 V --- 10 ms --- (STANDBY OUT + DIAG ENABLE) --- 500 ms
(min) --- MUTING OUT
TURN-OFF: MUTING IN --- 20 ms --- (DIAG DISABLE + STANDBY IN) --- 10 ms -
-- PIN2 = 0
Car radio installation: PIN2 > 7V --- 10ms DIAG ENABLE (write) --- 200 ms --- I2C
read (repeat until All faults disappear).
OFFSET TEST: Device in play (no signal) -- OFFSET ENABLE - 30 ms - I2C
reading (repeat I2C reading until high-offset message disappears).
7.2 I
2
C bus interface
Data transmission from microprocessor to the TDA7563B and viceversa takes place through
the 2 wires I2C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to
positive supply voltage must be connected).
7.2.1 Data validity
As shown by Figure 29, the data on the SDA line must be stable during the high period of
the clock. The high and low state of the data line can only change when the clock signal on
the SCL line is low.
7.2.2 Start and stop conditions
As shown by Figure 30 a start condition is a high to low transition of the SDA line while SCL
is high. The stop condition is a low to high transition of the SDA line while SCL is high.
7.2.3 Byte format
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an
acknowledge bit. The MSB is transferred first.
I2C bus TDA7563B
22/33 Doc ID 12733 Rev 3
7.2.4 Acknowledge
The transmitter* puts a resistive HIGH level on the SDA line during the acknowledge clock
pulse (see Figure 31). The receiver** the acknowledges has to pull-down (LOW) the SDA
line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock
pulse.
* Transmitter
–master (μP) when it writes an address to the TDA7563B
slave (TDA7563B) when the μP reads a data byte from TDA7563B
** Receiver
slave (TDA7563B) when the μP writes an address to the TDA7563B
master (µP) when it reads a data byte from TDA7563B
Figure 29. Data validity on the I
2
C bus
Figure 30. Timing diagram on the I
2
C bus
Figure 31. Acknowledge on the I
2
C bus
SDA
SCL
DATA LINE
STABLE, DATA
VALID
CHANGE
DATA
ALLOWED
D99AU1031
SCL
SDA
START
I2CBUS
STOP
D99AU1032
SCL 1
MSB
23789
SDA
START ACKNOWLEDGMENT
FROM RECEIVER
D99AU1033
TDA7563B Software specifications
Doc ID 12733 Rev 3 23/33
8 Software specifications
All the functions of the TDA7563B are activated by I2C interface.
The bit 0 of the "Address Byte" defines if the next bytes are write instruction (from µP to
TDA7563B) or read instruction (from TDA7563B to µP).
Chip address
X = 0 Write to device
X = 1 Read from device
If R/W = 0, the μP sends 2 "Instruction Bytes": IB1 and IB2.
D7 D0
1101100XD8 Hex
Table 6. IB1
Bit Instruction decoding bit
D7 0
D6 Diagnostic enable (D6 = 1)
Diagnostic defeat (D6 = 0)
D5 Offset detection enable (D5 = 1)
Offset detection defeat (D5 = 0)
D4
Front channel
Gain = 30 dB (D4 = 0)
Gain = 16 dB (D4 = 1)
D3
Rear channel
Gain = 30 dB (D3 = 0)
Gain = 16 dB (D3 = 1)
D2 Mute front channels (D2 = 0)
Unmute front channels (D2 = 1)
D1 Mute rear channels (D1 = 0)
Unmute rear channels (D1 = 1)
D0 CD 2% (D0 = 0)
CD 10% (D0 = 1)
Software specifications TDA7563B
24/33 Doc ID 12733 Rev 3
If R/W = 1, the TDA7563B sends 4 "Diagnostics Bytes" to μP: DB1, DB2, DB3 and DB4.
