BF966S
Document Number 85004
Rev. 1.5, 25-Nov-04
Vishay Semiconductors
www.vishay.com
1
13625
1
4
3
2
G2
G1
D
S
Electrostatic sensitive device.
Observe precautions for handling.
N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode
Features
Integrated gate protection diodes
High cross modulation performance
Low noise figure
High AGC-range
Low feedback capacitance
Low input capacitance
Applications
Input- and mixer stages especially UHF-tuners.
Mechanical Data
Case: TO-50 Plastic case
Weight: approx. 124 mg
Marking: BF966S
Pinning:
1 = Drain, 2 = Source,
3 = Gate 1, 4 = Gate 2
Parts Table
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Maximum Thermal Resistance
1) on glass fibre printed board (40 x 25 x 1.5) mm3 plated with 35 µm Cu
Part Ordering Ccode Marking Package
BF966S BF966SA or BF966SB BF966S TO50
BF966SA BF966SA BF966S TO50
BF966SB BF966SB BF966S TO50
Parameter Test condition Symbol Value Unit
Drain - source voltage VDS 20 V
Drain current ID30 mA
Gate 1/Gate 2 - source peak
current
± IG1/G2SM 10 mA
Total power dissipation Tamb 60 °C Ptot 200 mW
Channel temperature TCh 150 °C
Storage temperature range Tstg - 55 to + 150 °C
Parameter Test condition Symbol Value Unit
Channel ambient 1) RthChA 450 K/W
www.vishay.com
2
Document Number 85004
Rev. 1.5, 25-Nov-04
VISHAY
BF966S
Vishay Semiconductors
Electrical DC Characteristics
Tamb = 25 °C, unless otherwise specified
Electrical AC Characteristics
Tamb = 25 °C, unless otherwise specified
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz
Parameter Test condition Part Symbol Min Typ. Max Unit
Drain - source breakdown
voltage
ID = 10 µA, - VG1S = - VG2S = 4 V V(BR)DS 20 V
Gate 1 - source breakdown
voltage
± IG1S = 10 mA, VG2S = VDS = 0 ± V(BR)G1SS 814V
Gate 2 - source breakdown
voltage
± IG2S = 10 mA, VG1S = VDS = 0 ± V(BR)G2SS 814V
Gate 1 - source leakage current ± VG1S = 5 V, VG2S = VDS = 0 ± IG1SS 50 nA
Gate 2 - source leakage current ± VG2S = 5 V, VG1S = VDS = 0 ± IG2SS 50 nA
Drain current VDS = 15 V, VG1S = 0, VG2S = 4 V BF966S IDSS 418mA
BF966SA IDSS 410.5mA
BF966SB IDSS 9.5 18 mA
Gate 1 - source cut-off voltage VDS = 15 V, VG2S = 4 V,
ID = 20 µA
-VG1S(OFF) 2.5 V
Gate 2 - source cut-off voltage VDS = 15 V, VG1S = 0, ID = 20 µA-V
G2S(OFF) 2.0 V
Parameter Test condition Symbol Min Typ. Max Unit
Forward transadmittance | y21s | 15 18.5 mS
Gate 1 input capacitance Cissg1 2.2 2.6 pF
Gate 2 input capacitance VG1S = 0, VG2S = 4 V Cissg2 1.1 pF
Feedback capacitance Crss 25 35 fF
Output capacitance Coss 0.8 1.2 pF
Power gain GS = 2 mS, GL = 0.5 mS,
f = 200 MHz
Gps 25 dB
GS = 3,3 mS, GL = 1 mS,
f = 800 MHz
Gps 18 dB
AGC range VG2S = 4 to -2 V, f = 800 MHz Gps 40 dB
Noise figure GS = 2 mS, GL = 0.5 mS,
f = 200 MHz
F1.0dB
GS = 3,3 mS, GL = 1 mS,
f = 800 MHz
F1.8dB
VISHAY
BF966S
Document Number 85004
Rev. 1.5, 25-Nov-04
Vishay Semiconductors
www.vishay.com
3
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
Figure 1. Total Power Dissipation vs. Ambient Temperature
Figure 2. Drain Current vs. Drain Source Voltage
Figure 3. Drain Current vs. Gate 1 Source Voltage
0
50
100
150
200
250
300
0 20 40 60 80 100 120 140 160
96 12159
P-Total Power Dissipation ( mW )
tot
T
amb
- Ambient Temperature ( °C)
0
4
8
12
16
20
24
28
32
36
0246810121416
V
DS
Drain Source Voltage(V)
12762
I Drain Current ( mA )
D
V
G1S
=2V 1.5 V
1V
0V
–0.5 V
–1 V
0.5 V
V
G2S
=4V
0
10
20
30
40
50
60
70
80
90
100
1012345
V
G1S
Gate 1 Source Voltage(V)
12763
I Drain Current ( mA )
D
V
G2S
=6V
5V
4V
0V
2V
1V
3V
V
DS
=15 V
–1 V
Figure 4. Drain Current vs. Gate 2 Source Voltage
Figure 5. Gate 1 Input Capacitance vs. Drain Current
Figure 6. Output Capacitance vs. Drain Source Voltage
0
10
20
30
40
50
60
70
80
1012345
V
G2S
Gate 2 Source Voltage(V)
12764
I Drain Current ( mA )
D
0V
2V
1V
3V
V
DS
=15 V
–1 V
V
G1S
=4V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0 3 6 9 12151821242730
I
D
Drain Current ( mA )
12765
C Gate 1 Input Capacitance ( pF )
issg1
V
DS
=15V
V
G2S
=4V
f=1MHz
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
0 2 4 6 8 10 12 14 16 18 20
V
DS
Drain Source Voltage(V)
12766
C Output Capacitance ( pF )
oss
V
G2S
=4V
I
D
=10mA
f=1MHz
www.vishay.com
4
Document Number 85004
Rev. 1.5, 25-Nov-04
VISHAY
BF966S
Vishay Semiconductors
Figure 7. Gate 2 Input Capacitance vs. Gate 2 Source Voltage
Figure 8. Transducer Gain vs. Gate 1 Source Voltage
Figure 9. Forward Transadmittance vs. Drain Current
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
3210123456
V
G2S
Gate 2 Source Voltage(V)
12767
C Gate 2 Input Capacitance ( pF )
issg2
V
DS
=15V
V
G1S
=0
f=1MHz
–70
–60
–50
–40
–30
–20
–10
0
10
543210123
V
G1S
Gate 1 Source Voltage(V)
12768
S Transducer Gain( dB )
2
21
4V
0V
2V
1V
3V
f = 200 MHz
–0.5 V
V
G2S
= –2...–3 V
–1 V
0
2
4
6
8
10
12
14
16
18
20
22
24
0 5 10 15 20 25 30
I
D
Drain Current ( mA )
12769
Y ForwardTransadmittance ( mS )
21S
V
DS
=15V
f=1MHz
V
G2S
=4V
2V
3V
1V
0.5 V
0V
Figure 10. Short Circuit Input Admittance
Figure 11. Short Circuit Reverse Transfer Admittance
Figure 12. Short Circuit Forward Transfer Admittance
0
2
4
6
8
10
12
14
16
18
20
0 2 4 6 8 10 12 14 16 18 20
Re (y
11
)(mS)
12770
Im(y)(mS)
11
V
DS
=15V
V
G2S
=4V
f = 100...1300 MHz
f = 1300 MHz
700 MHz
400 MHz
1000 MHz
100 MHz
I
D
=5mA
I
D
=10mA
I
D
=20mA
–0.1
0.0
0.1
0.2
0.3
0.0 0.1 0.2 0.3 0.4 0.5
Re (y
12
)(mS)
12772
Im(y)(mS)
12
V
DS
=15V
V
G2S
=4V
f = 100...1300 MHz
f = 1300 MHz
700 MHz
I
D
=5mA
10 mA
20 mA
1000 MHz
–40
–35
–30
–25
–20
–15
–10
–5
0
5
–8 –4 0 4 8 12 16 20 24
Re (y
21
)(mS)
12771
Im(y)(mS)
21
V
DS
=15V
V
G2S
=4V
f = 100...1300 MHz
f = 100 MHz
1300 MHz
1000 MHz
400 MHz
700 MHz
I
D
=5mA
10 mA
20 mA
VISHAY
BF966S
Document Number 85004
Rev. 1.5, 25-Nov-04
Vishay Semiconductors
www.vishay.com
5
Figure 13. Short Circuit Output Admittance
0
1
2
3
4
5
6
7
8
0.0 0.5 1.0 1.5 2.0 2.5
Re (y
22
)(mS)
12773
Im(y)(mS)
22
V
DS
=15V
V
G2S
=4V
f =1 00...1300 MHz
f = 1300 MHz
1000 MHz
400 MHz
100 MHz
I
D
=5mA 20 mA
700 MHz
I
D
=10mA
www.vishay.com
6
Document Number 85004
Rev. 1.5, 25-Nov-04
VISHAY
BF966S
Vishay Semiconductors
VDS = 15 V, ID = 5 to 20 mA, VG2S = 4 V, Z0 = 50
S11
S21
S12
S22
Figure 14. Input Reflection Coefficient
Figure 15. Forward Transmission Coefficient
12924
–j0.2
–j0.5
–j
–j2
–j5
0
j0.2
j0.5
j
j2
j5
ı
0.2 0.5 1 2 5
1300 MHz 400
700
1000
100
12926
90°
180°
–90 °
0.8 1.6
–150 °
–120° –60°
–30
120 °
150 °
60 °
30 °
1300 MHz
400 700
1000
100
°
I = 20 mA
D
I = 10 mA
D
I =5mA
D
Figure 16. Reverse Transmission Coefficient
Figure 17. Output Reflection Coefficient
12925
90 °
180 °
–90 °
0.008 0.016
–150 °
–120 ° –60 °
–30 °
120 °
150 °
60 °
30 °
1300 MHz
400
100
1000
I = 20 mA
D
I = 10 mA
D
I =5mA
D
12927
–j0.2
–j0.5
–j
–j2
–j5
0
j0.2
j0.5
j
j2
j5
ı
0.2 0.5 1 2 5
1300 MHz
700
100
VISHAY
BF966S
Document Number 85004
Rev. 1.5, 25-Nov-04
Vishay Semiconductors
www.vishay.com
7
Package Dimensions in mm
96 12242
www.vishay.com
8
Document Number 85004
Rev. 1.5, 25-Nov-04
VISHAY
BF966S
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423