Automotive Power
Data Sheet
PROFET™+ 24V
Rev. 1.0, 2014-08-20
BTT6200-4EMA
Smart High-Side Power Switch
Quad Channel, 200mΩ
PROFET™+ 24V
Data Sheet 2 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Table of Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.1 PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.2 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1 Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.1 Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.2 Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4 Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5 Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5.1 Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5.2 Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.6 Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1 IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3.1 SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . 28
7.3.2 SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3.3 SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3.3.1 Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3.3.2 Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3.3.3 Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3.4 SENSE Signal in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3.5 SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3.6 SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4 Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8 Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.1 Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 DEN / DSEL0,1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table of Contents
BTT6200-4EMA
Table of Contents
Data Sheet 3 Rev. 1.0, 2014-08-20
PROFET™+ 24V
8.3 Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9 Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.1 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.2 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.3 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.4 Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.5 Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.1 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
12 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
PG-SSOP-24-14 EP
Type Package Marking
BTT6200-4EMA PG-SSOP-24-14 EP BTT6200-4EMA
Data Sheet 4 Rev. 1.0, 2014-08-20
PROFET™+ 24V
Smart High-Side Power Switch
BTT6200-4EMA
1Overview
Application
Suitable for resistive, inductive and capacitive loads
Replaces electromechanical relays, fuses and discrete circuits
Most suitable for loads with high inrush current, such as lamps
Suitable for 24V Trucks and Transportation System
Basic Features
Quad channel device
Very low stand-by current
3.3 V and 5 V compatible logic inputs
Electrostatic discharge protection (ESD)
Optimized electromagnetic compatibility
Logic ground independent from load ground
Very low power DMOS leakage current in OFF state
Green product (RoHS compliant)
AEC qualified
Description
The BTT6200-4EMA is a 200 m quad channel Smart High-Side Power Switch, embedded in a PG-SSOP-24-14
EP , Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is
specially designed to drive lamps up to R10W 24V or R5W 12V, as well as LEDs in the harsh automotive
environment.
Table 1 Product Summary
Parameter Symbol Value
Operating voltage range VS(OP) 5 V ... 36 V
Maximum supply voltage VS(LD) 65 V
Maximum ON state resistance at TJ = 150 °C per channel RDS(ON) 400 m
Nominal load current (one channel active) IL(NOM)1 1.5 A
Nominal load current (all channels active) IL(NOM)2 1 A
Typical current sense ratio kILIS 300
BTT6200-4EMA
Overview
Data Sheet 5 Rev. 1.0, 2014-08-20
PROFET™+ 24V
Diagnostic Functions
Proportional load current sense multiplexed for the 4 channels
Open load detection in ON and OFF
Short circuit to battery and ground indication
Overtemperature switch off detection
Stable diagnostic signal during short circuit
Enhanced kILIS dependency with temperature and load current
Protection Functions
Stable behavior during undervoltage
Reverse polarity protection with external components
Secure load turn-off during logic ground disconnection with external components
Overtemperature protection with latch
Overvoltage protection with external components
Enhanced short circuit operation
Minimum current limitation IL5(SC) 9 A
Maximum standby current with load at TJ = 25 °C IS(OFF) 500 nA
Table 1 Product Summary (cont’d)
Parameter Symbol Value
Data Sheet 6 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Block Diagram
2 Block Diagram
Figure 1 Block Diagram for the BTT6200-4EMA
Block diagram DxS.vsd
Channel 0 VS
OUT 0
IN0
T
driver
logic
gate control
&
charge pump
load current sense and
open load detection
over
temperature clamp for
inductive load
over current
switch limit
forward voltage drop detection
voltage sensor
GND
ESD
protection
IS
DEN
Channel 1
IN1 Control and protection circuit equivalent to channel 0
T
VS
OUT 1
internal
power
supply
Channel 2
Control and protection circuit equivalent to channel 0
T
OUT 2
Channel 3
Control and protection circuit equivalent to channel 0
T
OUT 3
IN2
IN3
DSEL0
DSEL1
BTT6200-4EMA
Pin Configuration
Data Sheet 7 Rev. 1.0, 2014-08-20
PROFET™+ 24V
3 Pin Configuration
3.1 Pin Assignment
Figure 2 Pin Configuration
3.2 Pin Definitions and Functions
Pin Symbol Function
1, 3, 12, 14, 15,
16, 18, 19 , 21, 22,
23
NC Not Connected; No internal connection to the chip
2IN0INput channel 0; Input signal for channel 0 activation
4GNDGrouND; Ground connection
5IN1INput channel 1; Input signal for channel 1 activation
6DENDiagnostic ENable; Digital signal to enable/disable the diagnosis of the device
7ISSense; Sense current of the selected channel
8 DSEL0 Diagnostic SELection; Digital signal to select the channel to be diagnosed
9IN2INput channel 2; Input signal for channel 2 activation
10 IN3 INput channel 3; Input signal for channel 3 activation
11 DSEL1 Diagnostic SELection; Digital signal to select the channel to be diagnosed
13 OUT3 OUTput 3; Protected high side power output channel 3
PG-SSOP-24-Pinout.vsd
18
17
16
15
14
13
24
23
22
21
20
19
1
2
3
4
5
6
7
8
9
10
11
12
IS
DSEL0
IN2
IN3
DSEL1
NC
NC
IN1
DEN
NC
OUT0
NC
NC
NC
OUT1
NC
OUT2
NC
NC
NC
OUT3
IN0
NC
GND
Data Sheet 8 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Pin Configuration
3.3 Voltage and Current Definition
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.