Table 7. IB2
Bit Instruction decoding bit
D7 0
D6 0
D5 Normal muting time (D5 = 0)
Fast muting time (D5 = 1)
D4 Standby on - Amplifier not working - (D4 = 0)
Standby off - Amplifier working - (D4 = 1)
D3 Power amplifier mode diagnostic (D3 = 0)
Line driver mode diagnostic (D3 = 1)
D2 Current detection diagnostic enabled (D2 =1)
Current detection diagnostic defeat (D2 =0)
D1 Right channel power amplifier working in standard mode (D1 = 0)
Power amplifier working in high efficiency mode (D1 = 1)
D0 Left channel power amplifier working in standard mode (D0 = 0)
Power amplifier working in high efficiency mode (D0 = 1)
Table 8. DB1
Bit Instruction decoding bit
D7 Thermal warning 1 active (D7 = 1), Tj =155°C
D6 Diag. cycle not activated or not terminated (D6 = 0)
Diag. cycle terminated (D6 = 1)
D5
Channel LF
Current Detection
Output peak current < 250mA - Output load (D5 = 1)
Output peak current > 500mA - Output load (D5 = 0)
D4
Channel LF
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel LF
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel LF
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Offset diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel LF
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel LF
No short to GND (D1 = 0)
Short to GND (D1 = 1)
TDA7563B Software specifications
Doc ID 12733 Rev 3 25/33
Table 9. DB2
Bit Instruction decoding bit
D7 Offset detection not activated (D7 = 0)
Offset detection activated (D7 = 1)
D6 X
D5
Channel LR
Current Detection
Output peak current < 250mA - Output load (D5 = 1)
Output peak current > 500mA - Output load (D5 = 0)
D4
Channel LR
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel LR
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel LR
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel LR
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel LR
No short to GND (D1 = 0)
Short to GND (D1 = 1)
Software specifications TDA7563B
26/33 Doc ID 12733 Rev 3
Table 10. DB3
Bit Instruction decoding bit
D7 Standby status (= IB2 - D4)
D6 Diagnostic status (= IB1 - D6)
D5
Channel RF
Current detection
Output peak current <250mA - Output load (D5 = 1)
Output peak current >500mA - Output load (D5 = 0)
D4
Channel RF
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel RF
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel RF
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel RF
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel RF
No short to GND (D1 = 0)
Short to GND (D1 = 1)
TDA7563B Software specifications
Doc ID 12733 Rev 3 27/33
Table 11. DB4
Bit Instruction decoding bit
D7 Thermal warning 2 active (D7 = 1), Tj = 140°C
D6 Thermal warning 3 active (D6 = 1) Tj = 120°C
D5
Channel RR
Current detection
Output peak current <250mA - Output load (D5 = 1)
Output peak current >500mA - Output load (D5 = 0)
D4
Channel RR
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel R
R Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel RR
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel RR
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel RR
No short to GND (D1 = 0)
Short to GND (D1 = 1)
Examples of bytes sequence TDA7563B
28/33 Doc ID 12733 Rev 3
9 Examples of bytes sequence
1 - Turn-On diagnostic - write operation
2 - Turn-On diagnostic - read operation
The delay from 1 to 2 can be selected by software, starting from 1ms
3a - Turn-on of the power amplifier with 30dB gain, mute on, diagnostic defeat, CD = 2%
.
3b - Turn-off of the power amplifier
4 - Offset detection procedure enable
5 - Offset detection procedure stop and reading operation (the results are valid only for the
offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4)
.
The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs,
produced by input capacitor with anomalous leakage current or humidity between pins.
The delay from 4 to 5 can be selected by software, starting from 1ms
Start Address byte with D0 = 0 ACK IB1 with D6 = 1 ACK IB2 ACK STOP
Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
X0000000 XXX1XX11
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
X0XXXXXX XXX0XXXX
Start Address byte with D0 = 0 ACK IB1 ACK IB2 ACK STOP
XX1XX11X XXX1XXXX
Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP
TDA7563B Package information
Doc ID 12733 Rev 3 29/33
10 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 32. Flexiwatt27 (horizontal) mechanical data and package dimensions
OUTLINE AND
MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.45 4.50 4.65 0.175 0.177 0.183
B 1.80 1.90 2.00 0.070 0.074 0.079
C 1.40 0.055
D 2.00 0.079
E 0.37 0.39 0.42 0.014 0.015 0.016
F (1) 0.57 0.022
G 0.80 1.00 1.20 0.031 0.040 0.047
G1 25.75 26.00 26.25 1.014 1.023 1.033
H (2) 28.90 29.23 29.30 1.139 1.150 1.153
H1 17.00 0.669
H2 12.80 0.503
H3 0.80 0.031
L (2) 21.64 22.04 22.44 0.852 0.868 0.883
L1 10.15 10.5 10.85 0.40 0.413 0.427
L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626
L3 7.70 7.85 7.95 0.303 0.309 0.313
L4 5 0.197
L5 5.15 5.45 5.85 0.203 0.214 0.23
L6 1.80 1.95 2.10 0.070 0.077 0.083
M 2.75 3.00 3.50 0.108 0.118 0.138
M1 4.73 0.186
M2 5.61 0.220
N 2.20 0.086
P 3.20 3.50 3.80 0.126 0.138 0.15
R 1.70 0.067
R1 0.50 0.02
R2 0.30 0.12
R3 1.25 0.049
R4 0.50 0.02
V5˚ (Typ.)
