18 FN9214.1
July 23, 2008
A stable control loop has a gain crossing with close to a
-20dB/decade slope and a phase margin greater than 45°.
Include worst case component variation s when determining
phase margin. The mathematical mo del presented makes a
number of approximations and is genera lly not accurate at
frequencies approachin g or exceedi ng half the switching
frequency. When desig ning compensation networks, select
target crossover frequencies in the range of 10% to 30% of
the switching frequency, FSW.
Component Selection Guidelines
Output Capacitor Selection
An output capacitor is required to filter the output and supply
the load transient current. The filtering requirements are a
function of the switching frequency and the ripple current.
The load transient requirements are a function of the slew
rate (di/dt) and the magnitude of the transient load current.
These requirements are generally met with a mix of
capacitors and careful layout.
Modern microprocessors produce transient load rates above
1A/ns. High frequency capacitors initially supply the
transient and slow the current load rate seen by the bulk
capacitors. The bulk filter capacitor values are generally
determined by the ESR (effective series resistance) and
voltage rating requirements rather than actual capacitance
requirements.
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
careful not to add inductance in the circuit board wiring that
could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load on
specific decoupling requirements. For example, Intel
recommends that the high frequency decoupling for the
Pentium Pro be composed of at least forty (40) 1.0μF
ceramic capacitors in the 1206 surface-mount package.
Follow on specifications have only increased the number
and quality of required ceramic decoupling capacitors.
Use only specialized low-ESR capacitors intended for
switching-regulator applications for the bulk capacitors. The
bulk capacitor’s ESR will determine the output ripple voltage
and the initial voltage drop after a high slew-rate transient.
An aluminum electrolytic capacitor's ESR value is related to
the case size with lower ESR available in larger case sizes.
However, the equivalent series inductance (ESL) of these
capacitors increases with case size and can reduce the
usefulness of the capacitor to high slew-rate transient
loading. Unfortunately, ESL is not a specified parameter.
Work with your capacitor supplier and measure the
capacitor’s impedance with frequency to select a suitable
component. In most cases, multiple electrolytic capacitors of
small case size perform better than a single large case
capacitor.
Output Inductor Selection
The output inductor is selected to meet the output voltage
ripple requirements and minimize the converter’s response
time to the load transient. The inductor value determines the
converter’s ripple current and the ripple voltage is a function
of the ripple current. The ripple voltage and current are
approximated by the following equations:
Increasing the value of inductance reduces the ripple current
and voltage. However, the large inductance values reduce
the converter’s response time to a load transient.
One of the parameters limiting the converter’s response to a
load transient is the time required to change the inductor
current. Given a sufficiently fast control loop design, the
ISL6540 will provide either 0% or 100% duty cycle in
response to a load transient. The response time is the time
required to slew the inductor current from an initial current
value to the transient current level. During this interval the
difference between the inductor current and the transient
current level must be supplied by the output capacitor.
Minimizing the response time can minimize the output
capacitance required.
The response time to a transient is different for the
application of load and the removal of load. The following
equations give the approximate response time interval for
application and removal of a transient load:
where: ITRAN is the transient load current step, tRISE is the
response time to the application of load, and tFALL is the
response time to the removal of load. With a lower input
source such as 1.8V or 3.3V, the worst case response time
can be either at the application or removal of load and
dependent upon the output voltage setting. Be sure to check
both of these equations at the minimum and maximum
output levels for the worst case response time.
Input Capacitor Selection
Use a mix of input bypass capaci tors to co ntrol the vol t age
overshoot across the MOSFETs. Use small ceramic
capacitors for high frequency de couplin g and bu lk cap acito rs
to supply the current needed each time Q1 turns on. Place the
small ceramic capacitors physically close to the MOSFETs
and between the drain of Q1 and th e so urce of Q2.
The important parameters for the bulk input capacitor are the
voltage rating and the RMS current rating. For reliable
operation, select the bulk capacitor with voltage and current
ratings above the maximum input voltage and largest RMS
current required by the circuit. The capacitor voltage rating
should be at least 1.25 times greater than the maximum
ΔVOUT=ΔI x ESR
ΔI = VIN - VOUT
FS x L
--------------------------------VOUT
VIN
----------------
•
tFALL LOITRAN
×
VOUT
-------------------------------
=tRISE LOITRAN
×
VIN VOUT
–
--------------------------------
=
ISL6540