SCAS783B - OCTOBER 2004 - REVISED DECEMBER 2004

- Qualification in Accordance With AEC-Q100[†]
- Qualified for Automotive Applications
- Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval
- Operates From 1.65 V to 3.6 V
- Inputs and Open-Drain Outputs Accept Voltages up to 5.5 V
- Latch-Up Performance Exceeds 250 mA Per JESD 17

D OR PW PACKAGE (TOP VIEW)] v_{cc} 1Y Π 2 13 ¶ 6A 2А П 3 12 **∏** 6Y 2Y 11 🛮 5A 3A 🛮 5 10 **∏** 5Y 3Y 6 9 4A **GND** 8 🛮 4Y

description/ordering information

This hex buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The outputs of the SN74LVC07A device are open drain and can be connected to other open-drain outputs to implement active-low wired-OR or active-high wired-AND functions. The maximum sink current is 24 mA.

Inputs can be driven from 1.8-V, 2.5-V, 3.3-V (LVTTL), or 5-V (CMOS) devices. This feature allows the use of these devices as translators in a mixed-system environment.

ORDERING INFORMATION

TA	PACKAGE [‡]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
4000 to 40500	SOIC - D	Reel of 2500	SN74LVC07AQDRQ1	LVC07AQ	
-40°C to 125°C	TSSOP - PW	Reel of 2000	SN74LVC07AQPWRQ1	LVC07AQ	

[‡] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each buffer/driver)

INPUT A	OUTPUT Y		
Н	Н		
L	L		

logic diagram, each buffer/driver (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[†] Contact factory for details. Q100 qualification data available on request.

SCAS783B - OCTOBER 2004 - REVISED DECEMBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	–0.5 V to 6.5 V
Input voltage range, V _I (see Note 1)	–0.5 V to 6.5 V
Output voltage range, V _O	–0.5 V to 6.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 2): D package	86°C/W
PW package	113°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
VCC	Supply voltage		1.65	3.6	V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
VIH High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
VIL	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	
٧ _I	Input voltage	<u>.</u>	0	5.5	V
٧o	Output voltage		0	5.5	V
		V _{CC} = 1.65 V		4	
	Low-level output current	V _{CC} = 2.3 V		12	
lOL		V _{CC} = 2.7 V		12	mA
		V _{CC} = 3 V		24	
TA	Operating free-air temperature		-40	125	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

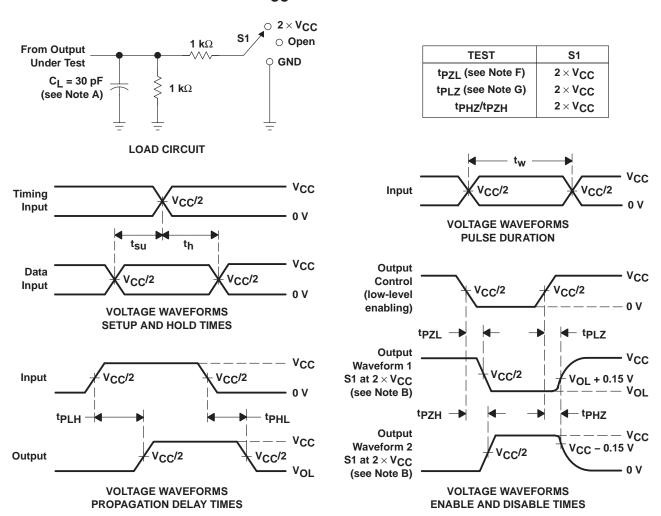
^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	v _{cc}	MIN TYP [†] MAX	UNIT
	$I_{OL} = 100 \mu\text{A}$	1.65 V to 3.6 V	0.2	
	$I_{OL} = 4 \text{ mA}$	1.65 V	0.45	
V _{OL}	40 mA	2.3 V	0.7	V
	I _{OL} = 12 mA	2.7 V	0.4	
	$I_{OL} = 24 \text{ mA}$	3 V	0.65	
Тį	$V_I = 5.5 \text{ V or GND}$	3.6 V	±5	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V	10	μΑ
ΔlCC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V	500	μΑ
C _i	$V_I = V_{CC}$ or GND	3.3 V	5	pF