Figure 3 Voltage and Current Definition
17 OUT2 OUTput 2; Protected high side power output channel 2
20 OUT1 OUTput 1; Protected high side power output channel 1
24 OUT0 OUTput 0; Protected high side power output channel 0
Cooling Tab VSVoltage Supply; Battery voltage
Pin Symbol Function
V
S
IN0
IN1
IN2
IN3
IS
GND
OUT0
OUT1
I
IN0
I
IN1
I
IN2
I
IN3
I
IS
V
S
V
IN0
V
IN1
V
IN2
V
IN3
V
IS
I
S
I
GND
V
DS0
V
DS1
V
OUT0
I
OUT 1
I
OUT 0
voltage and current convention.vsd
V
DEN
DEN
I
DEN
V
DSEL 0
DSEL0
I
DSEL0
V
DSEL 1
DSEL1
I
DSEL1
V
DS2
V
DS3
I
OUT2
OUT2
OUT3
V
OUT 1
V
OUT 2
V
OUT3
I
OUT3
BTT6200-4EMA
General Product Characteristics
Data Sheet 9 Rev. 1.0, 2014-08-20
PROFET™+ 24V
4 General Product Characteristics
4.1 Absolute Maximum Ratings
Table 2 Absolute Maximum Ratings 1)
TJ = -40°C to 150°C; (unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
Supply Voltages
Supply voltage VS-0.3 48 V P_4.1.1
Reverse polarity voltage -VS(REV) 0–28Vt < 2 min
TA = 25 °C
RL 47
ZGND = Diode
+27
P_4.1.2
Supply voltage for short
circuit protection
VBAT(SC) 0–36 VRSupply = 10 m
LSupply = 5 µH
RECU= 20 m
RCable= 16 m/m
LCable= 1 µH/m,
l = 0 or 5 m
See Chapter 6
and Figure 28
P_4.1.3
Supply voltage for Load dump
protection
VS(LD) – – 65 V 2)RI = 2
RL = 47
P_4.1.12
Short Circuit Capab ility
Permanent short circuit
IN pin toggles
nRSC1 – – 100 k
cycles
3)_ P_4.1.4
Input Pins
Voltage at INPUT pins VIN -0.3
–6
7
V–
t < 2 min
P_4.1.13
Current through INPUT pins IIN -2 2 mA P_4.1.14
Voltage at DEN pin VDEN -0.3
–6
7
V–
t < 2 min
P_4.1.15
Current through DEN pin IDEN -2 2 mA P_4.1.16
Voltage at DSEL pin VDSEL -0.3
–6
7
V–
t < 2 min
P_4.1.17
Current through DSEL pin IDSEL -2 2 mA P_4.1.18
Sense Pin
Voltage at IS pin VIS -0.3 VSV P_4.1.19
Current through IS pin IIS -25 50 mA P_4.1.20
Power Stage
Load current | IL |–IL(LIM) A P_4.1.21
Data Sheet 10 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
General Product Characteristics
Notes
1. Stresses above the ones listed here may cause pe rmanent damage to the device . Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destructi on under fault conditions described in the
data sheet. Fault conditions are considered as “outsid e” nor mal operati ng rang e. Protection function s are not
designed for continuous repetitive operation.
Power dissipation (DC) PTOT ––1.8WTA = 85 °C
TJ < 150 °C
P_4.1.22
Maximum energy dissipation
Single pulse (one channel)
EAS ––20mJIL(0) = 1 A
TJ(0) = 150 °C
VS = 28 V
P_4.1.23
Voltage at power transistor VDS 65 V P_4.1.26
Currents
Current through ground pin I GND -20
-150
–20
20
mA
t < 2 min
P_4.1.27
Temperatures
Junction temperature TJ-40 150 °C P_4.1.28
Storage temperature TSTG -55 150 °C P_4.1.30
ESD Susceptibility
ESD susceptibility (all pins) VESD -2 2 kV 4) HBM P_4.1.31
ESD susceptibility OUT Pin
vs. GND and VS connected
VESD -4 4 kV 4) HBM P_4.1.32
ESD susceptibility VESD -500 500 V 5) CDM P_4.1.33
ESD susceptibility pin
(corner pins)
VESD -750 750 V 5) CDM P_4.1.34
1) Not subject to production test. Specified by design.
2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.
3) Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer for short-circuit capability at the end
of this document.
4) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001.
5) “CDM” ESDA STM5.3.1 or ANSI/ESD 5.5.3.1
Table 2 Absolute Maximum Ratings (cont’d)1)
TJ = -40°C to 150°C; (unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
BTT6200-4EMA
General Product Characteristics
Data Sheet 11 Rev. 1.0, 2014-08-20
PROFET™+ 24V
4.2 Functional Range
Table 3 Functional Range TJ = -40°C to 150°C; (unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
Nominal operating voltage VNOM 8 28 36 V P_4.2.1
Extended operating voltage VS(OP) 5–48V
2) VIN = 4.5 V
RL = 47
VDS < 0.5 V
P_4.2.2
Minimum functional supply
voltage
VS(OP)_MIN 3.8 4.3 5 V 1) VIN = 4.5 V
RL = 47
From IOUT = 0 A
to
VDS < 0.5 V; see
Figure 15
P_4.2.3
Undervoltage shutdown VS(UV) 3 3.5 4.1 V 1) VIN = 4.5 V
VDEN = 0 V
RL = 47
From VDS < 1 V;
to IOUT = 0 A
See Chapter 9.1
and Figure 15
P_4.2.4
Undervoltage shutdown
hysteresis
VS(UV)_HYS 850 mV 2) P_4.2.13
Operating current
One channel active
IGND_1 –2 4 mAVIN = 5.5 V
VDEN = 5.5 V
Device in RDS(ON)
VS = 36 V
See Chapter 9.1
P_4.2.5
Operating current
All channels active
IGND_4 –6 9 mAVIN = 5.5 V
VDEN = 5.5 V
Device in RDS(ON)
VS = 36 V
See Chapter 9.1
P_4.2.6
Standby current for whole
device with load (ambiente)
IS(OFF) –0.10.5µA
1) VS = 36 V
VOUT = 0 V
VIN floating
VDEN floating
TJ 85 °C
P_4.2.7
Data Sheet 12 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
General Product Characteristics
Note:Within the functional range the IC operates as described in the circuit desc rip tio n. The elec tric al
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3 Thermal Resistance
4.3.1 PCB set up
Figure 4 2s2p PCB Cross Section
Maximum standby current for
whole device with load
IS(OFF)_150 ––20 µAVS = 36 V
VOUT = 0 V
VIN floating
VDEN floating
TJ = 150 °C
P_4.2.10
Standby current for whole
device with load, diagnostic
active
IS(OFF_DEN) –0.6–mA
2) VS = 36 V
VOUT = 0 V
VIN floating
VDEN = 5.5 V
P_4.2.8
1) Test at TJ = -40°C only
2) Not subject to production test. Specified by design.
Table 4 Thermal Resistance
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
Junction to soldering point RthJS –5–K/W
1)
1) Not subject to production test. Specified by design.
P_4.3.1
Junction to ambient
All channels active
RthJA –30–K/W
1)2)
2) Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip +
package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35 µm Cu). Where
applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4.
P_4.3.2
Table 3 Functional Range (cont’d)TJ = -40°C to 150°C; (unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
1.5mm
70µm
35µm
0.3mm
PCB 2s2p.vsd
BTT6200-4EMA
General Product Characteristics
Data Sheet 13 Rev. 1.0, 2014-08-20
PROFET™+ 24V
Figure 5 PC Board Top and Bottom View for Thermal Simulation with 600 mm² Cooling Area
4.3.2 Thermal Impedance
Figure 6 Typical Thermal Impedance. 2s2p PCB set up according Figure 4
PCB_600_SSOP24.vsd
1
2
COOLING
TAB
V
S
PCB top view
PCB bottom view
1
2
2
1
2
2
1
2
1
2
1
2
1
2
2
1
2
2
1
2
1
2
0.1
1
10
100
0.0001 0.001 0.01 0.1 1 10 100 1000
Zthja[K/W]
Time[s]
1s0pfootprint
1s0p300mm²
1s0p600mm²
2s2p
Data Sheet 14 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
General Product Characteristics
Figure 7 Typical Thermal Resistance. PCB set-up 1s0p
0100 200 300 400 500 600 700
30
35
40
45
50
55
60
65
70
75
80
Rthja [K/W]
Area [mm2]footprint
1s0p
BTT6200-4EMA
Power Stage
Data Sheet 15 Rev. 1.0, 2014-08-20
PROFET™+ 24V
5 Power Stage
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.
5.1 Output ON-state Resistance
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The
behavior in reverse polarity is described in Chapter 6.4.
Figure 8 Typical ON-state Resistance
A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope, which
is optimized in terms of EMC emission.
5.2 Turn ON/OFF Characteristics with Resistive Load
Figure 9 shows the typical timing when switching a resistive load.
Figure 9 Switching a Resistive Load Timing
IN
t
VOUT
tON
tON_delay tOFF
90% VS
10% VS
VIN_H
VIN_L
t
Switching times.vsd
tOFF_delay
30% VS
70% VS
dV/dt ON dV/dt OFF
Data Sheet 16 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Power Stage
5.3 Inductive Load
5.3.1 Output Clamping
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,
because the inductance intends to continue driving the current. To prevent the destruction of the device by
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless,
the maximum allowed load inductance is limited.
Figure 10 Output Clamp
Figure 11 Switching an Inductive Load Timing
5.3.2 Maximum Load Inductance
During demagnetization of inductive loads, energy has to be dissipated in the BTT6200-4EMA. This energy can
be calculated with following equation:
(1)
V
BAT
V
OUT
I
L
L, R
L
V
S
OUTx
V
DS
LOGIC
INx
V
IN
Output clamp.vsd
Z
DS(AZ)
GND
Z
GND
IN
V
OUT
I
L
V
S
V
S
-V
DS(AZ)
t
t
t
Switching an inductance.vsd
EV
DS AZ() L
RL
------
×VSVDS AZ()
RL
-------------------------------- 1RLIL
×
VSVDS AZ()
--------------------------------
⎝⎠
⎛⎞
ln IL
+××=
BTT6200-4EMA
Power Stage
Data Sheet 17 Rev. 1.0, 2014-08-20
PROFET™+ 24V
Following equation simplifies under the assumption of RL = 0 .
(2)
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 1 2 for the
maximum allowed energy dissipation as a function of the load current.
Figure 12 Maximum Energy Dissipation Single Pulse, TJ_START = 150 °C; VS = 28V
5.4 Inverse Current Capability
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV
will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The output
stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular
case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not
be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel
is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of
VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output state. At VINV
vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions are
available.
E1
2
---LI
21VS
VSVDS AZ()
--------------------------------
⎝⎠
⎛⎞
×××=
1
10
100
00.511.522.53
EAS(mJ)
IL(A)
Data Sheet 18 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Power Stage
Figure 13 Invers e Curre n t Circ ui try
OUT
V
S
V
BAT
I
L(INV)
OL
comp.
inverse current.vsd
V
INV
INV
Comp.
Gate driver
Device
logic
GND
Z
GND
IS
BTT6200-4EMA
Power Stage
Data Sheet 19 Rev. 1.0, 2014-08-20
PROFET™+ 24V
5.5 Electrical Characteristics Power Stage
Table 5 Electrical Characteristics: Power Stage
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
ON-state resistance per
channel
RDS(ON)_150 300 360 400 mIL = IL4 = 1 A
VIN = 4.5 V
TJ = 150 °C
See Figure 8
P_5.5.1
ON-state resistance per
channel
RDS(ON)_25 200 m1) TJ = 25 °C P_5.5.21
Nominal load current
One channel active
IL(NOM)1 –1.5–A
1) TA = 85 °C
TJ < 150 °C
P_5.5.2
Nominal load current
All channels active
IL(NOM)2 –1–A P_5.5.3
Output voltage drop limitation
at small load currents
VDS(NL) –1022mV IL = IL0 = 25 mA
See Chapter 9.3 P_5.5.4
Drain to source clamping
voltage
VDS(AZ) = [VS - VOUT]
VDS(AZ) 65 70 75 V IDS = 5 mA
See Figure 11
See Chapter 9.1
P_5.5.5
Output leakage current per
channel TJ 85 °C
IL(OFF) –0.10.5µA
2) VIN floating
VOUT = 0 V
TJ 85 °C
P_5.5.6
Output leakage current per
channel TJ = 150 °C
IL(OFF)_150 –15 µAVIN floating
VOUT = 0 V
TJ = 150 °C
P_5.5.8
Inverse current capability IL(INV) –1–A
1) VS < VOUTX
See Figure 13 P_5.5.9
Slew rate
30% to 70% VS
dV/dtON 0.3 0.8 1.3 V/µs RL = 47
VS = 28 V
See Figure 9
See Chapter 9.1
P_5.5.11
Slew rate
70% to 30% VS
-dV/dtOFF 0.3 0.8 1.3 V/µs P_5.5.12
Slew rate matching
dV/dtON - dV/dtOFF
dV/dt-0.15 0 0.15 V/µs P_5.5.13
Turn-ON time to VOUT = 90%
VS
tON 20 70 150 µs P_5.5.14
Turn-OFF time to VOUT = 10%
VS
tOFF 20 70 150 µs P_5.5.15
Turn-ON / OFF matching
tOFF - tON
tSW -50 0 50 µs P_5.5.16
Turn-ON time to VOUT = 10%
VS
tON_delay 35 70 µs P_5.5.17
Turn-OFF time to VOUT = 90%
VS
tOFF_delay 35 70 µs P_5.5.18
Data Sheet 20 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Power Stage
Switch ON energy EON 190 – µJ 1) RL = 47
VOUT = 90% VS
VS = 36 V
See Chapter 9.1
P_5.5.19
Switch OFF energy EOFF 210 – µJ 1) RL = 47
VOUT = 10% VS
VS = 36 V
See Chapter 9.1
P_5.5.20
1) Not subject to production test, specified by design.
2) Test at TJ = -40°C only
Table 5 Electrical Characteristics: Power Stage (cont’d)
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
BTT6200-4EMA
Protection Functions
Data Sheet 21 Rev. 1.0, 2014-08-20
PROFET™+ 24V
6 Protection Functions
The device provides integrated protection functions. These functions are designed to prevent the destruction of
the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal
operating range. Protection functions are designed for neither continuous nor repetitive operation.
6.1 Loss of Ground Protection
In case of loss of the module ground and the load remains connected to ground, the device protects itself by
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN
pins.
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the
BTT6200-4EMA to ensure switching OFF of channels.
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches
the situation.
ZGND is recommended to be a resistor in series to a diode .
Figure 14 Loss of Ground Protection with External Components
6.2 Undervoltage Protection
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON.
If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the
supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch
is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM
range. Figure 15 sketches the undervoltage mechanism.
INx
DEN
IS
ZD
ESD
GND
OUTx
V
S
V
BAT
Z
D(AZ)
LOGIC
DSEL1
Loss of ground protection.vsd
IOUT(GND)
Z
DS(AZ)
R
IN
R
DEN
R
DSEL
R
SENSE
R
IS
Z
IS(AZ)
Z
GND
R
DSEL
DSEL0
IS
Data Sheet 22 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Protection Functions
Figure 15 Undervoltage Behavior
6.3 Overvoltage Protection
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 16
shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power
transistor switches ON and in addition the voltage across the logic section is clamped. As a result, the internal
ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx, DSELx, and DEN rises
almost to that potential, depending on the impedance of the connected circuitry. In the case the device was ON,
prior to overvoltage, the BTT6200-4EMA remains ON. In the case the BTT6200-4EMA was OFF, prior to
overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below
VDS(AZ), the output transistor is still operational and follows the input. If at least one channel is in the ON state,
parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This
especially impacts the short circuit robustness, as well as the maximum energy EAS capability. ZGND is
recommended to be a resistor in series to a diode.
Figure 16 Overvoltage Protection with External Co mponents
undervoltage behavior.vsd
V
OUT
V
S(OP)
V
S(UV)
V
S
Overvoltage protection.vsd
I
SOV
INx
DEN
IS
ZD
ESD
GND
OUTx
V
S
V
BAT
Z
D(AZ)
LOGIC
DSEL1
Z
DS(AZ)
R
IN
R
DEN
R
DSEL
R
SENSE
R
IS
Z
IS(AZ)
R
DSEL
DSEL0
Z
GND
BTT6200-4EMA
Protection Functions
Data Sheet 23 Rev. 1.0, 2014-08-20
PROFET™+ 24V
6.4 Reverse Polarity Protection
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current in
this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins
has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 17 shows a
typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDSEL,
RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used
to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RDSEL =
RIN = RSENSE = 10 k. It is recommended to use a resistor in series to a diode in the ground path.
During reverse polarity, no protection functions are available.
Figure 17 Reverse Polarity Protection with External Components
6.5 Overload Protection
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6200-4EMA offers
several protection mechanisms.
6.5.1 Current Limitation
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects
the current flowing in the DMOS.
6.5.2 Temperature Limitation in the Power DMOS
Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF
latches the output until the temperature has reached an acceptable value. Figure 18 gives a sketch of the
situation.
No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is
switched ON again. Only the IN pin signal toggling can re-activate the power stage (latch behavior).
INx
DEN
IS
ZD
ESD
GND
OUTx
V
S
-V
S(REV)
Z
D(AZ)
LOGIC
DSEL0
Reverse Polarity.vsd
Z
DS(AZ)
IN0
R
DEN
R
DSEL1
R
DSEL0
R
SENSE
R
IS
V
DS( REV)
Micro controller
protection diodes Z
IS(AZ)
R
IN
DSEL1
R
GND
IS
D
Data Sheet 24 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Protection Functions
Figure 18 Overload Protection
Note:For better understanding, the time scale is not linear. The real timing of this drawing is application dependant
and cannot be described.
IN
t
I
L
t
I
L(x)SC
I
IS
t
0A
I
IS(FAULT)
V
DEN
t
0V
T
DMOS
t
T
A
ΔT
J(SW)
Hard start.vsd
t
sI S (FA U L T)
I
L(NOM)
I
L(NOM)
/ k
ILIS
t
sIS (OC _blan k)
T
J(SC)
t
sI S (OF F)
LOAD CURRENT LIMITATION PHASE LOAD CURRENT BELOW
LIMITATION PHASE
Temperature
protection phase
BTT6200-4EMA
Protection Functions
Data Sheet 25 Rev. 1.0, 2014-08-20
PROFET™+ 24V
6.6 Electrical Characteristics for the Protection Functions
Table 6 Electrical Characteristics: Protection
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
Loss of Ground
Output leakage current while
GND disconnected
IOUT(GND) –0.1–mA
1)2) VS = 28 V
See Figure 14
1) All pins are disconnected except VS and OUT.
2) Not Subject to production test, specified by design
P_6.6.1
Reverse Polarity
Drain source diode voltage
during reverse polarity
VDS(REV) 200 650 700 mV 3) IL = - 1 A
See Figure 17
3) Test at TJ = +150°C only
P_6.6.2
Overvoltage
Overvoltage protection VS(AZ) 65 70 75 V ISOV = 5 mA
See Figure 16 P_6.6.3
Overload Condition
Load current limitation IL5(SC) 9 1114A 4)VDS = 5 V
See Figure 18 and
Chapter 9.3
4) Test at TJ = -40°C only
P_6.6.4
Dynamic temperature
increase while switching
ΔTJ(SW) –80–K
5) See Figure 18
5) Functional test only
P_6.6.8
Thermal shutdown
temperature
TJ(SC) 150 1705) 2005) °C 3) See Figure 18 P_6.6.10
Thermal shutdown hysteresis ΔTJ(SC) – 30 – K 2) P_6.6.11
Data Sheet 26 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Diagnostic Functions
7 Diagnostic Functions
For diagnosis purpose, the BTT6200-4EMA provides a combination of digital and analog signals at pin IS. These
signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case
DEN is activated, the sense current of the channel X is enabled/disabled via associated pins DSEL0 and DSEL1.
Table 7 gives the truth table.
7.1 IS Pin
The BTT6200-4EMA provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at
OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic
mechanism is described on Figure 19. The accuracy of the sense current depends on temperature and load
current. The sense pin multiplexes the currents IIS(0), IIS(1), IIS(2) and IIS(3) via the pins DSEL0 and DSEL1. Thanks
to this multiplexing, the matching between kILISCHANNEL0, kILISCHANNEL1, kILISCHANNEL2 and kILISCHANNEL3 is optimized.
Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with other devices if
these devices are using another battery feed. The consequence is that the unsupplied device would be fed via the
IS pin of the supplied device.
Figure 19 Diagnostic Block Diagram
Table 7 Diagnos tic Truth Table
DEN DSEL1 DSEL0 IS
0 don’t care don’t care Z Z Z Z
100
IIS0 000
1010
IIS1 00
11000
IIS2 0
1 1 1 000IIS3
DEN
IS
0
1
DSEL1
Sense schematic.vsd
1
0
Z
IS(AZ)
I
IS1
=
I
L1
/ k
ILIS
I
IS(FAULT)
0
1
0
1
DSEL0
I
IS2
=
I
L2
/ k
ILIS
FAULT
I
IS 3
=
I
L3
/ k
ILIS
FAULT
I
IS0
=
I
L0
/ k
ILIS
V
S
BTT6200-4EMA
Diagnostic Functions
Data Sheet 27 Rev. 1.0, 2014-08-20
PROFET™+ 24V
7.2 SENSE Signal in Different Operating Modes
Table 8 gives a quick reference for the state of the IS pin during device operation.
7.3 SENSE Signal i n the Nominal Current Range
Figure 20 shows the current sense as a function of the load current in the power DMOS. Usually, a pull-down
resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 to limit the power
losses in the sense circuitry. A typical value is 1.2 k. The blue curve represents the ideal sense current, assuming
an ideal kILIS factor value. The red curves shows the accuracy the device provides across full temperature range
at a defined current.
Table 8 Sense Signal, Function of Operation Mode
Operation Mode Input level Channel X DEN1)
1) The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pins.
Output Level Diagnostic Output
Normal operation OFF H Z Z
Short circuit to GND ~ GND Z
Overtemperature Z Z
Short circuit to VSVSIIS(FAULT)
Open Load < VOL(OFF)
> VOL(OFF)
2)
2) Stable with additional pull-up resistor.
Z
IIS(FAULT)
Inverse current ~ VINV IIS(FAULT)
Normal operation ON ~ VSIIS = IL / kILIS
Current limitation < VSIIS(FAULT)
Short circuit to GND ~ GND IIS(FAULT)
Overtemperature TJ(SW)
event
ZIIS(FAULT)
Short circuit to VSVSIIS < IL / kILIS
Open Load ~ VS
3)
3) The output current has to be smaller than IL(OL).
IIS < IIS(OL)
Inverse current ~ VINV IIS < IIS(OL)
4)
4) After maximum tINV.
Underload ~ VS
5)
5) The output current has to be higher than IL(OL).
IIS(OL) < IIS < IL / kILIS
Don’t care Don’t care L Don’t care Z
Data Sheet 28 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Diagnostic Functions
Figure 20 Current Sense for Nominal Load
7.3.1 SENSE Signal Variation as a Function of Temperature and Load Current
In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement, a
calibration on the application is possible. To avoid multiple calibration points at different load and temperature
conditions, the BTT6200-4EMA allows limited derating of the kILIS value, at a given point (IL3; TJ = +25 °C). This
derating is described by the parameter kILIS. Figure 21 shows the behavior of the sense current, assuming one
calibration point at nominal load at +25 °C.
The blue line indicates the ideal kILIS ratio.
The green lines indicate the derating on the parameter across temperature and voltage, assuming one calibration
point at nominal temperature and nominal battery voltage.
The red lines indicate the kILIS accuracy without calibration.
00.5 11.5
0
1
2
3
4
5
6
I
L
[A]
I
IS
[mA]
min/max Sense Current
typical Sense Current
BTT6200-4EMA
BTT6200-4EMA
Diagnostic Functions
Data Sheet 29 Rev. 1.0, 2014-08-20
PROFET™+ 24V
Figure 21 Improved Current Sense Accuracy with One Calibration Point at 0.2A
7.3.2 SENSE Signal Timing
Figure 22 shows the timing during settling and disabling of the SENSE.
Figure 22 Current Sense Settling / Disabling Timing
00.5 11.5
150
200
250
300
350
400
450
500
I
L
[A]
k
ILIS
calibrated k
ILIS
min/max k
ILIS
typical k
ILIS
BTT6200-4EMA
V
INx
t
I
Lx
t
I
IS
t
V
DEN
t
t
sIS(ON)
t
sIS(OFF)
t
ONx
90% of
I
IS
static
90% of
I
L
static
t
sIS(ON_DEN)
t
sIS(LC)
V
INy
t
I
Ly
t
V
DSEL
t
t
sIS(chC)
current sense s ettling dis abling time .vsd
t
ONx
t
OFFx
t
ONy
Data Sheet 30 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Diagnostic Functions
7.3.3 SENSE Signal in Open Load
7.3.3.1 Open Load in ON Diagnostic
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power
DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case, the
SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL).
Figure 23 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue
curve shows the ideal current sense.
Figure 23 Current Sense Ratio for Low Currents
7.3.3.2 Open Load in OFF Diagnostic
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be
taken into account. Figure 24 gives a sketch of the situation. Ileakage defines the leakage current in the complete
system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc... in the
application.
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x
is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by
the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched
to the IIS(FAULT).
An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can be
used as well for short circuit to battery detection, see Chapter 7.3.4.
I
IS
I
L
Sense for OL .vsd
I
L(OL)
I
IS(OL)
BTT6200-4EMA
Diagnostic Functions
Data Sheet 31 Rev. 1.0, 2014-08-20
PROFET™+ 24V
Figure 24 Open Load Detection in OFF Electrical Equivalent Circuit
7.3.3.3 Open Load Diagnostic Timing
Figure 25 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please
note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open
load in OFF diagnosis request, otherwise the diagnosis can be wrong.
Figure 25 Sense Signal in Open Load Timing
7.3.4 SENSE Signal in Short Circuit to VS
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the
normal operation will flow through the DMOS of the BTT6200-4EMA, which can be recognized at the current sense
signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case,
an external resistor to ground RSC_VS is required. Figure 26 gives a sketch of the situation.
OUT
V
S
S
OL
V
bat
VOL(OFF)
I
leakage
IIS(FAULT)
IS
ILOFF
OL
comp.
Open Load in OFF.vsd
GND
R
PD
R
leakage
R
OL
Z
GND
R
IS
V
IN
tV
OUT
t
I
IS
t
t
sIS(LC )
t
sIS(FAULT_OL _ON_OFF)
Error Settling Disabling Time.vsd
V
S
-V
OL(OFF)
R
DS(ON)
x I
L
I
OUT
Load is present Open load
shutdown with load
t
Data Sheet 32 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Diagnostic Functions
Figure 26 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit
7.3.5 SENSE Signal in Case of Overload
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the
absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal
shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.
The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic temperature
condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If the DEN pin is
activated, and DSEL pin is selected to the correct channel, the SENSE follows the output stage. If no reset of the
latch occurs, the device remains in the latching phase and IIS(FAULT) at the IS pin, eventhough the DMOS is OFF.
7.3.6 SENSE Signal in Case of Inverse Current
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and
indicate open load in ON state. The unaffected channels indicate normal behavior as long as the IINV current is not
exceeding the maximum value specified in Chapter 5.4.
V
S
V
bat
V
OL(OFF)
I
IS(FAULT)
IS
OL
comp.
Short circuit to Vs.vsd
V
BAT
OUT
GND
R
SC_VS
R
IS
Z
GND
IS
BTT6200-4EMA
Diagnostic Functions
Data Sheet 33 Rev. 1.0, 2014-08-20
PROFET™+ 24V
7.4 Electrical Characteristics Diagnostic Function
Table 9 Electrical Characteristics: Diagnostics
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
Load Condition Threshold for Diagnostic
Open load detection
threshold in OFF state
VS - VOL(OFF) 4–6V
1) VIN = 0 V
VDEN = 4.5 V
See Figure 25
P_7.5.1
Open load detection
threshold in ON state
IL(OL) 5–15 mAVIN = VDEN = 4.5 V
IIS(OL) = 33 μA
See Figure 23
See Chapter 9.4
P_7.5.2
Sense Pin
IS pin leakage current when
sense is disabled
IIS_(DIS) –0.021 µA
1) VIN = 4.5 V
VDEN = 0 V
IL = IL4 = 1 A
P_7.5.4
Sense signal saturation
voltage
VS - VIS
(RANGE)
1 3.5 V VIN = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
IIS = 6 mA
See Chapter 9.4
P_7.5.6
Sense signal maximum
current in fault condition
IIS(FAULT) 6 15 35 mA VIS = VIN = VDSEL = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
See Figure 19
See Chapter 9.4
P_7.5.7
Sense pin maximum voltage
VS to IS
VIS(AZ) 65 70 75 V IIS = 5 mA
See Figure 19 P_7.5.3
Current Sense Ratio Signal in the Nominal Area, Stable Loa d Current Condition
Current sense ratio
IL0 = 10 mA
kILIS0 -50% 330 +50% VIN = 4.5 V
VDEN = 4.5 V
See Figure 20
TJ = -40 °C; 150 °C
P_7.5.8
Current sense ratio
IL1 = 0.05 A
kILIS1 -40% 300 +40% P_7.5.9
Current sense ratio
IL2 = 0.2 A
kILIS2 -15% 300 +15% P_7.5.10
Current sense ratio
IL3 = 0.5 A
kILIS3 -11% 300 +11% P_7.5.11
Current sense ratio
IL4 = 1 A
kILIS4 -9% 300 +9% P_7.5.12
kILIS derating with current and
temperature
kILIS -8 0 +8 % 2) kILIS3 versus kILIS2
See Figure 21 P_7.5.17
Diagnostic Timing in Normal Condition
Data Sheet 34 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Diagnostic Functions
Current sense settling time to
kILIS function stable after
positive input slope on both
INput and DEN
tsIS(ON) 150 µs 2) VDEN = VIN= 0 to
4.5 V
VS = 28 V
RIS = 1.2 k
CSENSE < 100 pF
IL = IL3 = 0.5 A
See Figure 22
P_7.5.18
Current sense settling time
with load current stable and
transition of the DEN
tsIS(ON_DEN) ––10µs
1) VIN = 4.5 V
VDEN = 0 to 4.5 V
RIS = 1.2 k
CSENSE < 100 pF
IL = IL3 = 0.5 A
See Figure 22
P_7.5.19
Current sense settling time to
IIS stable after positive input
slope on current load
tsIS(LC) ––15µs
1) VIN = 4.5 V
VDEN = 4.5 V
RIS = 1.2 k
CSENSE < 100 pF
IL = IL2 = 0.2 A to IL =
IL3 = 0.5 A
See Figure 22
P_7.5.20
Diagnostic Timing in Open Load Condition
Current sense settling time to
IIS stable for open load
detection in OFF state
tsIS(FAULT_OL_
OFF)
––50µs
1) VIN = 0V
VDEN = 0 to 4.5 V
RIS = 1.2 k
CSENSE < 100 pF
VOUT = VS = 28 V
P_7.5.22
Current sense settling time to
IIS stable for open load
detection in ON-OFF
transition
tsIS(FAULT_OL_
ON_OFF)
150 µs 2) VIN = 4.5 to 0V
VDEN = 4.5 V
RIS = 1.2 k
CSENSE < 100 pF
VOUT = VS = 28 V
See Figure 25
P_7.5.23
Diagnostic Timing in Overload Condition
Current sense settling time to
IIS stable for overload
detection
tsIS(FAULT) 150 µs 1) 3) 4) VIN= VDEN = 0 to
4.5 V
RIS = 1.2 k
CSENSE < 100 pF
VDS = 5 V
See Figure 18
P_7.5.24
Current sense over current
blanking time
tsIS(OC_blank) 350 µs 2) VIN = VDEN = 4.5 V
RIS = 1.2 k
CSENSE < 100 pF
VDS = 5 V to 0 V
See Figure 18
P_7.5.32
Table 9 Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
BTT6200-4EMA
Diagnostic Functions
Data Sheet 35 Rev. 1.0, 2014-08-20
PROFET™+ 24V
Diagnostic disable time
DEN transition to
IIS < 50% IL /kILIS
tsIS(OFF) ––20µs
1) VIN = 4.5 V
VDEN = 4.5 V to 0 V
RIS = 1.2 k
CSENSE < 100 pF
IL = IL3 = 0.5 A
See Figure 22
P_7.5.25
Current sense settling time
from one channel to another
tsIS(ChC) ––20µsVIN0 = VIN1 = 4.5 V
VDEN = 4.5 V
VDSEL = 0 to 4.5 V
RIS = 1.2 k
CSENSE < 100 pF
IL(OUT0) = IL3 = 0.5 A
IL(OUT1) = IL2 = 0.2 A
See Figure 22
P_7.5.26
1) DSEL pin select channel 0 only.
2) Not subject to production test, specified by design
3) Test at TJ = -40°C only
4) Functional Test only
Table 9 Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
Data Sheet 36 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Input Pins
8 Input Pins
8.1 Input Circuitry
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage
thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly
increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input
circuitry is compatible with PWM applications. Figure 27 shows the electrical equivalent input circuitry. In case the
pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via an
10kΩ input resistor.
Figure 27 Input Pin Circuitry
8.2 DEN / DSEL0,1 Pin
The DEN / DSEL0,1 pins enable and disable the diagnostic functionality of the device. The pins have the same
structure as the INput pins, please refer to Figure 27.
8.3 Input Pin Voltage
The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region,
set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown
and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a
hysteresis is implemented. This ensures a certain immunity to noise.
GND
IN
Input circuitry .vsd
BTT6200-4EMA
Input Pins
Data Sheet 37 Rev. 1.0, 2014-08-20
PROFET™+ 24V
8.4 Electrical Characteristics
Table 10 Electrical Characteristics: Input Pins
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).
Typical values are given at VS = 28 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition Number
Min. Typ. Max.
INput Pins Characteristics
Low level input voltage range VIN(L) -0.3 0.8 V See Chapter 9.5 P_8.4.1
High level input voltage range VIN(H) 2 – 6 V See Chapter 9.5 P_8.4.2
Input voltage hysteresis VIN(HYS) 250 mV 1)
See Chapter 9.5
1) Not subject to production test, specified by design
P_8.4.3
Low level input current IIN(L) 11025µAVIN = 0.8 V P_8.4.4
High level input current IIN(H) 21025µAVIN = 5.5 V
See Chapter 9.5 P_8.4.5
DEN Pin
Low level input voltage range VDEN(L) -0.3 0.8 V P_8.4.6
High level input voltage range VDEN(H) 2–6V P_8.4.7
Input voltage hysteresis VDEN(HYS) 250 mV 1) P_8.4.8
Low level input current IDEN(L) 11025µAVDEN = 0.8V P_8.4.9
High level input current IDEN(H) 21025µAVDEN = 5.5 V P_8.4.10
DSEL Pins
Low level input voltage range VDSEL(L) -0.3 0.8 V P_8.4.11
High level input voltage range VDSEL(H) 2–6V P_8.4.12
Input voltage hysteresis VDSEL(HYS) 250 mV 1) P_8.4.13
Low level input current IDSEL(L) 11025µAVDSEL = 0.8V P_8.4.14
High level input current IDSEL(H) 21025µAVDSEL = 5.5 V P_8.4.15
Data Sheet 38 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Characterizati on Res ults
9 Characterization Results
The characterization have been performed on 3 lots, with 3 devices each. Characterization have been performed
at 8 V, 28 V and 36 V over temperature range.
9.1 General Product Characteristics
P_4.2.3 P_4.2.4
Minimum Functional Supply Voltage
VS(OP)_MIN = f(TJ)Undervoltag e Threshold VS(UV) = f(TJ)
P_4.2.6 P_4.2.7, P_4.2.10
Current Consumption for Whole Device with Load.
All Channels Active IGND_2 = f(TJ;VS)Standby Current for Whole Device with Load.
IS(OFF) = f(TJ;VS)
4.000
4.100
4.200
4.300
4.400
4.500
4.600
4.700
4.800
4.900
5.000
50 25 0 25 50 75 100 125 150
[V]
Temperature[°C]
8V
28V
36V
3.000
3.100
3.200
3.300
3.400
3.500
3.600
3.700
3.800
3.900
4.000
50 25 0 25 50 75 100 125 150
[V]
Temperature[°C]
8V
28V
36V
0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
50 25 0 25 50 75 100 125 150
[mA]
Temperature[°C]
8V
28V
36V
0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
50 25 0 25 50 75 100 125 150
[µA]
Temperature[°C]
8V
28V
36V
BTT6200-4EMA
Characterizati on Res ults
Data Sheet 39 Rev. 1.0, 2014-08-20
PROFET™+ 24V
9.2 Power Stage
P_5.5.4 P_5.5.5
Output Voltage Drop Limitation at Low Load Current
VDS(NL) = f(TJ) and VDS(NL) = f(VS)Drain to Source Clamp Voltage VDS(AZ) = f(TJ)
P_5.5.11 P_5.5.12
Slew Rate at Turn ON
dV/dtON = f(TJ;VS), RL = 47 ΩSlew Rate at Turn OFF
- dV/dtOFF = f(TJ;VS), RL = 47 Ω
7.000
7.500
8.000
8.500
9.000
9.500
10.000
10.500
11.000
11.500
12.000
50 250 255075100125150
[mV]
Temperature[°C]
8V
28V
36V
65.000
66.000
67.000
68.000
69.000
70.000
71.000
72.000
73.000
74.000
75.000
50 250 255075100125150
[V]
Temperature[°C]
8V
28V
36V
0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
50 25 0 25 50 75 100 125 150
[V/µs]
Temperature[°C]
8V
28V
36V
0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
50 25 0 25 50 75 100 125 150
[V/µs]
Temperature[°C]
8V
28V
36V
Data Sheet 40 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Characterizati on Res ults
P_5.5.14 P_5.5.15
Turn ON TON = f(TJ;VS), RL = 47 ΩTurn OFF TOFF = f(TJ;VS), RL = 47 Ω
P_5.5.19 P_5.5.20
Switch ON Energy EON = f(TJ;VS), RL = 47 ΩSwitch OFF Energy EOFF = f(TJ;VS), RL = 47 Ω
0.000
10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
50 250 255075100125150
[ms]
Temperature[°C]
8V
28V
36V
0.000
10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000
50 250 255075100125150
[µs]
Temperature[°C]
8V
28V
36V
0.00E+00
5.00E05
1.00E04
1.50E04
2.00E04
2.50E04
50 25 0 25 50 75 100 125 150
[µJ]
Temperature[°C]
8V
28V
36V
0.00E+00
5.00E05
1.00E04
1.50E04
2.00E04
2.50E04
3.00E04
50 250 255075100125150
[µJ]
Temperature[°C]
8V
28V
36V
BTT6200-4EMA
Characterizati on Res ults
Data Sheet 41 Rev. 1.0, 2014-08-20
PROFET™+ 24V
9.3 Protection Functions
P_6.6.4
Overload Condition in the Low Voltage Area
IL5(SC) = f(TJ;VS);
0.000
2.000
4.000
6.000
8.000
10.000
12.000
50 250 255075100125150
[A]
Temperature[°C]
8V
28V
36V
Data Sheet 42 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Characterizati on Res ults
9.4 Diagnostic Mechanism
P_7.5.2
Current Sense at no Load
IIS = f(TJ;VS), IL = 0 Open Load Detection ON State Threshold
IL(OL) = f(TJ;VS)
P_7.5.3 P_7.5.7
Sense Signal Maximum Voltage
VIS(AZ) = f(TJ;VS)Sense Signal Maximum Current in Fault Condition
IIS(FAULT) = f(TJ;VS)
0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
50 25 0 25 50 75 100 125 150
[µA]
Temperature[°C]
8V
28V
36V
7.000
7.500
8.000
8.500
9.000
9.500
10.000
10.500
11.000
50 250 255075100125150
[mA]
Temperature[°C]
8V
28V
36V
65.000
66.000
67.000
68.000
69.000
70.000
71.000
72.000
73.000
74.000
75.000
50 250 255075100125150
[V]
Temperature[°C]
8V
28V
36V
0.000
2.000
4.000
6.000
8.000
10.000
12.000
14.000
16.000
18.000
20.000
50 250 255075100125150
[mA]
Temperature[°C]
8V
28V
36V
BTT6200-4EMA
Characterizati on Res ults
Data Sheet 43 Rev. 1.0, 2014-08-20
PROFET™+ 24V
9.5 Input Pins
P_8.4.1 P_8.4.2
Input Voltage Threshold
VVIN(L)= f(TJ;VS) Input Voltage Threshold
VVIN(H)= f(TJ;VS)
P_8.4.3 P_8.4.5
Input Voltage Hysteresis
VIN(HYS) = f(TJ;VS)Input Current High Level
IIN(H) = f(TJ;VS)
1.120
1.140
1.160
1.180
1.200
1.220
1.240
1.260
1.280
1.300
1.320
1.340
50 25 0 25 50 75 100 125 150
[V]
Temperature[°C]
8V
28V
36V
1.450
1.460
1.470
1.480
1.490
1.500
1.510
1.520
1.530
50 25 0 25 50 75 100 125 150
[V]
Temperature[°C]
8V
28V
36V
0.000
50.000
100.000
150.000
200.000
250.000
300.000
350.000
50 250 255075100125150
[mV]
Temperature[°C]
8V
28V
36V
0.000
2.000
4.000
6.000
8.000
10.000
12.000
14.000
16.000
50 250 255075100125150
[µA]
Temperature[°C]
8V
28V
36V
Data Sheet 44 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Application Information
10 Application Information
Note:The following information is given as a hint fo r the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
Figure 28 Application Diagram with BTT6200-4EMA
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.
Table 11 Bill of Material
Reference Value Purpose
RIN 10 kProtection of the microcontroller during overvoltage, reverse polarity
Guarantee BTT6200-4EMA channels OFF during loss of ground
RDSEL 10 kProtection of the microcontroller during overvoltage, reverse polarity
RDEN 10 kProtection of the microcontroller during overvoltage, reverse polarity
RPD 47 kPolarization of the output for short circuit to VS detection
Improve BTT6200-4EMA immunity to electomagnetic noise
ROL 1.5 kPolarization of the output during open load in OFF detection
RIS 1.2 kSense resistor
A/D
I/O
I/O
GND
Micro
controller
DEN
DSEL0
GND
VS
R
SENSE
R
DEN
R
DSEL
R
DSEL
DSEL1
R
IS
R
IN
I/O
R
IN
R
IN
R
IN
OUT3
OUT4
IN0
IN1
IN2
IN3
VDD
I/O
I/O
I/O
I/O
R
LED
OUT VS
GND
Voltage Regulator
Z
C
VS
E.C.U.
V
BAT
OUT0
OUT1
OUT2
OUT3
+
86
85
30
87
IS
D
-
R5W LED
Relay
R
PD
R
PD
R
PD
R
PD
C
SENSE
R
GN D
C
OUT
C
OUT
C
OUT
C
OUT
R
OL
T
1
Application example.e mf
BTT6200-4EMA
Application Information
Data Sheet 45 Rev. 1.0, 2014-08-20
PROFET™+ 24V
10.1 Further Application Information
Please contact us to get the pin FMEA
Existing App. Notes
For further information you may visit http://www.infineon.com/profet
RSENSE 10 kOvervoltage, reverse polarity, loss of ground. Value to be tuned with micro
controller specification.
CSENSE 100 pF Sense signal filtering.
COUT 10nF Protection of the device during ESD and BCI
RLED 680 Overvoltage protection of the LED. Value to be tuned with LED specification.
RGND 27 Protection of the BTT6200-4EMA during overvoltage
D BAS21 Protection of the BTT6200-4EMA during reverse polarity
Z58 V Zener
diode
Protection of the device during overvoltage
CVS 100 nF Filtering of voltage spikes at the battery line
T1Dual NPN/PNP Switch the battery voltage for open load in OFF diagnostic
Table 11 Bill of Material (cont’d)
Reference Value Purpose
Data Sheet 46 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Package Outlines
11 Package Outlines
Figure 29 PG-SSOP-24-14 EP (Plastic Dual Small Outline Package) (RoHS-Compliant)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet 47 Rev. 1.0, 2014-08-20
PROFET™+ 24V
BTT6200-4EMA
Revision History
12 Revision History
Revision Date Changes
1.0 2014-08-20 Creation of the document
Edition 2014-08-20
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Legal Disclaimer for short-circuit capability
Infineon disclaims any warranties and liabilities, whether expressed nor implied, for any short-circuit failures below
the threshold limit.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.