V1 (Typ.)
V2 20˚ (Typ.)
V3 45˚ (Typ.)
Flexiwatt27
(Horizontal)
(1): dam-bar protusion not included; (2): molding protusion included
7399738 A
Package information TDA7563B
30/33 Doc ID 12733 Rev 3
Figure 33. Flexiwatt27 (vertical) mechanical data and package dimensions
OUTLINE AND
MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.45 4.50 4.65 0.175 0.177 0.183
B 1.80 1.90 2.00 0.070 0.074 0.079
C 1.40 0.055
D 0.75 0.90 1.05 0.029 0.035 0.041
E 0.37 0.39 0.42 0.014 0.015 0.016
F (1) 0.57 0.022
G 0.80 1.00 1.20 0.031 0.040 0.047
G1 25.75 26.00 26.25 1.014 1.023 1.033
H (2) 28.90 29.23 29.30 1.139 1.150 1.153
H1 17.00 0.669
H2 12.80 0.503
H3 0.80 0.031
L (2) 22.07 22.47 22.87 0.869 0.884 0.904
L1 18.57 18.97 19.37 0.731 0.747 0.762
L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626
L3 7.70 7.85 7.95 0.303 0.309 0.313
L4 5 0.197
L5 3.5 0.138
M 3.70 4.00 4.30 0.145 0.157 0.169
M1 3.60 4.00 4.40 0.142 0.157 0.173
N 2.20 0.086
O 2 0.079
R 1.70 0.067
R1 0.5 0.02
R2 0.3 0.12
R3 1.25 0.049
R4 0.50 0.019
V5˚ (Typ.)
V1 3˚ (Typ.)
V2 20˚ (Typ.)
V3 45˚ (Typ.)
(1): dam-bar protusion not included
(2): molding protusion included
Flexiwatt27 (vertical)
H3
R4
G
V
V
G1
L2
H1
H
F
M1
L
FLEX27ME
V3
OL3 L4
H2
R3
N
V2
R
R2
R2
C
B
L1
M
R1
L5 R1 R1
E
D
A
V1
V1
7139011
Pin 1
TDA7563B Package information
Doc ID 12733 Rev 3 31/33
Figure 34. PowerSO36 (slug up) mechanical data and package dimensions
OUTLINE AND
MECHANICAL DATA
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 3.270 - 3.410 0.1287 - 0.1343
A2 3.100 - 3.180 0.1220 - 0.1252
A4 0.800 - 1.000 0.0315 - 0.0394
A5 - 0.200 - - 0.0079 -
a1 0.030 -
-0.040
0.0012 - -0.0016
b 0.220 - 0.380 0.0087 - 0.0150
c 0.230 - 0.320 0.0091 - 0.0126
D 15.800 - 16.000 0.6220 - 0.6299
D1 9.400 - 9.800 0.3701 - 0.3858
D2 - 1.000 - - 0.0394 -
E 13.900 - 14.500 0.5472 - 0.5709
E1 10.900 - 11.100 0.4291 - 0.4370
E2 - - 2.900 - - 0.1142
E3 5.800 - 6.200 0.2283 - 0.2441
E4 2.900 - 3.200 0.1142 - 0.1260
e - 0.650 - - 0.0256 -
e3 - 11.050 - - 0.4350 -
G 0 - 0.075 0 - 0.0031
H 15.500 - 15.900 0.6102 - 0.6260
h - - 1.100 - - 0.0433
L 0.800 - 1.100 0.0315 - 0.0433
N - - 10˚ - - 10˚
s - -8˚- -8˚
(1) “D and E1” do not include mold flash or protusions.
Mold flash or protusions shall not exceed 0.15mm (0.006”).
(2) No intrusion allowed inwards the leads.
PowerSO36 (SLUG UP)
7183931 G
Revision history TDA7563B
32/33 Doc ID 12733 Rev 3
11 Revision history
Table 12. Document revision history
Date Revision Changes
05-Oct-2006 1 Initial release.
19-Dec-2007 2 Updated Ta b l e 3: T h e r m a l da ta.
14-Dec-2009 3 Updated Figure 34: PowerSO36 (slug up) mechanical data and
package dimensions on page 31.
TDA7563B
Doc ID 12733 Rev 3 33/33
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com