 $[\]dagger$ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

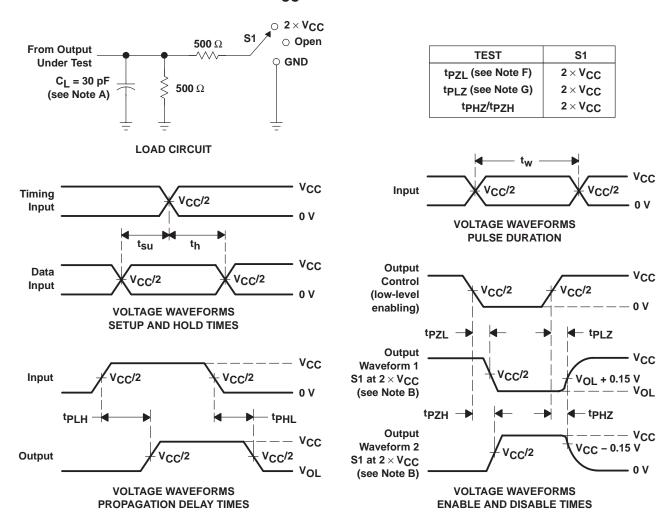
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)


			T _A = -40°C TO 125°C								
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =		V _{CC} =		VCC =	2.7 V	V _{CC} =	3.3 V 3 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	А	Y	1	3.5	1	2.8		3	1	2.9	ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V	UNIT
C _{pd}	Power dissipation capacitance per buffer/driver	f = 10 MHz	1.8	2	2.5	pF

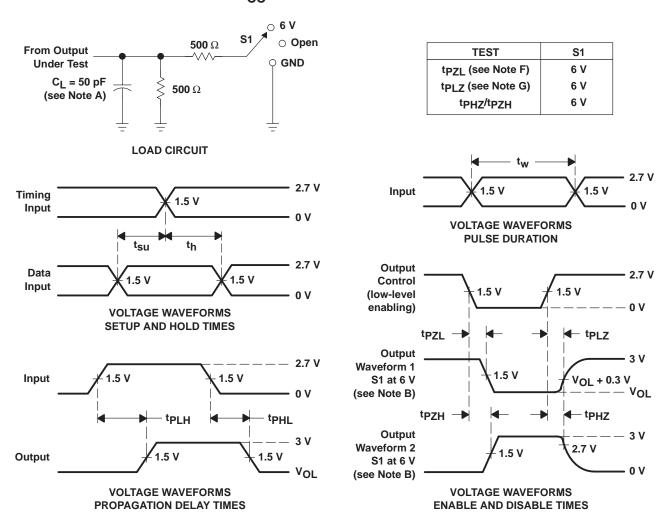
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 V \pm 0.15 V$


NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \ \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. Since this device has open-drain outputs, tpLz and tpzL are the same as tpd.
- F. tpzL is measured at VCC/2.
- G. t_{PLZ} is measured at V_{OL} + 0.15 V.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V


NOTES: A. C_I includes probe and jig capacitance.

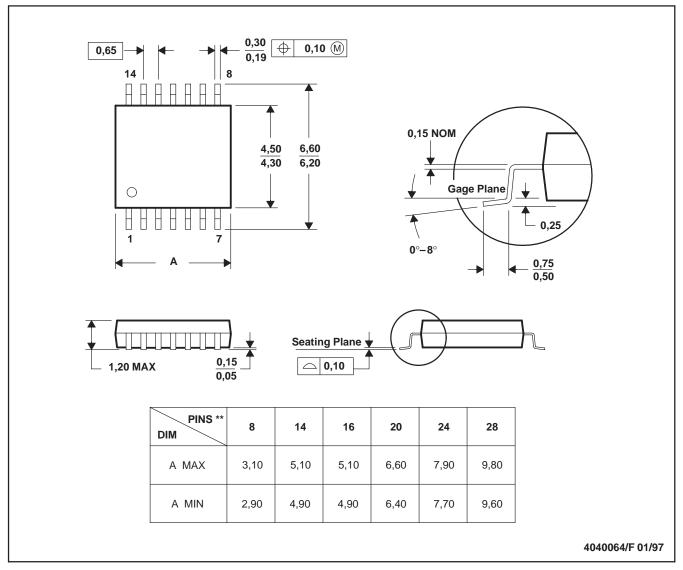
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. Since this device has open-drain outputs, t_{PLZ} and t_{PZL} are the same as t_{pd} .
- F. tpzL is measured at VCC/2.
- G. t_{PLZ} is measured at V_{OL} + 0.15 V.
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.7 \text{ AND } 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. Since this device has open-drain outputs, tpLz and tpzL are the same as tpd.
- F. tpzL is measured at 1.5 V.
- G. tpLz is measured at VoL + 0.3 V.
- H. All parameters and waveforms are not applicable to all devices.


Figure 3. Load Circuit and Voltage Waveforms

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated