BF966S Vishay Semiconductors N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode 3 Features * * * * * * 4 Integrated gate protection diodes High cross modulation performance Low noise figure High AGC-range Low feedback capacitance Low input capacitance 2 1 G2 D G1 S Applications Electrostatic sensitive device. Observe precautions for handling. Input- and mixer stages especially UHF-tuners. 13625 Mechanical Data Case: TO-50 Plastic case Weight: approx. 124 mg Marking: BF966S Pinning: 1 = Drain, 2 = Source, 3 = Gate 1, 4 = Gate 2 Parts Table Part Ordering Ccode Marking Package BF966S BF966SA or BF966SB BF966S TO50 BF966SA BF966SA BF966S TO50 BF966SB BF966SB BF966S TO50 Absolute Maximum Ratings Tamb = 25 C, unless otherwise specified Parameter Test condition Drain - source voltage Drain current Gate 1/Gate 2 - source peak current Tamb 60 C Symbol Value Unit VDS 20 V ID 30 mA IG1/G2SM 10 mA mW Ptot 200 Channel temperature TCh 150 C Storage temperature range Tstg - 55 to + 150 C Symbol Value Unit RthChA 450 K/W Total power dissipation Maximum Thermal Resistance Parameter Channel ambient 1) Test condition 1) on glass fibre printed board (40 x 25 x 1.5) mm3 plated with 35 m Cu Document Number 85004 Rev. 1.5, 25-Nov-04 www.vishay.com 1 BF966S VISHAY Vishay Semiconductors Electrical DC Characteristics Tamb = 25 C, unless otherwise specified Symbol Min Drain - source breakdown voltage Parameter ID = 10 A, - VG1S = - VG2S = 4 V Test condition Part V(BR)DS 20 Typ. Max Unit Gate 1 - source breakdown voltage IG1S = 10 mA, VG2S = VDS = 0 V(BR)G1SS 8 14 V Gate 2 - source breakdown voltage IG2S = 10 mA, VG1S = VDS = 0 V(BR)G2SS 8 14 V nA V Gate 1 - source leakage current VG1S = 5 V, VG2S = VDS = 0 IG1SS 50 Gate 2 - source leakage current VG2S = 5 V, VG1S = VDS = 0 IG2SS 50 nA 4 18 mA Drain current VDS = 15 V, VG1S = 0, VG2S = 4 V BF966S IDSS BF966SA IDSS 4 10.5 mA BF966SB IDSS 9.5 18 mA Gate 1 - source cut-off voltage VDS = 15 V, VG2S = 4 V, ID = 20 A -VG1S(OFF) 2.5 V Gate 2 - source cut-off voltage VDS = 15 V, VG1S = 0, ID = 20 A -VG2S(OFF) 2.0 V Electrical AC Characteristics Tamb = 25 C, unless otherwise specified VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz Symbol Min Typ. Forward transadmittance Parameter | y21s | 15 18.5 Gate 1 input capacitance Cissg1 2.2 Gate 2 input capacitance Test condition VG1S = 0, VG2S = 4 V Max Unit mS 2.6 pF Cissg2 1.1 Feedback capacitance Crss 25 35 fF Output capacitance Coss 0.8 1.2 pF GS = 2 mS, GL = 0.5 mS, f = 200 MHz Gps 25 dB GS = 3,3 mS, GL = 1 mS, f = 800 MHz Gps 18 dB Power gain Gps AGC range VG2S = 4 to -2 V, f = 800 MHz Noise figure GS = 2 mS, GL = 0.5 mS, f = 200 MHz F 1.0 dB GS = 3,3 mS, GL = 1 mS, f = 800 MHz F 1.8 dB www.vishay.com 2 40 pF dB Document Number 85004 Rev. 1.5, 25-Nov-04 BF966S VISHAY Vishay Semiconductors 300 80 70 250 ID - Drain Current ( mA ) Ptot -Total Power Dissipation ( mW ) Typical Characteristics (Tamb = 25 C unless otherwise specified) 200 150 100 50 2V 1V 20 0V -1 V 0 20 40 60 80 100 120 140 160 Tamb - Ambient Temperature ( C ) -1 1.5 V 1V 28 V G2S = 4 V 24 0.5 V 20 16 0V 12 8 -0.5 V 4 -1 V 0 0 2 4 6 8 10 12 14 4.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 V DS = 15 V 80 V G2S = 6 V 5V 70 4V 60 50 3V 40 2V 30 1V 20 0V -1 V 10 0 -1 0 1 2 3 4 5 V G1S - Gate 1 Source Voltage ( V ) Figure 3. Drain Current vs. Gate 1 Source Voltage Document Number 85004 Rev. 1.5, 25-Nov-04 6 9 12 15 18 21 24 27 30 I D - Drain Current ( mA ) Figure 5. Gate 1 Input Capacitance vs. Drain Current 2.00 Coss - Output Capacitance ( pF ) 90 3 12765 Figure 2. Drain Current vs. Drain Source Voltage 100 V DS = 15 V VG2S = 4 V f = 1 MHz 3.5 16 V DS - Drain Source Voltage ( V ) 12762 Figure 4. Drain Current vs. Gate 2 Source Voltage Cissg1 - Gate 1 Input Capacitance ( pF ) V G1S = 2 V 32 0 1 2 3 4 5 V G2S - Gate 2 Source Voltage ( V ) 12764 36 ID - Drain Current ( mA ) 50 30 Figure 1. Total Power Dissipation vs. Ambient Temperature ID - Drain Current ( mA ) 3V 40 0 0 V G1S = 4 V 60 10 96 12159 12763 V DS = 15 V 1.75 VG2S = 4 V I D = 10 mA f = 1 MHz 1.50 1.25 1.00 0.75 0.50 0.25 0.00 0 12766 2 4 6 8 10 12 14 16 18 20 V DS - Drain Source Voltage ( V ) Figure 6. Output Capacitance vs. Drain Source Voltage www.vishay.com 3 BF966S VISHAY 4.0 20 3.6 V DS = 15 V V G1S = 0 3.2 f = 1 MHz 2.8 18 2.4 2.0 1.6 1.2 8 2 0 100 MHz 0 -20 0V -30 -0.5 V -40 -1 V 0 2 S 21 8 10 12 14 16 18 20 Re (y11) ( mS ) f = 1300 MHz 0.2 I D = 5 mA 10 mA 20 mA 0.1 1000 MHz 0.0 V DS = 15 V V G2S = 4 V f = 100...1300 MHz 700 MHz -60 V G2S = -2...-3 V -5 12768 -4 -3 -2 -1 0 1 2 3 V G1S - Gate 1 Source Voltage ( V ) -0.1 0.0 24 22 20 18 16 14 12 10 8 6 4 2 0 V DS = 15 V V G2S = 4 V f = 100...1300 MHz 0 -5 Im ( y21) ( mS ) -10 f = 100 MHz I D = 5 mA 10 mA 20 mA -15 -20 400 MHz 700 MHz -25 1000 MHz -30 0V 0.5 5 3V 2V 0.2 0.3 0.4 Re (y12) ( mS ) Figure 11. Short Circuit Reverse Transfer Admittance V G2S = 4 V V DS = 15 V f = 1 MHz 0.1 12772 Figure 8. Transducer Gain vs. Gate 1 Source Voltage Y21S - ForwardTransadmittance ( mS ) 6 0.3 -50 -70 1V 1300 MHz -35 0.5 V -40 0 5 12769 10 15 20 25 I D - Drain Current ( mA ) 30 Figure 9. Forward Transadmittance vs. Drain Current www.vishay.com 4 4 Figure 10. Short Circuit Input Admittance Im ( y12 ) ( mS ) -Transducer Gain( dB ) -10 4V 3V 2V 1V f = 200 MHz 2 12770 Figure 7. Gate 2 Input Capacitance vs. Gate 2 Source Voltage 10 V DS = 15 V V G2S = 4 V f = 100...1300 MHz 400 MHz 6 0.0 -1 0 1 2 3 4 5 6 V G2S - Gate 2 Source Voltage ( V ) I D = 20 mA 700 MHz 10 4 -2 1000 MHz 12 0.4 -3 I D = 10 mA 14 0.8 12767 f = 1300 MHz I D = 5 mA 16 Im ( y11 ) ( mS ) Cissg2 - Gate 2 Input Capacitance ( pF ) Vishay Semiconductors -8 12771 -4 0 4 8 12 16 Re (y21 ) ( mS ) 20 24 Figure 12. Short Circuit Forward Transfer Admittance Document Number 85004 Rev. 1.5, 25-Nov-04 BF966S VISHAY Vishay Semiconductors 8 f = 1300 MHz 7 I D = 10 mA Im ( y22) ( mS ) 6 20 mA I D= 5 mA 1000 MHz 5 700 MHz 4 3 400 MHz 2 1 100 MHz 0 0.0 0.5 12773 V DS = 15 V V G2S = 4 V f =1 00...1300 MHz 1.0 1.5 2.0 Re (y22) ( mS ) 2.5 Figure 13. Short Circuit Output Admittance Document Number 85004 Rev. 1.5, 25-Nov-04 www.vishay.com 5 BF966S VISHAY Vishay Semiconductors VDS = 15 V, ID = 5 to 20 mA, VG2S = 4 V, Z0 = 50 S11 S12 90 j 120 j0.5 j0.2 150 ID= 20 mA 1300 MHz ID= 10 mA 1000 ID= 5 mA j5 0 0.2 0.5 1 2 5 100 1300 MHz -j0.2 60 j2 i 400 100 180 0.008 0.016 0 -j5 400 -150 1000 700 -j0.5 30 -30 -j2 -120 12924 -j -60 -90 12925 Figure 16. Reverse Transmission Coefficient Figure 14. Input Reflection Coefficient S21 S22 ID= 20 mA 90 120 ID= 10 mA 400 ID= 5 mA j 60 700 j0.5 1000 150 j2 30 j0.2 j5 1300 MHz 100 180 0.8 1.6 0 0 0.5 1 700 Figure 15. Forward Transmission Coefficient 6 -j2 -60 -90 www.vishay.com -j5 1300 MHz -j0.5 -120 12926 i 5 100 2 -j0.2 -30 -150 0.2 12927 -j Figure 17. Output Reflection Coefficient Document Number 85004 Rev. 1.5, 25-Nov-04 BF966S VISHAY Vishay Semiconductors Package Dimensions in mm 96 12242 Document Number 85004 Rev. 1.5, 25-Nov-04 www.vishay.com 7 BF966S VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 www.vishay.com 8 Document Number 85004 Rev. 1.5, 25-Nov-04